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Abstract

Emerging technologies in on-chip communication domain bring about new combi-
natorial optimization problems at design automation. We address the Wavelength

Selection Problem in Wavelength-Routed Optical Networks-on-Chip (WRONoCs),
where wavelengths act as signal carriers for initiator-to-target communication, so
that signals are the least interfering and routing faults are prevented. We present
this novel engineering problem and model it as a constrained shortest path on
acyclic networks, propose a graph-based mathematical formulation and an iterative
procedure on incremental graphs to solve the model on realistic data.
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1 Introduction

The increasing computer systems performance based on integrated circuits
downscaling has fulfilled Moore’s Law predictions for the last 30 years. This
trend has now reached a saturation point in communication, the so called in-

terconnect bottleneck. To overcome this flaw disruptive interconnect technolo-
gies are being investigated among which Optical Networks-on-Chip (ONoCs),
where communication among core components at chip level exploits the po-
tentials of silicon photonics to carry information by light. This technology
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has several advantages with respect to its electronic counterparts, including
ultra-high communication bandwidth, lower power dissipation, and lower la-
tency [4], beside increased flexibility in resource usage [3]. Despite optical
technologies for long-distance communication are well assessed, their appli-
cation at chip level still presents several challenges. During the synthesis
process leading from abstract system specifications to manufacturing, system
designers face several decision problems for which there are no reliable stan-
dardized methodologies, despite a few having nice combinatorial structures.
Here we address one of such problems arising at the fifth of the seven steps
of the automatic synthesis process for Wavelength-selective Routing ONoCs
(WRONoCs) proposed in [2]. In WRONoCs, communication among cores is
based on wavelength selective routing protocols providing all-to-all contention-
free connectivity: a master sends information to each receiver via a different
wavelength channel and the same set of channels is reused across masters with
no need for arbitration. Given the network topology, information delivery to
target relies on the accurate selection of the network parameters, such as the
signal-carrying wavelengths and the radii of the optical switches WRONoCs
are made of, so that interferences as well as potential routing faults are pre-
vented, which is the topic of this paper. In fact, the path taken by an optical
signal in the topology depends on its wavelength, and second-order effects of
optical switching may route signals to unintended destinations. In Sect.2 we
model this problem as a shortest path on acyclic networks with cardinality con-
straints and node forbidden pairs, and provide an Integer Linear Programming
(ILP) model embedded into an iterative procedure on incremental graphs; in
Sect.3 we report computational results for realistic fabrication data applied to
a well known WRONoC topology, and ongoing research is sketched.

2 A network model for Carrier Wavelength Selection

Carrier Wavelength Selection in WRONoC

In WRONoCs, m initiators I send bits over optical channels to m tar-
gets T using a tuple of nλ wavelengths Λ̃i,t=<λ̃1

i,t..λ̃
nλ

i,t> for each <i, t> pair,
i∈I, t∈T . Due to the Wavelength-selective Routing (WR) protocol, the same
nλ-tuple Λ̃i,t can be reused as signal carriers by other pairs <i′, t′> as long
as i 6=i′, t 6=t′. Then, mnλ different wavelength channels are sufficient to sup-
port an m to m communication at nλ bit rate parallelism. At this stage of
the network synthesis process, though, the tuples Λ̃i,t are just abstract sym-
bols and optimally mapping them to feasible values in the actual bandwidth
Λ̄ = [λmin, λmax] is the topic of this paper. This step requires the understand-



ing of the fundamental mechanisms of the WR protocol which guarantee a
unique path from i to t for each nλ-tuple Λ̃i,t on the interconnect network.
Each initiator i issues a Wavelength-Division Multiplexed (WDM) signal made
of m nλ distinct carriers with wavelength Λ̃i,t1 , . . . , Λ̃i,tm , each nλ-tuple as-
signed to its target t ∈ T . The WR protocol ensures signal delivery to target
exploiting the network topology and the ability of optical switches to deviate
on a different waveguide all and only those wavelengths that are resonant peaks
of the transmission characteristic of the Micro Ring Resonators (MRRs) an
optical switch is made of [6]. These peaks depend on the radius of the MRR,
and the length of the ring radius is the first parameter to be set. Then, for
each radius, nλ among its resonating wavelengths are chosen to be used as
signal carriers. The network topology determines how many switches of how
many different radii are necessary to provide an m to m communication: usu-
ally nR=m radii are required. Formally, we face a combinatorial problem that
we call Wavelength Selection Problem for ONoC (WSP-ONoC) whose deci-
sions are the following: given the set R of n radii available from production,
select a subset R∗ ⊂ R of nR radii, and for each r ∈ R∗ pick nλ wavelengths
in the set Λ(r) of the resonating wavelengths of r. Solving WSP-ONoC pro-
vides physical values to the abstract symbols Λ̃i,t. The WDM signal issued
by each initiator is thus made of the nλnR wavelengths in Λ∗

R∗ =
⋃

r∈R∗ Λ∗(r),
where Λ∗(r) ⊂ Λ(r) denotes the nλ selected resonances for radius r. The aim
is that such wavelengths are evenly distributed in Λ̄, provided that interfer-
ences and routing faults are prevented, i.e., all wavelengths in Λ∗(r) are routed
along the same it-path on the interconnect ONoC. Interference avoidance is
a common concern to most wavelength based communication paradigms and
motivates the objective function. Indeed, wavelengths that are very close to
each other generate optical cross-talks that degrade the signal-to-noise ratio.
To avoid it, we forbid wavelengths closer than a given threshold ε and aim
at keeping wavelengths as apart as possible, which corresponds to equitably
spacing the nλnR selected wavelengths in the bandwidth. Interfering (closer
than ε) wavelengths are mutually exclusive, one at most can be selected. On
the contrary, routing fault prevention is a peculiar feature of WR-ONoCs due
to the WR protocol. A routing fault occurs when a wavelength carrier is
unduly deviated by an MRR. Formally, let λi

r ∈ Λ(r) denote the ith resonat-
ing peak in Λ̄ of the transmission characteristic of the MRRs with radius r.
Fabrication errors during the radii manufacturing may cause two peaks of dif-
ferent radii λj

q and λi
r :

∣

∣λi
r − λj

q

∣

∣ < ǫ to overlap, ǫ depending on fabrication.
Let Γ(λi

r) be the set of wavelengths in Λ̄ potentially overlapping with λi
r, let

Θ(λi
r) = {q ∈ R : Γ(λi

r) ∩ Λ(q) 6= ∅} be the set of the radii of the poten-



tially overlapping wavelengths, and let Ω(λi
r) =

⋃

q∈Θ(λi
r)
Λ(q) be the set of

resonances of such radii. We call the wavelengths in Ω(λi
r) the conflicting res-

onances of λi
r. The following constraint arises: if λi

r is selected no wavelength
in Ω(λi

r) can, and vice-versa. Note that when ε ≤ ǫ routing fault prevention
avoids interference, however the two constraints must be handled differently:
interference is a one-to-one relation, while routing fault is one-to-many. Now
we show how WSP-ONoC can be modeled as a shortest path on acyclic net-
works with cardinality constraints and node forbidden pairs.

A graph based Integer Linear Programming model

Given ΛR =
⋃

r∈R Λ(r) the set of resonating wavelengths of the available
radii in R, consider a digraph G = (N,A) where N is made of the wavelengths
in ΛR plus two dummy nodes s and t associated to λmin and λmax that act as
origin and destination of the path, respectively, i.e., N = {s, t} ∪ {ir : λi

r ∈
ΛR}. For each pair of wavelengths λi

r and λj
q that are potentially adjacent in

Λ∗

R∗ when sequenced in non decreasing order, the arc airjq belongs to A. G is
acyclic but quite dense since the forward star of ir includes any arc airjq such
that λj

q > λi
r + ε (no arc connects interfering wavelengths) and λj

q /∈ Ω(λi
r).

Regarding the objective function, as the cardinality of Λ∗

R∗ is given, maximally
spacing selected adjacent wavelengths corresponds to equally distributing the
nλnR wavelengths in the frequency range Λ̄. Thus the ideal gap between two
successive values in Λ∗

R∗ is δ = (λmax − λmin)/(nλ · nR − 1), and the cost
cirjq of arc airjq is the absolute value of the difference between λj

q − λi
r and δ.

Additional arcs connect s to each node ir and each ir to t. Their cost is the
gap between λmin and λi

r, and from λi
r to λmax, respectively. A solution is an

(nλnR + 1) arcs path from s to t.
Let zirjq be the binary variable associated to arc airjq , let xir be the one
associated to node ir, and let yr be the selection variable for radius r. Model
(1-12) provides an ILP formulation for WSP-ONoC.

min
∑

airjq∈A

cirjqzirjq subject to: (1)

∑

airjq∈FS(ir)

zirjq −
∑

ajqir∈BS(ir)

zjqir = 0 ∀ir ∈ N (2)

∑

airt∈BS(t)

zirt = 1 (3)

∑

asir∈FS(s)

zsir = 1 (4)



∑

airjq∈FS(ir)

zirjq = xir ∀ir ∈ N (5)

∑

ir:λi
r∈Λ(r)

xir = nλyr ∀r ∈ R (6)

∑

r∈R

yr = nR (7)

xir ≤ yr ∀λi
r ∈ Λ(r), r ∈ R (8)

xir + yq ≤ 1 ∀q ∈ Θ(λi
r), ∀λ

i
r ∈ Λ(r), r ∈ R (9)

zirjq ∈ {0, 1} ∀airjq ∈ A (10)

xir ∈ {0, 1} ∀ir ∈ N (11)

yr ∈ {0, 1} ∀r ∈ R (12)

Equations (2-3) are classical flow balance constraints describing the route of a
unit flow from s to t. Equations (5) define node variables xir as a function of
arc variables zirjq . Feasibility with respect to cardinality constraints is ensured
by (6) and (7): (7) guarantees that nR radii are chosen and (6) guarantees
that either nλ resonances are selected if r is chosen or none if r is discarded.
Constraints (8) are the logical implication xir → yr and provide a tighter
version of (6). Constraints (9) are the compact version of the node forbidden

pairs constraints linking each λi
r to each of its conflicting wavelengths, which

ensure routing faults prevention. In fact, for each λi
r each inequality xir +yq ≤

1, q ∈ Θ(λi
r), stands for the family xir + xjq ≤ 1 ∀λj

q ∈ Λ(q), casting this
problem as a special case of the Path Problem with Forbidden Pairs (PPFP)
discussed in [5]. In that work, complexity results are provided for some special
classes of forbidden pairs, none of which holds in our problem. For the proof
of NP-completeness of PPFP for acyclic graphs (by reduction from 3SAT)
see [7]. Note that, while routing fault prevention must be explicitly enforced,
interference is prevented by graph topology.

3 Computational results

Testbeds

The experimental campaign aims to stress the efficacy of the ILP model
and test whether realistic instances can be solved as is by commercial solvers,
i.e. Gurobi 6.05. The experiments run on a two machines cluster equipped
with Intel Xeon E5− 2640@2.5 GHz (6 cores and 24GB of RAM each), pro-
viding each job with 8GB of RAM and time out tmax=3 · 104 seconds. We
report computational results for realistic data generated according to current



s t

λ1
1 λ2

1 λ3
1 λ4

1 λ5
1

λ1
2 λ2

2 λ3
2 λ4

2 λ5
2 λ6

2

λ1
3 λ2

3 λ3
3 λ4

3 λ5
3 λ6

3 λ7
3

λdB

R

δ
τ1

τ2

Figure 1. Graph G(τ) for different values of τ . On top, the radii footprints.

industrial practice and referring to the λ-router topology, which we tested for
different values of nR and nλ. In detail, bandwidth is Λ̄ = [1491, 1611] nm;
the set of radii is computed as R={Rm+i∗Rs, ∀i ∈ {0, ..., ⌈(RM −Rm)/Rs⌉}}
with respect to Rm = 5µm, Rs = 0.25µm, RM = 30µm which yields n = 101
radii as in [1]. The resonant wavelengths are generated exploiting an analyti-
cal electromagnetic model [8], which generates |ΛR| = 1619 resonances in the
range Λ̄. We set ǫ = ε = 0.1nm. In this scenario, we analyze the cases m = 4
andm = 8 cores with nR = m for different degrees of parallelism nλ ∈ {1, 4, 8},
with δ spanning from ∼1 to ∼40: namely, we tackle 6 instances denoted by
the pairs (nR×nλ) in {(4×1), (4×4), (4×8), (8×1), (8×4), (8×8)}. These are
well assessed real life WRONoC parameters for nλ = 1 while the frontier for
higher parallelism is still an open research topic [1]. Finally, note that the
size of G depends on ΛR while realistic values for ǫ and ε only marginally
decrease the number of arcs with respect to a complete digraph, therefore its
size (1621 nodes and ∼13·106 arcs) is basically the same for all instances.

Exploiting incremental graphs

To cope with the large size of the graph, we present an iterative procedure
working on incremental graphs of increasing size obtained by filtering the arcs
based on a rising threshold on their cost, exploiting the following results.

Proposition 3.1 Let p be a cardinality feasible path from s to t in G. If arc

airjq ∈ p then p costs at least 2cirjq .

Proposition 3.2 Let G(τ) denote the subgraph obtained by deleting all arcs

whose cost is greater than or equal to τ , and z∗(τ) the optimal solution value

of WSP-ONoC on G(τ). If z∗(τ) ≤ 2τ then z∗(τ) is optimal. Otherwise, the

optimal solution is a path in G(z∗(τ)/2).



Proof 3.2 relies on 3.1, which in turn follows from the cost structure and
the fixed cardinality of Λ∗

R∗ . In fact, z∗(τ) is optimal if discarded arcs cannot
improve the solution. However, such arcs cost at least τ therefore - because of
3.1 - any feasible path they belong to costs no less than 2τ ≥ z∗(τ), proving
z∗(τ) optimality. If z∗(τ) is not optimal (z∗(τ) > 2τ), it still provides an
upper bound implying that the optimal path p∗ cannot have arcs whose cost
is greater than z∗(τ)/2, therefore p∗ must be a path in G(z∗(τ)/2). ✷

Figure 3 shows an example with three radii and their resonating wavelengths,
overlapping ones circled in yellow. We compare G(τ) for two different values
of τ when solving the problem for nR=3 and parallelism 2 (two nodes per
radius). The smaller value τ1 yields only the solid arcs and G(τ) admits no
feasible solution (overlapping nodes are not allowed in the path). For τ2 > τ1
dashed arcs are added and s−λ1
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2− t is a feasible path in G(τ2).

This suggests to compute z∗ by iteratively solving the problem on a se-
quence of sub-networks, according to the following procedure.

Ensure: Optimal solution
or Unsolvable
τ ← τ0 {Initial value of τ}
repeat

〈Solvable, z∗(τ)〉 ← solve(τ)
if !Solvable then

Increase τ
until Solvable or τ > Λ̄
if Solvable then

if z∗(τ) ≤ 2τ then

return z∗(τ)
else

return solve(z∗(τ)/2)
else

return Unsolvable

The model is solved on G(τ) for in-
creasing values of τ starting from τ =
0, 1 with steps of τstep= 0, 1. Either
a feasible solution is found for some
τ ∗ ≤ τmax = λmax − λmin − δ or τ
reaches τmax with no solution and the
problem is proved infeasible. In the
first case, let z(τ ∗) be the solution
value for the sub-network G(τ ∗). If
z(τ ∗) ≤ 2τ ∗ the solution is optimal
also for G. Otherwise, the optimal
solution can be found by solving the
model on G(τ ′) = G(z(τ ∗)/2), since
z(τ ′) ≤ z(τ ∗) = 2τ ′. In that case we
enforce no time limit.

Computational results are summa-
rized in Table 1. Columns (left to

right) report: instance size nR×nλ; ideal distance δ; τ (∞ stands for τmax);
number of arcs |A|; running time in seconds; linear programming relaxation
at the root node, if any; solution value, if any. In the last column “INFEAS”
means that the instance proved infeasible, “?” means that no feasible solution
could be found within tmax; if a feasible solution is found but optimality is
not proven due to either time out (TO) or out of memory (OoM), column
5 reports the time at which the incumbent was found and the termination



status. For each instance we report information on (at most) 5 rows. Row
1 summarizes the values for the infeasible iterations, i.e., when G(τ) does
not admit a feasible path: the running time is the sum for all iterations and
column 3 reports minimum and maximum τ values for which the instance
is infeasible. Row 2 regards the first feasible instance. Row 3 concerns the
first instance such that G(τ) admits not only a feasible path, but an optimal
one w.r.t. G. Row 4 (labeled ∞) reports data if running the model straight
on G, while row 5 concerns the results provided by the modified Answer Set
Programming (ASP) logic program. Whereas we do not have a benchmark to
compare with, in [1] we searched for a feasible set of resonances maximizing
nλ for a given nR under a pessimistic scenario about fabrication errors. That
problem was coded in ASP [10] and solved by Clasp [11]. Here we provide
that ASP model with a given nλ and set fabrication errors tolerance equal to
ǫ so that it returns the first feasible solution computed in the search. The
rationale is to verify the need for optimization at this WRONoC design step.
At the same time, ASP proved to be a useful tool to verify the existence of a
feasible solution even when the ILP solver struggles to find one.

Results confirm our incremental procedure efficacy. For instances with no
parallelism (4×1 and 8×1) the search converges at very low values of τ , as
the first feasible solution is proved to be a global optimum. For 4×4 the
overall time required by the procedure is one third of what it takes to solve
the problem on G. For both 4×8 and 8×4 instances, the solver cannot prove
the optimality of the incumbent on G, which is indeed quite far from opti-
mality, within tmax while our procedure converges to optimality. Comparing
the computational effort required for these two instances that look for the
same number of resonances (and have the same δ as well), we observe that
the difficulty grows with the parallelism nλ. This comes at no surprise as the
problem with highest nλ is more constrained: indeed, optimality is reached at
a higher τ for denser networks. Finally, for the largest instance 8×8 we could

not prove infeasibility at iteration 9 (τ = 0, 9), but, since zASP = 93, 9, we
know that G admits a feasible solution so we tackled the τmax case and got a
feasible solution with cost zH(τmax) = 18, 12. According to the same rationale
we applied our procedure backwards, solving the case τ = 9, 06 = (18, 12/2)
for which a better solution with cost zH(9, 06) = 16, 05 was found within tmax.

Conclusions and work in progress

We introduced an ILP model for the resonant wavelength selection prob-
lem arising in WRONoC design. The problem is formalized as a constrained
shortest path on acyclic networks and solved by an iterative procedure on
incremental graphs which exploits the structure of the arcs cost function. Re-



Size δ τ | A | Time LP z
4× 1 39.93 0.1 5835 0 0.10

∞ 1292057 99 0.1 0.10
ASP 0 100.23

4× 4 7.99 0.1 - 0.4 7070-18494 29.72 INFEAS
0.5 22712 325.12 2.846 3.71
1.8533 74015 2172.89 2.548 3.46
∞ 1306464 6297.25 2.546 3.46
ASP 5 126.40

4× 8 3.86 0.1 - 0.8 7069 - 36231 39567.4 INFEAS
0.9 40553 25093.04 4.062 12.16
6.0822 204261 97634.82 4.037 10.35
∞ 1306464 9544/OoM 4.037 18.22
ASP 4.68 117.04

8× 1 17.11 0.1 - 0.2 6906 - 10789 3.3 INFEAS
0.3 14357 1.93 0.40
∞ 1292057 130.47 0.40
ASP 2 81.94

8× 4 3.86 0.1 - 0.4 7069 - 18852 31.64 INFEAS
0.5 23318 4900.32 3.236 4.61
2.30 98312 7262.91 3.238 4.58
∞ 1306464 9236/OoM 3.218 8.19
ASP 4.7 103.56

8× 8 1.90 0.1 - 0.8 7047 - 34242 3226.93 INFEAS
0.9 38171 30000/TO 34.6 ?
9.06 224232 27834/TO 9.5061 16.05
∞ 1306464 19535/OoM 9.5058 18.12
ASP 4.7 93.90

Table 1
Experimental results for six realistic instances

sults show that realistic instances can be solved by commercial solvers, but
for the highest level of parallelism even finding a feasible solution can be chal-
lenging. While we believe to be offering practical decision support tools to
designers, we are aware that the combinatorial structure of the problem can
be further exploited: decomposition methods based on the network struc-
ture are currently under investigation as well as valid inequalities that could
speed up the search for feasibility and tighten the weak linear relaxation lower
bound. ASP confirmed its ability to find feasible solutions very quickly, how-
ever selected adjacent resonances are too close for industrial production, which
confirms that any wavelength selection process must involve an optimization
capability. An on going research activity concerns developing the optimiza-
tion version of the ASP model and compare vs ILP. Whichever framework
proves more efficient, our network based model can support decomposition



approaches that become necessary when scaling to very large size instances.
At the same time, though, the ASP based approach could be integrated as an
efficient tool to quickly asses feasibility on sub-networks.
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