
ar
X

iv
:1

70
3.

09
72

6v
1

 [
cs

.D
S]

 2
8

M
ar

 2
01

7

Ruling out FPT algorithms for
Weighted Coloring on forests 1

Júlio Araújo†, Julien Baste‡, and Ignasi Sau†,‡

† Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, Brazil
Email: julio@mat.ufc.br

‡ CNRS, LIRMM, Université de Montpellier, Montpellier, France
Emails: {baste,sau}@lirmm.fr

Abstract

Given a graph G, a proper k-coloring of G is a partition c = (Si)i∈[1,k] of V (G) into k stable
sets S1, . . . , Sk. Given a weight function w : V (G) → R

+, the weight of a color Si is defined
as w(i) = maxv∈Si

w(v) and the weight of a coloring c as w(c) =
∑k

i=1w(i). Guan and Zhu
[Inf. Process. Lett., 1997] defined the weighted chromatic number of a pair (G,w), denoted by
σ(G,w), as the minimum weight of a proper coloring of G. For a positive integer r, they also
defined σ(G,w; r) as the minimum of w(c) among all proper r-colorings c of G.

The complexity of determining σ(G,w) when G is a tree was open for almost 20 years, until
Araújo et al. [SIAM J. Discrete Math., 2014] recently proved that the problem cannot be solved
in time no(logn) on n-vertex trees unless the Exponential Time Hypothesis (ETH) fails.

The objective of this article is to provide hardness results for computing σ(G,w) and σ(G,w; r)
when G is a tree or a forest, relying on complexity assumptions weaker than the ETH. Namely,
we study the problem from the viewpoint of parameterized complexity, and we assume the
weaker hypothesis FPT 6= W[1]. Building on the techniques of Araújo et al., we prove that
when G is a forest, computing σ(G,w) is W[1]-hard parameterized by the size of a largest
connected component of G, and that computing σ(G,w; r) is W[2]-hard parameterized by r.
Our results rule out the existence of FPT algorithms for computing these invariants on trees or
forests for many natural choices of the parameter.

Keywords: weighted coloring; max-coloring; forests; parameterized complexity; W[1]-hard.

1 Introduction

A (vertex) k-coloring of a graph G = (V,E) is a function c : V (G) → {1, . . . , k}. Such
coloring c is proper if c(u) 6= c(v) for every edge {u, v} ∈ E(G). All the colorings we

1 This work has been partially supported by CNPq/Brazil under projects 459466/2014-3 and
310234/2015-8, and by the PASTA project of Université de Montpellier, France.

http://arxiv.org/abs/1703.09726v1

consider in this paper are proper, hence we may omit the word “proper”. The chromatic
number χ(G) of G is the minimum integer k such that G admits a k-coloring. Given a
graph G, determining χ(G) is the goal of the classical Vertex Coloring problem. If
c is a k-coloring of G, then Si = {u ∈ V (G) | c(u) = i} is a stable (a.k.a. independent)
set. Consequently, a k-coloring c can be seen as a partition of V (G) into stable sets
S1, . . . , Sk. We often see a coloring as a partition in the sequel.

We study a generalization of Vertex Coloring for vertex-weighted graphs that
has been defined by Guan and Zhu [10]. Given a graph G and a weight function w :
V (G) → R

+, the weight of a color Si is defined as w(i) = maxv∈Si
w(v). Then, the

weight of a coloring c is w(c) =
∑k−1

i=0 w(i). In the Weighted Coloring problem,
the goal is to determine the weighted chromatic number of a pair (G,w), denoted by
σ(G,w), which is the minimum weight of a coloring of (G,w). A coloring c of G such
that w(c) = σ(G,w) is an optimal weighted coloring. Guan and Zhu [10] also defined,
for a positive integer r, σ(G,w; r) as the minimum of w(c) among all r-colorings c of
G, or as +∞ is no r-coloring exists. Note that σ(G,w) = minr≥1 σ(G,w; r). It is
worth mentioning that the Weighted Coloring problem is also sometimes called
Max-Coloring in the literature; see for instance [13, 15].

Guan and Zhu defined this problem in order to study practical applications related
to resource allocation, which they describe in detail in [10]. One should observe that
if all the vertex weights are equal to one, then σ(G,w) = χ(G), for every graph G.
Consequently, determining σ(G,w) and σ(G,w; r) are NP-hard problems on general
graphs [12]. In fact, this problem has been shown to be NP-hard even on split graphs,
interval graphs, triangle-free planar graphs with bounded degree, and bipartite graphs [5,
6, 9]. On the other hand, the weighted chromatic number of cographs and of some
subclasses of bipartite graphs can be found in polynomial time [5, 6].

In this work we focus on the case where G is a forest, which has attracted con-
siderable attention in the literature. Concerning graphs of bounded treewidth 2 , Guan
and Zhu [10] showed, by using standard dynamic programming techniques, that on an
n-vertex graph of treewidth t the parameter σ(G,w; r) can be computed in time

nO(r) · rO(t). (1)

Guan and Zhu [10] left as an open problem whether Weighted Coloring is poly-
nomial on trees and, more generally, on graphs of bounded treewidth. Escoffier et
al. [9] found a polynomial-time approximation scheme to solve Weighted Coloring

on bounded treewidth graphs, and Kavitha and Mestre [13] showed that the problem is
in P on the class of trees where vertices with degree at least three induce a stable set.

But the question of Guan and Zhu has been answered only recently, when Araújo et
al. [1] showed that, unless the Exponential Time Hypothesis (ETH) 3 fails, there is no
algorithm computing the weighted chromatic number of n-vertex trees in time no(log n).

As discussed in [1], it is worth mentioning that the above lower bound is tight.

2 We will not define treewidth here, just recall that forests are the graphs with treewidth 1; see [4, 7].
3 The ETH states that 3-SAT cannot be solved in subexponential time; see [11] for more details.

Indeed, Guan and Zhu [10] showed that the maximum number of colors used by an
optimal weighted coloring of any weighted graph (G,w) is at most its so-called first-first
chromatic number (see [10] for the definition), denoted by χFF(G). On the other hand,
Linhares and Reed [14] proved that for any n-vertex graph G of treewidth at most t, it
holds that χFF(G) = O(t logn). These observations together with Equation (1) imply
that the Weighted Coloring problem can be solved on forests in time nO(logn).

Therefore, Weighted Coloring on forests is unlikely to be in P, as this would
contradict the ETH, and also unlikely to be NP-hard, as in that case all problems in NP

could be solved in subexponential time, contradicting again the ETH.

Our results. The objective of this article is to provide hardness results for computing
σ(G,w) and σ(G,w; r) when G is a forest, relying on complexity assumptions weaker
than the ETH. Namely, we study the problem from the viewpoint of parameterized
complexity (the basic definitions can be found in Section 2), and we assume the weaker
hypothesis FPT 6= W[1]. Indeed, it is well-known [4] that the ETH implies that FPT 6=
W[1], which in turn implies that P 6= NP.

Our first result is that when (G,w) is a weighted forest, computing σ(G,w) is W[1]-
hard parameterized by the size of a largest connected component of G. This is proved
by a parameterized reduction from Independent Set that builds on the techniques
introduced by Araújo et al. [1]. This result essentially rules out the existence of FPT

algorithms for Weighted Coloring on forests for many natural choices of the pa-
rameter: treewidth, cliquewidth, maximum degree, maximum diameter of a connected
component, number of colors in an optimal coloring, etc. Indeed, all these parameters
are bounded by the size of a largest connected component of G (for the number of colors,
this can be proved by using that they are bounded by χFF(G) [10], which is easily seen
to be bounded by the size of a largest connected component).

We then move our attention to the parameter σ(G,w; r) and we prove, by a pa-
rameterized reduction from Dominating Set similar to the first one, that computing
σ(G,w; r) on forests is W[2]-hard parameterized by r. Interestingly, if we assume the
ETH, our reduction together with the results of Chen et al. [3] imply that, on graphs
of bounded treewidth, the running time given by Equation (1) is asymptotically opti-
mal, that is, there is no algorithm computing σ(G,w; r) on n-vertex graphs of bounded
treewidth in time no(r).

We would like to mention that, although our reductions use several key ideas intro-
duced by Araújo et al. [1], our results are incomparable to those of [1].

As further research, it would be interesting to identify “reasonable” parameters yield-
ing FPT algorithms for Weighted Coloring on forests. Probably, it might make sense
to consider combined parameters that take into account, on top of the aforementioned
invariants, the number of distinct weights in the input weighted forest.

Organization of the article. In Section 2 we provide some basic preliminaries about
forests, weighted colorings, and parameterized complexity. In Section 3 we introduce
some common gadgets that will be used in both reductions. In Section 4 and Section 5
we present the W[1]-hardness and W[2]-hardness reductions, respectively.

2 Preliminaries

Forests and weighted colorings. We use standard graph-theoretic notation, and
we consider simple undirected graphs without loops nor multiple edges; see [7] for any
undefined terminology. Given two integers i and j with i ≤ j, we denote by [i, j] the set
of all integers between i and j, including both i and j.

If T is a rooted tree, we denote by r(T) the root of T . A weighted graph is a pair
(G,w) where G is a graph and w : V (G) → R

+ is a weight function. We say that a
weighted graph (G,w) is a weighted forest if G is a forest and a weighted rooted tree
if G is a rooted tree. If (G,w) is a weighted rooted tree, we define the root of (G,w),
denoted by r((G,w)), to be the root of G.

When considering k-colorings c of a graph G, defined in Section 1, for convenience
we will usually index them as c = (Si)i∈[0,k−1]. We say that a vertex v ∈ V (G) is colored
Si, for some i ∈ [0, k − 1], if v ∈ Si.

Parameterized complexity. We refer the reader to [4, 8] for basic background on
parameterized complexity, and we recall here only some basic definitions. A parame-
terized problem is a language L ⊆ Σ∗ × N. For an instance I = (x, k) ∈ Σ∗ × N, k
is called the parameter. A parameterized problem is fixed-parameter tractable (FPT) if
there exists an algorithm A, a computable function f , and a constant c such that given
an instance I = (x, k), A (called an FPT algorithm) correctly decides whether I ∈ L in
time bounded by f(k) · |I|c.

Within parameterized problems, the class W[1] may be seen as the parameterized
equivalent to the class NP of classical optimization problems. Without entering into
details (see [4, 8] for the formal definitions), a parameterized problem being W[1]-hard
can be seen as a strong evidence that this problem is not FPT. The canonical example
of W[1]-hard problem is Independent Set parameterized by the size of the solution 4 .

The class W[2] of parameterized problems is a class that contains W[1], and such
that the problems that are W[2]-hard are even more unlikely to be FPT than those that
are W[1]-hard (again, see [4, 8] for the formal definitions). The canonical example of
W[2]-hard problem is Dominating Set parameterized by the size of the solution 5 .

For i ∈ [1, 2], to transfer W[i]-hardness from one problem to another, one uses a
parameterized reduction, which given an input I = (x, k) of the source problem, computes
in time f(k)·|I|c, for some computable function f and a constant c, an equivalent instance
I ′ = (x′, k′) of the target problem, such that k′ is bounded by a function depending only
on k.

Hence, an equivalent definition of W[1]-hard (resp. W[2]-hard) problem is any prob-
lem that admits a parameterized reduction from Independent Set (resp. Dominat-

ing Set) parameterized by the size of the solution.

4 Given a graph G and a parameter k, the problem is to decide whether there exists S ⊆ V (G) such
that |S| ≥ k and E(G[S]) = ∅.
5 Given a graph G and a parameter k, the problem is to decide whether there exists S ⊆ V (G) such
that |S| ≤ k and N [S] = V (G).

3 Some useful gadgets

In this section we introduce some gadgets that will be used in the reductions presented
in the following sections. As mentioned in the introduction, the first reduction is from
Independent Set, and the second one is from Dominating Set. Most of these
gadgets are inspired by [1].

Let us first fix (G, k), an instance of either Independent Set or Dominating

Set. We denote by (G′, w) the instance of Weighted Coloring we are going to
construct. We define n = |V (G)| and we fix a bijection β : V (G) → [0, n− 1], which
will allow us to define our gadgets depending on integers j ∈ [0, n− 1] corresponding,
via β, to the vertices of G. We define M = k(n − 1)ε +

∑
i∈[0,4k+3]

1
2i

, where ε is any

real number satisfying 0 < ε < 1
nk24k+3 , which implies that M < 2. We define, for each

i ∈ [0, 4k + 3] and for each j ∈ [0, n], wj
i = 1

2i
+ jε. We also define, for each ℓ ∈ [0, 3],

Wℓ = w0
4n+ℓ =

1
24n+ℓ .

We first define a particular family of binomial trees Bi, i ∈ [0, 4n+ 3], depicted in
Figure 1, as done in [1]. They will be crucially used in the construction of (G′, w). Their
role is to force the color of most of the nodes in any coloring c of G′ with w(c) ≤ M .
Note that the notion of binomial trees has also been used, for instance, in [2, 5].

Definition 3.1 For each i ∈ [0, 4k + 3], we define recursively the weighted rooted tree
Bi, called binomial tree, as follows:

• if i = 0, then B0 has a unique node of weight w0
0,

• otherwise, Bi has a root r of weight w0
i and, for each j ∈ [0, i− 1], we introduce a

copy of Bj and we connect its root to r.

w0
0

B0

w0
i

Bi

w0
0

B0

w0
1

B1

w0
2

B2

· · ·
w0

i−1

Bi−1

Figure 1. The binomial trees B0 and Bi, i > 0. The vertices labeled Bj are the root of a copy
of Bj , for each j ∈ [0, i− 1]. The weights are also depicted on top of the vertices.

Lemma 3.2 (Araújo et al. [1]) Let i ∈ [0, 4k + 3] and let (T, w) be a weighted forest
having Bi as a subtree. If there exists a coloring c of (T, w) with w(c) ≤ M , then, for
any ℓ ∈ [0, i]:

• all vertices of Bi with weight in w0
ℓ receive the same color Sℓ of c and

• there exists a unique color class Sℓ in c of weight in {wj
ℓ | j ∈ [0, n]}.

As we shall see later, the choice of the weight of a color class Sℓ corresponds to
choosing (or not) a vertex to be part of the solution of the corresponding problem. Each
time that a vertex is chosen, we will have to “pay” an additional weight of (n − 1)ε in
the total weight of the coloring. The selected value of M forces that we will be able to
choose k vertices.

In every graph we are going to build in the following, we assume that B4k+3 is a
subtree of our graph. If this is not the case, we introduce a new connected component
that contains only B4k+3. This permits to identify a color by its weight. Indeed, in any
coloring c = (Si)i∈[0,ℓ], where ℓ ≥ 4k + 3, of weight at most M , we have that for each

i ∈ [0, 4k + 3], Si is the only color such that w(Si) ∈ {wj
i | j ∈ [0, n]}. We denote, for

each ℓ ∈ [0, 3], Rℓ = S4k+ℓ to be the unique color of weight Wℓ.

We also define the auxiliary tree Aj
i for each i ∈ [0, 4k − 1] and each j ∈ [0, n], as

defined in [1]. This auxiliary tree is depicted in Figure 2.

Definition 3.3 For each i ∈ [0, 4k − 1] and each j ∈ [0, n], we define the weighted
rooted tree Aj

i , called auxiliary tree, as follows.

• We first introduce two vertices u and v such that u is the root of Aj
i , v is connected

to u, w(u) = W0, and w(v) = wj
i .

• for each ℓ ∈ [0, i− 2], we introduce a copy of Bℓ and we connect the root of this copy
to v.

• for each ℓ ∈ [0, 4k − 1] \ {i− 1}, we introduce a copy of Bℓ and we connect the root
of this copy to u.

The vertex v is called the subroot of Aj
i . Note that Aj

i consists of 24k nodes.

u{Si−1, R0} W0

v{Si−1, Si} w
j
i

Figure 2. The auxiliary tree A
j
i , i ∈ [0, 4k − 1] and j ∈ [0, n]. The binomial trees are not

depicted. Next to each vertex, its weight and the set of colors this vertex can receive (see
Lemma 3.4) are depicted.

Lemma 3.4 (Araújo et al. [1]) Let i ∈ [0, 4k − 1], let j ∈ [0, n], and let (T, w) be
any weighted forest having B4k+3 and Aj

i as subtrees. Let u and v be the root and the
subroot of Aj

i , respectively. For any coloring c of (T, w) with weight w(c) ≤ M , it holds
that:

• either v is colored Si−1 and u must be colored with the color R0,

• or v is colored Si (therefore, w(Si) ≥ wj
i) and u is colored either with Si−1 or with

the color R0.

We also need the Ri-AND gadget, i ∈ [0, 1], depicted in Figure 3, and which is
strongly inspired by a similar gadget presented in [1] (called clause tree) corresponding
to the logical ‘OR’.

Definition 3.5 Let i ∈ [0, 1]. Given two vertices I1, I2, we define the Ri-AND gadget
between the input vertices I1 and I2 as follows:

• We add four new vertices v1, v2, v3, and O and the edges {v1, I1}, {v2, I2}, {v1, v2},
{v2, v3}, and {v3, O}.

• For each j ∈ [1, 3] and each ℓ ∈ [0, 4k − 1], we introduce a copy of Bℓ and we connect
its root to vj.

• For each ℓ ∈ [0, 4k − 1], we introduce a copy of Bℓ and we connect its root to O.

• For each j ∈ [1, 2] we introduce a copy of B4k+1−i and we connect its root to vj .

• We introduce a copy of B4k+i and a copy of B4k+2 and we connect their roots to v3.

• We set w(v1) = W2, w(v2) = W3, w(v3) = W3, and w(O) = W1.

The vertex O is called the output vertex of the Ri-AND gadget.

We naturally extend the definition of the Ri-AND gadget to ℓ input vertices with
ℓ ≥ 2 by introducing ℓ− 1 Ri-AND gadgets in a sequential way.

I1{Ri} ∪ S

I2{Ri} ∪ S′

{Ri, R2, R3}

v2

{Ri, R2}

v1

{R1−i, R3}

v3

O {R0, R1}

Figure 3. The Ri-AND gadget, for some i ∈ [0, 1], where I1 and I2 are the input vertices and
O is the output vertex, and where S and S ′ are subsets of {Sℓ | ℓ ∈ [0, 4k − 1]} ∪ {W0,W1}.
For each vertex, the associated set is the set of colors that the vertex can receive. Again, the
binomial trees are not depicted.

Lemma 3.6 Let i ∈ [0, 1], let I1 and I2 be the two input vertices of an Ri-AND gadget,
and let O be its output vertex. If I1 and I2 are colored Ri, then O must be colored Ri.
Moreover, if either I1 or I2 is not colored Ri, then O can be colored either R0 or R1.

Proof: First, assume that I1 and I2 are colored Ri. This sequentially implies that v1
must be colored R2, v2 must be colored R3, v3 must be colored R1−i, and O must be
colored Ri. Secondly, assume that I1 is not colored Ri. This sequentially implies that
v1 can be colored Ri, v2 can be colored R2, v3 can be colored R3, and therefore O can
be colored either R0 or R1. Finally, assume that I2 is not colored Ri. This sequentially
implies that v2 can be colored Ri, v3 can be colored R3, and so O can be colored either
R0 or R1. �

Finally, we define, for each i ∈ [0, k − 1] and j ∈ [0, n− 1], the vertex tree T j
i ,

depicted in Figure 4, which is also inspired by a similar construction given in [1], called
variable tree. The main difference with respect to [1] is that, in our case, the color given
to the root of a vertex tree codifies a binary value corresponding to picking or not a
vertex in the solution, whereas the gadget of [1] codifies an integer corresponding to the
assignment of a group of variables in the integral version of 3-SAT that they consider.

Definition 3.7 For each i ∈ [0, k − 1] and for each j ∈ [0, n− 1], we define the vertex
tree T j

i to be the weighted rooted tree, representing the vertex β−1(j), defined as follows.

• We introduce one copy of Aj+1
4i+1 and An−j

4i+3 and an R0-AND gadget whose inputs are

the two roots of Aj+1
4i+1 and An−j

4i+3. We call u the output of the R0-AND gadget and

we set u to be the root of T j
i .

• We introduce one copy of Aj
4i+1, A

j+1
4i+1, A

n−j
4i+3, and An−j−1

4i+3 ,

· we connect r(Aj
4i+1) to r(An−j

4i+3) and r(Aj+1
4i+1) to r(An−j−1

4i+3), and

· we connect u to r(Aj
4i+1) and to r(An−j−1

4i+3).

u

{R0, R1}

{S4i, R0}

A
j
4i+1

{S4i+2, R0}

A
n−j
4i+3

{S4i, R0}

A
j+1

4i+1

{S4i+2, R0}

A
n−1−j
4i+3

R0-AND {S4i, R0}

A
j+1

4i+1

{S4i+2, R0}

A
n−j
4i+3

Figure 4. The vertex tree T
j
i , i ∈ [0, k − 1] and j ∈ [0, n− 1]. The vertices labeled A

q
p are the

roots of a copy of Aq
p. For each vertex, the associated set is the set of colors that the vertex

can receive.

The usefulness of a vertex tree T j
i associated with a vertex v corresponding to the

integer j is the following. The color of the root u codifies whether vertex v has been
chosen in the solution or not. Namely, if u gets color R0 (resp. R1), this means that
vertex v is (resp. is not) part of the solution. The following lemma formalizes this idea
and guarantees that the choices are consistent, in the sense that the choices made in all
vertex trees corresponding to the same vertex are the same. It is also important to note
that because of the definition of the weights wj

i , each time we choose to color a root of
a vertex tree with R0, we have to “pay” (n − 1)ε in the total weight. Making k such
choices is forced by the properties of the gadgets and the value of M .

Lemma 3.8 Let (T, w) be any weighted forest having B4k+3 as a subtree and containing,
for each (i, j) ∈ [0, k − 1]× [0, n− 1], T j

i as a subtree. Let c be a coloring of (T, w) with
w(c) ≤ M . Then, there exist (ji)i∈[0,k−1] ∈ [0, n− 1]k such that each root u of each

subtree T j
i , (i, j) ∈ [0, k − 1]× [0, n− 1], satisfies:

• if j = ji for some i ∈ [0, k − 1], then the color of u in c must be R0, and

• otherwise, the color of u in c must be R1.

Proof: By Lemma 3.2 and since we assume that w(c) ≤ M and that B4k+3 occurs
in (T, w) as a subtree, it follows that c = (Si)i∈[0,ℓ] with ℓ ≥ 4k + 3 and for each

i ∈ [0, 4k + 3], w(Si) ∈ {wj
i | j ∈ [0, n]}.

Let i ∈ [0, k − 1]. Given j ∈ [0, n], as T j
i or T j−1

i is a subgraph of T (in fact, if
j /∈ {0, n− 1}, both are), we know that there exist a copy of Aj

4i+1 with root rj4i+1 and a

copy of An−j
4i+3 with root rn−j

4i+3 such that rj4i+1 and rn−j
4i+3 are adjacent. This implies that,

for each j ∈ [0, n],

c(rj4i+1) 6= R0 or (1j)

c(rn−j
4i+3) 6= R0. (2j)

Note that, by Lemma 3.4, for each j ∈ [0, n], (1j) implies that w(S4i+1) ≥ wj
4i+1 and (2j)

implies that w(S4i+3) ≥ wn−j
4i+3. Therefore, one of the following cases necessarily occurs:

• (1n) is satisfied and so w(S4i+1) ≥ wn
4i+1,

• (20) is satisfied and so w(S4i+3) ≥ wn−0
4i+3, or

• (10) and (2n) are satisfied and, since for each j ∈ [0, n] at least one of (1j) and (2j)
holds, the integer j∗ = min{j | 0 ≤ j ≤ n − 1 and property (2j+1) is satisfied} is
well-defined. It follows that both (1j∗) and (2j∗+1) are satisfied, which implies that

w(S4i+1) ≥ wj∗

4i+1 and w(S4i+3) ≥ w
n−(j∗+1)
4i+3 .

In the first two cases, using that w(S4i+1) ≥ w0
4i+1 and w(S4i+3) ≥ w0

4i+3, we obtain
w(S4i+1) + w(S4i+3) ≥ w0

4i+1 + w0
4i+3 + nε. In the third case, we obtain w(S4i+1) +

w(S4i+3) ≥ (w0
4i+1 + j∗ε) + (w0

4i+3 + (n− (j∗ + 1))ε) = w0
4i+1 + w0

4i+3 + (n− 1)ε.

Thus, it always holds that w(S4i+1) + w(S4i+3) ≥ w0
4i+1 + w0

4i+3 + (n− 1)ε.

Therefore,

w(c) ≥
∑

i∈[0,k−1]

(w(S4i) + w(S4i+1) + w(S4i+2) + w(S4i+3)) +
∑

i∈[0,3]

w(Ri)

≥
∑

i∈[0,k−1]

(w0
4i + w0

4i+1 + w0
4i+2 + w0

4i+3 + (n− 1)ε) +
∑

i∈[0,3]

Wi

= M.

By definition of c, we have w(c) = M , for each i ∈ [0, 3], w(Ri) = Wi, and for each
i ∈ [0, k − 1], w(S4i) = w0

4i, w(S4i+2) = w0
4i+2, and w(S4i+1)+w(S4i+3) = w0

4i+1+w0
4i+3+

(n− 1)ε. Moreover, for each 4k + 3 < i ≤ ℓ, w(Si) = 0.

Let us fix i∗ ∈ [0, k − 1]. The equation w(S4i∗+1)+w(S4i∗+3) = w0
4i∗+1+w0

4i∗+3+(n−

1)ε implies the existence of j∗ ∈ [0, n− 1] such that w(S4i∗+1) = wj∗
4i∗+1 and w(S4i∗+3) =

wn−1−j∗
4i∗+3 . Thus, for each j > j∗, the root of any copy of Aj

4i∗+1 must be colored R0 and

for each j < j∗, the root of any copy of An−1−j
4i∗+3 must be colored R0. This implies that

for each j ∈ [0, n− 1] \ {j∗}, the root of T j
i∗ must be colored R1. Moreover, as in T j∗

i∗

the roots of the copy of Aj∗+1
4i∗+1 and the copy of An−j∗

4i∗+3 must be colored R0 (otherwise,

w(S4i∗+1) ≥ wj∗+1
4i∗+1 > wj∗

4i∗+1 or w(S4i∗+3) ≥ wn−j∗
4i∗+3 > wn−1−j∗

4i∗+3), the R0-AND gadget

ensures that the root of T j∗

i∗ is colored R0. �

4 W[1]-hardness reduction

In this section we present a parameterized reduction from Independent Set to Weighted

Coloring on forests.

Theorem 4.1 Given a weighted forest (G,w), the problem of computing σ(G,w) is
W[1]-hard when parameterized by the size of a largest connected component of G.

Proof: We reduce from Independent Set parameterized by the size of the solu-
tion, which is well-known to be W[1]-hard (see [4, 8]). Let (G, k) be an instance of
Independent Set, and let n = |V (G)|. Recall that M = k(n − 1)ε +

∑
i∈[0,4k+3]

1
2i

where ε is any real number satisfying 0 < ε < 1
nk24k+3 , which implies that M < 2. Let

β : V (G) → [0, n− 1] be a bijection. For each edge {v1, v2} in E(G) and each i1, i2 in
[0, k − 1], we define the weighted rooted tree H{v1,v2},i1,i2 as follows.

• We introduce a copy of T
β(v1)
i1

and a copy of T
β(v2)
i2

, and call the roots r1 and r2,
respectively.

• We introduce an R0-AND gadget where the input vertices are r1 and r2 and the
output is a new vertex r.

• We introduce a copy of B4k and we connect its root to r.

• We set r to be the root of H{v1,v2},i1,i2.

Note that, by construction, the root r has to be colored R1. We also define, for
each vertex v in V (G) and each i1, i2 in [0, k − 1] with i1 6= i2, the weighted rooted tree
Hv,i1,i2 to be the tree H{v1,v2},i1,i2 defined above with v1 = v2 = v.

We define (G′, w) as the disjoint union of the weighted tree B4k+3, of each weighted
tree of {He,i1,i2 | e ∈ E(G), i1, i2 ∈ [0, k − 1]}, of each weighted tree of {Hv,i1,i2 | v ∈
V (G), i1, i2 ∈ [0, k − 1] , i1 6= i2}, and of each weighted tree of {T j

i | i ∈ [0, k − 1] , j ∈
[0, n− 1]}. Note that the size of each connected component of G′ is bounded by a
function depending only on k. Indeed, the size of any connected component is bounded
by the size of those of type He,i1,i2, which can be easily checked to be at most 2 · (6 ·
24k +4)+4+24k = 13 · 24k+12. Note that the construction of (G′, w) can be performed
in time f(k) · nO(1), as required.

The idea of the construction is that the trees H{v1,v2},i1,i2 defined above guarantee
that, for each edge {v1, v2} of G, at most one of v1 and v2 belongs to the independent
set. More formally, as the root r of such tree has to be colored R1, by the R0-AND

gadget at least one of r1 and r2 has to be colored R1, which translates to the fact that
at least one of v1 and v2 does not belong to the independent set. Similarly, the trees
Hv,i1,i2 guarantee that the same vertex is not picked more than once in the solution.

More formally, we now prove that there exists a solution of Independent Set on
(G, k) if and only if σ(G′, w) ≤ M .

Assume first that Z is a solution of Independent Set on (G, k). We may assume
that Z is of size exactly k. Let δ : Z → [0, k − 1] be a bijection. For each i ∈ [0, k − 1],
we define vi = δ−1(i). We are going to define c = (Si)i∈[0,4k+3] such that for each

i ∈ [0, 4k + 3], w(Si) ∈ {wj
i | j ∈ [0, n]}. By Lemma 3.2, we can (and we must)

color every tree Bi in that way, for each i ∈ [0, 4k + 3]. Then for each j ≤ β(vi) and

each j′ ≥ β(vi), we set the color of the subroot of each Aj
4i+1 and each Am−j′−1

4i+3 to be
to be color S4i+1 and S4i+3, respectively, and their root to be colored S4i and S4i+2,
respectively. For each j > β(vi) and each j′ < β(vi), we set the color of the roots of

each Aj
4i+1 and each Am−j′−1

4i+3 to be R0 and the color of their subroots to be S4i+1 and
S4i+3, respectively. This coloring is possible by Lemma 3.4. Note also that for each
i ∈ [0, k − 1], if ji = β(vi), then we have w(S4i) = w0

i , w(S4i+1) = wji
i , w(S4i+2) = w0

i ,
and w(S4i+3) = wm−ji−1

i . We set the color of the root of each T j
i such that j = β(δ−1(i))

to R0, and we set the color of the root of each T j
i such that j 6= β(δ−1(i)) to R1. The

colors of the other vertices are forced by the R0-AND gadgets.

As Z is an independent set, for each edge {v1, v2} of G, at least one of the extremities,

say v1, is not in Z. Thus, for each i1, i2 in [0, k − 1], the root of T
β(vi)
i1

is colored R1

and therefore the root of H{v1,v2},i1,i2 can be colored R1, which is the only color available
for this vertex. As in this coloring, for each ℓ ∈ [0, 3], w(Rℓ) = Wℓ, we obtain that
σ(G′, w) ≤ M .

Conversely, assume that there is an integer ℓ and a coloring c = (Si)i∈[0,ℓ] of G′

such that w(c) ≤ M . As there is no weight below W3, from Lemma 3.2 it follows that
ℓ = 4k + 3 and for each i ∈ [0, 4k + 3], w(Si) ∈ {wj

i | j ∈ [0, n]}. By Lemma 3.8, for
each i ∈ [0, k − 1], there exists an index ji such that the root of each T ji

i is colored R0.
Let us define Z = {β−1(ji) | i ∈ [0, k − 1]}. Given i1 and i2 in [0, k − 1], we claim that

there is no edge in G between β−1(ji1) and β−1(ji2). Indeed, if the root of T
ji1
i1

and the

root of T
ji2
i2

are colored R0, then the root of H{β−1(ji1),β
−1(ji2)},i1,i2

should also be colored
R0 because of the R0-AND gadget, but this is not possible because of the tree B4k that
is connected to it. A similar argument shows that, because of the trees Hv,i1,i2, for any
i1, i2 in [0, k − 1] with i1 6= i2, it holds that β−1(ji1) 6= β−1(ji2), that is, the same vertex
does not occur more than once in Z. This implies that Z is an independent set in G of
size exactly k, concluding the proof. �

5 W[2]-hardness reduction

In this section we present a reduction from Dominating Set to Weighted Coloring

on forests when the number of colors is prescribed. The reduction is similar to the one
presented in Theorem 4.1, but it is somehow simpler and uses the R1-AND gadget
instead of the R0-AND gadget.

Theorem 5.1 Given a weighted forest (G,w) and a positive integer r, the problem of
computing σ(G,w; r) is W[2]-hard when parameterized by r.

Proof: We reduce from Dominating Set parameterized by the size of the solution,
which is well-known to be W[2]-hard (see [4, 8]). Let (G, k) be an instance of Domi-

nating Set, and let n = |V (G)|. Recall again that M = k(n − 1)ε +
∑

i∈[0,4k+3]
1
2i

where ε is any real number satisfying 0 < ε < 1
nk24k+3 , which implies that M < 2. Let

β : V (G) → [0, n− 1] be a bijection. For each vertex v ∈ V (G), we define the weighted
rooted tree Hv as follows.

• For each i ∈ [0, k − 1] and each j ∈ β(N [v]), we introduce a copy of T j
i and call its

root rji .

• We introduce an R1-AND gadget where the input vertices are the vertices of {rji | i ∈
[0, k − 1] , j ∈ β(N [v])}, and let r be the output.

• We introduce a copy of B4k+1 and we connect its root to r.

• We set r to be the root of Hv.

We then define (G′, w) as the disjoint union of the weighted tree B4k+3, of each
weighted tree of {Hv | v ∈ V (G)}, and of each weighted tree of {T j

i | i ∈ [0, k − 1] , j ∈
[0, n− 1]}. Finally, we set r = 4k + 4. Note that r depends only on k and that the
construction of (G′, w) can be performed in time f(k) · nO(1), as required.

The idea of this construction is to guarantee that a dominating set in G must contain,
for each v ∈ V (G), at least one vertex in N [v]. In the tree Hv, this is captured by
forbidding its root r to be colored R1, which by the R1-AND gadget implies that at
least one of the roots of the trees T j

i must be colored R0, meaning that at least one
vertex in N [v] belongs to the solution.

Formally, we now prove that there exists a solution of Dominating Set on (G, k)
if and only if σ(G′, w; r) ≤ M .

First assume that Z is a solution of Dominating Set on (G, k). We may assume
that Z is of size exactly k. Let δ : Z → [0, k − 1] be a bijection. For each i ∈ [0, k − 1],
we define vi = δ−1(i). We are going to define c = (Si)i∈[0,4k+3] such that for each

i ∈ [0, 4k + 3], w(Si) ∈ {wj
i | j ∈ [0, n]}, in the same way we did for Theorem 4.1. By

Lemma 3.2, we can (and we must) color every tree Bi in that way, for i ∈ [0, 4k + 3].
Then for each j ≤ β(vi) and each j′ ≥ β(vi), we set the color of the subroot of each

Aj
4i+1 and each Am−j′−1

4i+3 to be to be color S4i+1 and S4i+3, respectively, and their root to
be colored S4i and S4i+2, respectively. For each j > β(vi) and each j′ < β(vi), we set the

color of the roots of each Aj
4i+1 and each Am−j′−1

4i+3 to be R0 and the color of their subroot

to be S4i+1 and S4i+3, respectively. Again, this coloring is possible by Lemma 3.4. Note
also that for each i ∈ [0, k − 1], if ji = β(vi), then we have w(S4i) = w0

i , w(S4i+1) = wji
i ,

w(S4i+2) = w0
i , and w(S4i+3) = wm−ji−1

i . We set the color of the root of each T j
i such that

j = β(δ−1(i)) to R0, and we set the color of the root of each T j
i such that j 6= β(δ−1(i))

to R1. The colors of the other vertices are forced by the R1-AND gadgets.

As Z is a dominating set of G, for each v ∈ V (G), at least one of the vertices rji ,
i ∈ [0, k − 1], j ∈ β(N [v]), of Hv is colored R0. So we can affect the color R0 to the
root of Hv, which is, by construction, the only available color for this vertex. As in this
coloring, for each ℓ ∈ [0, 3], w(Rℓ) = Wℓ, we obtain that σ(G′, w; r) ≤ M .

Conversely, assume that there is an integer ℓ and a coloring c = (Si)i∈[0,ℓ] of G′ that
σ(G,w; ℓ + 1) ≤ M . As there is no weight below W3, from Lemma 3.2 it follows that
ℓ = 4k+3 and for each i ∈ [0, 4k + 3], w(Si) ∈ {wj

i | j ∈ [0, n]}. By Lemma 3.8, for each
i ∈ [0, k − 1], there exists an index ji such that the root of each T ji

i is colored R0. Let
us define Z = {β−1(ji) | i ∈ [0, k − 1]}, where the same vertex may have been chosen
for different indices in [0, k − 1]. Let v be a vertex of G. As, by construction, the root
of Hv can only receive the color R0 in any coloring of weight at most M , this implies
that at least one vertex rj

∗

i∗ , i∗ ∈ [0, k − 1], j∗ ∈ β(N [v]), of Hv is colored R0. This
implies, by Lemma 3.8, that β−1(j∗) ∈ Z. Moreover, β−1(j∗) ∈ N [v]. It follows that Z
is a dominating set in G of size at most k. �

Note that the proof of Theorem 5.1 shows that, if (G, k) in an instance of Dominat-

ing Set, then the number of colors of the constructed instance satisfies r = 4k + 4 =
O(k). Note also that it is easy to strengthen the lower bound given by Theorem 5.1
to apply to trees instead of forests. Indeed, we can just add a new vertex v, attach it
to every connected component of the forest G′ built in the reduction, and give to v a
weight that does not conflict with any of the weights of its neighbors. By possibly using
a new color containing only v, it still holds that r = O(k).

The above paragraph together with the fact that, assuming the ETH, Dominating

Set parameterized by the size of the solution cannot be solved in time f(k) · no(k) for
any computable function f [3] imply the following corollary.

Corollary 5.2 Assuming the ETH, there is no algorithm that, given a weighted tree
(G,w) and a positive integer r, computes σ(G,w; r) in time f(r)·no(r) for any computable
function f .

In particular, Corollary 5.2 implies that on forests, and more generally on graphs of
bounded treewidth, the running time stated in Equation (1), which in this case is equal
to nO(r), is asymptotically optimal under the ETH.

References

[1] Araújo, J., N. Nisse and S. Pérennes, Weighted coloring in trees, SIAM Journal on Discrete
Mathematics 28 (2014), pp. 2029–2041.

[2] Bonnet, E., F. Foucaud, E. J. Kim and F. Sikora, Complexity of grundy coloring and its
variants, in: Proc. of the 21st International Conference on Computing and Combinatorics
(COCOON), LNCS 9198, 2015, pp. 109–120.

[3] Chen, J., X. Huang, I. A. Kanj and G. Xia, Strong computational lower bounds via
parameterized complexity, Journal of Computer and System Sciences 72 (2006), pp. 1346–
1367.

[4] Cygan, M., F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk
and S. Saurabh, “Parameterized Algorithms,” Springer, 2015.

[5] de Werra, D., M. Demange, B. Escoffier, J. Monnot and V. T. Paschos, Weighted coloring
on planar, bipartite and split graphs: Complexity and approximation, Discrete Applied
Mathematics 157 (2009), pp. 819–832.

[6] Demange, M., D. de Werra, J. Monnot and V. T. Paschos, Weighted node coloring: When
stable sets are expensive, in: Proc. of the 28th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), LNCS 2573 (2002), pp. 114–125.

[7] Diestel, R., “Graph Theory,” Graduate texts in mathematics 173, Springer-Verlag, 2005.

[8] Downey, R. G. and M. R. Fellows, “Fundamentals of Parameterized Complexity,” Texts in
Computer Science, Springer, 2013.

[9] Escoffier, B., J. Monnot and V. T. Paschos, Weighted coloring: further complexity and
approximability results, Information Processing Letters 97 (2006), pp. 98–103.

[10] Guan, D. J. and X. Zhu, A coloring problem for weighted graphs, Information Processing
Letters 61 (1997), pp. 77–81.

[11] Impagliazzo, R., R. Paturi and F. Zane, Which problems have strongly exponential
complexity?, Journal of Computer and System Sciences 63 (2001), pp. 512–530.

[12] Karp, R. M., Reducibility among combinatorial problems, in: Proc. of a symposium on the
Complexity of Computer Computations, The IBM Research Symposia Series (1972), pp.
85–103.

[13] Kavitha, T. and J. Mestre, Max-coloring paths: tight bounds and extensions, Journal of
Combinatorial Optimization 24 (2012), pp. 1–14.

[14] Linhares Sales, C. and B. A. Reed, Weighted coloring on graphs with bounded tree width,
in: Annals of 19th International Symposium on Mathematical Programming, 2006.

[15] Pemmaraju, S. V., S. Penumatcha and R. Raman, Approximating interval coloring and
max-coloring in chordal graphs, ACM Journal of Experimental Algorithmics 10 (2005).

	1 Introduction
	2 Preliminaries
	3 Some useful gadgets
	4 W [1]-hardness reduction
	5 W [2]-hardness reduction
	References

