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Abstract

We study the problem faced by an international retail company
operating e-commerce to determine the initial allocation of goods into
warehouses, so as to provide customers in local markets with high
level of service. We represent the movement of goods through the
warehouse network to the customers using linear and quadratic integer
programming models.

1 Introduction

We consider an international retail company operating e-commerce on a
global scale. The retailer sells on local markets thorough dedicated web-
sites, where customers can order available goods from an online catalog.
Ordered goods are then shipped to customers by express delivery service.
The retailer manages a network of warehouses consisting of a main ware-
house in the European Union and other warehouses outside Europe, each one
associated with a regional market. European customers are always served
from the main warehouse, while non-European customers can be served from
the local warehouses or from the central warehouse. Hence, even after an
initial allocation of goods to the central and regional warehouses, there can
be a continuos flow of goods from the central and local warehouses to the
customers. For a potential order, the origin and destination of the ship-
ment define different levels of service. A shipment from a local warehouse
is compatible with fast shipping and is associated with better level of ser-
vice, while an intercontinental shipping requires longer time. We study the
problem that the retail company faces when deciding the initial allocation
of goods into warehouses. On the one hand, the company can store items
at local warehouses, thus maximizing the level of service and minimizing
shipping cost, although the initial acquisition of goods at local warehouses
has (on average) larger cost. In addition, items cannot travel from the local
to the main (European) warehouse, implying that an item allocated at a
local warehouse cannot be sold on a different market. On the other hand,



the retailer can store items in the central warehouse, having more flexibility
(each item can be sold to any local market, and at the end of the season
unsold items are already consolidated in a single location to be salvaged)
and smaller acquisition cost for the initial stock. Flexibility is obtained at
the cost of providing a lower level of service, potentially losing a share of
the sales, and having a larger shipping cost.

We model and study the problem for increasing levels of detail. We
consider a multi-period planning problem, and we initially assume that the
demand and price of goods are given for each period. In this case, the
problem is decomposable and solvable by inspection if no constraint that
links the different item categories (e.g., capacity or assortment constraints
at the warehouses) is imposed . Then, we consider the case in which prices
can be set in each period, and the demand is determined accordingly. In
particular, we study the case of discrete price levels, each one associated
with an expected demand.

The problem we consider has the structure of classical location-allocation
problems, but it is also an inventory problem with elements of network flows,
and pricing. The literature on location-allocation problems is vast, includ-
ing textbooks (see [3]) and several review papers, some of which are quite
recent (e.g., [1]). Two main elements characterize our paper and its mo-
tivating application: first, our models incorporate explicitly the sensitivity
of the demand to the level of service, which is not a common feature (see
[2]); second, the models incorporate pricing decisions and return of pur-
chased items: both elements may substantially change the attractiveness of
a candidate location. Papers integrating location and inventory decisions
are not very common; an example is [5], where a location-inventory problem
involving a single supplier and multiple retailers with variable demand is
studied.

In the next section we formally define the allocation and flow problems
we study, while in Section 3 we present some computational experiments
based on real data from the retailer. Concluding remarks and future work
are presented in Section 4.

2 Mathematical models

We consider a multi-period planning problem with 7" periods (indexed by
t =0,...,7). The retail company wants to decide the initial allocation
(period 0) of m item categories, indexed by i = 1,...,m, where the total
initial amount u) of each category (to be shared among the warehouses) is
the result of merchandising decisions and is given. The company manages n
warehouses, indexed by j = 1,...,n, and associated with n markets, where
7 =1 is the main warehouse.

Items are sold on a local market associated with each warehouse. Item



i can be allocated to warehouse j at an initial cost «;;, and can be moved
from the main warehouse 1 to a warehouse j > 1, in order to satisfy a
local demand at j for an item category which is not available at the local
warehouse. Items can be moved at any time during each period by paying a
(strictly positive) cost (;;, representing intercontinental shipping and import
taxes. The models that we develop incorporate the sensitivity of the demand
to the level of service (shipping time). If an item to be sold on market
j during period t is not available at the local warehouse and has to be
shipped from the main warehouse, the demand is reduced by a fraction (3,
representing the share of lost orders. In addition, the models consider item
returns: a specified fraction p of the orders of each market is returned to the
local warehouse with a delay of 7 time periods. Finally, we consider generic
constraints defining required initial assortment and capacity constraints at
the warehouses. These are the only constraints that link the different item
categories.

Fixed Price-Demand In our first model we assume the demand 5fj and
price wfj for each good i, warehouse j and time period t are given. Assuming
the entirety of the demand has to be satisfied, the problem can be sen as
a cost minimization problem: the total revenue is constant, and we have to
define an initial allocation in such a way that the overall acquisition and
relocation cost, plus the value of lost orders, is minimized.

We model the problem as a Mixed-Integer Linear Program (MILP), al-
though special cases (discussed later) can be solved in closed form. We use
variables wfj to define the level of goods of type i at warehouse j at period
t (for these these variables, integrality is imposed only at period 0, which
represents the initial allocation), integer variables yfj to define the quantity
of goods of type 7 moved from the central warehouse 1 to local warehouse j
at period t and variables zfj to define the amount of lost sales of goods of
type ¢ at market j at period t. Our MILP model is as follows:
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where the objective function (1) minimizes the initial allocation (minus
salvage value) and relocation costs, and the value of lost orders. Constraints
(2) and (3) define balance for the local and central warehouses, respectively;
and constraints (4) define the share of lost sales depending on the level of
service of each order. Constraints (5), where f(.) is any linear function,
are relative to the initial allocation of items to each warehouse j, and can
be used, e.g., to model capacity constraints at the warehouses, or initial
assortment requirements.

Proposition 1. Model (1) - (4), (6) — (9) is decomposable for each good type
i=1,...,m, and each warehouse j =1,...,n, and solvable by inspection.

Proof. If constraints (5) are not imposed, no constraint links the different
goods. Similarly, there is no constraint linking local warehouses. For a given
item category i, the only decision to be taken is about the initial quantity
wU of 7 to be stored at the local warehouse j to serve market j. For each
value, all other model variables and hence the objective function can be
computed in closed form. O

Demand as discrete function of price Next, we consider the more
involved case where the demand is not given and it is a function of discrete
price values. This allows us to model a discount policy during the time
horizon. We model three levels of price and demand through binary variables
xfﬂ indicating if item category 7 in period t is sold from warehouse j at
price m;;;. In this case, we expect a demand ;1. Prices are defined so as
Tij1 > Tij2 > T2, Vi,j. We denote by s . the number of items ¢ sold from
warehouse j during period t. We can formulate a Mixed-Integer Quadratic
Program (MIQP) as follows:
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where the objective function (10) is a quadratic function that maximizes
the sales profit, minus initial allocation and relocation cost; constraints (11)
and (12) define the goods balance for the local and central warehouses, re-
spectively; constraints (13) and (14) define the demand function; constraints
(15) and (16) impose that price is nonincreasing; finally we use type 1 SOS
constraints (17) to impose uniqueness of the selected level of demand and
price. Again, (19) can be any linear constraints linking the variables for the

initial allocation of items at each warehouse j.

In order to linearize model (11)—(24), we replace the first term of the
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and add the following constraints

pij < mijisi; Vi, j, t >0 (26)
pi; < mijish; + M(1—ajy) Vi, g, t>0,1=2,3 (27)

where M is a suited large constant which inactivates the constraint when
the associated x variables is 0. The following proposition states the effect
of removing linking constraints (19) from the model.

Proposition 2. Model (10) - (18), (20) — (24) is decomposable for each
item category v =1,...,m.

3 Computational experiments

We report experiments performed on real data from the retailer. We linearize
model (10)—(24) as explained in the previous section and solve it with the
general purpose MILP solver of CPLEX 12.6. All experiments are performed
on a single core of a Core2 Quad Q9300 2.50 GHz computer with 8 GB RAM,
running Linux.

In the reported experiments we consider a time horizon of six month
divided into periods of one month. In Table 1 we consider instances of the
model without linking constraints (19); hence, the problem is decomposable
and solved separately for each item category. We report results from six
different instances, and we consider two values for 3, the share of lost sales
at local markets when the shipment originates from the central warehouse
(sensitivity to level of service). All instances are solved in few seconds,
and the table reports, after the instance name, the number of Branch-and-
Bound nodes explored by the MILP solver, the computing time in seconds,
the MILP size (number of variables and constraints) and the value of the
parameter 3. Despite the fact that the problems are quite small, they are
far from trivial for the solver, which has to explore several hundred nodes
to find the optimal solution.

Then, we consider the more difficult problem arising when goods are
linked by constraints of type (19), and the model in not separable. In these
experiments we consider a single knapsack constraint for each warehouses at
time 0. In Table 2 we consider three instances having an increasing number
of item categories, namely, 10, 25 and 50. In addition to this number and
information in common with the previous table, we also report optimality
gaps after two hours of computation, and the computing time. Unsurpris-
ingly, since the problem is no longer separable, Table 2 confirms that the



Figure 1: Assignment of goods to the central warehouse as a function of 3.

Figure 2: Assignment of goods to the central warehouse as a function of
transportion costs (including taxes).

models become significantly more challenging. All instances hit the time
limit, with the exception of the smallest one with § = 0.5, but the final
optimality gaps do not exceed 6%.

Figure 1 represents the initial allocation of a single good at the central
warehouse for increasing values of the parameter 3, i.e. the sensitivity of
customers to the level of service (shipping delay). The figure considers the
six instances of table 1. For increasing values of 5, we observe that the
initial allocation of items to the central warehouse is reduced (i.e., goods are
allocated to the regional warehouses, close to their destination markets).
The curves become flat when the central warehouse only contains items to
be sold on its associated market.

A similar behavior is observed in Figure 2, where we represent the initial
allocation of goods at the central warehouse for different values of the ship-
ping and tax cost. The horizontal axis of the figure reports the value of a
coefficient multiplying the actual costs (¢ in equation (10)). For increasing
values of the costs, we observe that the initial allocation to the central ware-
house is reduced. Indeed, it is less profitable to keep goods at the central
warehouse when they have to be shipped to a local market.

4 Conclusions

We considered the allocation and pricing problem faced by an international
retail company operating e-commerce, when serving customers in markets
that are sensitive to level of service. We developed decision models of in-
creasing complexity, and tested these models on instances derived from real
data. The experiments showed that the problems are challenging, justifying
the future development of heuristic approaches and decomposition methods
for solving large-scale instances. In addition, the real application has several
stochastic features, and we plan to extend the analysis presented in this pa-
per in order to incorporate stochasticity (see, e.g., [4]) into our optimization
models.
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