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Abstract

In order to stabilise the motion of a high speed craft, and so to improve the comfort of the passengers and the crew while maintaining

the speed, control-oriented model are needed. For this purpose, neuro-fuzzy systems have been used to obtain general models of the non-

linear behaviour of a fast ferry. The sources of the available knowledge are the physical laws of the vertical dynamics of the craft, and

some experimental and simulated data of the ship performance. Two non-linear models focused on the vertical motion of the craft, both

heave and pitch, are proposed: an academic one and a predictive one. The modelling task is complex and the results are original as the

problem has not been previously solved in a general way neither by applying artificial intelligence techniques. The models have been

proved satisfactory with regular and also irregular waves, and they have been used for ship control purposes.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The research deals with a fast ferry called ‘‘Silvia Ana’’.
Currently, the ferry works in La Plata and in the Baltic Sea.
The craft has an aluminium-made deep V hull, and the
following characteristics: 119m length, 14.696m beam,
2.405m draught, 475 tons dead weight, 1250 passengers,
250 cars (Anonymous, 1996, 1998).

The main goal of dealing with fast marine systems is to
stabilise the motion of the craft for some purposes such as
improve the comfort of the passengers and the safety,
maintaining the speed. The main impact on the behaviour
in this aspect is caused by the vertical acceleration, both
heave and pitch motions. The vertical acceleration origi-
nates the seasickness, a most important concern, which can
be measured by the motion sickness incidence (MSI)
(O’Hanlon and McCawley, 1974). In order to control this
system and so to improve the quality of the travelling by
reducing the vertical acceleration, control-oriented models
are needed to develop and evaluate the controllers.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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On the other hand, ship motion is a complicated issue to
model. The description of high speed crafts behaviour is
complex because the model of the system changes with the
ship speed and the sea state in a non-linear way. Some of its
parameters are coupled, and others are variables. In
addition, the uncertainty that comes from the sea waves
encourages dealing with wide broad models, which by
means of artificial intelligence techniques can incorporate
knowledge about the system.
The motivation for using neuro-fuzzy techniques is due

to the uncertainty that comes from the waves and the sea
state, and the ability that fuzzy logic provides to deal with
the complexity and strongly non-linear nature of the
system itself (Babuska and Verbruggen, 1996). Moreover,
data and knowledge are available to be incorporated to the
system by these intelligent methods.
In this paper two models are proposed. An academic

model which is oriented to dealing with ideal waves, that
provides the amplitude and phase of the vertical motion
(both heave and pitch), and also the pitch moment of the
ship; the second one predicts the value of those signals
based on the values of the height of the waves at previous
moments. The models are obtained by fuzzy inference
systems (FIS) which are implemented by applying adaptive
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neuro-fuzzy techniques to the available data. The experi-
mental and simulated data have been collected and
provided by CEHIPAR (Cehipar, 1998), a specialised
towing tank, working with a small replica of the ship.

Both of them allow a better understanding of the system,
and have been used to design fuzzy controllers in order to
stabilise the motion of the craft (Esteban et al., 2000; López
and Santos, 2002; López et al., 2002). These controllers
based on the fuzzy model have been applied in real time
experiments with a replica of the ship with good results
(Santos et al., 2005).

As far as we know, there have been no previous fuzzy
models of these marine systems either general ones. Other
models that have been obtained for this ferry consist of a
set of different models—linear in some cases—for each
application point (wavelength, speed, etc.) under particular
conditions (Aranda et al., 2000, 2002; de la Cruz et al.,
1998; Andres et al., 2000). The models proposed in this
paper can be applied in a wider range of sailing conditions.

The paper is organised as follows. Section 2 presents the
general equations for ship motion. Section 3 shows a
description of the ferry behaviour based on simulated data,
and deals with the design of the neuro-fuzzy model for
ideal waves. Some results show its performance. In Section
4, the development of the predictive and real waves
oriented model is shown with some results. Section 5
summarises the conclusions.
Table 1

Sea states

SSN Waves

H1/3 (m) o0 (rad/s)

Min Max Med Min Max Med

0 — — — — — —

1 0.00 0.10 0.05 3.51 — 4.97

2 0.10 0.50 0.30 1.57 3.51 2.03

3 0.50 1.25 0.88 0.99 1.57 1.19

4 1.25 2.50 1.88 0.70 0.99 0.81

5 2.50 4.00 3.25 0.56 0.70 0.62

6 4.00 6.00 5.00 0.45 0.56 0.50

7 6.00 9.00 7.50 0.37 0.45 0.41

8 9.00 14.00 11.50 0.30 0.37 0.33

9 14.00 — 14.00 — 0.30 0.30
2. Ship dynamic

Understanding the dynamic of the system in a qualitative
way is essential in order to develop a fuzzy model. The
main source of knowledge is always a deep study of the
physics of the problem. The key issues of the ships motion
are considered in Lloyd (1998), Lewis (1989) and Fossen
(1994).

The ship is not only under the influence of the waves,
wind, ocean currents, etc., but also its own inertia, the
added mass, the hydrodynamic damping, and the stiffness
forces. The system of six general linearised equations that
describes the physical motion of the craft for small
amplitude motions in regular waves can be written (Lloyd,
1998)

X6
j¼1

Aij

d2xj

dt2
þ bij

dxj

dt
þ cijxj

 !
¼ Foi0 sin ðoetþ jiÞ,

i ¼ 1; . . . ; 6, ð1Þ

where each one of the three terms on the left-hand side
refers to the inertia, the damping and the stiffness forces,
respectively. The ship has linear accelerations, €x1, €x2, and
€x3 m=s

2, and angular accelerations, €x4, €x5, and €x6 rad=s
2.

The excitation amplitude, Foio, and the phase, ji, are
given by

Foi0 ¼ d0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðci � aio2

eÞ
2
þ ðbioeÞ

2
q

ðkNÞ,
tan ji ¼
bioe

ci � aio2
e

,

where d0 is the wave amplitude.
The encounter frequency, oe, is defined as the frequency

at which the ship and a train of regular waves meet. It is a
function of the frequency of the waves, o0, the speed of the
craft, U, and the heading angle, m, angle relative to the
direction of propagation of a train of regular waves. The
formula in deep water is given by (Lloyd, 1998)

oe ¼ o0 �
o2

0

g
U cosm ðrad=sÞ. (2)

The wave modal frequency, o0, can be obtained by
Pierson–Moskowitz spectrum formula, where H1/3 is the
observed significant height of the waves

o0 ¼ 0:4
ffiffiffiffiffiffiffiffiffiffi

g

H1=3

r
¼

1:2526ffiffiffiffiffiffiffiffiffiffi
H1=3

p ðrad=sÞ. (3)

In addition, simulated data about the ship motion in
ideal regular waves have been provided by CEHIPAR and
processed by using the computer program PRECAL (based
on finite elements). In this way, using some estimated
values of the frequency of the waves, the modal frequency
may also be estimated by the expression

o0 ¼ 1:1103=
ffiffiffiffiffiffiffiffiffiffi
H1=3

q
ðrad=sÞ, (4)

which is quite similar but provides slightly lower values
than (3). From now on, this modal frequency as defined in
(4) will be used to characterise the sea state number (SSN),
according to the World Meteorological Organisation
(WMO) (see Table 1).
The experimental data corresponding to frequencies

around each modal frequency are grouped and related to
one specific SSN. The behaviour of the system for a fixed
SSN can be associated with sinusoidal signals with that
model frequency.
Fig. 1 shows the encounter frequency oe (rad/s) vs. the

modal frequency of the waves o0 (rad/s) for different ship
speed. These data have been obtained by substituting the
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Fig. 1. Encounter frequency oe vs. wave frequency o0.

Fig. 2. Encounter frequency oe vs. U cosm.

Fig. 3. Added mass coefficients Aij vs. encounter frequency oe.
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data provided by CEHIPAR for the replica into (4) for o0

and applying (2) to calculate oe. As it can be seen, it
reaches negative values for speed larger than 20 knots
in following seas and high modal frequencies (SSN 5, 4
and 3).

The relationship between oe and U cos m (the compo-
nent of the velocity of the ship in the direction of wave
propagation) is plotted in Fig. 2, for different wave
frequencies. In this figure, negative values of U cos m mean
heading sea. As it shows, for a fixed SSN and in head
waves, increasing the ship speed causes a linear increment
in the encounter frequency. On the other hand, for fixed
SSN and following seas, the encounter frequency falls
linearly if speed increases. In this case, although the
positive and large values of U cos m, the encounter
frequency can reach negative values.

Going back to (1), the coefficients (local inertia, damping
and stiffness) are not constant, and depend on the wave
frequency (or wavelength), the ship speed and the hull
shape.

Being m the total mass in tonnes and I the mass moments
of inertia of the ship, the acceleration coefficients Aij

consist of the inertia mass and the added mass
(Aij ¼ mij þ aij , i ¼ j ¼ 1, 2, 3), or the moment of inertia
and the added mass (Aij ¼ I ij þ aij , i ¼ j ¼ 4; 5, 6), which
depends also on the heading angle. It is needed to remark
that this system performs with large inertial forces (Fig. 3).

If the real mass of the ship is represented as m55 or I55,
Fig. 3 shows that, at oe � 2 rad=s, the added or virtual
mass, a55, is twice the real mass (2.08 times), and it
increases when decreasing oe to 0 rad/s. For example, at 40
knots, the added mass is 4.33, 20.34 and 20.01 times I55
when oe ¼ 1:0158, 0.5030 and �0.5080 rad/s, respectively.
That means that the frequency range of interest will be
around 1 rad/s, where the largest vertical acceleration is
reached, as it will be shown in Section 3.
When plotting the behaviour of the damping coefficients,
bij, the maximum is reached at frequency oe � 021 rad=s.
Based on experimental data and the port/starboard

symmetry of the craft, some of the coefficients have been
found to be zero or negligible and other are constant. The
motions that remain coupled are pitch and heave. There-
fore, the initial study is focused on heave and pitch motions
with heading sea.

3. Neuro-fuzzy modelling

A qualitative understanding of the behaviour of the ship
helps to develop the model and to test it. The more
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Fig. 4. Pitch excitation vs. encounter frequency.

Fig. 5. Pitch acceleration vs. encounter frequency.
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interesting observed aspect is the coupling of the ship
length and the distance between consecutive waves, as it is
reflected in the literature. In fact, if the ship lies on two or
more waves, there will be small heave and pitch motions. In
the same way, increasing the distance between waves
removes the relief of the ship. Then, vertical accelerations
become significant. In any case, the forces exerted by the
waves originate effects that will depend on the dynamic
characteristics of the ship.

Recasting system (1), the equations for heave (j ¼ 3) and
pitch (j ¼ 5) motions are

ðm33 þ a33Þ €x3ðtÞ þ b33 _x3ðtÞ þ c33x3ðtÞ ¼ F 30 sin ðoetþ j3Þ,

ðI55 þ a55Þ €x5ðtÞ þ b55 _x5ðtÞ þ c55x5ðtÞ ¼ F50 sin ðoetþ j5Þ.

Solving the system with initial conditions xj ¼ 0, _xj ¼ 1
for different ship speed and different encounter frequen-
cies, it is possible to prove (Ziegler, 1968) that the steady
state solutions for the pitch signal are sinusoidal functions

x5ðtÞ ¼ x50 sin ðoetþ j5Þ, (5)

€x5ðtÞ ¼ �x50o2
e sin ðoetþ j5Þ ¼ �o

2
ex5ðtÞ, (6)

where x50 is the maximum pitch amplitude and j5 is the
phase. The same type of solution can be found for heave
motion. These equations will be used to obtain the graphics
of the ship behaviour when applying the experimental data
supplied by Precal (x50, j5, x30, j3).

To get some insight into the model, pitch excitation, F50,
and pitch acceleration, €x5, are also represented as a
function of the encounter frequency for different ship
speed in order to get approximated models of the
behaviour. Simulations with Precal have been accom-
plished by the towing tank Cehipar for regular waves, at
speed of 20, 30 and 40 knots, and different sea state codes
(o0 ¼ f0:393021:1470 rad=sg). Some of the simulation
results are shown in Figs. 4–7 (dashed).

3.1. The neuro-fuzzy approach

The models that represent these data are obtained by
FIS which are generated by applying subtractive clustering.

The purpose of clustering is to identify natural groupings
of data from a large data set to produce a concise
representation of a system’s behaviour. The cluster
information can be used to generate a Sugeno-type FIS
that best models the data behaviour using a minimum
number of rules. Subtractive clustering (Chiu, 1994) is a
fast, one-pass algorithm for estimating the number of
clusters and clusters centres in a set of data. As in this case
the number of clusters is unknown, subtractive clustering is
applied.

An FIS is a model that maps inputs characteristics to
input membership functions, input membership functions
to rules, rules to a set of output characteristics, output
characteristics to output membership functions, and the
output membership function to a single-valued output or a
decision associated with the output. The parameters
associated with a given membership function are chosen
in order to account for the variations in the data values.
The method that is used to incorporate the characteristics
of the problem in the inference system is called neuro-
adaptive learning. These neuro-adaptive learning techni-
ques provide a method for the fuzzy modelling procedure
to learn the information about a data set, in order to
compute the membership function parameters that best
allow the associated FIS to track the given input/output
data. This learning strategy works similarly to that of
neural networks.
The computational procedure that accomplishes this

membership function parameters adjustment is called
ANFIS (Jang, 1993; Brown and Harris, 1994). The
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Fig. 6. Pitch excitation vs. encounter frequency (SNN of 5).

Fig. 7. Pitch acceleration vs. encounter frequency (SNN of 5).

Fig. 8. Pitch acceleration vs. encounter frequency.
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acronym ANFIS derives its name from ‘‘adaptive neuro-
fuzzy inference system’’. Using a given input/output data
set, this procedure constructs an FIS whose membership
function parameters are tuned using either backpropaga-
tion algorithm alone, or in combination with a least
squares type of method. This allows the fuzzy systems to
learn from the data they are modelling.

Applying subtractive clustering and training the FIS by
neuro-adaptive learning, a first approximation of a general
fuzzy model is obtained. For instance, Figs. 4 and 5 show
the behaviour of the ship (dashed: experimental data, solid:
FIS) at 40 knots. Similar representations can be obtained
for each one of the sailing conditions.

Analysing all the graphics of the available experiments, it
can be concluded that:
(i)
 Excitation signals reach a maximum around oe �

1 rad=s for positive values of the encounter frequency.
There is also a peak at oe � 0 rad=s for following seas.
These maximum are left shifting when ship speed
increases. The shape is an inverted parabola in both
cases, meaning that excitation forces decrease for large
frequencies (positive or negative).
(ii)
 Pitch acceleration is similar but it reaches its maximum
at oe � 1:5 rad=s. For negative values of the encounter
frequency, the acceleration is almost zero. The expected
amplitude range for the acceleration is 0–71/s2, which
matches with the predictions of the model described in
Esteban et al. (2000), and so it has been considered
when applying the controllers (Aranda et al., 2002;
Santos et al., 2005).
Figs. 6 and 7 show other examples of neuro-fuzzy
inferences of the ship behaviour. In this case, the pitch
excitation and pitch acceleration are represented as a
function of the encounter frequency for a fixed Sea State of
5 (modal frequencies between 0.5710 and 0.6980 rad/s).
It is interesting to notice the way acceleration grows at

1 rad/s, although the excitation is larger at other frequen-
cies (see Fig. 4).
Finally, Fig. 8 illustrates the experimental data of the

pitch acceleration vs. the encounter frequency and Fig. 9
shows this variable vs. ship speed, for different SNN. For
high frequencies, i.e., SSN of 5–7, the experimental data
are scant because of the difficulty of the measurements.
3.2. The general neuro-fuzzy model based on ideal waves

The model based on ideal waves experiments consists of
three FIS (see Fig. 10). The fuzzy model of the ship has
three inputs: the sea state (given by the modal frequency of
the waves), the ship speed, and the heading angle. Each of
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Fig. 9. Pitch acceleration vs. U cosm.

Fig. 10. Fuzzy model of the ship.

Fig. 11. Membership functions for o0.

Fig. 12. Block of the pitch signal.
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them has been represented by five membership functions
uniformly distributed in their corresponding universe of
discourse (Fig. 11). The output variables are the heave and
pitch motions (both, amplitude and phase), and the final
pitch moment.

The model emulates the total pitch moment of the ship,
i.e., the one caused by the final pitch acceleration, not only
by the external excitations. It takes into account that the
forces caused by the waves are filtered by the ship and so its
moment does not necessarily fit the total moment. For
example, at 40 knots for following seas—negative values of
oe frequency—the pitch acceleration is almost zero despite
the large excitation forces (as it can be seen in Figs. 4
and 5).

Block structure of the pitch and the heave systems are
similar. They consist of some functions that estimate the
signal amplitude, the phase, and the encounter frequency
by applying (4). Based on that, the output function
calculates the corresponding output signal (heave, x3,
pitch, x5, or even the pitch moment, M5). See Fig. 12 for
pitch signal.
These functions, designed to calculate the pitch and

heave amplitude and phase, are implemented by means of a
Sugeno-type FIS. The output of these fuzzy systems is a
linear function of the inputs that gives a crisp value. These
kind of systems are computational efficient as well as they
assure the continuity of the output surface (Harris et al.,
1993). They have been trained applying ANFIS learning
strategies (see Section 3.1).
The neuro-fuzzy model has been tested by introducing

simulated regular waves as another input to the model.
Fig. 13 shows the results of the model performing at
40 knots, SSN of 5 (o0 ¼ 3:78m) and heading seas
(m ¼ 1801). The encounter frequency in this case is
1.255 rad/s (upper graphic). The behaviour of the fuzzy
model is compared to the experimental model obtained by
Precal (Esteban et al., 2000) for the same conditions. The
comparison shows a good result.
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Fig. 13. Comparison between fuzzy model (solid) and the experimental

one (diamonds).

Table 2

Experiments

SSN U (knots) Number of measures

4 20 922

4 30 527

4 40 309

5 20 922

5 30 527

5 40 309

6 20 922

6 30 527

6 40 309
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The fuzzy model fits very well at SSN of 4–6. For lower
and higher sea state the experimental data are more
scattered and that makes the fitness more difficult. For
SNN lower than 4 there is no problem of stabilisation, and
for SNN larger than 6, the ferry could hardly travel. The
results are then very encouraging in the range of interest.

It must be taken into account that the neuro-fuzzy model
is a general one in the sense that can be apply for any
condition, whereas the other models that have been
developed consist of a set of different models for specific
conditions (Aranda et al., 2000, 2002; de la Cruz et al.,
1998; Andres et al., 2000).

Although this model has been proved very useful for
designing the control law for the ferry (Santos et al., 2005),
when it was tested with irregular waves the results were not
completely satisfactory mainly due to the phase, so a new
model is proposed.

4. Predictive model

In this section, a different approach is considered to
obtain a model working with real waves. The adaptive
neuro-fuzzy techniques are again used to develop a general
model for any sea state or velocity with irregular waves.

4.1. Data

In this case, the available data are experimental, not
simulated, provided by the CEHIPAR towing tank. They
have been obtained by carrying out some experiments with
a 1/25 scale replica of the ferry with series of real waves at a
constant speed. In each experiment, several variables
(height of the wave, acceleration and position of heave
and pitch, etc.) have been measured by sensors at intervals
of 0.25 s.
Owing to the limited length of the channel (152m), the

number of measurements is reduced when increasing the
speed of the experiment (see Table 2).
In addition to these experimental data, simulated data

from Precal have been used for calculate the values of the
added mass (coefficients aij).
The shape of the acceleration (heave and pitch) and the

moment signals depend on the waves and the speed of the
ship. At a constant speed U, these signals will be a function
of the amplitude values of the waves, taken at time
intervals Dt.
So, the variable v that is wanted to be predicted (such as

pitch acceleration) can be expressed as

vðtÞ ¼ f ðhwðt� nDtÞ; . . . ; hwðt� ðn� 1ÞDtÞ; hwðt� DtÞÞ.

(7)

The problem consists of finding out Dt and n that make
possible to predict enough accurately the value of the
variable.
Initially, tests were made with n ¼ 4, 6 and 8 using

Dt ¼ 0:25 s. The results were not completely satisfactory.
So, the following criteria were established to choose them:
(i)
 The interval [0, n� Dt] might cover at least the
complete cycle of the wave.
(ii)
 In addition, n must be the smallest possible.
That leads to

Dt ¼
2p

n� o0
. (8)

Inspecting in Table 2 the range of experiments (SSN
4–6), the smallest frequency to be considered occurs at SSN
6, with waves of 4 and 6m high and modal frequency
around o0 ¼ 0:45 rad=s. Therefore, applying (8)

Dt ¼
13:96

n
. (9)

After considering different values of n, it was established
that at least n should be 9, then Dt ¼ 1:55 s. As for the
experiments Dte ¼ 0:25 s, finally Dt ¼ 1:50 s and n ¼ 10.
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4.2. Neuro-fuzzy predictive model

An FIS is applied to generate the so-called predictive
model. The FIS has nþ 3 input variables (13)—corre-
sponding to the modal frequency, o0, the speed of the
ferry, U , the heading angle, m, and the 10 past measures of
the wave height. The output is the pitch acceleration.

The ANFIS algorithm allows replacing the knowledge of
the expert with the implicit knowledge contained in the
data set (Section 3.1). However, the number of data for
training should be several times greater than the number of
parameters that is wanted to obtain (at least 5 times). In
this case, the model has 200 adjustable parameters and the
series of available data for training are 1182. Once the data
have been arranged properly, the FIS is trained with a third
of the data. The generalisation is made with the second-
third, reserving the last-third for the model test.

For each experiment, a non-dimensional error is defined
as

eexp ¼
1

#measurement

X#measurement

i¼1

absðaccexpðiÞ � accmodðiÞÞ

absðaccexpðiÞÞ
,

(10)
Table 3

Experiments errors

SSN U (knots) oe (rad/s) eexp

4 20 1.5715 0.42

4 30 1.9388 0.53

4 40 2.3061 0.63

5 20 1.0421 0.38

5 30 1.2490 0.46

5 40 1.4560 0.58

6 20 0.7281 0.27

6 30 0.8505 0.40

6 40 0.9730 0.49

Fig. 14. Results for SSN ¼ 4 U ¼ 20 knots.
where accexpðiÞ and accmodðiÞ are the experimental and the
modal values of the pitch acceleration, respectively. Table 3
shows the error obtained with the experimental data after
training the model.
Finally, Figs. 14–16 show a comparison between the

experimental values of the pitch acceleration and the model
ones for the three experiments whose encounter frequency
is close to the natural frequency of oscillation. That is,
SSN ¼ 4 with speed of 20 and 30 knots, and SSN ¼ 5 with
speed of 40 knots.
As it can be observed, the model follows the results of

the experiments and fits well the real data.
Fig. 15. Results for SSN ¼ 4 U ¼ 30 knots.

Fig. 16. Results for SSN ¼ 5 U ¼ 40 knots.
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5. Conclusions

Marine systems are known to be rather nonlinear with
significant poorly understood influences. So, finding a
general model of the system is not a trivial task, and it
allows to try different control alternatives for the crafts.

In this paper, a general neuro-fuzzy model has been
obtained for a fast ferry vertical motion. Based on physical
principles, experimental and simulated data, and on the
qualitative knowledge of its behaviour, a neuro-fuzzy
inference system has been applied to estimate the non-
linear model. The model has been developed for pitch and
heave motions and heading seas, using as inputs the sea
state or modal frequency of the waves, the ship speed and
the heading angle.

The neuro-fuzzy model shows good pattern with
experimental and simulated data for regular waves, for
different sea states, and has been compared with other
models with satisfactory results. The results are original as
other approximations to the problem do not cope with any
sailing situation, whereas the neuro-fuzzy model is a
general one in the sense that can be apply for any
condition.

On the other hand, a predictive model has been obtained
for irregular waves.

These control-oriented models have been developed in
order to apply some neuro-fuzzy control strategies
(Esteban et al., 2000; López and Santos, 2002; Santos
et al., 2005). They have been used to improve the quality of
the travelling by stabilising the motion of these high-speed
vessels, as it is nowadays strongly demanded for different
purposes.
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