On the Existence of Critical Clique-Helly Graphs

Liliana Alcón ${ }^{\text {a,2 }}$ Miguel Pizaña ${ }^{\text {b,1,3 }}$ Gabriela Ravenna ${ }^{\text {c,4 }}$
${ }^{\text {a }}$ Departamento de Matemática, FCE-UNLP, La Plata, Argentina
${ }^{\text {b }}$ Universidad Autónoma Metropolitana - Iztapalapa, Mexico City, 09340, Mexico
${ }^{\text {c }}$ CONICET, Departamento de Matemática, FCE-UNLP, La Plata, Argentina

Abstract

A graph is clique-Helly if any family of mutually intersecting cliques has non-empty intersection. Dourado, Protti and Szwarcfiter conjectured that every clique-Helly graph contains a vertex whose removal maintains it a clique-Helly graph. We will present a counterexample to this conjecture.

Keywords: Helly property, Clique-Helly graphs, clique graphs.

1 Introduction

A set family \mathcal{F} satisfies the Helly property if the intersection of all the members of any pairwise intersecting subfamily of \mathcal{F} is non-empty. This property, originated in the famous work of Eduard Helly on convex sets in the Euclidean

[^0]space, has been widely studied in diverse areas of theoretical and applied mathematics such as extremal hypergraph theory, logic, optimization, theoretical computer science, computational biology, data bases, image processing and, clearly, graphs theory. A few surveys have been written on the Helly property, see for instance $[1,2,4,5]$.

From the computational and algorithmic point of view, the relevance of the Helly property has been highlighted in the survey [3]. In the section Proposed Problems of that work, the authors posed the following open question:

Conjecture 1.1 (Dourado, Protti and Szwarcfiter) Every clique-Helly graph (the family of maximal cliques of the graph satisfies the Helly property) contains a vertex whose removal maintains it a clique-Helly graph.

In this work, we prove that the conjecture is false: in Section 3 we will exhibit a clique-Helly graph G such that $G-v$ (the graph obtained from G by removing vertex v) is not clique-Helly for every vertex v of G.

2 Definitions and preliminary results

Given a finite and simple graph G, we let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively.

The open and closed neighborhoods of a vertex $v \in V(G)$ are denoted by $N_{G}(v)$ and $N_{G}[v]$, respectively. The degree of v is the cardinality of $N_{G}(v)$.

If $S \subseteq V(G)$ then the subgraphs of G induced by S and by $V(G) \backslash S$ are denoted by $G[S]$ and $G-S$, respectively. When S contains a unique vertex v, we write $G-v$ for $G-\{v\}$.

The complete graph on n vertices is denoted by K_{n}. A complete set of G is a subset of $V(G)$ inducing a complete subgraph. A clique is a maximal (with respect to the inclusion relation) complete set. We let $\mathcal{C}(G)$ be the family of cliques of G. When $\mathcal{C}(G)$ satisfies the Helly property, we say that G is a clique-Helly graph. The clique graph $K(G)$ of G is the intersection graph of $\mathcal{C}(G)$: the vertices of $K(G)$ are the cliques of G and two different cliques of G are adjacent in $K(G)$ if and only if they have non-empty intersection.

A chordless cycle in G is a sequence of at least three distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ of G such that two of them are adjacent in G if and only if they are consecutive in the sequence or they are v_{1} and v_{k}. The positive integer k is the length of the cycle. The chordless cycle of length k is denoted by C_{k}. The girth $g(G)$ of G is the length of a shortest chordless cycle in G (if G has no cycle, then $g(G)=\infty)$. The local girth of G at a vertex $v \in V(G)$ is the girth of the subgraph induced by the open neighborhood of v in G, i.e

Fig. 1. The icosahedron.
$l g_{v}(G)=g(G[N(v)])$. The minimum of the local girths at the different vertices of G is denoted by $l g(G)$ and named the local girth of G, i.e.

$$
l g(G)=\min \left\{l g_{v}(G): v \in V(G)\right\}
$$

Theorem 2.1 ([6]) If the local girth of the graph G is greater than 6 (i.e. $l g(G) \geq 7)$ then $K(G)$ is clique-Helly.

Definition 2.2 A graph G is critical clique-Helly if G is clique-Helly and $G-v$ is not clique-Helly for every $v \in V(G)$.

Note that in terms of the previous definition, the conjecture of Dourado, Protti and Szwarcfiter postulates that there are no critical clique-Helly graphs. In what follows, a counterexample to that conjecture will be obtained as the clique graph of the tensor product of the icosahedron and the complete graph with three vertices K_{3} (also called a triangle).

The icosahedron I is the graph with vertex set $\{1,2, \ldots, 12\}$ depicted in Fig. 1. The following properties of I can be easily checked.

Proposition 2.3 (i) Every vertex of I has degree 5.
(ii) The open neighborhood of each vertex of I induces a C_{5}.
(iii) The cliques of I are precisely its faces which are all triangles.
(iv) Every vertex of I is in exactly 5 cliques.

Fig. 2. A partial drawing of $I \times K_{3}$.
The tensor product $I \times K_{3}$ is the graph with $V\left(I \times K_{3}\right)=V(I) \times\{1,2,3\}$ and $E\left(I \times K_{3}\right)$ defined as follows: two vertices (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are adjacent in $I \times K_{3}$ if and only if i is adjacent to i^{\prime} in I and $j \neq j^{\prime}$. Clearly, $I \times K_{3}$ is a graph on 36 vertices. Fig. 2 shows an induced subgraph of $I \times K_{3}$ including the neighborhood of the vertex $(1,1)$.

Lemma 2.4 (i) Every vertex of $I \times K_{3}$ has degree 10 .
(ii) The open neighborhood of each vertex of $I \times K_{3}$ induces a C_{10}.
(iii) The cliques of $I \times K_{3}$ are triangles $\{(i, 1),(j, 2),(k, 3)\}$ for any triangle $\{i, j, k\}$ of I.
(iv) Every vertex of $I \times K_{3}$ is in exactly ten cliques; and any other clique of $I \times K_{3}$ (i.e. any clique which does not contain the given vertex) intersects at most three of those ten cliques.

Proof. (i) Consider the vertex $(1,1)$ of $I \times K_{3}$. Since $N_{I}(1)=\{2,3,4,5,6\}$ (see Fig. 1), we have that

$$
N_{I \times K_{3}}((1,1))=\{(i, j): i \in\{2,3,4,5,6\} \text { and } j \in\{2,3\}\} .
$$

The regularity of I extends the proof to any other vertex of $I \times K_{3}$.
(ii) Again consider the vertex $(1,1)$ of $I \times K_{3}$ and its ten neighbors. It is easy to check that the adjacencies between them are exactly the ones depicted in Fig. 2; thus $N_{I \times K_{3}}((1,1))$ induces a C_{10} in $I \times K_{3}$. The regularity and symmetry of I extends the proof to any other vertex of $I \times K_{3}$.
(iii) It is a clear consequence of the previous two assertions.
(iv) One more time, without loss of generality, consider the vertex $(1,1)$ of $I \times K_{3}$. That $(1,1)$ is in exactly ten cliques follows from (i) and (ii), see Fig. 2. On the other hand, if Q is a clique which does not contain the vertex $(1,1)$ then Q contains at most two consecutive vertices of the cycle induced by the neighbors of $(1,1)$ which implies that Q intersects at most three of the ten cliques containing $(1,1)$.

3 The main theorem

Theorem 3.1 The graph $K\left(I \times K_{3}\right)$ is critical clique-Helly.
Proof. By the assertion (ii) of Lemma 2.4, the local girth of $I \times K_{3}$ equals 10. Therefore, by Theorem 2.1, $K\left(I \times K_{3}\right)$ is clique-Helly.

Let Q_{0} be any vertex of $K\left(I \times K_{3}\right)$, i.e. Q_{0} is a clique of $I \times K_{3}$. Without loss of generality assume that $Q_{0}=\{(1,1),(2,2),(3,3)\}$ (see Fig. 2). We will prove that $K\left(I \times K_{3}\right)-Q_{0}$ is not clique-Helly.

For $i \in\{1,2,3\}$, let D_{i} be the set of vertices of $K\left(I \times K_{3}\right)-Q_{0}$ corresponding to the cliques of $I \times K_{3}$ containing the vertex (i, i), that is

$$
D_{i}=\left\{Q \in \mathcal{C}\left(I \times K_{3}\right):(i, i) \in Q\right\} \backslash\left\{Q_{0}\right\} .
$$

By the assertion (iv) of Lemma 2.4, D_{i} is a clique of $K\left(I \times K_{3}\right)-Q_{0}$ for $i \in\{1,2,3\}$. We claim that these three cliques are pairwise intersecting but the intersection of all three of them is empty. Indeed, the vertices of $K\left(I \times K_{3}\right)$ Q_{0} corresponding to the cliques $\{(1,1),(2,2),(6,3)\},\{(2,2),(3,3),(8,1)\}$ and $\{(1,1),(3,3),(4,2)\}$ of $I \times K_{3}$ (named A, B and C, respectively, in Fig. 2) belong to $D_{1} \cap D_{2}, D_{2} \cap D_{3}$ and $D_{1} \cap D_{3}$, respectively. Finally, assume in order to obtain a contradiction that a vertex Q of $K\left(I \times K_{3}\right)-Q_{0}$ belongs to
$D_{1} \cap D_{2} \cap D_{3}$. Then, by definition of these sets, Q is a clique of $I \times K_{3}$ such that $(i, i) \in Q$ for $i \in\{1,2,3\}$. Thus, by the assertion (iii) of Lemma 2.4, $Q=\{(1,1),(2,2),(3,3)\}=Q_{0}$ which contradicts the fact that Q is a vertex of $K\left(I \times K_{3}\right)-Q_{0}$.

References

[1] C. Berge, The Helly property, Southeast Asian Bulletin of Mathematics 1 (1977), 16-19.
[2] L. Danzer, B. Grünbaum, V. Klee, Helly's theorem and its relatives, 1963 Proceedings of Symposia in Pure Mathematics VII, pp. 101-180, American Mathematical Society, Providence, R.I.
[3] M.C. Dourado, F. Protti, J.L. Szwarcfiter, Computational Aspects of the Helly Property: a Survey, Journal of the Brazilian Computer Society 12, Issue 1, (2006), 7-33.
[4] J. Eckhoff, Helly, Radon, and Carathéodory type theorems, in Handbook of Convex Geometry, North-Holland, (1993), 389-448.
[5] J. E. Goodman, R. Pollack, R.Wenger, Geometric transversal theory, in J. Pach, editor, New Trends in Discrete and Computational Geometry, Springer-Verlag, Berlin, (1993), 163-198.
[6] F. Larrión, V. Neumann-Lara, M. A. Pizaña, Whitney Triangulations, Local Girth and Iterated Clique Graphs, Discrete Mathematics 258, (2002) 123-135.

[^0]: ${ }^{1}$ Partially supported by SEP-CONACyT, grant 285362.
 ${ }^{2}$ Email: liliana@mate.unlp.edu.ar
 ${ }^{3}$ Email: mpizana@gmail.com
 ${ }^{4}$ Email: gabriela.ravenna@gmail.com

