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Extended Lagrange’s four-square theorem

Jesús Lacalle Laura N. Gatti

Abstract

Lagrange’s four-square theorem states that every natural number n can be rep-

resented as the sum of four integer squares: n = x21 + x22 + x23 + x24. Ramanujan

generalized Lagrange’s result by providing, up to equivalence, all 54 quadratic forms

ax21+bx22+cx23+dx24 that represent all positive integers. In this article, we prove the

following extension of Lagrange’s theorem: given a prime number p and v1 ∈ Z4,

. . . , vk ∈ Z4, 1 ≤ k ≤ 3, such that ‖vi‖2 = p for all 1 ≤ i ≤ k and 〈vi|vj〉 = 0 for

all 1 ≤ i < j ≤ k, then there exists v = (x1, x2, x3, x4) ∈ Z4 such that 〈vi|v〉 = 0
for all 1 ≤ i ≤ k and

‖v‖2 = x21 + x22 + x23 + x24 = p

This means that, in Z4, any system of orthogonal vectors of norm p can be completed

to a base. We conjecture that the result holds for every norm p ≥ 1. The problem

comes up from the study of a discrete quantum computing model in which the qubits

have Gaussian integers as coordinates, except for a normalization factor
√
2−k.

Keywords. Lagrange’s four-square theorem, p−orthonormal base extension theo-

rem, systems of p−orthonormal vectors, orthogonal lattices

1 Introduction

Long before Lagrange proved his theorem, Diophantus had asked whether every positive

integer could be represented as the sum of four perfect squares greater than or equal to

zero. This question later became known as Bachet’s conjecture, after the 1621 translation

of Diophantus by Bachet. In parallel, Fermat proposed the problem of representing every

positive integer as a sum of at most n n−gonal numbers. Lagrange [7] proved the square
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L.N. Gatti: Dep. de Matemática Aplicada a las Tecnologı́as de la Información y las Comunicaciones,
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case of the Fermat polygonal number theorem in 1770, also solving Bachet’s conjecture.

Gauss [3] proved the triangular case in 1796 and the full polygonal number theorem was

not solved until it was finally proven by Cauchy in 1813. Later, in 1834, Jacobi discovered

a simple formula for the number of representations of an integer as the sum of four integer

squares.

The same year in which Lagrange proved his theorem, Waring asked whether each

natural number k has an associated positive integer s such that every natural number is

the sum of at most s natural numbers to the power of k. For example, every natural number

is the sum of at most 4 squares, 9 cubes, or 19 fourth powers. The affirmative answer to

the Waring’s problem, known as the Hilbert–Waring theorem, was provided by Hilbert in

1909.

A possible generalization of Lagrange’s problem is the following: given natural num-

bers a, b, c and d, can we solve

n = ax2

1 + bx2

2 + cx2

3 + dx2

4

for all positive integers n in integers x1, x2, x3 and x4? Lagrange’s four-square theorem

answered in the positive the case a = b = c = d = 1 and the general solution was

given by Ramanujan [9]. He proved that if we assume, without loss of generality, that

a ≤ b ≤ c ≤ d then there are exactly 54 possible choices for a, b, c and d such that the

problem is solvable in integers x1, x2, x3 and x4 for all n ∈ N.

Another possible generalization, due to Mordel [8], tries to represent positive definite

integral binary quadratic forms instead of positive integers. He proved that the quadratic

form x2+y2+z2+u2+v2 represents all positive definite integral binary quadratic forms.

Sun [11] has proposed some refinements of the Lagrange’s theorem such as, for exam-

ple, the following: n ∈ N can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ Z such

that x+ y + z (or x+ 2y, or x+ y + 2z) is a square (or a cube).

The extension of the Lagrange’s four-square theorem proposed in this article comes

up from the study of the model of discrete quantum computation introduced by the au-

thors [5]. In this model, the discrete quantum states (qubits) have Gaussian integers as

coordinates, except for a normalization factor
√
2−k. The model is constructed from two

elementary quantum gates, H and G. The Hadamard gate H is one of the most relevant

quantum gates that allows superposition, and therefore entanglement and parallelism.

The other gate, G, is a three qubit gate in which the first two are control qubits, while

the third is the target. If the control qubits are in state |1〉 then the gate V is applied to the

third qubit.

H =
1√
2

(

1 1
1 −1

)

V =

(

1 0
0 i

)

These quantum gates allow the construction of all discrete states (states with integer

real and imaginary parts, i.e. Gaussian integers, as coordinates). It is because of this fact



Extended Lagrange’s four-square theorem 3

that the authors call the second gate G (for Gauss).

The model was designed to generate all discrete quantum states from the computa-

tional base. For this reason the proof of this fact was relatively simple. The defined dis-

crete quantum gates in the model have discrete quantum states as columns (and as rows).

As a matter of fact, the authors did not expect that the elementary quantum gates H and G

could generate all discrete quantum gates, because this means simultaneously generating

as many discrete quantum states as gate columns. But, surprisingly, this could be done

and indicated to the authors that it might be true that an orthonormal system of discrete

quantum states can always be completed to a base. In this article we include the simplest

version of this problem, which was already presented as a conjecture at a conference by

the authors [4].

The outline of the article is as follows: In section 2 we set up notations and discuss

some basic properties. In section 3 we prove the main result. Finally, in section 4 we

expose several generalizations and conjectures related to the proposed problem.

2 Notations and basic properties

We consider Z4 as a part of the vector space R4 provided with the inner product 〈v|w〉 =
x1y1+x2y2+x3y3+ x4y4, where v = (x1, x2, x3, x4) and w = (y1, y2, y3, y4) are vectors

of R4, and with the canonical base {e1, . . . , e4}.

Given a set of linearly independent vectors v1, . . . , vk ∈ R4, they generate the lattice

Λ = { b1v1 + · · · + bkvk | b1, . . . , bk ∈ Z } [1] and constitute a base of Λ, B. So the

dimension of Λ will be k. From now on we will only consider bases whose vectors belong

to Z4, i.e. Λ will always be an integral lattice.

Given a point v ∈ Λ, described by its coordinates in B, v = (bi)B, the number N(v) =

‖v‖2 = 〈v|v〉 is called the norm of v and can be calculated by the expression N(v) =

btGb, where G is the Gram matrix of the vectors of B. The determinant of G, det(G), is

an invariant of Λ whose square root is denoted by det(Λ). So det(Λ) =
√

det(G) and,

geometrically, it is interpreted as the volume of the fundamental parallelepiped of Λ. The

matrix G is symmetric and positive definite and is associated to a quadratic form that

collects the main properties of Λ.

Let us consider the coordinate matrix V , formed by the vectors of the base B of Λ

placed by rows. If V is a square matrix, we can compute the determinant of Λ from V ,

det(Λ) = |det(V )|, and it holds that det2(V ) = det(G).

Given a set of vectors v1, . . . , vk ∈ Z4 such that N(vi) = p for all 1 ≤ i ≤ k and

〈vi|vj〉 = 0 for all 1 ≤ i < j ≤ k, we will say that S = { v1, . . . , vk } is a p−orthonormal

system and, if k = 4, that S is a p−orthonormal base. The support of S is supp(S) =

{ i | ∃j such that the i−coordinate of vj 6= 0 }.
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However, we are not interested in Λ, but rather in its orthogonal lattice

Λ⊥ = { v ∈ Z4 | 〈vi|v〉 = 0 for all 1 ≤ i ≤ k }

The resolution method of systems of linear Diophantine equations [2] computes a base of

Λ⊥ with 4− k vectors. Then the dimension of Λ⊥ will be k⊥ = 4− k. In order to do this

we have to solve the linear system V X = 0, computing the Smith normal form [10] of V

and its invariant factors α1, . . . , αk:

LV R =







α1

. . .

αk






= N such that

L ∈ GLk(Z)
R ∈ GL4(Z)
0 < α1, · · · , αk

α1|α2, . . . αk−1|αk

Lemma 2.1. Given a number p ≥ 1 and a p−orthonormal system S = { v1, . . . , vk },

1 ≤ k ≤ 3, with associated lattice Λ, then the last 4 − k columns of the matrix R, in the

Smith normal form of V , constitute a base of Λ⊥.

Proof. It holds that V X = 0 ⇔ LV RR−1X = L 0 = 0 and, considering Y = R−1X ,

we have that V X = 0 ⇔ N Y = 0 ⇔ y1 = · · · = yk = 0. So, the base that generates

the solutions of V X = 0 is B⊥ = {Rek+1, . . . , R e4 }, i.e. the set with the last 4 − k

columns of R.

Throughout the article we will use identities among polynomials in many variables

whose demonstration only requires the polynomial expansion of the difference of both

members of the equalities. We will call this type of proof polynomial checking.

Proposition 2.2. Given a prime number p and a p−orthonormal system S = { v1, v2 },

v1 = (x1, . . . , x4) and v2 = (y1, . . . , y4), with |supp(S)| > 2, then gcd(x1, . . . , x4) =

gcd(y1, . . . , y4) = 1 and the invariant factors of V also verify α1 = α2 = 1.

Proof. Suppose, by contradiction, that gcd(x1, . . . , x4) = g > 1. Then N(v1) = g2(x′ 2
1 +

· · · + x′ 2
4 ) = p, where x′

i =
xi

g
for all 1 ≤ i ≤ 4, and this fact contradicts the pri-

mality of p. So, we have that gcd(x1, . . . , x4) = 1 and in the same way we conclude

that gcd(y1, . . . , y4) = 1. Applying these results, together with the property of the first

invariant factor, we get α1 = 1.

In order to obtain the value of α2 we will use the following identity, that can be proved

by polynomial checking:

N(v1)N(v2)− 〈v1|v2〉2 =
∣

∣

∣

∣

x1 x2

y1 y2

∣

∣

∣

∣

2

+

∣

∣

∣

∣

x1 x3

y1 y3

∣

∣

∣

∣

2

+ · · ·+
∣

∣

∣

∣

x3 x4

y3 y4

∣

∣

∣

∣

2

By hypothesis, N(v1)N(v2) − 〈v1|v2〉2 = p2. Suppose, again by contradiction, that g =

gcd(m12, . . . , m34) > 1, where

mij =

∣

∣

∣

∣

xi xj

yi yj

∣

∣

∣

∣

and m′
ij =

mij

g
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Then p2 = g2(m′ 2
12 + · · · + m′ 2

34) and there are, at least, two minors different from

0 because |supp(S)| > 2. These facts contradict the primality of p. So, we have that

gcd(m12, . . . , m34) = 1 and, since this value matches the second invariant factor, we get

α2 = 1.

Finally, we introduce the fundamental result of the branch of number theory called the

geometry of numbers, proved by Minkowski in 1889.

Theorem 2.3 (Minkowski [1]). Let K be a convex set in Rn which is symmetric with

respect to the origin. If the volume of K is greater than 2n times the volume of the funda-

mental domain (parallelepiped) of a lattice Λ, then K contains a non-zero lattice point.

3 Extended Lagrange’s four-square theorem

We are dealing with the following problem: given a prime number p and a p−orthonormal

system S = { v1, . . . , vk }, 1 ≤ k ≤ 3, with associated lattice Λ, prove that there exists

vk+1 ∈ Λ⊥ with norm N(vk+1) = p.

Remark 3.1. If the p−orthonormal system S has a single vector v1 = (x1, x2, x3, x4), the

solution (valid for all p ≥ 1) is trivial: v2 = (x2,−x1, x4,−x3).

Remark 3.2. If the p−orthonormal system S has two vectors and |supp(S)| = 2, the

solution (also valid for all p ≥ 1) is as well trivial. Suppose, without loss of generality, that

supp(S) = {1, 2} and that v1 = (x1, x2, 0, 0). Then, the required vector is, for example,

v3 = (0, 0, x1, x2).

3.1 Three vectors p−orthonormal systems

If the p−orthonormal system has three vectors, their exterior product allows us to obtain

the required vector.

Proposition 3.3. Given a number p ≥ 1 and a p−orthonormal system S = { v1, v2, v3 },

with associated lattice Λ, there exists v4 ∈ Λ⊥ such that N(v4) = p.

Proof. Given the coordinates of the three vectors of S, v1 = (x1, x2, x3, x4), v2 = (y1, y2,

y3, y4) and v3 = (z1, z2, z3, z4), we consider the exterior product t = (t1, t2, t3, t4) where

t1 = −

∣

∣

∣

∣

∣

∣

x2 x3 x4

y2 y3 y4
z2 z3 z4

∣

∣

∣

∣

∣

∣

· · · t4 =

∣

∣

∣

∣

∣

∣

x1 x2 x3

y1 y2 y3
z1 z2 z3

∣

∣

∣

∣

∣

∣
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It can be proved that t ∈ Λ⊥, by polynomial checking of 〈vi|t〉 = 0, 1 ≤ i ≤ 3, and that

t2i = p2(p− x2
i − y2i − z2i ), 1 ≤ i ≤ 4. In order to check the last equality, for example for

i = 4, it is enough to verify, by polynomial checking, that

t24 = N(x)N(y)N(z) + 2〈x|y〉〈x|z〉〈y|z〉 −N(x)〈y|z〉2 −N(y)〈x|z〉2 −N(z)〈x|y〉2,

where x = (x1, x2, x3), y = (y1, y2, y3) and z = (z1, z2, z3), to replace the following

values
N(x) = p− x2

4 〈x|y〉 = −x4y4
N(y) = p− y24 〈x|z〉 = −x4z4
N(z) = p− z24 〈y|z〉 = −y4z4

and to test the expression obtained by replacing t24 with p2(p−x2
4−y24−z24) by polynomial

checking. Finally, v4 =
t

p
has the required properties: v4 ∈ Λ⊥ and N(v4) = p.

3.2 A two vectors p−orthonormal system S with |supp(S)| > 2

First of all, let us get a base of Λ⊥, B⊥, by computing a Smith quasi-normal form in which

L ∈ GLk(Q). Note that in this case lemma 2.1 also holds. Let V be the coordinate matrix

of the p−orthonormal system S = { v1, v2 } with |supp(S)| > 2, v1 = (x1, x2, x3, x4),

v2 = (y1, y2, y3, y4) and p ≥ 1. Suppose, rearranging the coordinates of v1 and v2 if

necessary, that

x1 6= 0,

∣

∣

∣

∣

x1 x2

y1 y2

∣

∣

∣

∣

6= 0 and 4 ∈ supp(S), i.e. x4 6= 0 or y4 6= 0

The Smith quasi-normal form of S is:

LV R =

(

c 0 0 0
0 cd 0 0

)

such that

L ∈ GLk(Q)
R ∈ GL4(Z)
0 < c, d

R = R1 R2R3R4 R5

where the matrices L and Ri, 1 ≤ i ≤ 5, and the parameters c and d are those that appear

in table 1.

Lemma 3.4. Given a number p ≥ 1 and a p−orthonormal system S = { v1, v2 } with

associated lattice Λ, then B⊥ = {w1, w2 } is a base of Λ⊥, where

w1 =

(

x2 y
′
3

c1 d1
− x3 y

′
2 σ1

c2 d1
,−x1 y

′
3

c1 d1
− x3 y

′
2 τ1

c2 d1
,
c1 y

′
2

c2 d1
, 0

)

w2 =

(

y′4(c1 x3 σ1 τ4 + c2 x2 σ4)

c1 c2 d
− d1 x4 σ1 σ2

c d
,

y′4(c1 x3 τ1 τ4 − c2 x1 σ4)

c1 c2 d
− d1 x4 σ2 τ1

c d
,−d1 x4 τ2

c d
− c1 y

′
4 τ4

c2 d
,
c2 d1

c d

)
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R1 =









σ1
−x2

c1
0 0

τ1
x1

c1
0 0

0 0 1 0
0 0 0 1









x1σ1 + x2τ1 = c1 = gcd(x1, x2)
y′
1
= σ1y1 + τ1y2

y′2 =
−x2

c1
y1 +

x1

c1
y2

R2 =









σ2 0 −x3

c2
0

0 1 0 0
τ2 0 c1

c2
0

0 0 0 1









c1σ2 + x3τ2 = c2 = gcd(c1, x3)
y′′
1
= σ2y

′

1
+ τ2y3 = σ2σ1y1 + σ2τ1y2 + τ2y3

y′
3
=

−x3

c2
y′
1
+

c1

c2
y3 =

−x3

c2
σ1y1 +

−x3

c2
τ1y2 +

c1

c2
y3

R3 =









σ3 0 0 −x4

c

0 1 0 0
0 0 1 0
τ3 0 0 c2

c









c2σ3 + x4τ3 = c = gcd(c2, x4)
y′′′
1

= σ3y
′′

1
+ τ3y4 = σ3σ2σ1y1 + σ3σ2τ1y2 + σ3τ2y3 + τ3y4

y′
4
=

−x4

c
y′′
1
+

c2

c
y4 =

−x4

c
σ2σ1y1 +

−x4

c
σ2τ1y2 +

−x4

c
τ2y3 +

c2

c
y4

L =

(

1 0
−y′′′

1
c

)

R4 =











1 0 0 0

0 σ4

−y′

3

d1

0

0 τ4
y′

2

d1
0

0 0 0 1











y′
2
σ4 + y′

3
τ4 = d1 = gcd(y′

2
, y′

3
)

R5 =









1 0 0 0

0 σ5 0
−y′

4

d

0 0 1 0

0 τ5 0 d1

d









d1σ5 + y′
4
τ5 = d = gcd(d1, y

′

4
)

Table 1: Smith quasi-normal form data.

Proof. We obtain the result just by multiplying the matrices R1, R2, R3, R4 and R5 and

applying lemma 2.1 to the Smith quasi-normal form of S.

Remark 3.5. Let V and GV be the coordinate matrix and the Gram matrix, respectively,

of the set of vectors B ∪ B⊥ and let G be the Gram matrix of the set of vectors B⊥.

Then, det2(V ) = det(GV ) = p2det(G) and, since det2(Λ⊥) = det(G), we concluded that

det(Λ⊥) =
|det(V )|

p
.

We can use remark 3.5 to compute det(Λ⊥) and, indirectly, to study the matrix G,

considered as a symmetric positive definite quadratic form.

Proposition 3.6. Given a number p ≥ 1 and a p−orthonormal system S = { v1, v2 }, with

associated lattice Λ, then det(Λ⊥) =
p

c d
, where c and d are the parameters that appear

in table 1.

Proof. To obtain the result we only have to compute det(V), by remark 3.5. Developing

the expression of the determinant of V , where w1 and w2 are the vectors obtained in
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1 c1c2x
2

1
y2
2

2 c1c2x
2

1
y2
3

3 c1c2x
2

1
y2
4

4 −2c1c2x1x2y1y2 5 × −c1c2x1x3y1y3 6 × −c1c2x1x4y1y4

7 c1c2x
2

2
y2
1

8 c1c2x
2

2
y2
3

9 c1c2x
2

2
y2
4

10 × −c1c2x2x3y2y3 11 × −c1c2x2x4y2y4 12 c1c2x
2

3
y2
4

13 × −c1c2x3x4y3y4 14 × −c1x
2
1x4y1y4σ1σ2 15 × −c1x1x2x4y1y4σ2τ1

16 × −c1x1x2x4y2y4σ1σ2 17 × −c1x1x3x4y3y4σ1σ2 18 × c1x1x
2

4
y2
1
σ1σ2

19 × c1x1x
2
4y

2
2σ1σ2 20 × c1x1x

2
4y

2
3σ1σ2 21 × −c1x

2
2x4y2y4σ2τ1

22 × −c1x2x3x4y3y4σ2τ1 23 × c1x2x
2

4
y2
1
σ2τ1 24 × c1x2x

2

4
y2
2
σ2τ1

25 × c1x2x
2

4
y2
3
σ2τ1 26 × −c1x

2

3
x4y1y4σ1σ2 27 × −c1x

2

3
x4y2y4σ2τ1

28 × −c1x
2
3x4y3y4τ2 29 × c1x3x

2
4y1y3σ1σ2 30 × c1x3x

2
4y2y3σ2τ1

31 × c1x3x
2

4
y2
3
τ2 32 × −c2x

2

1
x3y1y3σ1 33 × −c2x1x2x3y1y3τ1

34 × −c2x1x2x3y2y3σ1 35 × c2x1x
2

3y
2

1σ1 36 × c2x1x
2

3y
2

2σ1

37 × −c2x
2

2
x3y2y3τ1 38 × c2x2x

2

3
y2
1
τ1 39 × c2x2x

2

3
y2
2
τ1

40 × −x2

1
x3x4y1y4σ1τ2 41 × −x1x2x3x4y1y4τ1τ2 42 × −x1x2x3x4y2y4σ1τ2

43 × x1x
2
3x4y1y4σ

2
1σ2 44 × x1x

2
3x4y2y4σ1σ2τ1 45 × x1x3x

2
4y

2
1σ1τ2

46 × −x1x3x
2

4
y1y3σ

2

1
σ2 47 × x1x3x

2

4
y2
2
σ1τ2 48 × −x1x3x

2

4
y2y3σ1σ2τ1

49 × −x2

2
x3x4y2y4τ1τ2 50 × x2x

2

3
x4y1y4σ1σ2τ1 51 × x2x

2

3
x4y2y4σ2τ

2

1

52 × x2x3x
2
4y

2
1τ1τ2 53 × −x2x3x

2
4y1y3σ1σ2τ1 54 × x2x3x

2
4y

2
2τ1τ2

55 × −x2x3x
2

4
y2y3σ2τ

2

1

Table 2: Monomials of det(V )c1c2cd.

lemma 3.4, we obtain:

det(V )c1c2d1cd = cy′4(c1(x
2
1y4 − x1x4y1 + x2(x2y4 − x4y2))+

x3(x1σ1 + x2τ1)(x3y4 − x4y3))(y
′
2σ4 + y′3τ4)+

d1(c
2
1y

′
2(c2(x1y2 − x2y1) + x1x4y4σ2τ1−
x4σ2(x2y4σ1 + x4(y1τ1 − y2σ1)))+

c1x3y
′
2(c2(x1y3τ1 − x2y3σ1 + x3(y2σ1 − y1τ1))+
x4τ2(x1y4τ1 − x2y4σ1 + x4(y2σ1 − y1τ1)))+

c2y
′
3(c2(x

2
1y3 − x1x3y1 + x2(x2y3 − x3y2))+

x4(x
2
1y4τ2 − x1(x3y4σ1σ2 + x4(y1τ2 − y3σ1σ2))+

x2(x2y4τ2 − x3y4σ2τ1 + x4(y3σ2τ1 − y2τ2)))))

where all the parameters appear in table 1.

Throughout the proof we will replace expressions by applying equalities from table 1.

Substituting the underlined expressions by c1 and d1 respectively, all occurrences of

d1 are canceled. Similarly, substituting c1y
′
2, c2y

′
3 and cy′4 for the expressions

x1y2 − x2y1,

c1y3 − x3(σ1y1 + τ1y2) and

c2y4 − x4(σ2σ1y1 + σ2τ1y2 + τ2y3)

respectively, the parameter c disappears from the second equality member.

The expression det(V )c1c2cd is a homogeneous polynomial of total degree 6 in the

variables c1, c2, x1, x2, x3, x4, y1, y2, y3 and y4, in which only the parameters σ1, τ1, σ2
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14 × 15 −c2
1
x1x4y1y4σ2 16 × 21 −c2

1
x2x4y2y4σ2

17 × 22 −c21x3x4y3y4σ2 18 × 23 c21x
2
4y

2
1σ2

19 × 24 c2
1
x2

4
y2
2
σ2 20 × 25 c2

1
x2

4
y2
3
σ2

32 × 33 −c1c2x1x3y1y3 34 × 37 −c1c2x2x3y2y3

35 38 c1c2x
2
3y

2
1 36 39 c1c2x

2
3y

2
2

40 × 41 −c1x1x3x4y1y4τ2 42 × 49 −c1x2x3x4y2y4τ2

43 × 50 c1x
2
3x4y1y4σ1σ2 44 × 51 c1x

2
3x4y2y4σ2τ1

45 × 52 c1x3x
2

4
y2
1
τ2 46 × 53 −c1x3x

2

4
y1y3σ1σ2

47 × 54 c1x3x
2

4
y2
2
τ2 48 × 55 −c1x3x

2

4
y2y3σ2τ1

14 × 40 −c1c2x1x4y1y4 16 × 42 −c1c2x2x4y2y4

17 × 28 −c1c2x3x4y3y4 18 45 c1c2x
2

4
y2
1

19 47 c1c2x
2

4
y2
2

20 31 c1c2x
2

4
y2
3

26 × 43 0 27 × 44 0

29 × 46 0 30 × 48 0

5 32 −2c1c2x1x3y1y3 6 14 −2c1c2x1x4y1y4

10 34 −2c1c2x2x3y2y3 11 16 −2c1c2x2x4y2y4

13 17 −2c1c2x3x4y3y4

Table 3: Monomials resulting from operations.

and τ2 appear. The monomials of the aforementioned polynomial are included in table 2

and are identified by indexes placed in the first cells of the corresponding rows.

In order to eliminate the parameters σ1, τ1, σ2 and τ2, we group the monomials of the

table 2 in pairs to apply the following operations:

(1) Substitute x1σ1 + x2τ1 by c1.

(2) Substitute c1σ2 + x3τ2 by c2.

(3) Cancel opposite monomials.

(4) Add equal monomials.

Applied operations are detailed in table 3, where the resulting monomials are identi-

fied by the indexes of the first monomials that are operated on. Each time an operation

is applied, the monomials involved are marked with a × to the right of the index that

identifies the monomial, so as not to use them again. The operations are done iteratively

on monomials of tables 2 and 3 that are not marked, until no operation can be further

applied.

All the resulting monomials have the factor c1c2. Therefore, by simplifying this factor

the next equality is obtained:

det(V )cd = x2
1y

2
2 + x2

1y
2
3 + x2

1y
2
4 − 2x1x2y1y2 − 2x1x3y1y3 − 2x1x4y1y4

x2
2y

2
1 + x2

2y
2
3 + x2

2y
2
4 − 2x2x3y2y3 − 2x2x4y2y4 + x2

3y
2
4

−2x3x4y3y4 + x2
4y

2
1 + x2

4y
2
2 + x2

4y
2
3 + x2

3y
2
1 + x2

3y
2
2
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c2
1
x2

1
y2
2

−2c1x
2

1
x3y1y3σ1 −2c1x1x2x3y2y3σ1

c21x
2
1y

2
3 −2c1x1x2x3y1y3τ1 −2c21x1x3y1y3 −2c1x

2
2x3y2y3τ1 −2c21x2x3y2y3

−2c2
1
x1x2y1y2 x2

1
x2

3
y2
1
σ2

1
x2

1
x2

3
y2
2
σ2

1

c2
1
x2

2
y2
1

x2

2
x2

3
y2
1
τ2
1

c2
1
x2

3
y2
1

x2

2
x2

3
y2
2
τ2
1

c2
1
x2

3
y2
2

c21x
2
2y

2
3 2x1x2x

2
3y

2
1σ1τ1 2x1x2x

2
3y

2
2σ1τ1

Table 4: Monomials of N(w1)c
2
1c

2
2d

2
1.

By polynomial checking, it is easy to verify the next equality:

det(V )cd = (x2

1 + x2

2 + x2

3 + x2

4)(y
2

1 + y22 + y23 + y24)− (x1y1 + x2y2 + x3y3 + x4y4)
2

By hypothesis, the second member of the previous equality is equal to p2. Therefore,

by applying remark 3.5, we conclude that:

det(Λ⊥) =
p

cd

Lemma 3.7. Given a number p ≥ 1, a p−orthonormal system S = { v1, v2 } and w1 the

first vector of the base B⊥ of the orthogonal lattice Λ⊥, then N(w1) =
p(p− x2

4 − y24)

c22 d
2
1

,

where c2 and d1 are the parameters in table 1.

Proof. The proof is similar to that of proposition 3.6. Considering the vector w1 obtained

in lemma 3.4 and calculating N(w1), the following equality is obtained:

N(w1)c
2

1c
2

2d
2

1 = c41y
′ 2
2 + c21x

2

3y
′ 2
2 (σ2

1 + τ 21 ) + 2c1c2x3y
′
2y

′
3(x1τ1 − x2σ1) + c22y

′ 2
3 (x2

1 + x2

2)

Substituting in the second member of equality c1y
′
2 by −x2y1 + x1y2 and c2y

′
3 by

−x3σ1y1 − x3τ1y2 + c1y3, a homogeneous polynomial of total grade 6 in the variables c1,

x1, x2, x3, y1, y2 and y3 is obtained, in which only the parameters σ1 and τ1 appear.

The monomials of the aforementioned polynomial are listed in table 4. The results of

the following substitution are also included in the table: replace x1σ1 + x2τ1 by c1.

All the remaining monomials are multiplied by the factor c21. Therefore, simplifying

this factor, we obtain:

N(w1)c
2
2d

2
1 = x2

1y
2
2 + x2

1y
2
3 − 2x1x2y1y2 + x2

2y
2
1 + x2

2y
2
3

−2x1x3y1y3 − 2x2x3y2y3 + x2
3y

2
1 + x2

3y
2
2

By polynomial checking, it is easy to verify the next equality:

N(w1)c
2
2d

2
1 = (x2

1 + x2
2 + x2

3 + x2
4)(y

2
1 + y22 + y23 + y24)

−(x1y1 + x2y2 + x3y3 + x4y4)
2 − x2

4(y
2
1 + y22 + y23 + y24)

−y24(x
2
1 + x2

2 + x2
3 + x2

4) + 2x4y4(x1y1 + x2y2 + x3y3 + x4y4)
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By hypothesis, the second member of the previous equality is equal to p2− px2
4− py24.

Therefore, we conclude that:

N(w1) =
p(p− x2

4 − y24)

c22d
2
1

Lemma 3.8. Given a prime number p and a p−orthonormal system S = { v1, v2 } with

|supp(S)| > 2, associated to the lattice Λ, then c = d = 1, where c and d are the

parameters that appear in table 1.

Proof. According to table 1 it holds that c = gcd(x1, x2, x3, x4) and, by proposition 2.2,

we conclude that c = 1. This result implies that the Smith quasi-normal form described

in table 1 is actually a normal form, because in this case L ∈ GLk(Z), and consequently

d is the second invariant factor of V . Considering once more proposition 2.2 we conclude

that d = 1.

Proposition 3.9. Given a prime number p, a p−orthonormal system S = { v1, v2 } with

|supp(S)| > 2 and the Gram matrix G of the base B⊥ = {w1, w2 } of the orthogonal

lattice Λ⊥, then it holds that p |G.

Proof. Suppose that the Gram matrix G =

(

µ λ

λ ν

)

.

Let us consider the value of µ = N(w1) obtained in lemma 3.7. The prime factoriza-

tion of p(p−x2
4−y24) contains only one factor p, because p is prime and −p < p−x2

4−y24 <

p (remember that we are assuming that x4 6= 0 or y4 6= 0). Then, the prime factorization

of c22 d
2
1 does not contain p, because the number of times it contains each prime factor is

even. Consequently c22 d
2
1 | (p−x2

4−y24) and this implies that p |µ, i.e, µ = p µ′. Moreover,

|µ′| < p.

Applying proposition 3.6, lemma 3.8 and the property det2(Λ⊥) = det(G), we get

p2 = p µ′ ν − λ2. This implies p | λ2 and, keeping in mind that p is a prime, we have that

p | λ, i.e. λ = p λ′.

Reconsidering the previous equality, and canceling a factor p, we obtain p = µ′ ν −
p λ′ 2. This implies again that p |µ′ ν and, considering that p is prime and |µ′| < p, we get

p | ν, i.e. ν = p ν ′.

We arrive to the final conclusion that G = p

(

µ′ λ′

λ′ ν ′

)

, i.e. p |G.

Theorem 3.10. Given a prime number p, a p−orthonormal system S = { v1, v2 } with

|supp(S)| > 2 and associated lattices Λ and Λ⊥, there exists v3 ∈ Λ⊥ such that it verifies

N(v3) = p.

Proof. Let G be the Gram matrix of the base B⊥ of the associated lattice Λ⊥.
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Proposition 3.6, lemma 3.8 and property det2(Λ⊥) = det(G) allow us to conclude that

det(G) = p2. Applying now proposition 3.9 we obtain that G′ =
G

p
is an unimodular

matrix, i.e. G′ ∈ GL2(Z), and that, given a vector v3 ∈ Λ⊥, N(v3) = btGb = p if and

only if btG′ b = 1, b being the coordinate vector of v3 in the base B⊥.

Let K = { x ∈ R2 | xt G′ x ≤ 1 } and {u1, u2} be an orthonormal base of eigenvectors

of G′ with eigenvalues λ1 and λ1 respectively. Note that λ1 and λ2 are real, since G′ is

symmetric, positive, because G′ is definite positive, and verify λ1 λ2 = det(G′) = 1. Then

K is the ellipse λ1x
2 + λ2y

2 ≤ 1, with respect to the reference system determined by u1

and u2, and has volume π 1√
λ1

1√
λ2

= π.

Given a 0 < ǫ < 1, let be Eǫ the ellipse K scaled by a factor fǫ =
2√
π
+ ǫ. The ellipse

Eǫ has volume πf 2
ǫ > π 22

π
= 22. Then, for the Theorem 2.3, there exists a point b in the

lattice Z2 (with volume of the fundamental domain 1) such that b 6= 0 and b ∈ Eǫ. Since

the set of points of Z2 that belong to any of the ellipses Eǫ is finite, it is shown that there

is a point b in the lattice Z2 such that b 6= 0 and b ∈ K.

The point b defines a vector v3 ∈ Λ⊥ that verifies 0 < bt G′ b ≤ 1. Then, it holds

bt G′ b = 1, since bt G′ b is integer, and, at last, is the wanted vector of Λ⊥, because

N(v3) = bt Gb = p.

3.3 Extensions of p−orthonormal systems

Putting together remark 3.1, remark 3.2, proposition 3.3 and theorem 3.10, we obtain the

following theorem.

Theorem 3.11. Given a prime number p and a p−orthonormal system in Z4, S, then S

can be extended to a p−orthonormal base.

4 Generalizations and conjectures

We have proved that every p−orthonormal system of vectors in Z4 can be extended to a

p−orthonormal base if p is a prime number. Besides, we have verified the result for every

1 ≤ p ≤ 10000. In this section, all verifications for given values of p and n have been

made by exhaustive checking of all p−orthonormal systems in Zn. From the previous

results we conjecture that the following result holds.

Conjecture 4.1. Given an integer number p ≥ 1 and a p−orthonormal system in Z4, S,

then S can be extended to a p−orthonormal base.

The most natural generalization of the problem is to consider it in any dimension

n ≥ 1, i.e. to study the problem in Zn.
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Problem 4.2. Given an integer number p ≥ 1 and a p−orthonormal system in Zn, S,

¿can S be extended to a p−orthonormal base?

This problem arose from the study of discrete quantum states [5], for quantum com-

puting. Because the dimension of the vector space of these states (m−qubits) is 2m, it

would be expected that the result would be fulfilled for these dimensions.

An analogous construction to that given in remark 3.1 shows the result for n = 2. Note

that if p cannot be written as a sum of two squares [6] (the prime decomposition of p con-

tains a prime congruent to 3 mod 4 raised to an odd power), there are no p−orthonormal

systems in Z2. The case of dimension 4 has already been studied and, in the case n = 8,

we have checked the result for 1 ≤ p ≤ 36.

To analyze the problem in other dimensions we try to find counterexamples that help

us to understand in which cases the problem has a positive answer. If p is not a square

and there exists a p−orthonormal base in Zn then there are counterexamples for p in

dimension n+ 1. Indeed, let {v1 . . . , vn} be a p−orthonormal base in dimension n. Then

{w1 . . . , wn} is a p−orthonormal system in dimension n+ 1 that cannot be extended to a

p−orthonormal base, being:

wj = (vj,1, . . . , vj,n, 0) 1 ≤ j ≤ n

This construction allows us to find counterexamples for any dimension n 6= 0mod 4,

n 6= 1 and n 6= 2. Given an integer p ≥ 1, we consider the p−orthonormal base in Z4

S1 = {v1, v2, v3, v4} and the matrix A,

v1 = (x1, x2, x3, x4)
v2 = (−x2, x1,−x4, x3)
v3 = (−x3, x4, x1,−x2)
v4 = (x4, x3,−x2,−x1)

and A =









x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

x4 x3 −x2 −x1









,

where p = x2
1 + x2

2 + x2
3 + x2

4. If p can be written as a sum of two squares, p = y21 + y22,

we define the p−orthonormal base in Z2 S2 = {u1, u2} and the matrix B,

u1 = (y1, y2)
v2 = (−y2, y1)

and B =

(

y1 y2
−y2 y1

)

.

Then, the rows of the matrices C1, C2 y C3 define non-extensible p−orthonormal systems.

(i) C1 if p is not a square, n = 1mod 4 and n 6= 1.

(ii) C2 if p cannot be written as a sum of two squares, n = 2mod 4 and n 6= 2.

(iii) C3 if p is not a square and can be written as a sum of two squares and n = 3mod 4.
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C1 =







A · · · 0 0
...

. . .
...

...

0 · · · A 0






C2 =







A · · · 0 0 0
...

. . .
...

...
...

0 · · · A 0 0






C3 =











A · · · 0 0 0
...

. . .
...

...
...

0 · · · A 0 0
0 · · · 0 B 0











The experimental verifications and the previous counterexamples make us think that

the generalization of conjecture 4.1 should be the following.

Conjecture 4.3. Given numbers n = 0mod 4 (n ≥ 1) and p ≥ 1 and a p−orthonormal

system in Zn, S, then S can be extended to a p−orthonormal base.

But, what happens if p is a square? We have verified the result for n = 3, 5 and

12 ≤ p ≤ 1002, n = 6 and 12 ≤ p ≤ 332, n = 7 and 12 ≤ p ≤ 132 and n = 9 and

12 ≤ p ≤ 22. Nevertheless, we have found that the problem 4.2 has a negative answer

if n = 9, p = 9 and S = {(1, . . . , 1)}. This counterexample can be generalized as

follows: if n = n̄2 and p = np̄2 are odd integers, then the set S = {v1 = (p̄, . . . , p̄)}
cannot be extended to a p−orthonormal base in Zn. Indeed, S cannot be extended with a

vector v2 because, on one hand, the number of odd components of v2 must be odd because

N(v2) = p is odd and, on the other hand, the number of odd components of v2 must be

even because 〈v1|v2〉 = 0 is even. Hence, if p is a square, our conjecture is as follows.

Conjecture 4.4. Given numbers n ≥ 1 and p ≥ 1, so that either n is even or p is even or

n ∤ p, and a p2−orthonormal system in Zn, S, then S can be extended to a p−orthonormal

base.

4.1 Structural properties of the problem

Given the integer number k and the vectors u = (x1, . . . , xn) and v = (y1, . . . , yn)

belonging to Zn, we denote the parity of k by P (k) = k mod 2, the parity of u by

P (u) = (x1 + · · · + xn)mod 2 and the parity of u and v by P (u, v) = 〈u|v〉mod2.

Note that P (u) = P (N(u)).

These definitions allow us to consider the conditions of p−orthonormality in terms of

parities (module 2), proving the following result.

Proposition 4.5. Given a p−orthonormal system in Zn, S = {v1, . . . , vk}, then it holds

that P (p) = P (vj), 1 ≤ j ≤ k, and P (vh, vj) = 0, 1 ≤ h, j ≤ k.

4.2 Orthogonal extensions

Given a set of vectors belonging to Zn, S = {v1, . . . , vk}, such that 〈vi|vj〉 = 0 for all

1 ≤ i < j ≤ k, we will say that S is an orthogonal system and, if k = n, that S is an

orthogonal base.
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The relaxation of the condition from p−orthonormality to orthogonality allows to ex-

tend any orthogonal system. Indeed, lemma 2.1 does not depend on the normalization of

the vectors and can be applied in Zn, proving the following proposition.

Proposition 4.6. Given an orthogonal system in Zn, S, then S can be extended to an

orthogonal base.

Given an orthogonal set in Zn, S = {v1, . . . , vk} (1 ≤ k ≤ n), we denote the norm

of S by N(S) = max{N(vj) | 1 ≤ j ≤ k}. So, an interesting problem, in view of

proposition 4.6, is the following:

Problem 4.7. Given an orthogonal system in Zn, S, determine the orthogonal base with

the smaller norm that extends S.
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