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Abstract

In SODA 2001, Raghavan and Spinrad introduced robust algorithms as a way to
solve hard combinatorial graph problems in polynomial time even when the in-
put graph falls slightly outside a graph class for which a polynomial-time algo-
rithm exists. As a leading example, the Maximum Clique problem on unit disk
graphs (intersection graphs of unit disks in the plane) was shown to have a robust,
polynomial-time algorithm by proving that such graphs admit a co-bipartite neigh-
borhood edge elimination ordering (CNEEO). This begs the question whether other
graph classes also admit a CNEEO.

In this paper, we answer this question positively, and identify many graph classes
that admit a CNEEO, including several graph classes for which no polynomial-time
recognition algorithm exists (unless P=NP). As a consequence, we obtain robust,
polynomial-time algorithms for Maximum Clique on all identified graph classes.

We also prove some negative results, and identify graph classes that do not admit a
CNEEO. This implies an almost-perfect dichotomy for subclasses of perfect graphs.
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1 Introduction

Many hard combinatorial graph problems can be solved in polynomial time
only if the input graph belongs to a structured graph class (unless P=NP),
such as planar graphs, perfect graphs, or geometric intersection graphs. Typi-
cally, these efficient algorithms rely on deep structural properties of the graph
class or on a geometric or structural representation of the graph. Therefore,
we first need to run an algorithm that recognizes whether the input graph
actually belongs to the graph class or finds a suitable representation. This
step, however, puts the approach at a distinct disadvantage, because recog-
nizing whether the input graph belongs to the graph class could be NP-hard
or could only have a very complicated polynomial-time algorithm.

To alleviate this disadvantage, Raghavan and Spinrad [16,17] introduced
the notion of robust algorithms. A robust algorithm for a problem Π on a
graph class C must always solve Π if the input graph belongs to C. Otherwise,
the algorithm either solves Π or (correctly) returns that the input graph does
not belong to C. An additional advantage is that the algorithm might still
work if the input graph does not belong to the class C.

As the main example of this concept, Raghavan and Spinrad showed that
Maximum Clique has a polynomial-time, robust algorithm on unit disk
graphs. Recall that a graph is a unit disk graph if it has a representation:
a set of equal-sized disks in the plane where each vertex can be made to
correspond to a disk and there is an edge between two vertices if and only if the
corresponding disks intersect. Maximum Clique can be solved in polynomial
time on unit disk graphs if a representation is given [5]. However, finding a
representation is NP-hard [3] and famously not known to be in NP [15]. To give
a robust algorithm forMaximum Clique on unit disk graphs, and circumvent
the challenge of finding a representation, Raghavan and Spinrad introduced
the notion of a co-bipartite neighborhood edge elimination ordering.

Definition 1.1 Let σ = e1, e2, . . . , em be an ordering of allm edges of an undi-
rected graphG. LetGσ[i] be the subgraph ofG with edge set {ei, ei+1, . . . , em}.
Then σ is a co-bipartite neighborhood edge elimination ordering (CNEEO)
if, for each ei = uivi, the common neighborhood of ui and vi in Gσ[i] (i.e.
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NGσ [i][ui] ∩NGσ [i][vi]) induces a co-bipartite graph in G.

Theorem 1.2 (Raghavan & Spinrad [16,17]) If each graph in a class C
admits a CNEEO, then there is a robust, polynomial-time algorithm for Max-
imum Clique on C.
Theorem 1.3 (Raghavan & Spinrad [16,17]) Unit disk graphs admit a
CNEEO.

The success of robust algorithms for Maximum Clique on unit disk
graphs makes it natural to ask whetherMaximum Clique also has polynomial-
time, robust algorithms on other graph classes. In order to make progress on
this question, Theorem 1.2 suggests we should find further graph classes that
admit a CNEEO. However, we are not aware of any work in this direction.

Our Results

In this paper, we identify many graph classes that also admit a CNEEO. This
includes several graph classes for which the problem of recognizing the graph
class is NP-hard. As a consequence of our results and Theorem 1.2, there are
polynomial-time, robust algorithms for Maximum Clique on all identified
graph classes. We highlight our main results.

First, we consider intersection graphs of axis-parallel squares of arbitrary
size. This class is NP-hard to recognize [12] and a polynomial-time algorithm
for Maximum Clique is known when a representation is given [8].

Theorem 1.4 Intersection graphs of squares admit a CNEEO.

We also consider intersection graphs of increasing semi-squares. These are
semi-squares (the lower part of a square that is cut at the diagonal from top-
left to bottom-right) whose y-coordinate of their base increases with their size.
This class generalizes the class of c-max-tolerance graphs [13], which have a
representation where each vertex v corresponds to an interval Iv on the real
line and a tolerance tv = c · |Iv|, and there is an edge between u, v if and only
if |Iu∩ Iv| ≥ max{tu, tv}. Cliques in c-max-tolerance graphs have applications
in bioinformatics [10,13]. We are not aware of any result on the recognition of
c-max-tolerance graphs.

Theorem 1.5 Intersection graphs of increasing semi-squares admit a CNEEO.
Hence, for any c ∈ [0, 1], c-max-tolerance graphs admit a CNEEO.

Second, we consider (ΠA,ΠB)-graphs for graph properties ΠA,ΠB, which
admit a partition (A,B) of their vertex set such that A ∈ ΠA, B ∈ ΠB. Well-
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known examples of (ΠA,ΠB)-graphs include 2-subcolorable graphs (both A
and B should induce a cluster graph: a disjoint union of cliques) and monopo-
lar graphs (A induces a cluster graph, B an independent set). Monopolar
graphs have applications in bioinformatics [4]. Both aforementioned classes
are NP-hard to recognize [1,7]. Let Π∗ denote the graph property ‘is a chordal
graph’; (Π∗,Π∗)-graphs are NP-hard to recognize [7].

Theorem 1.6 The class of (Π∗,Π∗)-graphs admits a CNEEO.

This result covers 2-subcolorable, monopolar graphs, and (2, 2)-colorable
graphs. A graph is (p, q)-colorable if its vertex set can be partitioned into p+q
parts of which p each induce a clique and q each induce an independent set.

Third, we consider graph classes in which the neighborhood of a vertex
is co-bipartite. For any integer k, k-simplicial graphs G admit an ordering
v1, . . . , vn of V (G) such that, for each vertex vi, the subset of neighbors of
vi contained in {vj | j > i} can be partitioned into k sets S1, . . . , Sk that
each induce a clique [9]. It is easy to see that Maximum Clique can be
solved in polynomial time if k = 2, but is NP-hard if k = 3 (by reducing from
Independent Set on 2-subdivisions of general graphs).

Theorem 1.7 2-simplicial graphs admit a CNEEO.

Fourth, we consider several broadly studied subclasses of perfect graphs,
as well as planar graphs. This demonstrates the versatility of CNEEOs, even
though Maximum Clique is well known to be solvable in polynomial time
on all of these classes, as is the recognition problem [6].

Theorem 1.8 Chordal graphs, proper tolerance graphs, 2-threshold graphs,
and bipartite graphs all admit a CNEEO.

Theorem 1.9 5-degenerate graphs admit a CNEEO. So do planar graphs.

Finally, we consider several graph classes that do not admit a CNEEO.

Theorem 1.10 The complete union of any three graphs that are not co-
bipartite does not admit a CNEEO. In particular, for any i, j, k ≥ 3, Ki,j,k

does not admit a CNEEO, and for any odd i, j, k ≥ 5, the complete union of
Ci, Cj, Ck does not admit a CNEEO.

Corollary 1.11 The following subclasses of perfect graphs do not admit a
CNEEO: cographs, co-chordal graphs, and Gallai graphs. The following graph
classes also do not admit a CNEEO: claw-free graphs, 6-degenerate graphs,
3-subcolorable graphs, and (p, q)-colorable graphs for p ≥ 3 or q ≥ 3.
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This result combined with Theorem 1.8 implies an almost-perfect dichotomy
for subclasses of perfect graphs.

Discussion

This paper establishes CNEEOs as a powerful method to identify robust and
polynomial-time algorithms for Maximum Clique on graph classes. This
makes CNEEOs among the first approaches to try when determining the com-
putational complexity of Maximum Clique on a graph class.

We remark that another useful approach to obtaining a polynomial-time
algorithm for Maximum Clique on many graph classes is to bound the num-
ber of maximal cliques of the graph. Since all maximal cliques in a graph
can be enumerated with O(nm) or O(nω) time delay [18,14], where ω de-
notes the matrix multiplication constant, such a bound immediately implies a
polynomial-time algorithm for Maximum Clique. There are several trade-
offs between using this approach and the CNEEO-based approach. We refer
to the full version of the paper for a detailed comparison and discussion.

We now pose several open questions. One of the more famous questions
surrounding Maximum Clique is its complexity on disk graphs: intersection
graphs of arbitrary disks in the plane (see e.g. [2]). Given the work in this
paper and Theorem 1.3, the following question is reasonable: do disk graphs
admit a CNEEO? Natural approaches of selecting a next edge in the order-
ing, such as smallest intersection area or closest/furthest centers of the disks
corresponding to the endpoint of the edge, all seem to fail.

Another interesting question is whether intersection graphs of arbitrary
rectangles in the plane admit a CNEEO. Note that Maximum Clique can
be solved in polynomial time when a representation is given [8], but finding a
representation is NP-hard [19,11].

Finally, we ask whether intersection graphs of general semi-squares admit
a CNEEO, which would generalize Theorem 1.5. These graphs have a poly-
nomial number of maximal cliques and are NP-hard to recognize [10], but
CNEEO’s be faster than the maximal-clique-enumeration approach.

2 Proof Sketches

Complete proofs of all results are available in the full version of the paper,
which is to appear on the arXiv.

Proof sketch of Theorem 1.5. The order is determined iteratively as fol-
lows. Let E ′ ⊆ E(G) be the set of edges not yet chosen and let G′ =
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(V (G), E ′). Let u be a vertex with degree at least 1 in G′ for which Su is
smallest. Let v be a vertex with uv ∈ E ′ for which the cathetus of Sv is
rightmost among all neighbors of u in G′. Then e = uv is the next edge. �

Proof sketch of Theorem 1.6. Chordal graphs admit a CNEEO by using
a perfect elimination ordering and repeatedly picking all edges incident on the
next simplicial vertex. For a (Π∗,Π∗)-graph G with partition (A,B) of V (G)
such that G[A], G[B] ∈ Π∗, we consider the vertices of A ordered by a perfect
elimination order of G[A]. For the next a ∈ A, we consider the edges of a to B
in the order determined by a perfect elimination order of G[B]. This ensures
a co-bipartite common neighborhood. After dealing with all edges between A
and B, a chordal graph remains, which admits a CNEEO as mentioned. �

Proof of Theorem 1.9. The order is determined iteratively as follows. Let
E ′ ⊆ E(G) be the set of edges not yet chosen and let G′ = (V (G), E ′). Let
v ∈ V (G) have degree at most 5 in G′. If, in G′, v has a neighbor w that
is adjacent to at most two neighbors of v, then pick vw as the next edge; as
v and w have at most two common neighbors in G′, this must induce a co-
bipartite graph in G. If v does not have such a neighbor w, then let X denote
the set of non-edges in the subgraph of G′ induced by the neighborhood of v
in G′. If |X| ≥ 3, then the pigeonhole principle and the fact that v has at
most 5 neighbors in G′ implies we are in the preceding case. If v has at most 4
neighbors in G′, then |X| = 0 or we are in the preceding case. It follows that
v has a neighbor u in G′ that is not incident on a non-edge of X. Pick uv as
the next edge. The common neighborhood of u and v in G′ induces either a
clique, a diamond, or a C4 in G′, and thus in G. �
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