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NEAR-PERFECT CLIQUE-FACTORS IN SPARSE PSEUDORANDOM

GRAPHS

JIE HAN, YOSHIHARU KOHAYAKAWA, AND YURY PERSON

Abstract. We prove that, for any t ≥ 3, there exists a constant c = c(t) > 0 such that any

d-regular n-vertex graph with the second largest eigenvalue in absolute value λ satisfying λ ≤

cdt−1/nt−2 contains vertex-disjoint copies of Kt covering all but at most n1−1/(8t4) vertices. This

provides further support for the conjecture of Krivelevich, Sudakov and Szábo [Triangle factors

in sparse pseudo-random graphs, Combinatorica 24 (2004), pp. 403–426] that (n,d,λ)-graphs

with n ∈ 3N and λ ≤ cd2/n for a suitably small absolute constant c > 0 contain triangle-factors.

1. Introduction

The study of conditions under which certain spanning or almost spanning structures are

forced in random or pseudorandom graphs is one of the central topics in extremal graph theory

and in random graphs.

An (n,d,λ)-graph is an n-vertex d-regular graph whose second largest eigenvalue in absolute

value is at most λ. Graphs with λ ≪ d are considered to be pseudorandom, i.e., they behave

in certain respects as random graphs do; for example, the edge count between ‘not too small’

vertex subsets is close to what one sees in random graphs of the same density. As usual, let

e(A,B) = eG(A,B) denote the number of pairs (a, b) ∈ A ×B so that ab is an edge of G (note

that edges in A ∩B are counted twice). The following result makes what we discussed above

precise.

Theorem 1.1 (Expander mixing lemma [3]). If G is an (n,d,λ)-graph and A, B ⊆ V (G), then
∣e(A,B) − d

n
∣A∣∣B∣∣ < λ√∣A∣∣B∣. (1)

As starting points to the extensive literature on pseudorandom graphs, the reader is refereed

to, e.g., [17], [9] or [7, Chapter 9].

It is an interesting problem to understand optimal or asymptotically optimal conditions on

the parameter λ in terms of d and n that force an (n,d,λ)-graph to possess a desired property.

To demonstrate the optimality of a condition, one needs to show the existence of an (n,d,λ)-
graph that certifies that the condition is indeed optimal.

Unfortunately, there are very few examples certifying optimality. A celebrated example is due

to Alon, who showed [4] that there are (n,d,λ)-graphs that are K3-free and yet satisfy λ = cd2/n
for some absolute constant c > 0. This is in contrast with the fact that, as it follows easily from

the expander mixing lemma above, for, say, λ ≤ 0.1d2/n, any (n,d,λ)-graph contains a triangle

(in fact, every vertex lies in a triangle). It turns out that (n,d,λ)-graphs with λ = Θ(d2/n)
Date: 2018/06/05, 12:37am.
JH is supported by FAPESP (2014/18641-5, 2013/03447-6). YK is partially supported by FAPESP (2013/03447-
6) and CNPq (310974/2013-5, 459335/2014-6). YP was supported by DFG grant PE 2299/1-1. The cooperation of
the authors was supported by a joint CAPES-DAAD PROBRAL project (Proj. no. 430/15, 57350402, 57391197).

1

http://arxiv.org/abs/1806.00493v1


must satisfy d = Ω(n2/3). The construction of Alon [4] provides an example of the essentially

sparsest possible K3-free (n,d,λ)-graph with d = Θ(n2/3) and λ = Θ(n1/3). The other known

example is a generalization of this construction by Alon and Kahale [6] (see also [17, Section 3])

to graphs without odd cycles of length at most 2ℓ + 1.
Our focus here is on spanning or almost spanning structures in (n,d,λ)-graphs. One of the

simplest spanning structures is that of a perfect matching. Alon, Krivelevich and Sudakov

(see [17]) proved that (n,d,λ)-graphs with λ ≤ d − 2 and n even contain perfect matchings.

Factors generalize perfect matchings: for a graph F , an F -factor in a graph G is a collection

of vertex-disjoint copies of F in G whose vertex sets cover V (G) (this requires that v(G) ∶=
∣V (G)∣ should be divisible by v(F )). Motivated by the study of spanning structures in graphs,

Krivelevich, Sudakov and Szabó [18] proved that (n,d,λ)-graphs with λ = o (d3/(n2 logn))
contain a triangle-factor if 3 ∣ n.

A fractional triangle-factor in a graph G = (V,E) is a non-negative weight function f on

the set K3(G) of all triangles T of G, such that, for every v ∈ V , we have ∑T ∶v∈V (T ) f(T ) = 1.
Krivelevich, Sudakov and Szabó further proved [18] that (n,d,λ)-graphs with λ ≤ 0.1d2/n admit

a fractional triangle-factor. Moreover, they conjectured the following.

Conjecture 1.2 (Conjecture 7.1 in [18]). There exists an absolute constant c > 0 such that if

λ ≤ cd2/n, then every (n,d,λ)-graph G on n ∈ 3N vertices has a triangle-factor.

The tth power Ht of a graph H is the graph on the vertex set V (H) where uv (u ≠ v) is an
edge if there is a u-v-path of length at most t in H. Since the (t−1)st power of a Hamilton cycle

contains a Kt-factor if t ∣ n, powers of Hamilton cycles are also of interest when investigating

clique-factors.

Allen, Böttcher, Hàn and two of the authors [2] proved that, if λ = o(d3t/2n1−3t/2) and t ≥
3, then any (n,d,λ)-graph contains the tth power of the Hamilton cycle (and thus a Kt+1-

factor if (t + 1) ∣ n). In the case t = 2, it was further proved in [2] that the condition λ =
o (d5/2/n3/2) suffices to guarantee squares of Hamilton cycles, and thus K3-factors, improving

over the aforementioned result of Krivelevich, Sudakov and Szabó. For very recent progress,

due to Nenadov [20], see Section 7 below.

The construction of Alon of K3-free (n,d,λ)-graphs shows that the condition on λ in Conjec-

ture 1.2 cannot be weakened. The result from [18] on the existence of fractional triangle-factors

supports Conjecture 1.2. As a further evidence in support of that conjecture we prove here the

following result.

Theorem 1.3 (Main result1, 2). For any t ≥ 3 there is n0 > 0 for which the following holds.

Every (n,d,λ)-graph G with n ≥ n0 and λ ≤ (1/(50t4t−2))dt−1/nt−2 contains vertex-disjoint

copies of Kt covering all but at most n1−1/(8t4) vertices of G.

We remark that, under the condition λ ≤ cdt−1/nt−2 for some appropriate c = c(t) > 0,

Krivelevich, Sudakov and Szabó [18] proved that any (n,d,λ)-graph contains a fractional Kt-

factor.

A näıve approach to proving Theorem 1.3 is to pick cliques Kt one after another, each vertex-

disjoint from the previous ones, by appealing to the pseudorandomness of G via the expander

1This result appears in an extended abstract in the Proceedings of Discrete Mathematics Days 2018 (Sevilla) [11].
2Theorem 1.3 answers a question raised by Nenadov (see of [20, Concluding remarks]).
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mixing lemma. However, even for triangles, if λ = cd2/n, then all what one gets this way is

that G has (1−c)n/3 vertex-disjoint triangles: one can see that a set of cn vertices in G induces

a graph of average degree roughly cd, but the condition on λ and the expander mixing lemma do

not guarantee that sets of size roughly cd contain an edge, and hence we do not know whether cn

vertices necessarily span a triangle. Thus our näıve greedy approach will get stuck leaving cn

vertices uncovered. What our result establishes is that, even for some absolute constant c > 0,
we can cover all but o(n) vertices of G by vertex-disjoint copies of K3. Moreover, o(n) can be

taken to be of the form n1−ε for some ε > 0. We have restricted ourselves to triangles in this

paragraph, but a similar reasoning applies to general cliques Kt as well.

Now let p = d/n and suppose G = (V,E) is an (n,d,λ)-graph with λ ≤ cd2/n. Inequality (1)

implies that

∣e(A,B)∣A∣∣B∣ − p∣ <
cp2n√∣A∣∣B∣ ≤ c1/2 (2)

for all A, B ⊆ V with ∣A∣, ∣B∣ ≥ c1/2n. Let us now focus on the case in which d is linear in n, that

is, p = d/n is a constant independent of n. The powerful blow-up lemma of Komlós, Sárközy

and Szemerédi [14] implies that, if c is small enough in comparison with p and 1/t, then any

graph G = (V,E) on n vertices with minimum degree at least pn that satisfies (2) contains a

Kt-factor as long as t ∣ n. Thus, Conjecture 1.2 holds for dense graphs.

We remark that the blow-up lemmas for sparse graphs developed recently by Allen, Böttcher,

Hàn and two of the authors [1] provide bounds on λ to establish the existence of Kt-factors, but

those bounds are worse than those from [2] discussed above.

Throughout the paper floor and ceiling signs are omitted for the sake of readability. For

graph theory terminology and notation we refer the reader to Bollobás [8].

This paper is organized as follows. In Section 2 we collect some of the necessary tools and

prove auxiliary results. In Section 3 we provide an overview of the proof of Theorem 1.3, which

splits into two cases (the ‘dense’ and ‘sparse’ cases). We deal with these two cases in Sections 4

and 5, separately, and then prove Theorem 1.3 in Section 6. Finally we give some concluding

remarks in Section 7.

2. Tools and auxiliary results

2.1. Probabilistic techniques. We shall use the following theorem of Kostochka and Rödl [15]

(see also Rödl [21] and Alon and Spencer [7, Theorem 4.7.1]), which asserts the existence of an

almost perfect matching in ‘pseudorandom’ hypergraphs.

Theorem 2.1. Let integers t ≥ 3 and k ≥ 8 and real numbers δ′ and γ with 0 < δ′, γ < 1 be fixed.

Then there exists D0 such that the following holds for D ≥D0. Let H be a t-uniform hypergraph

on a set V of n vertices such that

(1 ) for all vertices v ∈ V , we have D − k√D logD ≤ degH(v) ≤D and

(2 ) for any two distinct vertices u and v ∈ V , we have degH(u, v) ≤ C <D1−γ .

Then H contains a matching covering all but O(n(C/D)(1−δ′)/(t−1)) vertices.
We shall use the following concentration results.

Theorem 2.2 (Chernoff bounds [13, Corollary 2.4 and Theorems 2.8 and 2.10]). Suppose X

is a sum of a collection of independent Bernoulli random variables. Then, for δ ∈ (0,3/2), we
3



have

P(X > (1 + δ)EX) < e−δ2EX/3 and P(X < (1 − δ)EX) < e−δ2EX/2 .
Moreover, for any t ≥ 6EX, we have

P(X ≥ EX + t) ≤ e−t .

For a graph G = (V,E) we denote by Gp the spanning random subgraph of G in which each

edge from E is included with probability p, independently of all other edges.

Theorem 2.3 (Janson’s inequality [13, Theorem 2.14]). Let p ∈ (0,1) be given and consider a

family {Hi}i∈I of subgraphs of a graph G. For each i ∈ I, let Xi denote the indicator random

variable for the event that Hi ⊆ Gp. Write Hi ∼Hj for each ordered pair (i, j) ∈ I × I such that

E(Hi) ∩E(Hj) ≠ ∅. Let X = ∑i∈IXi. Then E[X] = ∑i∈I p
e(Hi). Furthermore, let

∆ = ∑
Hi∼Hj

E[XiXj] = ∑
Hi∼Hj

pe(Hi)+e(Hj)−e(Hi∩Hj). (3)

Then, for any 0 < γ < 1, we have

P[X ≤ (1 − γ)E[X]] ≤ exp(−γ2E[X]2
2∆

) . (4)

2.2. Linear programming techniques. We shall consider weighted graphs (G,w) where G =(V,E) is a graph and w∶E → [0,1] is a function on its edges. If w ≡ 1, we identify (G,w) with G.

For every vertex v ∈ V , we define its weighted degree degw(v) to be ∑u∈N(v)w(uv).
Let Kt(G) denote the set of all copies of Kt in G. A functon f ∶Kt(G) → [0,1] is called a

fractional Kt-factor if ∑T ∈Kt(G)∶V (T )∋v f(T ) = 1 for every v ∈ V , and for every edge uv ∈ E(G)
one has

∑
T ∈Kt(G)∶V (T )⊃{u,v}

f(T ) ≤ w(uv). (5)

A fractional Kt-factor in a weighted graph (G,w) thus ‘respects’ the weight function w. We

remark that the definition of a fractional Kt-factor in a graph generalizes the definition of a frac-

tional triangle-factor from the introduction in a straightforward way, and it is itself generalized

by the above one for weighted graphs, since condition (5) is satisfied in the case of fractional

Kt-factors in unweighted graphs because of our convention that w ≡ 1 in that case.

We shall use the duality theorem of linear programming; see e.g. [19]. The maximum weight

of a fractional Kt-matching in (G,w) is given by the following linear programme:

max ∑
T ∈Kt(G)

f(T )
∑

T ∈Kt(G)∶V (T )∋v
f(T ) ≤ 1 (∀v)

∑
T ∈Kt(G)∶V (T )⊃{u,v}

f(T ) ≤ w(uv) (∀uv ∈ E(G))
f(T ) ≥ 0 (∀T ∈ Kt(G))

(6)
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The dual of (6) is the following linear programme:

min ∑
v∈V

g(v) + ∑
uv∈E(G)

h(uv)w(uv)
∑

v∶v∈V (T )
g(v) + ∑

uv∈E(T )
h(uv) ≥ 1 (∀T ∈ Kt(G))

g(v) ≥ 0 (∀v)
h(uv) ≥ 0 (∀uv ∈ E(G))

(7)

Both linear programmes above are clearly feasible, and therefore the duality theorem tells us

that both admit optimal solutions and that, moreover, these optimal values are equal. Given

optimal solutions f and (g,h), the complementary slackness conditions tell us that if g(v) > 0
then the corresponding inequality ∑T ∈Kt(G)∶V (T )∋v f(T ) ≤ 1 in the primal linear programme (6)

holds with equality, i.e., ∑T ∈Kt(G)∶V (T )∋v f(T ) = 1.
Let t∗(G,w) be the optimum value of (6) and (7). For a collection F of vertex-disjoint

copies of Kt from Kt(G), let w(F) ∶= ∑T ∈F minuv∈E(T )w(uv). Furthermore, let t(G,w) be the

maximum possible value of w(F) for such a collection F . Write ∣g∣ for ∑v∈V g(v) and ∣h∣ for
∑uv∈E(G) h(uv)w(uv) (see the objective function in (7)).

The following proposition collects some useful properties of linear programmes (6) and (7).

A variant for unweighted uniform hypergraphs and fractional matchings was first stated and

proved by Krivelevich in [16, Proposition 2].

Proposition 2.4. Let t ≥ 3 be given and let (G,w) be a weighted graph. Suppose G = (V,E).
Then the following hold.

(1 ) t∗(G,w) ≥ t(G,w).
(2 ) t∗(G,w) ≤ ∣V ∣/t. Furthermore, if t∗(G,w) = ∣V ∣/t, then (G,w) has a fractional Kt-factor.

(3 ) If g∶V → R≥0 and h∶E → R≥0 form a feasible solution to (7), then for every subset U ⊆ V
the functions g′ ∶= g ↾U and h′ ∶= h ↾

E∩(U
2
) form a feasible solution to (7) with G[U] in place

of G; in particular we have ∣g′∣ + ∣h′∣ ≥ t∗(G[U],w).
(4 ) If g∶V → R≥0 and h∶E → R≥0 form an optimal solution to (7), then t∗(G,w) ≥ ∣V1∣/t, where

V1 ∶= {v ∈ V ∶g(v) > 0}.
Proof. Let F be a collection of vertex-disjoint copies of Kt. Let f(T ) ∶= minuv∈E(T )w(uv) for
every T ∈ F and f(T ) ∶= 0 for every T ∈ Kt(G) ∖F . Clearly f satisfies (6), whence (1 ) follows.

From ∑v∑T ∈Kt(G)∶V (T )∋v f(T ) ≤ ∣V ∣ and ∑v∑T ∈Kt(G)∶V (T )∋v f(T ) = t∑T ∈Kt(G) f(T ), asser-

tion (2 ) follows immediately.

It is also clear that restricting a feasible solution of (7) to a subset U ⊆ V , we obtain functions

for which the relevant inequalities hold. Since the value of a feasible solution of the dual (7) is

always at least the value of a feasible solution of the primal programme (6) (if both are feasible,

which is the case here), we obtain ∣g′∣ + ∣h′∣ ≥ t∗(G[U],w). Thus, assertion (3 ) follows.

From the complementary slackness conditions we know that, whenever g(v) > 0, we have

∑T ∈Kt(G)∶V (T )∋v f(T ) = 1. This implies that

t∗(G,w) = ∑
T ∈Kt(G)

f(T ) = 1

t
∑
v∈V

∑
T ∈Kt(G)∶V (T )∋v

f(T ) ≥ 1

t
∑
v∈V1

1 =
∣V1∣
t

,

which proves (4 ). �
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2.3. Applications of linear programming to weighted graphs. In this section we provide

an auxiliary lemma that will help us verify later that certain weighted subgraphs of (n,d,λ)-
graphs possess fractional Kt-factors. The main result of this subsection, Corollary 2.8, gen-

eralizes results from Krivelevich, Sudakov and Szabó [18, Section 5] to weighted graphs and

fractional Kt-factors. Our proofs follow their proof strategy.

We first state a simple fact. Given α ≥ 0 and a weighted graph (G,w), we call an edge

uv ∈ E(G) α-rich if w(uv) ≥ 1−α. Similarly, we call a copy T of Kt in G α-rich if w(T ) ≥ 1−α,
where w(T ) ∶=minuv∈E(T )w(uv).
Fact 2.5. Let (G,w) be a weighted d-regular graph. If ∑u∈N(v)w(uv) ≥ d(1 − α2) for a vertex

v, then v is incident to at least (1 − α)d many α-rich edges.

Proof. Letm be the number of non-α-rich edges incident to a vertex v. Then we have∑u∈N(v)w(uv) ≤
d −mα. If ∑u∈N(v)w(uv) ≥ d(1 − α2), then dα2 ≥mα and thus m ≤ αd. �

Let a weighted graph (G,w) with G = (V,E) be given. In what follows, we shall consider the

spanning subgraph H = (V,F ) of G, with F ⊆ E the set of α-rich edges of (G,w), where α will

be chosen suitably.

Let t ≥ 3 and 0 < D, D′ < n be given. An n-vertex graph G has property P(t,D,D′, n) if
the following holds. For every subset U ⊆ V (G) of cardinality ∣U ∣ ≥ n −D and for every subset

U0 ⊆ U with ∣U0∣ =D/t, there exists a family T0 of at least D′/(t− 1) copies of Kt in G[U] with
the following properties:

(1) V (T ) ⊆ U for every T ∈ T0,
(2) ∣V (T ) ∩U0∣ = 1 for every T ∈ T0,
(3) V (T ) ∩ V (T ′) ⊆ U0 for any distinct T and T ′ ∈ T0.

The copies of Kt specified above thus have the property that they are all edge-disjoint and

intersect pairwise in at most one vertex, which must be from U0.

Lemma 2.6. Let (G,w) be a weighted graph and let α ∈ [0,1/(20t)) be given. Suppose H is

the spanning subgraph of G formed by the α-rich edges in (G,w). Suppose H is such that

(1 ) every 0.11n/t vertices span a copy of Kt in H and

(2 ) H has property P(t,D,0.2n,n) for some D ≤ n/2.
Then t∗(G[U],w) ≥ t∗(H[U],w) ≥ (∣U ∣ −D/t)/t for every U ⊆ V = V (G) with ∣U ∣ ≥ n −D.

Proof. Let U as in the statement of the lemma be given. Let g and h form an optimal solution

of the linear programme (7) applied to H[U] instead of G. Let U ′ = {u ∈ U ∶g(u) = 0}. If∣U ′∣ ≤D/t then we have by Proposition 2.4 (4 ) that t∗(H[U],w) ≥ ∣U ∖U ′∣/t ≥ (∣U ∣−D/t)/t and
we are done.

We now assume that ∣U ′∣ >D/t and derive a contradiction. First we fix a subset U0 ⊆ U ′ with∣U0∣ = D/t and then we consider a family T0 of cardinality 0.2n/(t − 1) as given by property P.

Let W ∶= (⋃T ∈T0 V (T )) ∖U0. We have ∣W ∣ = 0.2n and, moreover,

∑
v∈W

g(v) + ∑
T ∈T0

∑
uv∈E(T )

h(uv)w(uv) ≥ ∑
v∈W

g(v) + ∑
T ∈T0

∑
uv∈E(T )

h(uv)(1 −α)
≥ (1 − α)⎛⎝∑v∈W g(v) + ∑

T ∈T0
∑

uv∈E(T )
h(uv)⎞⎠ = (1 − α) ∑T ∈T0

⎛⎝ ∑
v∈W∩V (T )

g(v) + ∑
uv∈E(T )

h(uv)⎞⎠
6



≥ (1 −α)∣W ∣/(t − 1)
because g and h form an optimal solution of (7), g ↾U0

≡ 0 and∑v∶v∈V (T ) g(v)+∑V (T )⊃{u,v} h(uv) ≥
1 for every T ∈ Kt(H[U]).

Since every 0.11n/t vertices of H span a copy of Kt, we find at least (∣U ∖W ∣ − 0.11n/t)/t
vertex-disjoint copies of Kt in H[U ∖W ]. Proposition 2.4 (1 ) then implies that

t∗(H[U ∖W ],w) ≥ t(H[U ∖W ],w) ≥ (1 − α) ∣U ∖W ∣ − 0.11n/t
t

.

By Proposition 2.4 (3 ), g ↾U∖W and h ↾
E(G)∩(U∖W

2
) form a feasible solution to the linear pro-

gramme (7) applied to H[U ∖W ] instead of H and, moreover,

∣g ↾U∖W ∣ + ∣h ↾E(H)∩(U∖W
2
) ∣ ≥ t∗(H[U ∖W ],w) ≥ (1 −α) ∣U ∖W ∣ − 0.11n/tt

.

Thus we have

t∗(H[U],w) ≥ ⎛⎝∑v∈W g(v) + ∑
T ∈T0

∑
uv∈E(T )

h(uv)w(uv)⎞⎠ + ∣g ↾U∖W ∣ + ∣h ↾E(H)∩(U∖W2 ) ∣
≥ (1 −α)( ∣W ∣

t − 1 +
∣U ∣ − ∣W ∣ − 0.11n/t

t
)

≥ (1 −α) ∣U ∣ + ∣W ∣/t − 0.11n/t
t

= (1 −α) ∣U ∣ + 0.09n/t
t

=
∣U ∣
t
+ 0.09n

t2
− α1.1n

t
>
∣U ∣
t
,

which contradicts Proposition 2.4 (2 ). �

We denote by Tv a family of copies of Kt in G with v ∈ T for every T ∈ Tv and with

V (T ) ∩ V (T ′) = {v} for all distinct T and T ′ in Tv. The next lemma establishes a sufficient

condition for the existence of a fractional Kt-factor in a weighted graph.

Lemma 2.7. Let α ≥ 0 be a real number and let t, n and D ≥ 3 be integers with α < 1/t2 and

D ≤ n/2. Suppose (G,w) is an n-vertex weighted graph such that (i) for every v ∈ V (G), there
exists a family Tv of at least D/(t − 1) α-rich copies of Kt and (ii) for every U ⊆ V of size∣U ∣ ≥ n −D, one has t∗(G[U],w) ≥ (∣U ∣ −D/t)/t. Then (G,w) contains a fractional Kt-factor.

Proof. Let g∶V = V (G) → R≥0 and h∶E = E(G) → R≥0 form an optimal solution to (7). If g(v) >
0 for each v ∈ V , we obtain, by Proposition 2.4 (4 ), that t∗(G,w) ≥ ∣V ∣/t. By Proposition 2.4 (2 ),

we deduce that t∗(G,w) = ∣V ∣/t and conclude that (G,w) has a fractional Kt-factor.

Assume now for a contradiction that there is a vertex x with g(x) = 0. Let Tx be a family of

D/(t − 1) α-rich copies of Kt. Let W ∶= (⋃T ∈Tx V (T )) ∖ {x} and observe that ∣W ∣ = D. Since

the copies of Kt from Tx pairwise intersect only at x and they are α-rich, it follows that

∑
v∈W

g(v) + ∑
T ∈Tx

∑
uv∈E(T )

h(uv)w(uv) ≥ ∑
v∈W

g(v) + ∑
T ∈Tx

∑
uv∈E(T )

h(uv)(1 − α)
≥ (1 − α)⎛⎝∑v∈W g(v) + ∑

T ∈Tx
∑

uv∈E(T )
h(uv)⎞⎠ = (1 − α) ∑T ∈Tx

⎛⎝ ∑
v∈W∩V (T )

g(v) + ∑
uv∈E(T )

h(uv)⎞⎠
≥ (1 −α)D/(t − 1).

7



Proposition 2.4 (3 ) yields that g1 ∶= g ↾V ∖W and h1 ∶= h ↾
E∩(V ∖W

2
) is a feasible solution

to (7) with G replaced by G[V ∖W ]. Therefore we have ∣g1∣ + ∣h1∣ ≥ t∗(G[V ∖W ],w). By

assumption (ii), we get

∣g1∣ + ∣h1∣ ≥ t∗ (G[V ∖W ],w) ≥ ∣V ∖W ∣ −D/t
t

=
n −D −D/t

t
.

Together we obtain

t∗(G,w) = ∣g∣ + ∣h∣ ≥ ∑
v∈W

g(v) + ∑
T ∈Tx

∑
uv∈E(T )

h(uv)w(uv) + ∣g1∣ + ∣h1∣
≥
(1 − α)D

t − 1 + n −D −D/t
t

>
n

t
.

This contradicts t∗(G,w) ≤ n/t (see Proposition 2.4 (2 )). Thus, this case never happens; i.e.,

g(v) > 0 for all v ∈ V . We conclude that (G,w) contains a fractional Kt-factor. �

The following corollary of Lemmas 2.6 and 2.7 is our main tool for finding fractional Kt-

factors.

Corollary 2.8. Let α ≥ 0 be a real number and let t, n and D ≥ 3 be integers with α < 1/(7t2)
and D ≤ n/2. Suppose (G,w) is an n-vertex weighted graph and suppose H is the spanning

subgraph of G formed by the α-rich edges of (G,w). Suppose

(1 ) for every v ∈ V (G) there exists a family Tv of at least D/(t − 1) α-rich copies of Kt;

(2 ) every 0.11n/t vertices span a copy of Kt in H;

(3 ) H has property P(t,D,0.2n,n) for some D ≤ n/2.
Then (G,w) contains a fractional Kt-factor.

2.4. Further useful properties of (n,d,λ)-graphs. We will use the following auxiliary re-

sults.

Proposition 2.9 (Proposition 2.3 in [18]). Let G be an (n,d,λ)-graph with d ≤ n/2. Then

λ ≥
√
d/2.

Fact 2.10. Let G be an (n,d,λ)-graph with d ≤ n/2. Suppose λ ≤ dt−1/nt−2 for some t ≥ 3.

Then d ≥ n1−1/(2t−3)/2.
Proof. Proposition 2.9 tells us that λ ≥

√
d/2. Thus λ ≤ dt−1/nt−2 implies that d2t−3 ≥ n2t−4/2,

whence d ≥ n1−1/(2t−3)/21/(2t−3) follows. �

Given two graphs G and G′ on the same vertex set V , let G ∖ G′ = (V,E(G) ∖ E(G′)).
The following proposition gives a rough estimate for the number of copies of Kt−1 in induced

subgraphs of (n,d,λ)-graphs, even after removing a small number of edges incident to each

vertex.

Proposition 2.11. For any integer t ≥ 3, there exists n0 such that every (n,d,λ)-graph G with

n ≥ n0 satisfies the following. Suppose λ(4n/d)t−2 ≤m ≤ d. Let G′ be a graph on V (G) with max-

imum degree (d/(4n))t−2m. Then, for any 2 ≤ i ≤ t− 1 and any set U of at least (d/(4n))t−i−1m
vertices of G, the number of copies of Ki in (G ∖G′)[U] is at least 2−i

2

i!−1∣U ∣i(d/n)(i2) and at

most 2i
2

i!−1∣U ∣i(d/n)(i2).
8



Proof. Let mi = (d/(4n))t−i−1m for 2 ≤ i ≤ t − 1. Hence λ ≤ m(d/(4n))t−2 = mi(d/(4n))i−1.
Suppose ∣U ∣ ≥mi. We prove by induction on i that the stated estimates hold. Note that, since

i ≥ 2, we have ∆(G′) ≤ (d/(4n))t−2m ≤ dmi/(4n) ≤ d∣U ∣/(4n). Let first i = 2. Theorem 1.1

implies that ∣2eG(U) − (d/n)∣U ∣2∣ ≤ λ∣U ∣. Since λ ≤ ∣U ∣(d/(4n)), we have (3/8)(d/n)∣U ∣2 ≤
eG(U) ≤ (5/8)(d/n)∣U ∣2. Hence the number of edges in (G ∖G′)[U] is at most (5/8)(d/n)∣U ∣2
and at least (3/8)(d/n)∣U ∣2 − ∣U ∣ ⋅ d∣U ∣/(4n) = (1/8)(d/n)∣U ∣2, which verifies our claim for i = 2.
Now suppose 3 ≤ i ≤ t − 1 and that the estimates hold for smaller values of i. Note that, in

particular, we have t ≥ 4. Let X1 be the set of vertices v ∈ U such that deg(v,U) ≥ 2d∣U ∣/n. By
the definition of X1 and Theorem 1.1, we have

2d

n
∣U ∣∣X1∣ ≤ e(U,X1) ≤ d

n
∣U ∣∣X1∣ + λ√∣U ∣∣X1∣.

Together with λ ≤mi(d/(4n))i−1 ≤ ∣U ∣(d/(4n))i−1 and i ≥ 3, this implies that

∣X1∣ ≤ (λn
d
)2 1∣U ∣ ≤ ∣U ∣16

( d

4n
)2i−4 ≤ ∣U ∣

16
( d

4n
)i−1 .

Note that 2d∣U ∣/n ≥ 2dmi/n ≥mi−1. By the inductive hypothesis, the number of copies of Ki in(G ∖G′)[U] is at most

1

i

⎛⎝∣X1∣ ⋅ 2(i−1)2(i − 1)! ∣U ∣i−1 (dn)
(i−1

2
)
+ ∣U ∣ ⋅ 2(i−1)2(i − 1)! (2d∣U ∣n

)i−1 (d
n
)(i−12 )⎞⎠ ≤ 2i

2

i!
∣U ∣i (d

n
)(i2) ,

where the 1/i factor avoids counting i times each copy of Ki.

Similarly, let X2 be the set of vertices v ∈ U such that deg(v,U) ≤ d∣U ∣/(2n). By the definition

of X2 and Theorem 1.1, we have

d

n
∣U ∣∣X2∣ − λ√∣U ∣∣X2∣ ≤ e(U,X2) ≤ d

2n
∣U ∣∣X2∣.

This implies that ∣X2∣ ≤ (2λn/d)2/∣U ∣ ≤ ∣U ∣/4. Note that d∣U ∣/(4n) ≥ dmi/(4n) = mi−1. By the

inductive hypothesis, the number of copies of Ki in (G ∖G′)[U] is at least
1

i
⋅ (∣U ∣ − ∣X2∣) 1

2(i−1)2(i − 1)! (d∣U ∣2n
−
d∣U ∣
4n
)i−1 (d

n
)(i−12 ) ≥ 1

2i2 i!
∣U ∣i (d

n
)(i2)

(the 1/i factor takes care of the fact that each copy of Ki is counted at most i times). �

We remark that a better estimate on the number of copies of Ki in m-vertex subgraphs of(n,d,λ)-graphs G, of the form (1 + o(1))(m
i
)(d/n)(i2), was obtained by Alon (see [17, Theo-

rem 4.10]). Furthermore, a Turán-type result was proven by Sudakov, Szabó and Vu [22] for

the containment of a copy of Ki in dense enough subgraphs of (n,d,λ)-graphs. However, both
results require a stronger condition on λ than the one we shall have available in our applications

of Proposition 2.11 (see Sections 4 and 5).

3. Proof outline

In the following we provide a proof overview in the case of triangles, since the general case is

similar. Our arguments combine tools from linear programming with probabilistic techniques.

In fact, they can be seen as a synthesis of some methods in Alon, Frankl, Huang, Rödl, Ruciński

and Sudakov [5] and in Krivelevich, Sudakov and Szabó [18].
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Let an (n,d,λ)-graph G with λ ≤ cd2/n be given. From the expander mixing lemma, Theo-

rem 1.1, it follows that every vertex of G lies in 1
2
(d3/n ± λd) = (d3/2n) (1 ± c) triangles. The

näıve greedy approach outlined in the introduction (see the discussion soon after Theorem 1.3)

does not guarantee a collection of (1 − o(1))n/3 vertex-disjoint triangles. Another attempt

would be to apply some theorem that would tell us that the 3-uniform hypergraph K3(G) of the
triangles in G contains an almost perfect matching. A theorem of Pippenger (see [10]) would

do if we knew that K3(G) is pseudorandom enough (roughly speaking, one needs that K3(G)
should be approximately ℓ-regular for some ℓ → ∞ and that pairs of vertices of K3(G) should
be contained in o(ℓ) triples of K3(G) (i.e., the ‘codegrees’ should be small)). However, for c an

absolute constant, this property of K3(G) cannot be deduced.

We circumvent the fact that K3(G) is not necessarily pseudorandom enough by finding a

subhypergraph H of K3(G) in which the ‘deviation’ of the number of triangles at any vertex is

‘smoothed out’ (thus H will be almost ℓ-regular). This can be done if G has ℓ = nΘ(1) fractional

K3-factors f1, . . . , fℓ such that ∑ℓ
i=1 fi(T ) ≤ 1 for each T ∈ K3(G) and, for any edge e ∈ E(G),

the sum of the weights on the triangles containing e across f1, . . . , fℓ is at most ℓ1−γ for some

γ ∈ (0,1). This latter condition helps us force small codegrees.

Indeed, with these fractional K3-factors, we can select H ⊆ K3(G) at random, by including

each T ∈ K3(G) in H independently with probability ∑ℓ
i=1 fi(T ). Then Chernoff’s inequality

guarantees that H satisfies, with high probability, the assumptions of Theorem 2.1, which

is a packing result from [15] strengthening the aforementioned result of Pippenger. Such a

‘randomization’ strategy has previously been successfully employed in [5] in the context of

perfect matchings in hypergraphs.

Thus, it suffices to find such fractional K3-factors f1, . . . , fℓ. In fact, we find such fi with the

property that, for any e ∈ E(G), we have ∑e∈E(T )∑
ℓ
i=1 fi(T ) ≤ 1 (hence ∑ℓ

i=1 fi(T ) ≤ 1 for each

T ∈ K3(G) is automatically true).

Theorem 1.3 is vacuously true for d = o(n2/3) when t = 3 (owing to Fact 2.10). We thus

suppose d = Ω(n2/3). We consider two cases. We pick any β ∈ (0,1/3) independent of n. Our

first approach (Theorem 4.1) works as long as d is not too small, say, d ≥ n(2/3)+β . In contrast,

the second approach (Theorem 5.1) works as long as d is not too large, say, d ≤ n1−β .

In the first approach, we consider edge-weighted graphs and we repeatedly ‘remove’ fractional

K3-factors from G (removing from edges e the weights of the triangles T with e ⊆ V (T )). This
is done by Theorem 4.1 below, in which we show that we can repeatedly apply Corollary 2.8 in

the remaining weighted graph nβ times.

When d is close to n2/3, our approach above fails because we cannot execute it sufficiently

many times. To circumvent this, we randomly split E(G) into ℓ = nΩ(1) sets E1, . . . ,Eℓ, with

each subgraph Gi ∶= (V,Ei) distributed as a random subgraph Gp of G, where each edge is

included in Gp with probability p = 1/ℓ, independently of all the other edges. Then we show

that with high probability each Gi satisfies the assumptions of Corollary 2.8, and thus contains

a fractional K3-factor fi. This second approach works only for d ≤ n1−o(1), which makes both

approaches necessary.

4. Fractional Kt-factors: the dense case

In this section we prove the following theorem.
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Theorem 4.1. For any integer t ≥ 3 and β ∈ (0,1/(2t − 3)], there exists n0 such that every(n,d,λ)-graph G with n ≥ n0, d ≥ n1−1/(2t−3)+β and λ ≤ (1/(20t ⋅ 4t−2))dt−1/nt−2 contains ℓ = nβ

fractional Kt-factors f1, . . . , fℓ such that

ℓ

∑
i=1

∑
T ∈Kt(G)∶V (T )⊃{u,v}

fi(T ) ≤ 1 for every edge uv ∈ E(G). (8)

4.1. Proof idea. Our main idea for proving Theorem 4.1 is to view the (n,d,λ)-graph G =(V,E) as a graph equipped with the weight function w∶E → [0,1]. Once we manage to find a

fractional Kt-factor f in (G,w) (by Corollary 2.8), we update the weight function w as follows:

w(uv) ∶= w(uv) −∑T ∈Kt(G)∶V (T )⊃{u,v} f(T ), which remains non-negative by condition (5) from

Section 2.2. Moreover, the weighted degree of every vertex decreases by exactly t − 1, since

∑u∈N(v)∑T ∈Kt(G)∶V (T )⊃{u,v} f(T ) = (t − 1)∑T ∈Kt(G)∶V (T )∋v f(T ) = t − 1. Therefore, if in our

graph (G,w) all weighted degrees were the same, then, after updating w, the weighted degrees

stay the same. To prove Theorem 4.1, it suffices to show that we can iterate this procedure

ℓ = nβ times.

4.2. Cliques in weighted subgraphs of (n,d,λ)-graphs. In the next two propositions, we

use Proposition 2.11 to derive the assumptions of Corollary 2.8. Recall that, given a graph G

and v ∈ V (G), we denote by Tv a family of copies of Kt in G with v ∈ T for every T ∈ Tv and

with V (T ) ∩ V (T ′) = {v} for all distinct T and T ′ in Tv.

Proposition 4.2. For any integer t ≥ 3, there exists n0 such that every (n,d,λ)-graph G with

n ≥ n0 and λ ≤ (1/(20t ⋅ 4t−2))dt−1/nt−2 satisfies the following. Let G′ be a graph on V (G) with
maximum degree at most (d/(4n))t−2d/(20t). Then for every v ∈ V (G) there exists a family Tv

of at least d/(2t − 2) copies of Kt in G ∖G′.

Proof. Fix a vertex v ∈ V (G) and let U = NG∖G′(v). Then ∣U ∣ ≥ (1 − d/(80tn))d ≥ 0.9d. Let Tv

be a collection of copies of Kt in G ∖G′ such that ∣Tv∣ < d/(2t − 2). Then ∣U ∖⋃T ∈Tv V (T )∣ ≥
0.9d−d/2 ≥ d/(20t). By Proposition 2.11, G[U ∖⋃T ∈Tv V (T )] contains a copy of Kt−1 in G∖G′,

which, together with v, gives a copy of Kt in G ∖G′. The proposition follows. �

The following proposition establishes Property P(t,D,D′, n) from Section 2.3 in subgraphs

of (n,d,λ)-graphs for certain values of the parameters.

Proposition 4.3. For any integer t ≥ 3, there exists n0 such that every (n,d,λ)-graph G with

n ≥ n0 and λ ≤ (1/(20t ⋅ 4t−2))dt−1/nt−2 satisfies the following. Let G′ be a graph on V (G) with
maximum degree at most (d/(4n))t−2d/(20t). Then every 0.11n/t vertices of G∖G′ span a copy

of Kt in G ∖G′. Moreover, G ∖G′ has property P(t, d/2,0.2n,n).
Proof. We first prove that G ∖ G′ has property P(t, d/2,0.2n,n). Set c ∶= 1/(20t ⋅ 4t−2) so

that λ ≤ cdt−1/nt−2. Let T0 be a family of copies of Kt in G ∖ G′ of maximum cardinality

satisfying properties (1)–(3) in the definition of P(t, d/2,0.2n,n). If ∣T0∣ < 0.2n/(t − 1), then let

W ∶= (⋃T ∈T0 V (T )) ∖ U0. It follows that ∣W ∣ = (t − 1)∣T0∣ < 0.2n. Because of the maximality

of T0, there are no copies of Kt in G ∖G′ with one vertex from U0 and the other t − 1 from

U ∖ (U0 ∪W ). Note that ∣U ∖ (U0 ∪W )∣ ≥ n − d/2 − d/(2t) − 0.2n ≥ n/(10t). Take any subset

U ′ ⊆ U ∖ (U0 ∪W ) of cardinality n/(10t) and note that, by Theorem 1.1, we have

eG(U0,U
′) ≥ d

n
⋅
n

10t
⋅
d

2t
− λ

√
n

10t
⋅
d

2t
≥

d2

20t2
− c

dt−1

nt−3

√
d

20t2n
≥

d2

30t2
.
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Thus, there is a vertex v ∈ U0 of degree at least d/(15t) into U ′ in G and hence v is connected

to at least d/(15t) −∆(G′) ≥ d/(15t) − d/(80t) ≥ d/(20t) vertices in U ′ via edges in G ∖G′. Let

R ∶= NG∖G′(v) ∩ U ′. We have ∣R∣ ≥ d/(20t). By Proposition 2.11, (G ∖G′)[R] contains a copy

of Kt−1, which, together with v, gives a copy of Kt in G ∖G′. This contradicts the maximality

of T0. This shows that ∣T0∣ ≥ 0.2n/(t − 1), as required.
It remains to prove that every set U of 0.11n/(t − 1) vertices of G ∖G′ spans a copy of Kt

in G ∖G′. This can be done in a similar way by showing that Theorem 1.1 implies that the

average degree in (G ∖ G′)[U] is at least 7d/(80t) and then finding a copy of Kt−1 in the

neighborhood of a vertex of maximum degree in (G ∖G′)[U]. We omit the details. �

We now are ready to prove Theorem 4.1.

4.3. Proof of Theorem 4.1. We set α ∶= (d/(4n))t−2/(20t) and choose n0 sufficiently large.

We start with the graph G and at the beginning we set all edge weights to one, i.e., w(e) ∶= 1
for all e ∈ E(G). We shall iteratively apply Corollary 2.8 to find ℓ = nβ fractional Kt-factors

f1, . . . , fℓ. In doing so we will iteratively update the weights of the edges in G. By Fact 2.5 and

Propositions 4.2 and 4.3, the assumptions of Corollary 2.8 will be satisfied after each iteration,

and we shall be able to find a fractional Kt-factor in the weighted graph at hand. Recall that

the ‘weighted degree’ degw(v) of a vertex v ∈ V = V (G) is defined to be ∑u∈N(v)w(uv). We

observe that this degree is exactly d at the beginning (when w ≡ 1). Then we update the edge

weights for all uv ∈ E(G) in the ith iteration as follows:

w(uv) ∶= w(uv) − ∑
T ∈Kt(G)∶V (T )⊃{u,v}

fi(T ). (9)

Observe that the weighted degree of every vertex decreased by t − 1, since

∑
u∈N(v)

∑
T ∈Kt(G)∶V (T )⊃{u,v}

fi(T ) = (t − 1) ∑
T ∈Kt(G)∶V (T )∋v

fi(T ) = t − 1,
because fi is a fractional Kt-factor. Now suppose ∑u∈N(v)w(uv) ≥ (1 − α2)d for any v ∈ V
throughout the process. Let G′ be the graph on V consisting of edges of G that are not α-rich.

By Fact 2.5, ∆(G′) ≤ αd. Thus, by Propositions 4.2 and 4.3, we can apply Corollary 2.8 with

D = d/2 to (G,w) iteratively, updating the weights

dα2

t − 1
=

d

400t2(t − 1) ( d

4n
)2t−4 = d2t−3

400t2(t − 1)(4n)2t−4 ≥ n(2t−3)β

400t2(t − 1)42t−4 ≥ nβ = ℓ

times. Because of our update rule (9), condition (8) does hold for the fi (1 ≤ i ≤ ℓ) that we have
obtained. �

5. Fractional Kt-factors: the sparse case

In this section we prove the following theorem.

Theorem 5.1. For any integer t ≥ 3 and δ ∈ (0,1/(2t − 3)), there exists n0 such that every(n,d,λ)-graph G with n ≥ n0, d ≤ n1−δ and λ ≤ (1/(50t ⋅ 4t−2))dt−1/nt−2 contains ℓ = nδ/(4t2)

fractional Kt-factors f1, . . . , fℓ such that

ℓ

∑
i=1

∑
T ∈Kt(G)∶V (T )⊃{u,v}

fi(T ) ≤ 1 for every edge uv ∈ E(G). (10)
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5.1. Proof overview. Our proof strategy this time will be to partition G randomly into ℓ =
nδ/(4t2) edge-disjoint subgraphs Gi, and then to show that, with high probability, each such

random subgraph Gi satisfies the assumptions of Corollary 2.8 and thus contains a fractional

Kt-factor fi. Because the host graphs Gi of such fi are edge-disjoint, condition (10) will hold

because, for any T ∈ Kt(G), there is at most one i ∈ [ℓ] such that fi(T ) > 0. Note that, in this

section, when we use results from Sections 2.2 and 2.3, we always use them on standard graphs,

i.e., with w ≡ 1. In particular, here, every edge will be α-rich for any α ≥ 0. For the sake of

definiteness, we always take α = 0 in this section.

5.2. Probabilistic lemmas. Recall that, for a graph G = (V,E), the random subgraph Gp

of G is a spanning subgraph of G in which each edge from E is included with probability p,

independently of all other edges. In this subsection, we show that, for suitable (n,d,λ)-graphs G,

with high probability Gp satisfies the assumptions of Corollary 2.8 and thus contains a fractional

Kt-factor (Theorem 5.5 below). We first show that, with high probability, Gp satisfies (1 ) in

Corollary 2.8, with D = p(
t

2
)d/4.

Proposition 5.2. For any t ≥ 3 and δ ∈ (0,1/(2t − 3)) there exists n0 such that the following

holds. Suppose G is an (n,d,λ)-graph with n ≥ n0, d ≤ n1−δ and λ ≤ (1/(20t ⋅ 4t−2))dt−1/nt−2.

Let p = d−η for some η ∈ (0,1/t2). Then, with probability at least 1−n exp(−√d), for any vertex

v ∈ V (Gp) there exists a family Tv in Gp with ∣Tv∣ ≥ p(t2)d/(4t − 4).
Proof. For any v ∈ V (Gp) = V (G), by Proposition 4.2, there is a family T ′v in G with ∣T ′v ∣ =
d/(2t − 2). Let X be the number of cliques Kt from T

′
v in Gp. Since the cliques in Tv are edge-

disjoint, X ∼ Bin(d/(2t − 2), p(t2)). By Chernoff’s inequality (Theorem 2.2), P [X < EX/2] <
e−EX/12 = exp ( − p(t2)d/(24t)) ≤ exp(−d1−(t2)η/(24t)) ≤ exp(−√d). The union bound over all

vertices yields that, with probability at least 1−n exp(−√d), every vertex v lies in some family Tv

in Gp of at least p(
t

2
)d/(4t − 4) copies of Kt. �

We now state and prove a technical lemma that will be required to show that Gp is very

likely to have property P(t,D,D′, n) for certain values of D and D′. The proof of this lemma is

based on Janson’s inequality (Theorem 2.3). However, to have ‘weak enough dependence’ when

applying inequality (4), we shall have to employ an additional trick.

Lemma 5.3. For any t ≥ 3 and δ ∈ (0,1/(2t − 3)) there exists n0 such that the following holds.

Suppose G is an (n,d,λ)-graph with n ≥ n0, d ≤ n1−δ and λ ≤ (1/(50t ⋅ 4t−2))dt−1/nt−2. Let

p = d−η for some η ∈ (0, δ/(2t2)]. Then, with probability 1 − 2−n, for every pair of disjoint

subsets U0 and U ′ of V (G) with ∣U0∣ = D = p(
t

2
)d/(4t) and ∣U ′∣ = n/(10t), there is a clique K

on t vertices in Gp with ∣V (K) ∩U0∣ = 1 and ∣V (K) ∩U ′∣ = t − 1.
Proof. Let c ∶= 1/(50t ⋅ 4t−2). We shall use Proposition 2.11 to show that there are sufficiently

many cliques Kt in G with one vertex from U0 and t − 1 from U ′, so that after keeping each

edge at random, the probability that none of the cliques survives is very small. Taking the

union bound over all possible choices of U0 and U ′ will then finish the proof. To estimate the

survival probability of some clique, we shall apply Janson’s inequality, Theorem 2.3. However,

some special care needs to be taken, as otherwise the parameter ∆ in (3) may turn out to be

too large. Therefore, we shall restrict out attention to certain ‘nice’ cliques between U0 and U ′.
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For a given set U0 we say that a vertex u from U ′ is bad with respect to U0 if degU0
(u) ≥ 2Dd/n,

and otherwise we say it is good. Let B be the set of bad vertices from U ′ with respect to U0.

Then e(B,U0) ≥ 2∣B∣Dd/n, whereas Theorem 1.1 asserts that

e(B,U0) ≤ ∣B∣Dd/n + λ√∣B∣D ≤ ∣B∣Dd/n + cdt−1√∣B∣D/nt−2.

From this we infer that ∣B∣Dd/n ≤ cdt−1√∣B∣D/nt−2, and therefore

∣B∣ ≤ c2d2t−4/(Dn2t−6) ≤ (4t)c2d2t−5+(t2)η/n2t−6 < n/(30t),
by the choice of η < δ/(t2) and c. Thus, the number of good vertices in U ′ is ∣U ′ ∖B∣ ≥ n/(15t).

Next we estimate the number of edges eG(U0,U
′
∖ B) between U0 and U ′ ∖ B in G (we

omit the subscript G whenever it is clear from the context). Note that Dn/d2 ≥ nδp(
t

2
)/(4t) ≥

nδn−ηt
2/(4t) ≥ 1, because η ≤ δ/(2t2). By ∣U ′ ∖B∣ ≥ n/(15t) and Theorem 1.1, we have

e(U0,U
′
∖B) ≥ d

n

Dn

15t
− λ

√
Dn

15t
≥
dD

15t
−
Dd

60t

√
d2

15tDn
≥
Dd

20t
,

where we used that λ ≤ cdt−1/nt−2 ≤ cd2/n < d2/(60tn) and d2/(Dn) ≤ 1. Thus, since ∆(G) ≤ d,
we have at least D/(40t) vertices in U0 of degree at least d/(40t) into U ′ ∖B in G.

Given a vertex u ∈ U0 with degU ′∖B(u) ≥ d/(40t), we call a vertex v ∈ N(u)∩(U ′∖B) expensive
with respect to u if degN(u)∩(U ′∖B)(v) ≥ 4d2/n, and otherwise we call it inexpensive. Let R be

the set of expensive vertices with respect to u. Then e (R,N(u) ∩ (U ′ ∖B)) ≥ 4d2∣R∣/n, whereas
Theorem 1.1 asserts that

e (R,N(u) ∩ (U ′ ∖B)) ≤ degU ′∖B(u)∣R∣d
n
+ c

dt−1

nt−2

√
degU ′∖B(u)∣R∣ ≤ d2∣R∣

n
+
cd2

n

√
d∣R∣,

where we used that degU ′∖B(u) ≤ d. Thus we have d2∣R∣/n ≤ cd2√d∣R∣/n and therefore ∣R∣ ≤ c2d.
We now introduce the notion of ‘nice cliques’ in G. Let K be a copy of Kt in G with

K ∩U0 = {u} and ∣K ∩ (U ′ ∖B)∣ = t − 1. We call K nice if degU ′∖B(u) ≥ d/(40t), and any other

vertex v ∈ V (K) ∖ {u} is inexpensive with respect to u. Since there are at least d/(50t) such
inexpensive vertices in N(u)∩(U ′∖B), we can deduce the following lower bound on the number

of nice cliques in G. For u ∈ U0 with degU ′∖B(u) ≥ d/(40t), let Ru be the set of inexpensive

vertices with respect to u and notice that ∣Ru∣ ≥ d/(40t) − c2d ≥ d/(50t). Let C be the family of

nice cliques in G. Then we have

∣C∣ = ∑ ∣Kt−1(Ru)∣ Proposition 2.11
≥

D

40t

(d/(50t))t−1
2(t−1)2(t − 1)! (d/n)(

t−1
2
) ≥

Ddt−1

2(t−1)2(50t)t(t − 1)! (d/n)(
t−1
2
)
,

where the sum is over all u ∈ U0 such that degU ′∖B(u) ≥ d/(40t).
We aim to employ next Janson’s inequality to show that at least one of these nice cliques

survives in Gp with ‘sufficiently high’ probability. Let X be the number of nice cliques that are

contained in Gp. By the above bound on ∣C∣,
EX = p(

t

2
)∣C∣ ≥ p(

t

2
)Ddt−1

2(t−1)2(50t)t(t − 1)! (d/n)(
t−1
2
) ≥

pt(t−1)dt

2t2(50t)tt! (d/n)(
t−1
2
)
. (11)

It remains to estimate the parameter ∆ in Janson’s inequality.

Let a clique K from C be given. First we estimate the number of nice cliques K ′ with

K ∩K ′ ∩ U0 = ∅ and ∣K ∩K ′ ∩ U ′∣ ≥ 2. Note that ∣K ′ ∩ U0∣ = 1 and denote this only vertex in

K ′ ∩U0 by v. We need to choose at least two vertices to lie in the intersection K ∩K ′ ∩U ′, and
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these have to be connected to v. Since every vertex from K∩U ′ is good, we have at most 2Dd/n
choices for v. Moreover, we need to specify further t − 3 vertices from U ′ to belong to the copy

of K ′ and these have to form a (t− 3)-clique in N(v). For t ≥ 5, since ∣N(v)∣ = d ≥ (d/4n)2d, by
Proposition 2.11 with m = d and i = t − 3, there are at most

(t − 1
2
) ⋅ 2Dd

n
⋅ 2(t−3)

2

dt−3(d/n)(t−32 ) ≤ (dt−1/n)(d/n)(t−32 ) (12)

potential nice cliques K ′. Note that the estimates in (12) also hold for t = 3 and 4.

Next we estimate the number of nice cliques K ′ with K ∩K ′∩U0 ≠ ∅ and ∣K ∩K ′∩U ′∣ ≥ 1 for

our fixed clique K from C. We have t−1 choices for a common vertex x from K∩K ′∩U ′. Since x

is inexpensive, its common neighborhood with the vertex y from K ∩K ′ ∩U0 is at most 4d2/n.
It remains to estimate the number of possible extensions of x and y to a clique of size t. For

this we would like to count the number of copies of Kt−2 on a set of size 4d2/n. For t ≥ 4, since
4d2/n ≥ d2/n, by Proposition 2.11 with m = d and i = t − 2, there are at most

(t − 1) ⋅ 2(t−2)2(4d2/n)t−2(d/n)(t−22 ) ≤ (dt−1/n)(d/n)(t−32 ) (13)

potential nice cliques K ′. Note that the estimates in (13) also hold for t = 3.
By (12) and (13), we get ∆ ≤ 2p(

t

2
)∣C∣(dt−1/n)(d/n)(t−32 ) = 2EX(dt−1/n)(d/n)(t−32 ). Then

Janson’s inequality yields

P[X = 0] ≤ exp(−E[X]2
2∆

) ≤ exp⎛⎝− E[X]
4(dt−1/n)(d/n)(t−32 )

⎞⎠
(11)
≤ exp

⎛⎝− pt(t−1)dt (d/n)(t−12 )
2t2+2(50t)tt! ⋅ (dt−1/n) ⋅ (d/n)(t−32 )

⎞⎠ = exp(− pt(t−1)

2t
2+2(50t)tt!n2(d/n)2t−4) .

Note that p = d−η ≥ n−η ≥ n−δ/(2t
2). Together with d ≥ n1−1/(2t−3)/2 (Fact 2.10) and δ < 1/(2t−3),

we get

P[X = 0] ≤ exp(− pt(t−1)

2t2+2t−2(50t)tt!n2− 2t−4
2t−3) ≤ exp (−n1+1/(4t−6)) .

Taking the union bound over all choices for U0 and U ′ (of which there are at most 4n), we obtain

the desired claim with probability 1 − 4n exp(−n1+1/(4t−6)) ≥ 1 − 2−n for n large enough. �

Now we show that it is very likely that Gp satisfies (2 ) and (3 ) in Corollary 2.8 with D =
p(

t

2
)d/4 and α = 0.

Proposition 5.4. For any t ≥ 3 and δ ∈ (0,1/(2t − 3)) there exists n0 such that the following

holds. Suppose G is an (n,d,λ)-graph with n ≥ n0, d ≤ n1−δ and λ ≤ (1/(50t ⋅ 4t−2))dt−1/nt−2.

Let p = d−η for some η ∈ (0, δ/(2t2)]. Then, with probability 1−2−n, every 0.11n/t vertices of Gp

span a copy of Kt and Gp has property P(t, p(t2)d/4,0.2n,n).
Proof. Let t and δ as in the statement be fixed. Let n0 = n0(t, δ) be given by Lemma 5.3. Then

for any η ∈ (0, δ/(2t2)] the conclusion in Lemma 5.3 holds with probability at least 1 − 2−n.

Write D = p(
t

2
)d/4.

Let T0 be a family of t-cliques in Gp of maximum cardinality satisfying properties (1)–(3)

in the definition of P(t, p(t2)d/4,0.2n,n) (see Section 2.3). If ∣T0∣ < 0.2n/(t − 1), then let W ∶=(⋃K∈T0 V (K))∖U0. It follows that ∣W ∣ = (t−1)∣T0∣ < 0.2n. Because of the maximality of T0 there

are no cliques in Gp with one vertex from U0 and the other t−1 vertices from U ′ ∶= U ∖(U0∪W ).
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Observe that ∣U ′∣ ≥ n −D − ∣U0∣ − ∣W ∣ ≥ 0.5n.
But then, by the assertion of Lemma 5.3, there must be yet another copy of Kt in Gp between U0

and U ′, contradicting the maximality of T0. Hence ∣T0∣ ≥ 0.2n/(t − 1).
It remains to prove that every set U of 0.11n/t vertices of Gp spans a clique Kt. But this is

immediate since D < 0.01n/t and thus any two disjoint subsets of U of cardinality D and 0.1n/t
span a copy of Kt. �

Next we show that Gp is very likely to contain a fractional Kt-factor.

Theorem 5.5. For any t ≥ 3 and δ ∈ (0,1/(2t−3)) there exists n0 such that the following holds.

Suppose G is an (n,d,λ)-graph with n ≥ n0, d ≤ n1−δ and λ ≤ (1/(50t ⋅ 4t−2))dt−1/nt−2. Let

p = d−η for some η ∈ (0, δ/(2t2)]. Then Gp contains a fractional Kt-factor with probability at

least 1 − n exp(−√d) − 2−n.
Proof. Let t and δ as in the statement be fixed. Let n0 = n0(t, δ) be given by Propositions 5.2

and 5.4 for the given parameters t and δ. Then, for any fixed η ∈ (0, δ/(2t2)], the conclusions in
Propositions 5.2 and 5.4 hold with probability at least 1 − n exp(−√d) − 2−n. Let D ∶= p(

t

2
)d/4.

The conclusion in our theorem follows from Corollary 2.8 (with α = 0). �

We are now ready to prove Theorem 5.1.

5.3. Proof of Theorem 5.1. Let p = d−η where η = δ/(2t2). Let ℓ ∶= dη = p−1. By Fact 2.10,

we have d ≥ n1−1/(2t−3)/2 ≥ n1/2. Thus ℓ = dη ≥ nδ/(4t2). Consider the random variable I

that takes values uniformly at random in [ℓ] = {1, . . . , ℓ}. For each e ∈ E(G), let Ie ∼ I be

an independent copy of I. We randomly partition the edge set of G into spanning subgraphs

G1, . . . ,Gℓ of G, where each e ∈ E(G) is put into GIe . Observe that each Gi is distributed

as Gp. By Theorem 5.5, the probability that a given Gi should not contain a fractional Kt-

factor is at most n exp(−√d) + 2−n. Since d ≥ n1−1/(2t−3)/2, it follows that, with probability

1 − ℓ(n exp(−√d) + 2−n) = 1 − o(1) > 0, there is a partition of G into deterministic edge-disjoint

spanning subgraphs G1, . . . ,Gℓ such that each Gi (i ∈ [ℓ]) possesses a fractional Kt-factor fi.

Since G1, . . . ,Gℓ are edge-disjoint, condition (10) holds because for any T ∈ Kt(G), there is at

most one i ∈ [ℓ] such that fi(T ) > 0. �

6. Proof of Theorem 1.3

Let t ≥ 3 be fixed and let G be an (n,d,λ)-graph as in the statement of Theorem 1.3.

Let δ = 4t2/((4t2 + 1)(2t − 3)) and β = 1/((4t2 + 1)(2t − 3)), so that nβ = nδ/(4t2). Let ℓ =
nβ. By Theorems 4.1 and 5.1 (depending on whether d ≥ n1−1/(2t−3)+β or d ≤ n1−δ), our

graph G contains fractional Kt-factors f1, . . . , fℓ such that, for every edge uv ∈ E(G), we have

∑ℓ
i=1∑T ∈Kt(G)∶V (T )⊃{u,v} fi(T ) ≤ 1. Clearly, f(T ) ∶= ∑ℓ

i fi(T ) ≤ 1 for any T ∈ Kt(G). Let

H ∶= Kt(G) be the t-uniform hypergraph with copies of Kt in G as hyperedges and V (H) =
V (G). Thus, for every v ∈ V = V (H) and i ∈ [ℓ], we have ∑T ∈E(H)∶v∈T fi(T ) = 1 and thus

∑T ∈E(H)∶v∈T f(T ) = ℓ. Moreover, for any distinct vertices u and v, we have

∑
T ∈E(H)∶{u,v}⊆T

f(T ) = ∑
i∈[ℓ]

∑
T ∈E(H)∶{u,v}⊆T

fi(T ) ≤ 1.
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Let Hf be the random spanning subhypergraph of H such that each edge T of H is included

in Hf independently with probability f(T ).
Next we let k ∶= 8β−1/2. For v ∈ V , let Xv be the degree of v in Hf . We have EXv =

∑T ∈E(H)∶v∈T f(T ) = ℓ. Then Chernoff’s inequality (Theorem 2.2), implies that

P[∣Xv − ℓ∣ > (k/2)√ℓ ln ℓ] ≤ 2e−k2(ln ℓ)/12 < 2e−5 lnn = 2n−5.

On the other hand, for any distinct vertices u and v ∈ V , let Yuv be the collective degree degHf
(u, v)

of u and v in Hf . Then EYuv = ∑T ∈E(H)∶{u,v}⊆T f(T ) ≤ 1 (in fact, Yuv = 0 if uv ∉ E(G)). By

Chernoff’s inequality again, we have P[Yuv ≥ 1 + 3 lnn] ≤ e−3 lnn = n−3. The union bound over

all u ∈ V and all pairs {u, v} ∈ (V2) yields that, with probability at least 1 − 1/n, we have

degHf
(u) = ℓ ± (k/2)√ℓ ln ℓ and degHf

(u, v) ≤ 1 + 3 lnn
for all u and v ∈ V .

It is easy to check now that the assumptions of Theorem 2.1 are satisfied with δ′ = 1/t, γ = 0.9,
D = (1 + (k/2)√(ln ℓ)/ℓ)ℓ ≤ 2nβ and C = 1 + 3 lnn. Thus an application of that theorem gives

us a matching in Hf covering all but at most

O(n(C/D)(1−δ′)/(t−1)) = O (n(1 + 3 lnn
2nβ

)1/t) ≤ n1−1/(8t4)

vertices. These edges correspond to cliques Kt in the original (n,d,λ)-graph G and thus they

correspond to a collection of vertex-disjoint t-cliques covering all but at most n1−1/(8t4) vertices

of the graph. This completes the proof of Theorem 1.3. �

7. Concluding remarks

In this paper we have studied near-perfect Kt-factors in sparse (n,d,λ)-graphs. We have

presented two different approaches for finding many ‘weight-disjoint’ fractional Kt-factors: one

for ‘large’ d (Theorem 4.1) and one for ‘small’ d (Theorem 5.1).

We believe that the first approach is more powerful, since it can be extended to the whole

range of d for all t ≥ 4 as follows. In the proof of Theorem 4.1 we used Proposition 2.11 to embed

a copy of Kt−1 in a set of Ω(d) vertices, even after removing a small number of edges from each

vertex, say o((d/n)t−2d) many. We can allow to remove from each vertex even o(d2/n) many

edges if we just ask for the existence of a single copy of Kt−1, which would suffice for our first

approach. To establish this, we could have used a Turán-type result in (n,d,λ)-graphs due to

Sudakov, Szabó and Vu [22, Theorem 3.1]. However, a drawback is that the pseudorandomness

condition in [22, Theorem 3.1] is not numerically explicit (it was stated as λ≪ dt−1/nt−2). Thus

we chose to present a self-contained and numerically explicit proof. Moreover, the first approach

seems not to provide Theorem 1.3 for triangle-factors in the whole range, while triangle-factors

can be considered as the most important testbed at the moment.

As for the second approach, we observe that it can be pushed to work in a range of d from

Ω(n1−1/(2t−3)) to n/polylogn, although near the upper bound we would only be able to assert

that one can cover all but n/polylogn vertices with vertex-disjoint copies of Kt.

Recent developments. When finalizing this paper, we learned that very recently Nenadov [20]

proved the existence of Kt-factors in (n,d,λ)-graphs with λ ≤ εdt−1/(nt−2 logn) for a suitably

small ε = εt > 0, which is at most a logn factor away from Conjecture 1.2. Independently, Morris
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and the authors of this paper [12] proved a similar result with λ ≤ εtdt/nt−1, which is a stronger

requirement, except when d ≥ ctn/ logn for a suitable constant ct > 0.
An n-vertex (λ, p)-bijumbled graph is a graph that satisfies inequality (1) of the expander

mixing lemma (Theorem 1.1). This notion is slightly more general: any (n,d,λ)-graph is(λ,d/n)-bijumbled but in a bijumbled graph not every vertex has degree d. The result of [20]

applies to (εtp2/(n logn), p)-bijumbled graphs with minimum degree Ω(pn). The result of the

present paper as well as the one in [12] can be easily shown to hold in appropriately bijumbled

graphs as well.
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