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Abstract4

An n × n production matrix for a class of geometric graphs has the5

property that the numbers of these geometric graphs on up to n vertices6

can be read off from the powers of the matrix. Recently, we obtained7

such production matrices for non-crossing geometric graphs on point sets8

in convex position [6]. In this note, we determine the characteristic poly-9

nomials of these matrices. Then, the Cayley-Hamilton theorem implies10

relations among the numbers of geometric graphs with different num-11

bers of vertices. Further, relations between characteristic polynomials12

of production matrices for geometric graphs and Fibonacci numbers are13

revealed.14

1 Introduction15

A geometric graph on a point set S is a graph with vertex set S whose edges are16

straight-line segments with endpoints in S. It is called non-crossing if no two17

edges intersect except at common endpoints. Here, we consider non-crossing ge-18

ometric graphs on sets S of n points in convex position for the following graph19

classes: triangulations, matchings, spanning trees, forests, spanning paths, and20

all geometric graphs on n vertices. The numbers of these graphs are well known,21

see for instance the work of Flajolet and Noy [4]. Recently, in [6], we counted22

such geometric graphs by using an n × n matrix An, called production matrix,23

associated to the graph class. The numbers of these graphs on a certain number24

of vertices are then given by (a column of) powers of An. In order to derive a25

production matrix, first the graphs on i ≤ n vertices are partitioned according26

to the degree of a specified root vertex. Each part is counted in the elements27

of an n-element integer vector ~vi, and hence the sum of the elements gives the28

number of geometric graphs on i vertices. The production matrix An is such29

that ~vi+1 = An~v
i = Ai+1−c

n ~vc, when starting with a vector ~vc for a constant30

number of vertices, which will usually be (1, 0, . . . , 0)>. To find the matrix An,31
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(a) Triangulations (b) Matchings (c) Spanning trees

(d) Forests (e) Geometric graphs (f) Paths

Figure 1: Production matrices for six different graph classes, for n = 6. Matrix
(f) is for paths on at most n/2 points.

the graphs are implicitly arranged in a tree structure (called generating tree),32

s.t., for each graph on i vertices and with root degree j, the number of its de-33

scendants on i+ 1 vertices with root degree ` (for each `) is known. Generating34

trees are the basis of the ECO method [1], and have been used to obtain matrix35

representations for combinatorial objects [3, 8]. Here we omit how the produc-36

tion matrices for geometric graphs are obtained, and only refer to works by37

Hurtado and Noy [7] for a generating tree of triangulations, and by Hernando38

et al. [5] for a generating tree of spanning trees; and also to [6]. Figure 1 shows39

the obtained production matrices for the studied graph classes, for n = 6. The40

matrix for triangulations was well-known, see e.g. [3, 8]. All matrices except41

for the matrix for paths are upper Hessenberg matrices. The different structure42

of the production matrix for paths, which is formed by four blocks, is due to43

a necessary distinction between paths with root vertex begin an endpoint of a44

path or an interior point. Also, for paths, the degree of the root vertex is de-45

fined in a different way, based on visibility (we omit the definition here). For all46

other graph classes, the degree is the number of edges incident to the root vertex.47

48

The aim of the present work is to analyze these matrices by finding their char-49

acteristic polynomials. Previously, these polynomials were only known for trian-50

gulations [2], matchings, and spanning trees [6]. Here we determine the charac-51

teristic polynomial of the production matrices for geometric graphs, for forests,52

and for paths, solving the problem which was left open in [6]. An application of53

the characteristic polynomial of a production matrix follows from the Cayley-54

Hamilton theorem, which then implies a relation among the numbers of graphs55

with given root vertex degree. For example, via the production matrix for trian-56

gulations and tn(λ) one obtains the relation
∑dn/2e

j=0

(
n−j+1

j

)
(−1)n+jCn−j = 057
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∑n/2
k=0 2

n−k
n

(
n/2
k

)
(−1)n/2+kλn/2+k

Figure 2: The characteristic polynomials of n×n production matrices for several
graph classes.2

for the Catalan numbers Ci; we only refer to [6] for the full example.58

Figure 2 shows the characteristic polynomials of the production matrices for59

the six studied graph classes. We give an outline of the proofs for geometric60

graphs and for forests in the following two sections.61

2 Geometric graphs62

Theorem 2.1 The characteristic polynomial gn(λ) of the n×n production ma-
trix Gn of geometric graphs is

gn(λ) = 2n−1 +

n∑

k=1

k−1∑

j=0

(
k − 1

j

)(
n− j
k

)
2n−k(−1)kλk.

The proof is by induction on n, using the following two lemmas. First, we63

develop the determinant of Gn − λIn, where In is the n× n identity matrix, to64

obtain a recurrence equation for gn(λ), and then to make induction work, we65

need to show a binomial identity.66

Lemma 2.2 The characteristic polynomial gn(λ) of the matrix Gn satisfies the67

recurrence relation68

gn(λ) = (2− λ)gn−1(λ)− 2λgn−2(λ). (1)69

Lemma 2.3 For ` ≥ 2 and n ∈ N,

`−2∑

j=0

((
`− 2

j

)(
n− 2− j
`− 1

)
−
(
`− 2

j − 1

)(
n− 1− j
`− 1

))
=

(
n− `
`− 1

)
.

2The polynomials are also defined for λ = 0 by setting the indeterminate form 00 := 1.
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3 Forests70

Theorem 3.1 The characteristic polynomial fn(λ) of the n×n production ma-
trix Fn of forests is

fn(λ) =

n∑

k=0

λk(−1)k
n∑

`=0

∑̀

j=0

(
`

j

)(
`

2`+ j − n

)(
2`+ j − n
k + `+ j − n

)
.

Lemma 3.2 The characteristic polynomial fn(λ) of the matrix Fn satisfies the71

recurrence relation72

fn(λ) = (1− λ)fn−1(λ) + (1− 2λ)fn−2(λ)− λfn−3(λ). (2)73

To prove Theorem 3.1, we apply Riordan arrays as described for instance in [8].
Consider the infinite matrix

M =




1− λ 1− 2λ −λ 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
...

...
...

...
. . .



.

Let ~w0 be the vector (1, 0, 0, . . .)>, and let
~wi = (fi(λ), fi−1(λ), fi−2(λ), . . . , f1(λ), 1, 0, 0, . . .)>. Then ~wi+1 = M · ~wi. Note
that ~wn is the first column of Mn. Using the notation from [8], we have that
the Z-sequence is {1− λ, 1− 2λ,−λ, 0, . . .} and the A-sequence is {1, 0, . . .}; it
follows that h(t) = 1 and

d(t) =
d0

1− t · Z(th(t))
=

1

1− t(1− λ+ (1− 2λ)t− λt2)
=

=

∞∑

k=0

tk(t+ 1)k(1− λ− λt)k;

the characteristic polynomial fn(λ) is then the coefficient of tn in this expression.74

3.1 Relation to Fibonacci numbers75

Denote with Fib(n) the n-th Fibonacci number, where Fib(1) = Fib(2) = 1,76

and Fib(n) = Fib(n− 1) + Fib(n− 2) for n > 2.77

Corollary 3.3 The determinant of Fn is the Fibonacci number Fib(n+ 1).78

Since the determinant of Fn is fn(0), Corrollary 3.3 follows immediately from79

Equation (2) and f0(0) = f1(0) = 1. Another family of matrices whose determi-80

nants are Fibonacci numbers can be found for instance in [9]. We remark that81

when we substitute λ = 0 in the formula of Theorem 3.1 we also obtain, after82

simplification, the following well known identity.83
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Corollary 3.4 The Fibonacci numbers satisfy the equation

Fib(n+ 1) =

n∑

k=0

(
k

n− k

)
.

Also, the characteristic polynomial fn(λ) can be expressed recursively using84

Fibonacci numbers.85

Corollary 3.5

fn(λ) + λfn−1(λ) = Fib(n+ 1)−
n∑

k=2

Fib(k + 2)λfn−k(λ).
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