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Abstract

In graphs, the concept of adjacency is clearly defined: it is a pairwise relationship be-
tween vertices. Adjacency in hypergraphs has to integrate hyperedge multi-adicity:
the concept of adjacency needs to be defined properly by introducing two new con-
cepts: k-adjacency - k vertices are in the same hyperedge - and e-adjacency - vertices
of a given hyperedge are e-adjacent. In order to build a new e-adjacency tensor that
is interpretable in terms of hypergraph uniformisation, we designed two processes:
the first is a hypergraph uniformisation process (HUP) and the second is a poly-
nomial homogeneisation process (PHP). The PHP allows the construction of the
e-adjacency tensor while the HUP ensures that the PHP keeps interpretability. This
tensor is symmetric and can be fully described by the number of hyperedges; its order
is the range of the hypergraph, while extra dimensions allow to capture additional
hypergraph structural information including the maximum level of k-adjacency of
each hyperedge. Some results on spectral analysis are discussed.
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1 Adjacency in hypergraphs

A hypergraph H = (V,E) is a hyperedge family E = {ei : ei ⊆ V ∧ i ∈ JpK} 3

over the vertex set V = {vi : i ∈ JnK} [1]. A hypergraph with no repeated

hyperedge is a hypergraph where the hyperedges are distinct pairwise.

We write kmax = max {|e| : e ∈ E} the range of the hypergraph.

Hyperedge multi-adicity calls for additional adjacency concepts.

Definition 1.1 k vertices are said k-adjacent if it exists an hyperedge that
contains them. Vertices of a given hyperedge are said e-adjacent. The k-
adjacency of an hypergraph is the maximal value of k such that it exists
vertices of the hypergraph that are k-adjacent.

Hypermatrices - abusively designated as tensors [2] - are used to store
the adjacency multi-adic relationships. In k-uniform hypergraphs, where all
hyperedges have the same cardinality k = k, k-adjacency and e-adjacency are
equivalent; we use here the degree normalized k-adjacency hypermatrix [3].

For general hypergraphs with no-repeated hyperedge, a first e-adjacency
hypermatrix is defined in [4]. The value and the number of elements that are
required to store this hypermatrix vary depending on the hyperedge cardinal-
ity; due to index repetition, tensor elements can not be interpreted directly
in term of a hypergraph uniformisation process (HUP). To address this issue,
we propose a new e-adjacency tensor 4 .

2 A new e-adjacency tensor for general hypergraphs

We give here only the main steps. 5

2.1 Decomposition in layers

The family (Ek)16k6kmax

where Ek = {e ∈ E : |e| = k} constitutes a partition
of E. H is decomposable uniquely into a k-uniform hypergraph direct sum

H =
kmax⊕
k=1

Hk of increasing k ∈ JkmaxK. The Hk = (V,Ek) - k ∈ JkmaxK -

are called the layers of H. Any of these Hk is representable by a degree-
normalised k-adjacency hypermatrix Ak =

(
a(k) i1...ik

)
.

3 Jk;nK is {i : i ∈ N ∧ k 6 i 6 n} and JnK is J1, nK. Sk is the permutation set on JkK.
4 Details and proofs can be found in [5].
5 Exponents into parenthesis refer to the order of the corresponding tensor; indices into
parenthesis refer to a sequence of objects.



Symmetric cubical hypermatrices are bijectively mapped to homogeneous
polynomials [6] through the hypermatrix multilinear matrix multiplication [7].

We build a family PH = (Pk) of homogenous polynomials that are one-to-
one mapped to the layers of the hypergraph. Considering z = (z0)

⊤ 6 - for
all i ∈ JnK: zi represents vi ∈ V - and (z)[k] = (z, ..., z) ∈ (Rn)k, (z) [k].Ak

contains only one element: Pk (z0) =
∑

16i1,...,ik6n

a(k) i1...ikz
i1 ...zik . As Ak is

symmetric: Pk (z0) =
∑

16i16...6ik6n

α(k) i1...ikz
i1 ...zik with α(k) i1...ik = k!a(k) i1...ik .

2.2 Uniformisation and homogeneisation process

The hypergraph uniformisation process involves two elementary operations on
weighted hypergraphs.

Operation 1: Let Hw = (V,E, w) be a weighted hypergraph. Let y /∈ V .
The y-vertex-augmented hypergraph of Hw is the weighted hypergraph
Hw =

(
V ,E, w

)
where V = V ∪ {y}, E = {φ (e) : e ∈ E} - with the map

φ : P (V ) → P
(
V
)

such that: ∀A ∈ P (V ) :φ(A) = A ∪ {y} - and, w such
that ∀e ∈ E: w (φ(e)) = w(e).

Operation 2: The merged hypergraph Ĥŵ =
(
V̂ , Ê, ŵ

)
of two

weighted hypergraphs Ha = (Va, Ea, wa) and Hb = (Vb, Eb, wb) is the

weighted hypergraph with vertex set V̂ = Va ∪ Vb, with hyperedge fam-
ily Ê = Ea + Eb - constituted of all elements of Ea and all elements of Eb

- such that ∀e ∈ Ea, ŵ(e) = wa(e) and ∀e ∈ Eb, ŵ(e) = wb(e).

The hypergraph uniformisation process starts by mapping each Hk

to a weighted hypergraph Hwk,k = (V,Ek, wk) with: ∀e ∈ Ek : wk(e) = ck with
ck ∈ R

+∗ and k ∈ JkmaxK. ck are dilatation coefficients introduced to guarantee
that the generalized hand-shake lemma holds in the e-adjacency tensor. A set
of pairwise distinct vertices Vs = {yk : k ∈ Jkmax − 1K} is generated and such
that no vertex of Vs is in V .

The HUP iterates over a two-phase step: the inflation phase (IP) and
the merging phase (MP). At step k > 1 the input is the (k − 1)-uniform
weigthed hypergraph Kw obtained from the previous iteration; at step 1, Kw =
Hw1,1. In the IP, Kw is transformed into Kw the k + 1-uniform yk-vertex-
augmented hypergraph of Kw.

The MP elaborates the merged hypergraph K̂ŵ from Kw and Hwk+1,k+1.

6 We write z0 the variable list z1, ..., zn and zk the variable list z0, y
1, ..., yk.



At the end of each step k is increased until it reaches kmax: the last Ĥŵ

obtained is called the Vs-layered uniform hypergraph of H.

Proposition 2.1 Ĥŵ captures exactly the e-adjacency of H.

In the polynomial homogeneisation process, RH = (Rk)k∈JkmaxK the
family of homogeneous polynomials of degree k is obtained iteratively from
the family (ckPk)k∈JkmaxK: for all k ∈ JkmaxK, ckPk maps one to one to Hwk,k.

We set R1 (zo) = c1P1 (zo) = c1
n∑

i=1

a(1) iz
i. We generate kmax − 1 new

pairwise distinct variables yj, j ∈ Jkmax − 1K.

At step k, we suppose that: Rk (zk−1) =
k∑

j=1

cj
n∑

i1,...,ij=1

a(j) i1...ijz
i1 ...zij

k−1∏
l=j

yl,

with the convention that:
k−1∏
l=j

yl = 1 if j > k − 1. Then for yk−1 6= 0:

Rk+1 (zk) = yk (k+1)

(
Rk

(
zk−1

yk (k)

)
+ ck+1Pk+1

(
zo

yk (k+1)

))

=Rk (zk−1) y
k + ck+1

n∑

i1,...,ik+1=1

a(k+1) i1 ... ik+1
zi1 ...zik+1

and for yk = 0: Rk+1 (zk−1, 0) = ck+1

n∑
i1,...,ik+1=1

a(k+1) i1 ... ik+1
zi1 ...zik+1 .

Even if Pk+1 (z0) = 0 the step above is performed: the degree of Rk will
increase by 1.

2.3 Construction of the e-adjacency tensor

From RH = (Rk) we build a symmetric tensor. Rk is an homogeneous polyno-
mial with n+ k − 1 variables of order k. With w(k) for w1

(k), ..., w
n
(k), we have:

Rk

(
w(k)

)
=

n+k−1∑
i1,...,ik=1

r(k) i1 ... ikw
i1
(k)...w

ik
(k) where:

⋆ for i ∈ JnK: wi
(k) = zi and for i ∈ Jn+ 1;n+ k − 1K: wi

(k) = yi−n

⋆ for all ∀j ∈ JkK, for 1 6 i1 < ... < ij 6 n, for all l ∈ Jj + 1; kK 7 : il = n+l−1
and, for all σ ∈ Sk:

r(k) σ(i1)...σ(ik) =
cjα(j) i1...ij

k!
=

j!

k!
cja(j) i1...ij

7 With the convention Jp, qK = ∅ if p > q



⋆ otherwise r(k) i1 ... ik is null.

Also Rk can be linked to a symmetric hypercubic tensor of order k and di-
mension n + k − 1 written Rk whose elements are r(k) i1 ... ik .

The coefficients ck, k ∈ JkmaxK are chosen so that the number of edges
calculated by the generalized handshake lemma is valid.

We choose: cj =
kmax

j
as:

|E| =
1

kmax

∑
i1,...,ikmax∈Jn+kmax−1K

ri1...ikmax
=

kmax∑
j=1

1

j

∑
i1,...,ij∈JnK

a(j) i1...ij .

Hence, combining above with the fact that a(j) i1...ij =
1

(j − 1)!
when

{
vi1 , ..., vij

}
∈ E and 0 otherwise: ri1...ikmax

=
1

(kmax − 1)!
for nonzero ele-

ments of Rkmax
.

Definition 2.2 The hypermatrix Rkmax
is called the layered e-adjacency

tensor of the hypergraph H. We write it later AH.

3 Further comments and results

The HUP adds vertices in the IPs; they give indication on the original cardi-
nality of the hyperedge they are added to as well as the level of k-adjacency
possible in this hyperedge. The resulting tensor is symmetric and is bijectively
associated to the original hypergraph, containing its overall structure.

We consider in the following propositions a hypergraph H = (V,E) with
no repeated hyperedge with layered e-adjacency tensor AH =

(
ai1...ikmax

)
.

Proposition 3.1 It holds:
n+kmax−1∑

i2,...,ikmax=1
δii2...ikmax

=0

aii2...ikmax
= di

where: ∀i ∈ JnK : di = deg (vi) and ∀i ∈ Jkmax − 1K : dn+i = deg (yi) .

Moreover: ∀j ∈ J2; kmaxK: |{e : |e| = j}| = dn+j − dn+j−1

and: |{e : |e| = 1}| = dn+1

Using the definition of eigenvalue of [2], we state:

Theorem 3.2 The e-adjacency tensor AH has its eigenvalues λ such that:

|λ| 6 max (∆,∆⋆) (1)

where ∆ = max
16i6n

(di) and ∆⋆ = max
16i6kmax−1

(dn+i) .



Proposition 3.3 Let H be a r-regular 8 r-uniform hypergraph with no re-

peated hyperedge. Then this maximum is reached.

4 Conclusion

Properly defining the concept of adjacency in a hypergraph is important to
build a proper e-adjacency tensor that preverves the information on the struc-
ture of the hypergraph. The resulting tensor allows to reconstruct with no
ambiguity the original hypergraph. First results on spectral analysis show
that additional vertices inflate the spectral radius bound. The HUP is a
strong basis for further proposals: to allow repetition of vertices, we introduce
hb-graphs, family of multisets and, propose two other e-adjacency tensors [8].
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