
On the Existence of Critical
Clique-Helly Graphs

Liliana Alcón a,2 Miguel Pizaña b,1,3 Gabriela Ravenna c,4

a Departamento de Matemática, FCE-UNLP, La Plata, Argentina
b Universidad Autónoma Metropolitana - Iztapalapa, Mexico City, 09340, Mexico
c CONICET, Departamento de Matemática, FCE-UNLP, La Plata, Argentina

Abstract

A graph is clique-Helly if any family of mutually intersecting cliques has non-empty
intersection. Dourado, Protti and Szwarcfiter conjectured that every clique-Helly
graph contains a vertex whose removal maintains it a clique-Helly graph. We will
present a counterexample to this conjecture.
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1 Introduction

A set family F satisfies the Helly property if the intersection of all the mem-
bers of any pairwise intersecting subfamily of F is non-empty. This property,
originated in the famous work of Eduard Helly on convex sets in the Euclidean
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space, has been widely studied in diverse areas of theoretical and applied math-
ematics such as extremal hypergraph theory, logic, optimization, theoretical
computer science, computational biology, data bases, image processing and,
clearly, graphs theory. A few surveys have been written on the Helly property,
see for instance [1,2,4,5].

From the computational and algorithmic point of view, the relevance of the
Helly property has been highlighted in the survey [3]. In the section Proposed
Problems of that work, the authors posed the following open question:

Conjecture 1.1 (Dourado, Protti and Szwarcfiter) Every clique-Helly
graph (the family of maximal cliques of the graph satisfies the Helly property)
contains a vertex whose removal maintains it a clique-Helly graph.

In this work, we prove that the conjecture is false: in Section 3 we will
exhibit a clique-Helly graph G such that G − v (the graph obtained from G
by removing vertex v) is not clique-Helly for every vertex v of G.

2 Definitions and preliminary results

Given a finite and simple graph G, we let V (G) and E(G) denote the vertex
set and the edge set of G, respectively.

The open and closed neighborhoods of a vertex v ∈ V (G) are denoted by
NG(v) and NG[v], respectively. The degree of v is the cardinality of NG(v).

If S ⊆ V (G) then the subgraphs of G induced by S and by V (G)\S are
denoted by G[S] and G − S, respectively. When S contains a unique vertex
v, we write G− v for G− {v}.

The complete graph on n vertices is denoted by Kn. A complete set of G is
a subset of V (G) inducing a complete subgraph. A clique is a maximal (with
respect to the inclusion relation) complete set. We let C(G) be the family
of cliques of G. When C(G) satisfies the Helly property, we say that G is a
clique-Helly graph. The clique graph K(G) of G is the intersection graph of
C(G): the vertices of K(G) are the cliques of G and two different cliques of G
are adjacent in K(G) if and only if they have non-empty intersection.

A chordless cycle in G is a sequence of at least three distinct vertices
v1, v2, . . . , vk of G such that two of them are adjacent in G if and only if they
are consecutive in the sequence or they are v1 and vk. The positive integer
k is the length of the cycle. The chordless cycle of length k is denoted by
Ck. The girth g(G) of G is the length of a shortest chordless cycle in G (if
G has no cycle, then g(G) = ∞). The local girth of G at a vertex v ∈ V (G)
is the girth of the subgraph induced by the open neighborhood of v in G, i.e
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Fig. 1. The icosahedron.

lgv(G) = g(G[N(v)]). The minimum of the local girths at the different vertices
of G is denoted by lg(G) and named the local girth of G, i.e.

lg(G) = min{lgv(G) : v ∈ V (G)}.
Theorem 2.1 ([6]) If the local girth of the graph G is greater than 6 (i.e.
lg(G) ≥ 7) then K(G) is clique-Helly.

Definition 2.2 A graph G is critical clique-Helly if G is clique-Helly and
G− v is not clique-Helly for every v ∈ V (G).

Note that in terms of the previous definition, the conjecture of Dourado,
Protti and Szwarcfiter postulates that there are no critical clique-Helly graphs.
In what follows, a counterexample to that conjecture will be obtained as the
clique graph of the tensor product of the icosahedron and the complete graph
with three vertices K3 (also called a triangle).

The icosahedron I is the graph with vertex set {1, 2, . . . , 12} depicted in
Fig. 1. The following properties of I can be easily checked.

Proposition 2.3 (i) Every vertex of I has degree 5.
(ii) The open neighborhood of each vertex of I induces a C5.
(iii) The cliques of I are precisely its faces which are all triangles.
(iv) Every vertex of I is in exactly 5 cliques.
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Fig. 2. A partial drawing of I ×K3.

The tensor product I ×K3 is the graph with V (I ×K3) = V (I)×{1, 2, 3}
and E(I ×K3) defined as follows: two vertices (i, j) and (i′, j′) are adjacent
in I ×K3 if and only if i is adjacent to i′ in I and j �= j′. Clearly, I ×K3 is a
graph on 36 vertices. Fig. 2 shows an induced subgraph of I ×K3 including
the neighborhood of the vertex (1, 1).

Lemma 2.4 (i) Every vertex of I ×K3 has degree 10.
(ii) The open neighborhood of each vertex of I ×K3 induces a C10.
(iii) The cliques of I × K3 are triangles {(i, 1), (j, 2), (k, 3)} for any triangle

{i, j, k} of I.
(iv) Every vertex of I ×K3 is in exactly ten cliques; and any other clique of

I×K3 (i.e. any clique which does not contain the given vertex) intersects
at most three of those ten cliques.
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Proof. (i) Consider the vertex (1, 1) of I × K3. Since NI(1) = {2, 3, 4, 5, 6}
(see Fig. 1), we have that

NI×K3((1, 1)) = {(i, j) : i ∈ {2, 3, 4, 5, 6} and j ∈ {2, 3}}.

The regularity of I extends the proof to any other vertex of I ×K3.
(ii) Again consider the vertex (1, 1) of I × K3 and its ten neighbors. It is
easy to check that the adjacencies between them are exactly the ones depicted
in Fig. 2; thus NI×K3((1, 1)) induces a C10 in I × K3. The regularity and
symmetry of I extends the proof to any other vertex of I ×K3.
(iii) It is a clear consequence of the previous two assertions.
(iv) One more time, without loss of generality, consider the vertex (1, 1) of
I ×K3. That (1, 1) is in exactly ten cliques follows from (i) and (ii), see Fig.
2. On the other hand, if Q is a clique which does not contain the vertex (1, 1)
then Q contains at most two consecutive vertices of the cycle induced by the
neighbors of (1, 1) which implies that Q intersects at most three of the ten
cliques containing (1, 1). �

3 The main theorem

Theorem 3.1 The graph K(I ×K3) is critical clique-Helly.

Proof. By the assertion (ii) of Lemma 2.4, the local girth of I × K3 equals
10. Therefore, by Theorem 2.1, K(I ×K3) is clique-Helly.

Let Q0 be any vertex of K(I ×K3), i.e. Q0 is a clique of I ×K3. Without
loss of generality assume that Q0 = {(1, 1), (2, 2), (3, 3)} (see Fig. 2). We will
prove that K(I ×K3)−Q0 is not clique-Helly.

For i ∈ {1, 2, 3}, let Di be the set of vertices of K(I × K3) − Q0 corre-
sponding to the cliques of I ×K3 containing the vertex (i, i), that is

Di = {Q ∈ C(I ×K3) : (i, i) ∈ Q} \ {Q0}.

By the assertion (iv) of Lemma 2.4, Di is a clique of K(I ×K3)− Q0 for
i ∈ {1, 2, 3}. We claim that these three cliques are pairwise intersecting but the
intersection of all three of them is empty. Indeed, the vertices of K(I ×K3)−
Q0 corresponding to the cliques {(1, 1), (2, 2), (6, 3)}, {(2, 2), (3, 3), (8, 1)} and
{(1, 1), (3, 3), (4, 2)} of I × K3 (named A, B and C, respectively, in Fig. 2)
belong to D1 ∩ D2, D2 ∩ D3 and D1 ∩ D3, respectively. Finally, assume in
order to obtain a contradiction that a vertex Q of K(I ×K3)−Q0 belongs to
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D1 ∩D2 ∩D3. Then, by definition of these sets, Q is a clique of I ×K3 such
that (i, i) ∈ Q for i ∈ {1, 2, 3}. Thus, by the assertion (iii) of Lemma 2.4,
Q = {(1, 1), (2, 2), (3, 3)} = Q0 which contradicts the fact that Q is a vertex
of K(I ×K3)−Q0. �
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