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A BIJECTIVE PROOF OF THE HOOK-LENGTH FORMULA FOR SKEW SHAPES

MATJAŽ KONVALINKA

Abstract. Recently, Naruse presented a beautiful cancellation-free hook-length formula for skew shapes.
The formula involves a sum over objects called excited diagrams, and the term corresponding to each excited
diagram has hook lengths in the denominator, like the classical hook-length formula due to Frame, Robinson
and Thrall.
In this paper, we present a simple bijection that proves an equivalent recursive version of Naruse’s result, in
the same way that the celebrated hook-walk proof due to Greene, Nijenhuis and Wilf gives a bijective (or
probabilistic) proof of the hook-length formula for ordinary shapes.
In particular, we also give a new bijective proof of the classical hook-length formula, quite different from the
known proofs.

1. Introduction

The celebrated hook-length formula gives an elegant product expression for the number of standard Young
tableaux (all definitions are given in Section 2):

fλ =
|λ|!

∏

u∈[λ] h(u)
.

The formula also gives dimensions of irreducible representations of the symmetric group, and is a fun-
damental result in algebraic combinatorics. The formula was discovered by Frame, Robinson and Thrall
in [4] based on earlier results of Young [31], Frobenius [6] and Thrall [30]. Since then, it has been reproved,
generalized and extended in several different ways, and applied in a number of fields ranging from algebraic
geometry to probability, and from group theory to the analysis of algorithms.

In an important development, Greene, Nijenhuis and Wilf introduced the hook walk, which proves a
recursive version of the hook-length formula by a combination of a probabilistic and a short induction ar-
gument [9], see also [10]. Zeilberger converted this hook-walk proof into a bijective proof [32]. With time,
several variations of the hook walk have been discovered, most notably the q-version of Kerov [12], and its
further generalizations and variations (see [7, 13]). In [2], a weighted version of the identity is given, with a
natural bijective proof in the spirit of the hook-walk proof. Also of note are the bijective proofs of Franzblau
and Zeilberger [5] and Novelli, Pak and Stoyanovskii [24]. See also [27], [3], [15] for some proofs of the hook-
length formula for shifted tableaux. There are also a great number of proofs of the more general hook-content
formula due to Stanley (see e.g. [28, Corollary 7.21.4]), see for example [26, 17, 18].

There is no (known) product formula for the number of standard Young tableaux of a skew shape,
even though some formulas have been known for a long time. For example, [28, Corollary 7.16.3] gives a
determinantal formula; we can compute the numbers via Littlewood-Richardson coefficients with the formula

fλ/µ =
∑

ν

cλµ,νf
ν

and there is also a beautiful formula due to Okounkov and Olshanski [25]. The formula states that

(1) fλ/µ =
|λ/µ|!

∏

u∈[λ] h(u)

∑

T∈RST(µ,ℓ(λ))

∏

u∈[µ]

(λT (u) − c(u)),

where RST(µ, ℓ) is the set of reverse semistandard tableaux of shape µ, tableaux with entries 1, . . . , ℓ with
weakly decreasing rows and strictly decreasing columns, and c(u) = j − i is the content of the cell u = (i, j).
See also [22, §10.3].
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In 2014, Hiroshi Naruse [23] presented and outlined a proof of a remarkable cancellation-free generalization
for skew shapes, somewhat similar in spirit to Okounkov-Olshanski’s.

An excited move means that we move a cell of a diagram diagonally (right and down), provided that the
cells to the right, below and diagonally down-right are not in the diagram. Let E(λ/µ) denote the set of all
excited diagrams of shape λ/µ, diagrams in [λ] obtained by taking the diagram of µ and performing series of
excited moves in all possible ways. They were introduced by Ikeda and Naruse [11].

Naruse’s formula says that

(2) fλ/µ = |λ/µ|!
∑

D∈E(λ/µ)

∏

u∈[λ]\D

1

h(u)
,

where all the hook lengths are evaluated in [λ].

In [22], Morales, Pak and Panova give two different q-analogues of Naruse’s formula: for the skew Schur
functions, and for counting reverse plane partitions of skew shapes. The proofs of the former employ a
combination of algebraic and bijective arguments, using the factorial Schur functions and the Hillman-Grassl
correspondence. The proof of the latter uses the Hillman-Grassl correspondence and is completely combina-
torial. See also [19].

The purpose of this paper is to give a bijective proof of an equivalent, recursive version of Naruse’s result,
in the same way that the hook walk gives a bijective (or probabilistic) proof of the classical hook-length
formula.

The bijection is quite easy to explain, and, in particular, gives a new bijective proof of the classical
hook-length formula, rather different from the hook-walk proof or the proof due to Novelli-Pak-Stoyanovskii.

Our main result (Theorem 5) is the following formula, valid for partitions λ, µ and for commutative
variables xi, yj:

(3)

(

∑

∄i : λk−k
=µi−i

xk +
∑

∄j : λ′

k−k

=µ′

j−j

yk

)

∑

D∈E(λ/µ)

∏

(i,j)∈D

(xi + yj) =
∑

µ⋖ν⊆λ

∑

D∈E(λ/ν)

∏

(i,j)∈D

(xi + yj).

The formula specializes to the recursive version of equation (2). It was pointed out by Morales and Panova
(personal communication) that the identity is equivalent to the identity [11, equation (5.2)]. See also [20]
and Section 6.

In Section 2, we give basic definitions and notation. In Section 3, we motivate equation (3) and show how
it implies (2). In Section 4, we use a version of the bumping algorithm on tableaux to prove the identity
bijectively. In Section 5, we present the proofs of the technical statements from Sections 3 and 4. We finish
with some closing remarks in Section 6.

2. Basic definitions and notation

A partition is a weakly decreasing finite sequence of positive integers λ = (λ1, λ2, . . . , λℓ). We call
|λ| = λ1 + · · ·+λℓ the size of λ and ℓ = ℓ(λ) the length of λ. We write λi = 0 for i > ℓ(λ). The diagram of λ
is [λ] = {(i, j) : 1 ≤ i ≤ ℓ(λ), 1 ≤ j ≤ λi}. We call the elements of [λ] the cells of λ. For partitions µ and λ,
we say that µ is contained in λ, µ ⊆ λ, if [µ] ⊆ [λ]. We say that λ/µ is a skew shape of size |λ/µ| = |λ| − |µ|,
and the diagram of λ/µ is [λ/µ] = [λ] \ [µ]. We write µ⋖ λ if µ ⊆ λ and |λ/µ| = 1. In this case, we also say
that λ covers µ.

We often represent a partition λ by its Young diagram, in which a cell (i, j) ∈ [λ] is represented by a unit
square in position (i, j). In this paper, we use English notation, so for example the Young diagram of the
partition λ = (6, 5, 2, 2) is
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We often omit parentheses and commas, so we could write λ = 6522.

A corner of λ is a cell that can be removed from [λ], i.e., a cell (i, j) ∈ [λ] satisfying (i+1, j), (i, j+1) /∈ [λ].
An outer corner of λ is a cell that can be added to [λ], i.e., a cell (i, j) /∈ [λ] satisfying i = 1 or (i−1, j) ∈ [λ],
and j = 1 or (i, j − 1) ∈ [λ]. The rank of λ is r(λ) = max{i : λi ≥ i}. The square [1, r(λ)]× [1, r(λ)] is called
the Durfee square of λ. The partition 6522 has corners (1, 6), (2, 5) and (4, 2), outer corners (1, 7), (2, 6),
(3, 3) and (5, 1), and rank 2.

The conjugate of a partition λ is the partition λ′ whose diagram is the transpose of [λ]; in other words,
λ′j = max{i : λi ≥ j}. For example, for λ = 6522, we have λ′ = 442221. The hook length of the cell (i, j) ∈ [λ]

is defined by h(i, j) = λi + λ′j − i− j + 1. For example, the hook length of the cell (1, 2) ∈ [6522] is 8.

The hook of a cell u = (i, j) ∈ [λ] is H(u) = {(i, j′) : j ≤ j′ ≤ λi} ∪ {(i′, j) : i ≤ i′ ≤ λ′j}. Obviously,
we have |H(u)| = h(u). The diagram [λ] is the disjoint union of H(i, i), 1 ≤ i ≤ r(λ), as illustrated by the
following figure.

A standard Young tableau (or SYT for short) of shape λ is a bijective map T : [λ] → {1, . . . , |λ|}, (i, j) 7→
Tij , satisfying Tij < Ti,j+1 if (i, j), (i, j + 1) ∈ [λ] and Tij < Ti+1,j if (i, j), (i + 1, j) ∈ [λ]. The number of
SYT’s of shape λ is denoted by fλ. The following illustrates f32 = 5.

1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 3 4
2 5

1 3 5
2 4

The hook-length formula gives a product expression for the number of standard Young tableaux:

fλ =
|λ|!

∏

u∈[λ] h(u)
.

For example, f32 = 5!
4·3·1·2·1 = 5.

Analogously, if µ ⊆ λ, we can define a standard Young tableau of skew shape λ/µ as a map T : [λ/µ] →
{1, . . . , |λ/µ|}, (i, j) 7→ Tij , satisfying Tij < Ti,j+1 if (i, j), (i, j+1) ∈ [λ/µ] and Tij < Ti+1,j if (i, j), (i+1, j) ∈
[λ/µ]. The number of SYT’s of shape λ/µ is denoted by fλ/µ. The following illustrates f43/2 = 9:

1 2
3 4 5

1 3
2 4 5

1 4
2 3 5

1 5
2 3 4

2 3
1 4 5

2 4
1 3 5

2 5
1 3 4

3 4
1 2 5

3 5
1 2 4

Suppose that D ⊆ [λ]. If (i, j) ∈ D, (i+ 1, j), (i, j + 1), (i+ 1, j + 1) ∈ [λ] \D, then an excited move with
respect to λ is the replacement of D with D′ = D \ {(i, j)} ∪ {(i+ 1, j + 1)}. If µ and λ are partitions, then
an excited diagram of shape λ/µ is a diagram contained in [λ] that can be obtained from [µ] with a series of
excited moves. Let E(λ/µ) denote the set of all excited diagrams of shape λ/µ. We have E(λ/µ) = ∅ unless
µ ⊆ λ. The following shows E(43/2).

Naruse’s formula says that

fλ/µ = |λ/µ|!
∑

D∈E(λ/µ)

∏

u∈[λ]\D

1

h(u)
,

where all the hook lengths are evaluated in [λ].

For example, the formula confirms that

f43/2 = 5!

(

1

3 · 1 · 3 · 2 · 1
+

1

4 · 3 · 1 · 3 · 2
+

1

5 · 4 · 3 · 1 · 3

)

= 9.
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3. A polynomial identity

It is clear that both sides of (2) are equal to 1 if λ = µ. Since the minimal entry of a standard Young
tableau of shape λ/µ must be in an outer corner of µ which lies in λ, we have fλ/µ =

∑

µ⋖ν⊆λ f
λ/ν , where

∑

µ⋖ν⊆λ denotes the sum over all partitions ν that are contained in λ and cover µ. If we show that the

right-hand side of (2) satisfies the same recursion, we are done. Therefore the statement is equivalent to the
following identity:

|λ/µ|
∑

D∈E(λ/µ)

∏

u∈[λ]\D

1

h(u)
=

∑

µ⋖ν⊆λ

∑

D∈E(λ/ν)

∏

u∈[λ]\D

1

h(u)
.

After multiplying by
∏

u∈[λ] h(u), we get

(4) (|λ| − |µ|)
∑

D∈E(λ/µ)

∏

u∈D

h(u) =
∑

µ⋖ν⊆λ

∑

D∈E(λ/ν)

∏

u∈D

h(u).

Example 1. Take µ = 2 and λ = 43. There are three excited diagrams:

That means that the left-hand side of (4) equals

(7− 2) (5 · 4 + 5 · 1 + 2 · 1) = 135.

On the other hand, there are two partitions ν that cover µ, and together they give three excited diagrams:

That means that the right-hand side of (4) equals

5 · 4 · 3 + 5 · 4 · 3 + 5 · 3 · 1 = 135.

For i, j = 1, 2, . . ., define

(5) xi = λi − i+
1

2
, yj = λ′j − j +

1

2
.

Clearly, for a cell u = (i, j) ∈ [λ], we have h(u) = λi + λ′j − i− j + 1 = xi + yj. Furthermore, since [λ] is

the disjoint union of hooks H(i, i), 1 ≤ i ≤ r(λ), we have

(6) |λ| = x1 + y1 + · · ·+ xr(λ) + yr(λ).

For λ = 43, we have x1 = 3 1
2 , y1 = 1 1

2 , x2 = 1 1
2 , y2 = 1

2 , and indeed |λ| = x1 + y1 + x2 + y2 = 7.

Equation (4) is therefore equivalent to the following:

(7)





r(λ)
∑

i=1

(xi + yi)− |µ|





∑

D∈E(λ/µ)

∏

(i,j)∈D

(xi + yj) =
∑

µ⋖ν⊆λ

∑

D∈E(λ/ν)

∏

(i,j)∈D

(xi + yj).

Note that this is not a valid polynomial identity for every λ, µ: indeed, the right-hand side is a homo-
geneous polynomial (of degree |µ| + 1), while the left-hand side is not (except when µ = ∅ or µ 6⊆ λ). It
represents a valid identity only for specific values of xi’s and yi’s.

Example 2. Again, take µ = 2 and λ = 43. The left-hand side of (7) is

(x1 + y1 + x2 + y2 − 2) ((x1 + y1)(x1 + y2) + (x1 + y1)(x2 + y3) + (x2 + y2)(x2 + y3)) ,

and the right-hand side is

(x1 + y1)(x1 + y2)(x1 + y3) + (x1 + y1)(x1 + y2)(x2 + y1) + (x1 + y1)(x2 + y3)(x2 + y1).

These two polynomials are not equal, but they both specialize to 135 when x1 = 3 1
2 , y1 = 1 1

2 , x2 = 1 1
2 ,

y2 = 1
2 , x3 = −1 1

2 , y3 = − 1
2 . Also of note is the fact that the difference between the two polynomials is

divisible by x2 + y2 − 2.
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However, we can replace |λ| − |µ| on the left-hand side of equation (4) with a certain homogeneous linear
polynomial (and h(u) again by xi + yj if u = (i, j)) and get a valid polynomial identity. This identity
specializes to (4) for appropriate values of xi’s and yi’s. The motivation for the result is the following lemma,
which we prove in Section 5. The result holds for all λ, µ, even if µ 6⊆ λ.

Lemma 3. For arbitrary partitions λ, µ and xk = λk − k + 1
2 , yk = λ′k − k + 1

2 , we have

|λ| − |µ| =
∑

∄i : λk−k
=µi−i

xk +
∑

∄j : λ′

k−k

=µ′

j−j

yk.

Note that while k, i and j appearing in the sums can be arbitrarily large, the summation is finite since
we have λk − k = µk − k = −k and λ′k − k = µ′

k − k = −k for large k.

Example 4. We continue with the previous example, i.e., take µ = 2 and λ = 43. We have

(λk − k)k≥1 = (3, 1,−3,−4,−5, . . .), (µi − i)i≥1 = (1,−2,−3,−4, . . .),
(λ′k − k)k≥1 = (1, 0,−1,−3,−5,−6,−7, . . .), (µ′

j − j)j≥1 = (0,−1,−3,−4,−5, . . .),

where elements of (λk − k)k≥1 and (λ′k − k)k≥1 are underlined if they do not appear in (µi − i)i≥1 and
(µ′

j − j)j≥1. Indeed, |λ| − |µ| = x1 + y1 = 5.
Similarly, for µ = 431 and λ = 765521, we have

(λk − k)k≥1 = (6, 4, 2, 1,−3,−5,−7,−8, . . .), (µi − i)i≥1 = (3, 1,−2,−4,−5, . . .),
(λ′k − k)k≥1 = (5, 3, 1, 0,−1,−4,−6,−8,−9, . . .), (µ′

j − j)j≥1 = (2, 0,−1,−3,−5,−6, . . .),

and |λ| − |µ| = x1 + x2 + x3 + x5 + y1 + y2 + y3 + y6 = 18.

The following theorem is our main result. It is a subtraction-free polynomial identity, which, by Lemma
3, specializes to equation (4) when xi = λi− i+ 1

2 and yj = λ′j − j+ 1
2 , and therefore implies the hook-length

formula for skew diagrams.

Theorem 5. For arbitrary partitions λ, µ and commutative variables xi, yj, we have

(8)

(

∑

∄i : λk−k
=µi−i

xk +
∑

∄j : λ′

k−k

=µ′

j−j

yk

)

∑

D∈E(λ/µ)

∏

(i,j)∈D

(xi + yj) =
∑

µ⋖ν⊆λ

∑

D∈E(λ/ν)

∏

(i,j)∈D

(xi + yj).

The theorem is trivially true for µ 6⊆ λ, as then both sides are equal to 0.

Example 6. For µ = 2 and λ = 43, we have the following identity (valid for commutative variables x1, y1,
x2, y2, x3, y3).

(x1 + y1) ((x1 + y1)(x1 + y2) + (x1 + y1)(x2 + y3) + (x2 + y2)(x2 + y3))

= (x1 + y1)(x1 + y2)(x1 + y3) + (x1 + y1)(x1 + y2)(x2 + y1) + (x1 + y1)(x2 + y3)(x2 + y1).

For µ = 431 and λ = 765521, the first term on the left is x1 + x2 + x3 + x5 + y1 + y2 + y3 + y6, the second
term is a sum of 14080 monomials, and the right-hand side is a sum of 112640 monomials.

The (bijective) proof of Theorem 5 is the content of the next section.

4. The bijection

First, we interpret the two sides of equation (8) in terms of certain tableaux.

To motivate the definition, look at the following excited diagram for µ = 431 and λ = 765521.

Instead of actually moving the cells of µ, write an integer in a cell of µ that indicates how many times it
moves (diagonally) from the original position. For the above example, we get the following tableau of shape
µ = 431.



6 MATJAŽ KONVALINKA

0 0 1 1

0 1 2

1

It is easy to see that the (non-negative integer) entries of the resulting tableau are weakly increasing along
rows and columns (in other words, that the tableau is a reverse plane partition): for example, if one cell is
to the left of another, we cannot make an excited move on it until we make an excited move on its right
neighbor. Also, every tableau with non-negative integer entries and weakly increasing rows and columns
corresponds to a valid excited diagram, provided that the entry r in row i and column j satisfies

(9) j + r ≤ λi+r .

Furthermore, it is enough to check this inequality only for the corners of µ. See also flagged tableaux in [22,
§3.2].

The contribution
∏

(i,j)∈D(xi + yj) of an excited diagram D can be written as
∏

(i,j)∈[µ]

(xi+Tij
+ yj+Tij

),

where T is the corresponding tableau of shape µ with non-negative integer entries and weakly increasing rows
and columns. To extract the monomials from the product, choose either xi+Tij

or yj+Tij
for each (i, j) ∈ [µ].

Write the number Tij in position (i, j) in black if we choose xi+Tij
, and in red if we choose yj+Tij

. Call a
tableau with non-negative integer black or red entries and weakly increasing rows and columns a bicolored

tableau. Denote by B(µ) the (infinite unless µ = ∅) set of bicolored tableaux of shape µ, and denote by
B(µ, λ) the (finite) set of bicolored tableaux T of shape µ that satisfy j + Tij ≤ λi+Tij

for all (i, j) ∈ [µ].

The weight of a bicolored tableau T of shape µ is

w(T ) =
∏

(i,j)∈b(T )

xi+Tij

∏

(i,j)∈[T ]\b(T )

yj+Tij
,

where b(T ) is the set of cells containing black entries of T .

Example 7. The following are some bicolored tableaux in B(431). A bicolored tableau is in B(431, 765521)
if and only if T14 ≤ 1, T23 ≤ 2, T31 ≤ 1, so the first three are in B(431, 765521) and the last one is not.

0 0 0 0

0 1 1

0

0 0 1 1

0 2 2

1

1 1 1 1

1 2 2

1

0 1 1 1

2 2 2

2

The weights of these tableaux are x31x2y2x
2
3y4, x1y1x

2
2y2x4y

2
4 , x2y

2
2y3x

2
4y

2
4 , and x1x

2
2y3x

2
4y

2
4 , respectively.

We are ready to interpret both sides of equation (8). The left-hand side is the enumerator of the Cartesian
product B(µ, λ)×W(µ, λ), where

W(µ, λ) = {xk : λk − k 6= µi − i for all i} ∪ {yk : λ
′
k − k 6= µ′

j − j for all j},

and the pair (T, z) has weight w(T )z. The right-hand side is the enumerator (with respect to weight w) of
the set

⋃

ν B(ν, λ), where the union is over all partitions ν that cover µ and are contained in λ.

In the remainder of this section, we present a weight-preserving bijection between the two sides.

The map is a natural bumping algorithm. To describe it, we first describe the insertion process : the
process of inserting a variable z ∈ {x1, y1, x2, y2, . . .} into a bicolored tableau T of shape µ.

After some number of steps, i, j, w and S have certain values; in the beginning, i = j = 0, w = z and
S = T . If w = xk, increase j by 1 (i.e., move to the next column) and find the largest possible i (which can
also be µ′

j + 1 if j = 1 or µ′
j < µ′

j−1) so that we can replace Sij by a black k − i in position (i, j) and still

have a weakly increasing column with non-negative integers (such an i always exists, as we will see in Section
5). If, on the other hand, w = yk, increase i by 1 (i.e., move to the next row) and find the largest possible
j (which can also be µi + 1 if i = 1 or µi < µi−1) so that we can replace Sij by a red k − j in position (i, j)
and still have a weakly increasing row with non-negative integers.
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Let w denote the weight of the old Sij (i.e., xi+Sij
if Sij is black and yj+Sij

if Sij is red). Continue with
the procedure until (i, j) is an outer corner of µ, and S is a bicolored tableau of some shape ν which covers
µ. The procedure returns this final S, which we denote by ψµ(T, z).

Example 8. Take µ = 431, the bicolored tableau

T =

0 0 0 1

0 1 1

0

and z = y1. Since we are inserting a y-variable, we insert it into the first row. The variable y1 can only be
represented by a red 0 in the first column, so we write a red 0 in position (1, 1), and the variable bumped out
is x1 (represented by the black 0 that was in position (1, 1) originally). Since this is an x-variable, we move
to the right, and insert it into the second column. The variable x1 can only be represented by a black 0 in
the first row, so we write a black 0 in position (1, 2), and the variable bumped out is y2 (represented by the
red 0 that was in position (1, 2) before). We have to insert it into the second row, either as a red 1 in position
(2, 1) or a red 0 in position (2, 2). Of course, a red 1 in position (2, 1) would give a decrease in column 1, so
we insert it in position (2, 2), and bump out a black 1, representing x3. We insert x3 in column 3, either as
a black 2 in row 1 (but which makes the entry in (3, 1) larger than the entry in (3, 2)) or as a black 1 in row
2. Thus we write a black 1 in position (3, 2) and bump out the red 1 representing y4. We move to the next
row: we can either write a red 3 in position (3, 1) or a red 2 in position (3, 2). Both are possible, so we pick
the latter option. Now (i, j) = (3, 2) is an outer corner of µ, so we terminate the insertion process. The final
bicolored tableau is

ψ431(T, y1) =

0 0 0 1

0 0 1

0 2

.

Figure 1 illustrates the insertion process. Two numbers in a cell mean that the number on the left is bumping
the number on the right.

00 0 0 1

0 1 1

0

0 00 0 1

0 1 1

0

0 0 0 1

0 01 1

0

0 0 0 1

0 0 11

0

0 0 0 1

0 0 1

0 2

Figure 1. The insertion process from Example 8.

Theorem 9. The insertion process described above always terminates and is a weight-preserving bijection

ψµ : B(µ)× {x1, y1, x2, y2, . . .} −→
⋃

ν

B(ν),

where the union is over all partitions ν which cover µ.

The theorem is proved in Section 5.

Of course, the bijection does not necessarily restrict to a bijection from L(µ, λ) = B(µ, λ) × W(µ, λ) to
R(µ, λ) =

⋃

ν B(ν, λ), and does not immediately prove Theorem 5. Once we insert a variable from W(µ, λ)
into a bicolored tableau in B(µ, λ), the resulting tableau can add an outer corner of µ which is not in [λ],
or it can return a bicolored tableau in B(ν), ν ⊆ λ, which is not in B(ν, λ). For instance, the last example
produced a tableau in B(432) \ B(432, 765521).

If ψµ(T, z) ∈ B(ν) is not in R(µ, λ), we can remove the entry in the unique cell in [ν/µ] and obtain a
new variable z′ and a tableau T ′ of shape µ. Compute ψµ(T

′, z′) ∈ B(ν′). If it is in R(µ, λ), terminate the
procedure, otherwise remove the entry in the unique cell in [ν′/µ] and obtain a new variable z′′ and a tableau
T ′′ of shape µ. Continue until the computed tableau is in R(µ, λ); the procedure returns this tableau as the
result. We call this the repeated insertion process.
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Example 10. Take µ = 431, λ = 765521,

T =

0 0 0 1

0 1 1

0

∈ B(431, 765521)

and z = y1 ∈ W(431, 765521). We already computed

ψ431(T, z) =

0 0 0 1

0 0 1

0 2

∈ B(432) \ B(432, 765521).

Remove the red 2 from position (3, 2), and insert z′ = y4 into the tableau

T ′ =

0 0 0 1

0 0 1

0

.

The result is

ψ431(T
′, z′) =

0 0 0 0 1

0 0 1

0

,

which is an element of B(531, 765521)⊆ R(431, 765521). Therefore the procedure terminates and returns

0 0 0 0 1

0 0 1

0

.

Theorem 11. The repeated insertion process described above always terminates and is a weight-preserving

bijection

Ψµ,λ : B(µ, λ)×W(µ, λ) −→
⋃

ν

B(ν, λ),

where the union is over all partitions ν which cover µ and are contained in λ.

The last theorem proves (8) and hence the hook-length formula for skew shapes, equation (2).

The proof of Theorem 11 is also presented in Section 5.

5. Proofs

Proof of Lemma 3. Recall that we have xk = λk − k+ 1
2 and yk = λ′k − k+ 1

2 . Define also x′i = µi − i+ 1
2

and y′j = µ′
j − j + 1

2 . We are interested in the expression

|λ| − |µ| = x1 + · · ·+ xr(λ) + y1 + · · ·+ yr(λ) − x′1 − · · · − x′r(µ) − y′1 − · · · − y′r(µ).

Let us study the sequence of cells

. . .→ (k − 2, λk − 2) → (k − 2, λk − 1) → (k − 1, λk − 1) → (k − 1, λk)

→ (k, λk) → (k, λk + 1) → (k + 1, λk + 1) → (k + 1, λk + 2) → (k + 2, λk + 2) → . . .

We are interested in u, the first cell in the sequence that has positive coordinates and is not in [µ]. One
option is that u = (k+ l, λk + l+1) for some l ∈ Z. In that case, either (k+ l, λk + l) ∈ [µ] or λk + l = 0. In
both cases, µk+l = λk + l. So we have λk − k = µi − i and xk = x′i for i = k + l. The converse also holds: if
xk = x′i for some i, then λk−k = µi− i and u = (i, λk + i−k+1). The other option is that u = (k+ l, λk+ l)
for some l. Now either (k + l − 1, λk + l) ∈ [µ] or k + l − 1 = 0. In both cases, µ′

λk+l = k + l − 1. So
µ′
j = k + j − λk − 1, λk − k + 1 = j − µ′

j and xk = −y′j for j = λk + l. Conversely, if xk = −y′j for some j,
then λk − k + 1 = j − µ′

j and u = (k + j − λk, j).
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We have seen that either xk = x′i or xk = −y′j for some (unique) i or j, but not both. Furthermore, if
k ≤ r(λ), then xk ≥ 0, so xk = x′i implies i ≤ r(µ) and xk = −y′j implies j > r(µ). Similarly, if we study the
sequence of cells

. . .→ (k − 2, λk − 2) → (k − 1, λk − 2) → (k − 1, λk − 1) → (k, λk − 1)

→ (k, λk) → (k + 1, λk) → (k + 1, λk + 1) → (k + 2, λk + 1) → (k + 2, λk + 2) → . . . ,

then we see that either yk = y′j or yk = −x′i for some (unique) j or i, but not both. Furthermore, if k ≤ r(λ),

then yk ≥ 0, so yk = y′j implies j ≤ r(µ) and yk = −x′i implies i > r(µ).

Recall that λ and µ are arbitrary partitions (i.e., we do not assume that µ ⊆ λ). So we can switch the
roles of λ and µ in the above computations, and express x′i and y

′
j in terms of xk’s and yk’s.

After we express x′i’s and y
′
j ’s in terms of xk’s and yk’s, the coefficient of xk in |λ| − |µ| is:

• 1 if k ≤ r(λ) and there is no i so that xk = x′i
• 0 if k ≤ r(λ) and xk = x′i for some i (necessarily i ≤ r(µ))
• 1 if k > r(λ) and xk = −y′i for some i (necessarily i ≤ r(µ)); equivalently, if there is no i so that
xk = x′i

• 0 if k > r(λ) and there is no i so that xk = −y′i; equivalently, if xk = x′i for some i (necessarily
i > r(µ))

To summarize, xk appears as a term in |λ| − |µ| if and only if there is no i so that xk = x′i, which is
equivalent to λk − k = µi − i. Similarly, we see that yk appears as a term in |λ| − |µ| if and only if there is
no j so that yk = y′j, which is equivalent to λ′k − k = µ′

j − j. This finishes the proof of Lemma 3.

The insertion process and the proof of Theorem 9. In this subsection, we prove the technical properties
of the insertion process ψµ, including Theorem 9.

Say that we are at a certain step of the insertion process, and that a black r was just bumped from
position (i′, j − 1) (analysis for a red r is analogous). The algorithm says that we should find the largest
possible i so that we can write r + i′ − i in position (i, j) while keeping the column j weakly increasing.

Note that since the sequence (Sij)
µ′

j+1

i=0 (where we interpret S0,j as 0 and Sµ′

j
+1,j as ∞) is weakly increasing,

(Sij + i − i′)
µ′

j+1

i=0 is strictly increasing, and we have to find the largest possible i so that if we replace the
i-entry of the sequence with r, we still have a strictly increasing sequence.

It is clear that if r = Sij + i′′ − i′ for some i′′, we have just one choice for i, so we pick i = i′′, and if
Si′′−1,j + i′′− 1− i′ < r < Si′′,j + i′′− i′ for some i′′, we have two choices for i, i′′− 1 and i′′, and we pick the
larger one, i = i′′. So i is indeed well defined, and Sij + i − i′ ≥ r. Furthermore, if µ′

j−1 = µ′
j , then i

′ ≤ µ′
j ,

r ≤ Sµ′

j
,j ≤ Sµ′

j
,j + µ′

j − i′ and the chosen i is not µ′
j + 1. That means that we only add a cell (µ′

j + 1, j) to

the tableau (and terminate the process) when µ′
j−1 > µ′

j , i.e. when (µ′
j + 1, j) is an outer corner of µ.

Since r ≤ Si′,j < Si′′,j + i′′ − i′ for i′′ > i′, we always have i ≤ i′. In other words, when the process moves
by one to the right, it cannot go down (and when the process moves down by one, it cannot go to the right).
Furthermore, we notice that the number bumped by r is Sij ≥ r+ i′ − i ≥ r, i.e., a number is never bumped
by a strictly larger number (also when bumping a red number).

That means that the new entry in position (i, j) is still less than or equal to Si,j+1 (which we take to be
∞ if (i, j + 1) is not in the diagram). Furthermore, since Si,j−1 ≤ Si′,j−1 = r, and since the new entry in
position (i, j) is at least as large as r, the new entry in position (i, j) is still greater than or equal to Si,j−1.
In other words, the new tableau still has weakly increasing rows and columns.

In order to prove that the process terminates, it is enough to prove that a certain (integer) quantity
with an upper bound increases at each step. We claim that such a quantity is i + j + s, where (i, j) is
the current position and s is the number getting bumped. It is clear that the quantity is bounded by
ℓ(µ) + µ1 +maxTij . Also, in the same notation as before, the quantity was i′ + (j − 1) + r in the previous
step and is i + j + Sij ≥ i′ + j + r in the current step, so it increases by at least 1 (a similar proof can be
written for the case when we are bumping a red number).

It remains to construct the inverse of the process. Start with a bicolored tableau T ∈ B(ν), where µ⋖ ν.
Assume that after some number of steps, we have i, j, S and w; in the beginning, (i, j) is the unique cell in
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[ν/µ], S is T with the entry in (i, j) removed, and w the variable corresponding to that entry (xi+Tij
if the

entry is black and yj+Tij
if it is red). If w = xk, we decrease j by 1, i.e., we move by one to the left, and,

again, we find the largest possible i so that we can replace Sij by a black k − i in position (i, j) and still
have a weakly increasing column with non-negative integers. If w = yk, the process is analogous. It is easy
to prove that this process is well defined, terminates and is the inverse of ψµ.

The fact that the ψµ is weight preserving is obvious, as the weight (including the bumped variable) is
preserved at each bump.

The repeated insertion process and the proof of Theorem 11. In this subsection, we prove the
technical properties of the repeated insertion process Ψµ,λ.

Suppose we have finite sets A and B and a bijection f : A → B. Furthermore, suppose we have subsets
X ⊆ A and Y ⊆ B and a bijection g : B \ Y → A \ X . For x ∈ X , let m be the smallest (and only)
non-negative integer such that f ◦ (g ◦ f)m(x) ∈ Y , and define h(x) = f ◦ (g ◦ f)m(x). It is easy to see that
h : X → Y is a well-defined bijection. Furthermore, if we have weights wA : A → K, wB : B → K and f
and g are weight preserving (i.e., wB(f(a)) = wA(a) for all a ∈ A and wA(g(b)) = wB(b) for all b ∈ B \ Y ),
then h is also weight preserving, i.e., wB(h(x)) = wA(x) for all x ∈ X . See for example [29, §2.6], where the
process is called sieve equivalence. It is also similar to the well-known Garsia-Milne involution principle [8].
Note that the involution principle was used, for example, in the proof of the hook-length formula [16] and in
the first bijective proof of the hook-content formula in [26].

Define W(λ) = {x1, . . . , xℓ(λ), y1, . . . , yλ1
}, the set of all possible variables that can appear in L(µ, λ) and

R(µ, λ).

In our context, we define the following:

• A is the (finite) product B(µ, λ)×W(λ),
• B is the image ψµ(A) ⊆

⋃

ν B(ν),
• f is the (bijective) map ψµ, insertion of a variable into a bicolored tableau of shape µ,
• g is the map ϕµ, which takes a bicolored tableau T ∈ B(ν), µ⋖ν, and produces the pair (S, z), where
S is T with the unique entry in position (i, j) ∈ [ν/µ] removed, and z is the variable corresponding
to the removed entry (xi+Tij

if the removed entry is black, and yj+Tij
if it is red),

• X is L(µ, λ), i.e., B(µ, λ)×W(µ, λ),
• Y is R(µ, λ), i.e.,

⋃

ν B(ν, λ).

Note that g is not bijective. For example, the following tableaux all give the same tableau of shape 431
and the variable x4 upon removal of the entry in cell (1, 5) (respectively, (2, 4), (3, 2), (4, 1)).

0 0 0 0 3

0 1 1

0

0 0 0 0

0 1 1 2

0

0 0 0 0

0 1 1

0 1

0 0 0 0

0 1 1

0

0

However, for the sieve equivalence to work, it is enough that g is bijective when restricted to B \ Y .

Lemma 12. The restriction of g to B \ Y is injective, and its image is A \X. Furthermore, f and g are

weight preserving, and hence h is weight preserving. In other words, Ψµ,λ is a well-defined weight-preserving

bijection.

Proof. We proved in the previous subsection that if we insert a variable into a tableau of µ, the entries in [µ]
are smaller than or equal to their previous values. So after inserting a variable from W(λ) into T ∈ B(µ, λ)
and removing the new corner, we again get a tableau in B(µ, λ). In other words, ϕµ ◦ ψµ(B(µ, λ)×W(λ)) ⊆
B(µ, λ)×W(λ), so indeed g : B → A.
We need to prove that g restricted to B \ Y maps to A \ X . In other words, we have to prove that if
ψµ(T, z) /∈

⋃

ν B(ν, λ), then ϕµ ◦ ψµ(T, z) /∈ B(µ, λ)×W(µ, λ).
The assumption is that after we insert z into T , the result S ∈ B(ν) is not in B(ν, λ). In other words, the
entry of S in position (i, j) ∈ [ν/µ] is too large, i.e., we have j + Sij > λi+Sij

(this includes the case when
ν 6⊆ λ). Assume that the entry in position (i, j) is black (the analysis for a red entry is analogous) and that
it represents the variable xk (so Sij + i = k). We have j + k − i > λk, i.e. j − 1− i ≥ λk − k.
The variable xk was bumped from the previous column, say from position (i′, j − 1), where i′ ≥ i. Since
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(i′, j − 1) ∈ [µ] and (i, j) is an outer corner of µ, we have µi = µi+1 = . . . = µi′ = j − 1, µ′
j−1 ≥ i′ and

µ′
j = i− 1. We want to prove that xk is not an element of W(µ, λ).

Before getting bumped, the entry in (i′, j− 1) was k− i′ (so that it represented the same variable xk), and it
satisfied j − 1 + k − i′ ≤ λi′+k−i′ = λk, see (9). In other words, we have j − 1− i′ ≤ λk − k ≤ j − 1− i. But
that means that for i′′ = j − 1 + k − λk, i ≤ i′′ ≤ i′, we have µi′′ − i′′ = (j − 1)− (j − 1 + k − λk) = λk − k,
so xk /∈ W(µ, λ).
We now need to prove that g|B\Y is injective. In other words, we need to prove that if ψµ(T, z), ψµ(T

′, z′) /∈
⋃

ν B(ν, λ) and ϕµ ◦ ψµ(T, z) = ϕµ ◦ ψµ(T
′, z′), then T = T ′ and z = z′.

The assumption is saying that after we bump z into T and z′ into T ′, we get bicolored tableaux which are of
different shapes ν and ν′, but the entries in the unique cells (i, j) and (i′, j′) of [ν/µ] and [ν′/µ] represent the
same variable (without loss of generality, xk for some k), and after deleting these entries, we get the same
bicolored tableau of shape µ. Without loss of generality, j < j′.
Furthermore, the variable xk is too big for either position (i, j) or (i′, j′). We saw earlier in this proof that
we must have λk < j + k − i and λk ≥ j′ + k − i′′ − 1, where the variable xk was bumped from position
(i′′, j′ − 1) to (i′, j′) in the insertion of z′ into T ′. However, j ≤ j′ − 1 and i ≥ µ′

j + 1 ≥ µ′
j′−1 + 1 ≥ i′′ + 1,

so j + k − i ≤ j′ − 1 + k − i′′ − 1 < j′ + k − i′′ − 1, which is a contradiction.
Finally, we have to prove that g : B \ Y → A \ X is surjective. In other words, we have to prove that
if (T, z) ∈ B(µ, λ) × (W(λ) \ W(µ, λ)), then there exists (T ′, z′) such that ψµ(T

′, z′) /∈
⋃

ν B(ν, λ) and
ϕµ ◦ ψµ(T

′, z′) = (T, z).
We assume that z = xk ∈ W(λ) \W(µ, λ) for some k; the analysis for z = yk is very similar and is left as an
exercise for the reader.
For some i, we have λk − k = µi − i. Write j = µi + 1 and i′ = µ′

j + 1 ≤ i. Place a black k − i′ in position

(i′, j) and denote the resulting tableau S. We claim that S is a bicolored tableau and that (T ′, z′) = ψ−1
µ (S)

satisfies the required properties.
For l > k − i, j − 1 + l ≤ λi+l is not satisfied; indeed, in this case j − 1 + l > j − 1 + k − i = λk ≥ λi+l. In
other words, Si,j−1 = Ti,j−1 ≤ k − i and so Si′,j−1 = Ti′,j−1 ≤ k − i. That means that writing k − i′ ≥ k − i
in position (i′, j) does not create a decrease in row i′. Also, for l > k − i′, j + l ≤ λi′−1+l is not satisfied, as
j+ l > j+ k− i′ ≥ j + k− i > λk ≥ λi′−1+l. So Si′−1,j = Ti′−1,j ≤ k− i′ and writing k− i′ in position (i′, j)
does not create a decrease in column j. We have proved that S is indeed a bicolored tableau. Let us denote
its shape by ν, so (i′, j) is the only cell in [ν/µ]. Write (T ′, z′) = ψ−1

µ (S).
We claim that S = ψµ(T

′, z′) is not in B(ν, λ), i.e. that k − i′ is too large for position (i′, j). Indeed,
j + k − i′ ≥ j + k − i > λk = λi′+k−i′ .
We also claim that T ′ is in B(µ, λ). When we start the inverse insertion process, we put the variable xk into
column j − 1 of S. However, we saw that Si′,j−1 ≤ . . . ≤ Si,j−1 ≤ k − i, and since we write the variable xk
in position (i′′, j − 1), where i′ ≤ i′′ ≤ i, as a black k − i′′, we must have i′′ = i. We therefore have k − i in
position (i, j− 1), which is, by j− 1+k− i = λk, not too large for the result to not be in B(µ, λ). Continuing
with the reverse insertion process does not change that fact: if xk comes from a black k − i in position
(i, j) ∈ [µ], j+ k− i ≤ λk, and lands in (i′, j− 1), i′ ≥ i, as a black k− i′, then j− 1+ k− i′ < j+ k− i ≤ λk
(and a similar proof for yk). Furthermore, the variable z′ will obviously be in W(λ). �

The lemma proves Theorem 11.

6. Final remarks

Comparison of Naruse’s formula with others. Naruse’s formula seems better for many applications,
e.g. asymptotics; see for example [22, Section 9] and [21]. This paper presents another advantage: it has a
natural bijective proof.

Connection to Ikeda-Naruse’s formula. It was pointed out by Morales and Panova (personal communi-
cation, see also [20]) that in [11, equation (5.2)], Ikeda and Naruse proved algebraically that for a skew shape
λ/µ that fits inside a d× (n− d) box,

(F (λ/1)− F (µ/1))F (λ/µ) =
∑

µ⋖ν⊆λ

F (λ/ν),
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where
F (λ/µ) =

∑

D∈E(λ/µ)

∏

(i,j)∈D

(zλi+d−i+1 − zd+j−λ′

j
).

In particular,

F (λ/1) =

r(λ)
∑

i=1

(zλi+d−i+1 − zd+j−λ′

j
).

For n and d fixed, we introduce variables xλi−i = zλi+d−i+1, 1 ≤ i ≤ d, and yλ′

j
−j = −zd+j−λ′

j
, 1 ≤ j ≤ n−d

(we always have λi + d− i+ 1 6= d+ j − λ′j since the difference is the hook length of the cell (i, j)), and get
precisely (3).

Bijective proof of Monk’s formula. It was pointed out by Sara Billey that formula (3) is similar to
Monk’s formula for Schubert polynomials. Indeed, the double Schubert polynomial of a permutation w is the
sum of

∏

(i,j)∈D(xi + yj) over all RC-graphs D for w. It would be interesting to see if there is a connection

between our bijection and the bijective proof of Monk’s formula from [1].

Skew shifted shapes. An obvious question is how to adapt the bijection to prove the version of Naruse’s
hook-length formula for skew shifted shapes. While one might expect that a version of such a bijection would
be much more complicated than the one presented here, it turns out that the proof can be adapted without
major difficulties. See [14].
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