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Abstract

A graph is clique-Helly if any family of mutually intersecting cliques has non-empty
intersection. Dourado, Protti and Szwarcfiter conjectured that every clique-Helly
graph contains a vertex whose removal maintains it a clique-Helly graph. We will
present a counterexample to this conjecture.
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1 Introduction

A set family F satisfies the Helly property if the intersection of all the mem-
bers of any pairwise intersecting subfamily of F is non-empty. This property,
originated in the famous work of Eduard Helly on convex sets in the Euclidean
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space, has been widely studied in diverse areas of theoretical and applied math-
ematics such as extremal hypergraph theory, logic, optimization, theoretical
computer science, computational biology, data bases, image processing and,
clearly, graphs theory. A few surveys have been written on the Helly property,
see for instance [1,2,4,5].

From the computational and algorithmic point of view, the relevance of the
Helly property has been highlighted in the survey [3]. In the section Proposed
Problems of that work, the authors posed the following open question:

Conjecture 1.1 (Dourado, Protti and Szwarcfiter) Every clique-Helly
graph (the family of maximal cliques of the graph satisfies the Helly property)
contains a vertex whose removal maintains it a clique-Helly graph.

In this work, we prove that the conjecture is false: in Section 3 we will
exhibit a clique-Helly graph G such that G — v (the graph obtained from G
by removing vertex v) is not clique-Helly for every vertex v of G.

2 Definitions and preliminary results

Given a finite and simple graph G, we let V(G) and E(G) denote the vertex
set and the edge set of GG, respectively.

The open and closed neighborhoods of a vertex v € V(G) are denoted by
Ng(v) and Nglv], respectively. The degree of v is the cardinality of Ng(v).

If S C V(G) then the subgraphs of G induced by S and by V(G)\S are
denoted by G[S] and G — S, respectively. When S contains a unique vertex
v, we write G — v for G — {v}.

The complete graph on n vertices is denoted by K,,. A complete set of G is
a subset of V(@) inducing a complete subgraph. A clique is a maximal (with
respect to the inclusion relation) complete set. We let C(G) be the family
of cliques of G. When C(G) satisfies the Helly property, we say that G is a
clique-Helly graph. The clique graph K(G) of G is the intersection graph of
C(G): the vertices of K(G) are the cliques of G and two different cliques of G
are adjacent in K(G) if and only if they have non-empty intersection.

A chordless cycle in G is a sequence of at least three distinct vertices
V1, Vg, ..., U of G such that two of them are adjacent in G if and only if they
are consecutive in the sequence or they are v; and vx. The positive integer
k is the length of the cycle. The chordless cycle of length k is denoted by
Cy. The girth ¢g(G) of G is the length of a shortest chordless cycle in G (if
G has no cycle, then g(G) = o00). The local girth of G at a vertex v € V(G)
is the girth of the subgraph induced by the open neighborhood of v in G, i.e
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Fig. 1. The icosahedron.

lg,(G) = g(G[N(v)]). The minimum of the local girths at the different vertices
of G is denoted by lg(G) and named the local girth of G, i.e.

lg(G) = min{lg,(G) : v € V(G)}.
Theorem 2.1 ([6]) If the local girth of the graph G is greater than 6 (i.e.
lg(G) > 7) then K(G) is clique-Helly.

Definition 2.2 A graph G is critical clique-Helly if G is clique-Helly and
G — v is not clique-Helly for every v € V(G).

Note that in terms of the previous definition, the conjecture of Dourado,
Protti and Szwarcfiter postulates that there are no critical clique-Helly graphs.
In what follows, a counterexample to that conjecture will be obtained as the
clique graph of the tensor product of the icosahedron and the complete graph
with three vertices K3 (also called a triangle).

The icosahedron I is the graph with vertex set {1,2,...,12} depicted in
Fig. 1. The following properties of I can be easily checked.

Proposition 2.3 (i) Every vertex of I has degree 5.
(ii) The open neighborhood of each vertex of I induces a Cs.
(iii) The cliques of I are precisely its faces which are all triangles.

(iv) Ewvery vertex of I is in exactly 5 cliques.
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Fig. 2. A partial drawing of I x K3.

The tensor product I x K3 is the graph with V(I x K3) = V(I) x {1, 2,3}
and E(I x K3) defined as follows: two vertices (i,j) and (¢, j") are adjacent
in I x K3 if and only if i is adjacent to i’ in I and j # j'. Clearly, I x K3 is a
graph on 36 vertices. Fig. 2 shows an induced subgraph of I x K3 including
the neighborhood of the vertex (1,1).

Lemma 2.4 (i) Fvery vertex of I x K3 has degree 10.

(ii) The open neighborhood of each vertex of I x K3 induces a Ciy.

(iii) The cliques of I x K3 are triangles {(i,1),(4,2), (k,3)} for any triangle
{i,j,k} of I.

(iv) Ewvery vertex of I x K is in exactly ten cliques; and any other clique of

I x K3 (i.e. any clique which does not contain the given vertex) intersects
at most three of those ten cliques.
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Proof. (i) Consider the vertex (1,1) of I x Kj. Since N;(1) = {2,3,4,5,6}
(see Fig. 1), we have that

Nivw,(1,1)) = {(i,5) i € {2,3,4,5,6} and j € {2,3}}.

The regularity of I extends the proof to any other vertex of I x Kj.

(ii) Again consider the vertex (1,1) of I x K3 and its ten neighbors. It is
easy to check that the adjacencies between them are exactly the ones depicted
in Fig. 2; thus Nyxk,((1,1)) induces a Cyo in I x K3. The regularity and
symmetry of I extends the proof to any other vertex of I x Kj.

(iii) It is a clear consequence of the previous two assertions.

(iv) One more time, without loss of generality, consider the vertex (1,1) of
I x K3. That (1,1) is in exactly ten cliques follows from (i) and (ii), see Fig.
2. On the other hand, if @ is a clique which does not contain the vertex (1, 1)
then () contains at most two consecutive vertices of the cycle induced by the
neighbors of (1,1) which implies that @ intersects at most three of the ten
cliques containing (1,1). O

3 The main theorem

Theorem 3.1 The graph K(I x K3) is critical clique-Helly.

Proof. By the assertion (ii) of Lemma 2.4, the local girth of I x K3 equals
10. Therefore, by Theorem 2.1, K (I x K3) is clique-Helly.

Let Qo be any vertex of K (I x K3), i.e. Qg is a clique of I x K3. Without
loss of generality assume that Qo = {(1,1),(2,2),(3,3)} (see Fig. 2). We will
prove that K (I x K3) — Qg is not clique-Helly.

For i € {1,2,3}, let D; be the set of vertices of K (I x K3) — (g corre-
sponding to the cliques of I x K3 containing the vertex (i,1), that is

Di = {Q S C(I X Kg) : (Z,Z) € Q} \ {Qo}

By the assertion (iv) of Lemma 2.4, D; is a clique of K (I x K3) — (o for
i € {1,2,3}. We claim that these three cliques are pairwise intersecting but the
intersection of all three of them is empty. Indeed, the vertices of K (I x K3) —
()o corresponding to the cliques {(1,1),(2,2),(6,3)}, {(2,2),(3,3),(8,1)} and
{(1,1),(3,3),(4,2)} of I x K3 (named A, B and C|, respectively, in Fig. 2)
belong to Dy N Dy, Dy N D3 and Dy N D3, respectively. Finally, assume in
order to obtain a contradiction that a vertex @ of K (I x K3) — (o belongs to
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D1 N Dy N D3. Then, by definition of these sets, () is a clique of I x K3 such
that (,7) € @ for i € {1,2,3}. Thus, by the assertion (iii) of Lemma 2.4,
Q ={(1,1),(2,2),(3,3)} = Qo which contradicts the fact that @ is a vertex
of K(I x K3) — Qo. 0
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