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Abstract

Multi-agent systems are widely used to address large-scale distributed combinatorial applications in the real world. One such

application is meeting scheduling (MS), which is defined by a variety of features. The MS problem is naturally distributed and especially

subject to many alterations. In addition, this problem is characterized by the presence of users’ preferences that turn it into a search for

an optimal rather than a feasible solution. However, in real-world applications users usually have conflicting preferences, which makes

the solving process an NP-hard problem. Most research efforts in the literature, adopting agent-based technologies, tackle the MS

problem as a static problem. They often share some common properties: allowing the relaxation of any user’s time restriction, not dealing

with achieving any level of consistency among meetings to enhance the efficiency of the solving process, not tackling the consequences of

the dynamic environment, and especially not addressing the real difficulty of distributed systems which is the complexity of message

passing operations.

In an attempt to facilitate and streamline the process of scheduling meetings in any organization, the main contribution of this work is

a new scalable agent-based approach for any dynamic MS problem (that we called MSRAC, for Meeting Scheduling with Reinforcement

of Arc Consistency). In this approach we authorize only the relaxation of users’ preferences while maintaining arc-consistency on the

problem. The underlying protocol can efficiently reach the optimal solution (satisfying some predefined optimality criteria) whenever

possible, using only minimum localized asynchronous communications. This purpose is achieved with minimal message passing while

trying to preserve at most the privacy of involved users. Detailed experimental results on randomly generated MS problems show that

MSRAC is scalable and it leads to speed up over other approaches, especially for large problems with strong constraints.

r 2006 Published by Elsevier Ltd.
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1. Introduction

Multi-agent systems are widely used to address many
real-world combinatorial applications such as meeting
scheduling (MS). This problem embodies a decision-making
process affecting several users, in which it is necessary to
decide when and where one or more meeting(s) should be
e front matter r 2006 Published by Elsevier Ltd.
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scheduled. To satisfy real-world efficiency requirements, in
this work we focused on two challenging characteristics: the
distributed and dynamic nature of the problem. The MS
problem is inherently distributed and hence cannot be solved
by a centeralized approach; it is dynamic because users are
frequently adding new meetings or removing scheduled ones
from their calendar. This process often leads to a series of
changes that must be continuously monitored.
The general task of solving an MS problem is normally

time-consuming, iterative, and sometimes tedious, parti-
cularly when dealing with a dynamic environment. In
other words, solving the MS problem involves find-
ing a compromise between all the attendants’ meeting

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2006.10.004
mailto:ahlem@nict.go.jp
mailto:bao@jaist.ac.jp


ARTICLE IN PRESS
A.B. BenHassine, T.B. Ho / Engineering Applications of Artificial Intelligence 20 (2007) 857–873858
requirements2 (i.e., date, time and duration) which are
usually conflicting. Thus, this problem is subject to several
restrictions, essentially related to the availability, calendars
and preferences of each user. Automating MS is important
mainly because it can lead to more efficient and satisfying
schedules within organizations (Feldman, 1987).

Most significant research efforts in the literature adopt
agent-based technology for the distributed and dynamic
aspects of MS problems. Initial meeting schedule research
is based on constraint satisfaction problem formalism
(CSP) (Montanari, 1974). The problem is formalized as
centeralized CSP (Abdennadher and Schlenker, 1999;
Bakker et al., 1993). These works are essentially focused
on over-constrained CSPs. However, among more recent
typical agent-based approaches, some works focused on
using distributed autonomous and independent agents to
solve the MS problem while maximizing users’ preferences
(Garrido and Sycara, 1996). This work is based on the
communication protocol proposed by Sycara and Liu
(Sycara and Liu, 1994), where agents are capable of
negotiating and relaxing their constraints in order to reach
an agreement on a schedule with high join utility. Another
work also based on the multi-agent system, was described
in (Sen et al., 1997). This work focuses on the problem of
how an application domain for intelligent surrogate agents
can be analyzed, understood and represented such that the
underlying agents can make appropriate adaptations to
their environment, to carry out tasks on behalf of human
users. The authors’ prior work focused on agents adapting
to environmental changes (Sen and Durfee, 1994), however
Sen et al. directed their efforts towards the integration of
user preferences (Sen et al., 1997). Three other multi-agent
approaches to MS problems, using the Partial CSP
formalism introduced by (Freuder and Wallace, 1992),
were given in the literature. The first work (Luo et al.,
2000) is a new approach for MS problems using fuzzy
constraints. The second work (Tsuruta and Shintani, 2000)
proposes the distributed valued constraint satisfaction
problem (DisVCSP) formalism to model MS problem.
This approach is used in our experimental evaluation. The
third work, based on multi-agent systems and using fuzzy
constraints to express users’ preferences, was presented in
(Franzin et al., 2004). This MS system was based on an
existing system that includes hard constraints (Franzin
et al., 2002). The authors proposed to integrate preferences
to their system and focused on observing the behavior of
this new system under several conditions (Franzin et al.,
2004). Their main objective was to evaluate the relations
among solution quality, efficiency and privacy.

Nevertheless, the majority of these works share the
following properties:
3This order is used to avoid the fall of agents into an infinite processing

(1)
2T

sam

loop and then to guarantee the completeness of the algorithm.
Dealing only with non-dynamic problems (among which
(Abdennadher and Schlenker, 1999; Bakker et al., 1993;
o simplify the problem, we assume that all the attendants are in the

e city.

4T

to h

and
Tsuruta and Shintani, 2000; BenHassine et al., 2003;
Franzin et al., 2004); BenHassine et al., 2004a,b).
(2)
 Allowing the relaxation of any user’s preferences, even
those related to non-availability of this user in order to
arrive at consensus choices for a meeting’s time.
However in real-world applications this is not always
permitted. For example, when the user is traveling on
business, such a constraint would oblige the user to
stop his/her travel to attend the meeting, and this is not
always possible (amongst Sycara and Liu, 1994;
Garrido and Sycara, 1996; Sen et al., 1997; Luo et al.,
2000; Tsuruta and Shintani, 2000; Franzin et al., 2004).
(3)
 Not integrating the enforcement of local consistency in
their solving process, in spite of the pre-eminent role of
the filtering techniques in the efficiency of solving an
NP-complete problem. Only the authors in (Franzin
et al., 2002, 2004) deal with the use of some inferred
knowledge to maintain coherence between meetings in
order to steer the selection of the next proposal, while,
none of the other works try to maintain any level of
consistency during the negotiation process.
(4)
 Judging all the meetings of the whole system with the
same level of importance (among others Garrido and
Sycara, 1996; Luo et al., 2000; Franzin et al., 2004;
Tsuruta and Shintani, 2000). In real life, this is not always
true. Obviously, the great significance of a meeting
depends especially, but not only, on the leader of the
event, the number of participants, and the meeting’s main
subject. Especially in a dynamic environment, such
discrimination may lead to conflicting meetings, and
may also increase the number of meetings to reschedule.
(5)
 Not considering the high complexity of message
passing operations in real distributed systems (Garrido
and Sycara, 1996; Sen et al., 1997; Luo et al., 2000;
Tsuruta and Shintani, 2000; Franzin et al., 2004).
In addition, in (Yokoo and Hirayama, 2000) the authors
described a complete and generic solution strategy, called
asynchronous backtracking (ABT), to solve any distributed
problem using DisCSP (distributed constraint satisfaction
problem) formalism (Yokoo et al., 1990). In this approach,
the agents act asynchronously by sending point-to-point
messages according to their predetermined priority3 order.
Nevertheless, this approach presents, on the one hand some
limitations for large and complex problems.4 On the other
hand, ABT can be applied only to non-dynamic problems,
where no incremental constraint propagation is required.
Therefore, we chose to use ABT as a witness approach in
our experimental evaluation on static instances of the
utilized MS problems, in order to empirically prove the
correctness of our results.
he proposed methods applied to the ABT algorithm, to make it able

andle multiple local variables, are neither efficient nor scalable (Yokoo

Hirayama, 2000).
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We have learned from all the previous works and
focused our research on the new MS requirements arising
essentially from advances in computer and networking
technology and also to dynamic environmental conditions.
The MSRAC (meeting scheduling with reinforcement of
arc consistency) multi-agent coordination approach pro-
posed in this paper is a novel, scales better, dynamic and
entirely distributed solution to the MS problem that
accounts for user preferences, handles several events with
various levels of importance and especially minimizes the
number of exchanged messages. This paper significantly
extends our previous work (BenHassine et al., 2004a). The
basic characteristics of MSRAC are the following.

First, it is an incremental approach capable of processing
problem alterations without conducting an exhaustive
search.

Second, it is based on the distributed reinforcement for
arc consistency (DRAC) approach (BenHassine and
Ghedira, 2002) to enhance the efficiency of the solving
process.

Third, in the MSRAC approach the MS problem is
contemplated as a set of distributed reactive self-interested
agents in communication, each with the ability to make
local decisions on behalf of the user. The agents’ decisions
are not based on any global view5 but only on currently
available local knowledge. The final result is obtained as a
consequence of their interactions. This purpose is achieved
with the minimum number of exchanged messages by
virtue of the real difficulty of message passing operations in
a distributed systems.

Finally, the use of preferences naturally implies the
adoption of an optimization criterion, both for each agent
and also for the system as a whole. Thus, we adopted the
dynamic valued constraint satisfaction problem formalism
(DynVCSP) to model any MS problems. This formalism
provides a useful framework for investigating how agents
can coordinate their decision-making in such dynamic
environment leading to more flexible and widely applicable
approach to real life. We have to note that, this approach
cope effectively with ‘‘closed’’ systems (Ephrati and
Rosenschein, 1991), such as company or organization,
whilst ‘‘opened’’ systems will be tackled in future work.

This paper is organized as follows. In Section 2, we give
the proposed formalization for the dynamic MS problem.
In Section 3, we present the MSRAC multi-agent model. In
Section 4, we describe the MSRAC global dynamic. In
Section 5, we present a theoretical and experimental
comparative evaluation. Finally, Section 6 concludes the
paper.

2. Formalization of the dynamic MS problem

The CSP framework has emerged as a key formalism for
many combinatorial problems. We formalize the MS
5The agents exchange as little information as possible to keep most of

their personal information private.
problem as a DVCSP in which each user maintains two
kinds of constraints: hard and soft constraints related to
him/her, along with other strong constraints defining the
specific features of the problem itself. The hard constraints,
which represent the non-availability of the user, can never
be relaxed, while the soft constraints, which represent the
preferences of the user, can be violated.
In the following, we first present static CSP formalism

followed by dynamic CSP formalism, then we introduce
VCSP formalism, and finally we state our proposed
formalization for MS problem.
A static CSP is a triplet ðX ;D;CÞ composed of a finite set

X of n variables, each of which takes values in an
associated finite domain D and a set C of e constraints
between these n variables (Montanari, 1974). Solving a
CSP consists in finding one or all complete assignments of
values to variables satisfying all the constraints.
A dynamic CSP P (DCSP) (Dechter and Dechter, 1988)

is a sequence of static CSP P0; . . . ;Pa;Paþ1; . . . each
resulting from a restriction (a constraint or a variable is
added) or relaxation (a constraint or a variable is retracted)
in the preceding one.
A valued CSP P (VCSP) (Schiex et al., 1995) is a

quintuple ðX ;D;C;S;jÞ where ðX ;D;CÞ is the classical
CSP formalism, S ¼ ðE;

N
;�Þ is a valuation structure, and

an application j : C! E. jðcÞ is called valuation of
c; c 2 C. E is the set of possible valuations; � is a total
order on E;?2 E corresponds to the maximal satisfaction
and > 2 E corresponds to the maximal dissatisfaction;

N
is an aggregation operator used to aggregate valuation.
Assume that A is an assignment of all the variables of the

problem. A can be evaluated by combining the valuation of all
the violated constraints using

N
; nPðAÞ ¼

N
c2CjðA; cÞ where

jðA; cÞ ¼
? if c is satisfied by A;

jðcÞ otherwise.

(
(1)

We define a dynamic MS problem, as a DVCSP, by a sequence

of quintuples ðX ;D;C;S;jÞ where
�

6

X ¼ fX 1; . . . ;X ng is the set of n meetings that need to be
scheduled at an instant t. X k with k 2 f1; . . . ; ng denotes
the kth meeting to schedule.

�
 D ¼ fD1; . . . ;Dng is the set of all possible dates for all

the meetings X . Di ¼ fdti1 ; . . . ; dtid g (with jDij ¼ d) is
the set of possible dates for the meeting X i.

�
 C is the set of all constraints of the problem. C is

composed of the following constraints:
� hard constraints: represented by, on the one hand, Ch

the set of the constraints related to the non-
availability of all users (see the white box in Fig. 1).
On the other hand, CallDiff the set of allDiff

constraints relating each pair of meetings X k and
X l sharing at least one participant AjðAj 2 PartðX kÞ

and Aj 2 PartðX lÞÞ.
6

The
 function Part(X k) denotes all the participants in the meeting X k.
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� soft constraints, Cs is the set of the soft constraints
related to the preferences of all users towards the
possible dates in their calendar (see the gray box in
Fig. 1).
Thi

por

We

ir m
�
 j : C ! E:C ¼ fCh [ CallDiff [ Csg, for each hard con-
straint ci 2 fCh [ CallDiffg we associate a weight ¼ 1 and
for each soft constraint cj 2 Cs we associate a weight
wj 2 ½0::1�.

7 This weight reports the degree of preference
of a user to have a meeting at the date dtj (see the
number inside the gray box in Fig. 1).

�
 S represents the valuation structure that defines the

proposed optimality criteria (discussed in next section)
and will be used to find the ‘‘best’’ solution.
In addition, for each meeting X k (each variable in the
problem) we assign a different weight W Xk

2 ½0::1� to
define the degree of importance of the variable X k ðk 2

f1; . . . ; ngÞ and it is used to allow the processing of the most

important meeting8 at first.
Solving a MS problem consists in finding a ‘‘good’’

assignment sl� 2 Sol:¼D1 � � � � �Dn of the variables in
X ¼ fX 1; . . . ;X ng according to their importance W X k

, such
that all the hard constraints are satisfied while maximizing
the global utility (GU) of all the users for all the scheduled
meetings such that:

sl� ¼ arg max
sl2Sol

GUðslÞ. (2)

The computation of the GU will be given in detail in the
next section.
s assumption does not contradict the ability of our protocol to

t any kind of preferences’ measurement evaluation.

assume that the users report truly and accurately the importance of

eetings.
3. MSRAC multi-agent model

The proposed MSRAC model, based on the dual
constraint-graph, consists of a set of interconnected
automated agents. Two types of agents are involved in
this model, User agents and an Interface agent. Each User
agent (proposer of a meeting and/or a participant in a
meeting) represents a human user and is given the
autonomy to negotiate on its user’s behalf, while the
Interface agent is added to the model in order to detect
whether the global goal has been achieved and especially to
inform the human users of the result.
In the sequel, a User agent is called a Proposer agent if

his corresponding human user has a meeting to propose,
otherwise he is called Participant agent. The same User
agent can be Proposer agent for his meetings and a
Participant agent in other meetings.
Each User agent (Proposer or Participant) has its own

acquaintances, own knowledge (static and dynamic) and a
reasoning engine. The acquaintances of a User agent Ai are
dynamic and depend on the current meeting to be
scheduled (or rescheduled). At an instant t, the acquain-
tances of Ai are defined by all the participants User agents
in the current meeting X k. The static knowledge of a User
agent is formed by the possible dates for the underlying
meeting X k and the user’s constraints. Its dynamic knowl-
edge is formed by both its acquaintances and its current
calendar.
Two User agents are connected together if and only if

their corresponding human users should attend the same
meeting. All the User agents will negotiate and cooperate
together to schedule all the meetings proposed by the
human users. Therefore we assume that the agents
negotiate by exchanging asynchronous point-to-point
messages containing the necessary relevant information,
an agent can send a message to another only if it knows
that this agent belongs to its acquaintances and the
messages are received in a finite delivery time and in the
same order that they are sent.
Each User agent Ai ðAi 2 AÞ maintains a sequence of

VCSP
Ai
P ðX

Ai ;DAi ;CAi ;S;jÞ for which the set of variables
X Ai 2 X represents the user’s Ai meetings to schedule at the

instant t. The constraints CAi 2 C ðCAi ¼ fC
Ai
h [ CAi

s [

C
Ai
allDiff gÞ represent the non-availability, the calendar of this

user and the constraints relating each pair of meetings.
In this multi-agent model, the intra-agent constraints are

defined by the aforementioned constraints, whilst the inter-
agent constraints are represented by the set of strong
constraints, i.e. equality constraints. An equality constraint
exists between two User agents Ai and Aj if and only if

there exist at least one meeting X
Ai
k (resp. X

Aj

l ) such that

Aj 2 PartðX
Ai
k Þ (resp. Ai 2 PartðX

Aj

l Þ). We should discern

that the equality constraints are dynamic.
The local goal of each User agent Ai is to schedule all its

meetings, whenever possible, such that on the one hand all
its hard constraints C

Ai
h [ C

Ai
allDiff are satisfied, and on the
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Table 1

Example of the degree of preference of each user Ai toward each possible date dtp for the meeting X
A1
1

(Tu, 7) (Wed, 2) (Wed, 7) (Th, 2) (Th, 6)

A1 0.1 0.3 0.9 0.6 0.4

A2 0.6 0.7 0.3 0.5 0.4

A3 0.1 0.2 0.3 0.6 0.7

A4 0.7 0.3 0.4 0.2 0.1

LUðX
A1
1 ; dtpÞ 1.5 1.5 1.9 1.9 1.6

9We suppose that all the attendees have the same level in the company.
10Clarke Tax mechanism (Ephrati and Rosenschein, 1991) can be

integrated in this model to enforce users to reveal their true preferences.
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other hand the higher local utility (LU) for all the planned
meetings is achieved. The LU brought off by a meeting X

Ai
k

scheduled at the date dtp 2 D
Ai
k ðLUðX

Ai
k ; dtpÞ is defined in

Eq. (3) by the summation of the preferences (soft
constraints) of all the participants Aj 2 PartðX

Ai
k Þ

LUðX
Ai
k ; dtpÞ ¼

X
Aj2PartðX

Ai
k
Þ

w
Aj
p (3)

In order to fulfill its local goal, each User agent Ai should
choose for each of its meetings X

Ai
k 2 X Ai the date dtp that

maximizes its LU using Eq. (4).

max
dtp2D

Ai
k
; p2f1;...;jD

Ai
k
jg

LUðX
Ai
k ; dtpÞ. (4)

The global goal of the whole system is to schedule the
maximum of the meetings of all the User agents satisfying
all the inter-agent constraints and achieving the higher
global utility (GU) which defines the quality of the
solution. The GU is represented by the summation of all
local utilities corresponding to the planned meetings (in the
set of possible solutions s) by using Eq. (5).

GUðslÞ ¼
X
Ai2A

X
ðX

Ai
l
;dtpÞ2sl; dtp2D

Ai
l

LUðX
Ai
l ; dtpÞ. (5)

However, for any meeting X
Ai
k , a date dtp 2 D

Ai
k may be the

most preferred by one participant and non-preferred (or
less preferred) by the other participants. Therefore, in
order to guarantee the maximum preference similarities
between all the participants we propose to add to our
system another criterion to satisfy this condition. The idea
is to choose the date that, in addition to the first criterion
described in Eq. (4), minimizes the distance between the
own users’ preferences by using Eq. (6).

min
dtp2D

Aj
l
; p2f1;...;jD

Aj
l
jg

max
fAk ;Aig2PartðX

Aj
l
Þ

jwAk
p 	 wAi

p j

0
@

1
A. (6)

To illustrate the use of Eq. (6) more clearly, let us consider
the following example of 4 User agents (users) given the
task of scheduling one meeting. We assume that A1 is the
Proposer of this meeting X

A1
1 and all the other User agents

are the participants. The possible dates for X
A1
1 are

D
A1
1 ¼ fðTu; 7Þ, (Wed, 2), (Wed, 7), (Th, 2), and (Th, 6)}.

Table 1 illustrates the preferences w
Ai
1 of each attendee Ai 2

PartðX
A1
1 Þ toward each date dtp 2 D

A1
1 .
However, according to Table 1, the dates (Wed, 7) and
(Th, 2) maximize the utility (LU) of the meeting, i.e., the
sum of the utilities of all attendees for both of the two dates
is 1.9. If we adopt the same strategy as (Franzin et al.,
2002) the optimal solution should be the date (Wed, 7),
with 0.3 as the overall preference. The optimality criteria
defined in (Franzin et al., 2002) is based on maximizing the
minimum preference overall agents (fuzzy criteria) and
choosing an ‘‘undominated’’ set of preferences such that
none of the agents’ preferences can be improved without
decreasing the preference of some other agent, i.e., for (Th,
2) the minimum preference is 0.2 lower than the overall
preference for (Wed, 7), also none of the preferences of the
agents can be improved without decreasing the preferences
of some others. Nevertheless, the date (Wed, 7) is the most
preferred only by A1, and it is the less preferred by A2, A3,
and A4. Thus for our approach and with the second
criterion we should instead chose the date (Th, 2), because
it minimizes the difference between the users’ preferences
ðmaxfj0:9	 0:3j; j0:6	 0:2jgÞ, and consequently reinforces
the similarity between the attendees9.
It is noteworthy that the above optimality criteria is

based essentially on the preferences of the attendee toward
the possible dates of the underlying meeting.10 Such criteria
require a common preferences scale otherwise it is not fair
to compare the personal preferences of the participants in a
meeting. To satisfy this condition without forcing the
participants to reveal their private Calendar, we propose to
integrate a new heuristic in the solving process. This
heuristic allows the use of any ordering or scale to express
the preferences of users (no common scale is imposed on
users to express their own preferences). It is worth
remarking at this stage that the use of such optimization
criteria may lead to the classical problem of constructing
interpersonal utilities functions (Feldman, 1980), i.e., how

to compare users’ preferences using independent and different

ordering and/or measurement scales?
In this paper, the used criteria do not require any

common ordering or scale over all the agents to express
their preferences. The basic idea is to ask each attendee Aj

in a meeting X
Ai
k to rank the set of possible dates for X

Ai
k

from the most to the less preferred, i.e., dtp 
 dtl if and
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Table 2

Example of users’ implicit preferences generated by the Proposer agent

A1 A2 A3 A4

5 ðWed; 7Þ (Wed, 2) (Th, 6) (Tu, 7)

4 (Th, 2) (Tu, 7) (Th, 2) ðWed; 7Þ

3 (Th, 6) (Th, 2) ðWed; 7Þ (Wed, 2)

2 (Wed, 2) (Th, 6) (Wed, 2) (Th, 2)

1 (Tu, 7) ðWed; 7Þ (Tu, 7) (Th, 6)

Table 3

Example of LU computation for each candidate

Candidate dates Local utility

(Tu, 7) 1þ 4þ 1þ 5 ¼ 11

(Wed, 2) 2þ 5þ 2þ 3 ¼ 12

(Wed, 7) 5þ 1þ 3þ 4 ¼ 13

(Th, 2) 4þ 3þ 4þ 2 ¼ 13

(Th, 6) 3þ 2þ 5þ 1 ¼ 11
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only if wAi
p 4w

Ai
l . For the previous example, the User agent

A2 will rank the possible dates for X
A1
1 as follows: (Wed,

7)
(Th, 2)
(Th, 6)
(Wed, 2)
(Tu, 7). Then the Proposer
agent will generate a new implicit ordinal scale11 as stated
by the received ordered sets. The lowest date dtp in the
order has the greatest number of votes associated with it.
The Proposer agent will first assign an implicit preferences
IwAi

p to each dtp and then use it to determine the best date.
Table 2 presents the candidate dates and their implicit
preferences generated by the Proposer agent. In this
example the local utilities12 of the two candidates (Wed,
7) and (Th, 2) are the same (Table 3). The Proposer agent
will choose (Th, 2) to enforce the similarity13 between the
participants. The maximum difference for (Wed, 7) is
j5	 1j ¼ 4, while it is j4	 2j for (Th, 2). It is noteworthy
that this pseudo-common scale is dynamic, and may
change according to the candidate dates for a meeting.
Hence, the local utility of a meeting should be normalized
to compare it to another one with different scales.

When there is a conflict between two meetings X
Ai
k and

X
Aj

l for two different User agents or for the same agent
(X

Ai
k and X

Ai
l ), i.e., two meetings with the same importance

ðW
Ai
Xk
¼W

Aj

Xl
Þ that needs to be scheduled at the same date

dtp. The most obvious solution is to accept always to
schedule at dtp the meeting that increases the LU of the
concerned agent (LUðX

Ai
k ; dtpÞ). However, trying always to

increase the LU may lead to a local optimum rather than to
a global one. In order to avoid to be stuck on local
optimum, we propose to use the metropolis criterion of the
simulated annealing technique to decide which meeting to
11This idea cannot handle cardinal preferences.
12Computed according to Eq. 3.
13According to Eq. 6.
schedule at dtp. The main idea is that, while accepting some
deterioration in the LU we may escape from the local
optimum and converge toward the global one, i.e., sl� ¼

argmaxsl2Sol GU(sl).
Three possible issues (one deterministic and two non-

deterministic) can be applied to solve such conflict. If User
agent Ai, which has a meeting already scheduled X

Ai
k in its

calendar at the date dtp, receives another meeting X
Aj

l with
the same importance to be scheduled at the same date dtp,
then it will choose one of the following issues:
(1)
14

mee
The deterministic issue, defined as always scheduling at
dtp the meeting that will increase LU, i.e., If
ðLUðX

Ai
k ; dtpÞ4LUðX

Aj

l ; dtpÞÞ then X
Ai
k will be sched-

uled at dtp and X
Aj

l will be scheduled at another date
dthadtp. Otherwise inversely.
(2)
 The non-deterministic issue, consists in arbitrarily
choosing one of the meetings in conflict (X

Ai
k or X

Aj

l )
to schedule at dtp and rescheduling the other one.
(3)
 The second non-deterministic issue, defined as using the
metropolis criterion in order to choose the meeting to
reschedule. X

Ai
h is accepted to be scheduled at date dtp

by applying the acceptance probability described in
Eq. (7). Note that this process leads to the rescheduling
of X

Aj

l and perhaps to the rescheduling of other
meetings (with less importance) by propagation.14

The main idea behind using metropolis criterion to
solve the conflict is that trying always to increase LU
may not lead to the optimal solution, while accepting
some deterioration in the LU may increase the final
GU.

Pcfaccept X
Ai
k ¼ dtpg

¼

1 if LUðX
Ai
k ; dtpÞXLUðX

Aj

l ; dtpÞ;

Exp
LUðX

Ai
k ; dtpÞ 	 LUðX

Aj

l ; dtpÞ

Tp

 !
otherwise;

8>>><
>>>:

ð7Þ

where Tp 2 Rþ denotes the temperature.
In the following and mainly in the experiment, we propose
three versions of the MSRAC approach regarding the
aforementioned issues. The first is MSRAC-1, a determi-
nistic approach in which we try always to improve the LU
(issue 1). The second MSRAC-2, a non-deterministic
approach in which each agent randomly chooses one of
the conflicting meetings (issue 2). The third is MSRAC-3, a
non-deterministic approach in which each agent applies the
metropolis criteria to solve the conflict (issue 3).

4. MSRAC global dynamic

The global objective of our proposed approach MSRAC
is to schedule all meetings for all users, while maximizing the
A threshold can be used in order to avoid the rescheduling of all

tings by successive propagation.
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global utility and ensuring near fulfillment of users’
preferences. This approach is based in a part on the DRAC
approach (for Distributed Reinforcement of Arc Consistency)
(BenHassine and Ghedira, 2002). DRAC is a constraint-
based multi-agent approach to enforce arc-consistency on
binary CN as a side-effect of the interactions among agents.
The underlying model consists of a set of Constraint agents
related by shared variables. Each agent maintains a local
knowledge about the problem and cooperates with other
agents by exchanging only relevant information. The global
goal of all agents is to simplify the initial problem by
enforcing arc-consistency property, i.e., to transform it into
an equivalent one without loss of solution.

The MSRAC global dynamic is divided into two steps.
�
 Step 1 is to use the basic idea of the DRAC approach to
transform the initial MS problem into another equiva-
lent MS0 by enforcing local consistency (Mackworth,
1977) (node and arc consistency).

�
 Step 2 is to solve the obtained MS problem via

interactions and negotiations between agents. This
system does not include any central node to process
meetings.

Before introducing the global dynamic, we present the
communication protocol.

4.1. Communication protocol

For the communication protocol, the two basic message-
passing primitives used for each agent are the same as those
used in most MAS approaches.
�
 sendMsg(Sender, Receiver, Message) is used to send a
message to one or more receivers.

�
 getMsg() extracts the first message from the mailbox of

the agent.

With respect to exchanging messages, the underlying multi-
agent dynamic involves the following messages:
�
 ‘‘Start’’ message, sent by the Interface agent to the
corresponding Proposer agent to activate it whenever
there is a new meeting given by a user.

�
 ‘‘RedMeetCalendar: with:’’ message, sent by a Proposer

agent to each Participant agent to ask it to adjust the
possible dates of the meeting according to both its user’s
non-availability and its calendar.

�
 ‘‘Reply’’ message, sent by each Participant agent to the

Proposer agent in order to propagate performed
reductions.

�
 ‘‘ReceiveProp: with:’’ message, sent by the Proposer

agent to the Participant agent to verify the viability of
the proposal.
15
�

This is used as a heuristic to decrease the number of BT and

consequently the amount of exchanged messages and hopefully speed up

the whole solution process.
‘‘MeetNotPossible’’ message, sent by each agent to the
sender agent to inform it about the non-possibility of the
meeting.
�
 ‘‘MeetingOK’’ message, sent by each Participant agent
to the sender agent to inform it about its agreement for
the date of the meeting.

�
 ‘‘UpdateProp: with:’’ message, sent by a Participant

agent to a Proposer agent, in the case of conflict between
two (or more) meetings, in order to invite it to relax its
preferences.

4.2. MS dynamic

A user who wants to host a meeting must tailor the
Interface agent, which will activate the corresponding
Proposer agent and make it interact with all of the
Participant agents. Note that more than one Proposer
agent can be activated at the same time. Each activated
Proposer agent Ai must first reduce the set of possible dates
of the corresponding meeting X

Ai
k according to its hard

constraints (Algorithm 1 line 1). This process can be viewed
as node consistency reinforcement. If the set of possible
dates of the meeting becomes empty after reduction then its
possible dates must be changed (Algorithm 1 line 3).
Otherwise, the Proposer agent must delete all the dates that
were used for more important meetings (Algorithm 1 lines
5 and 6), i.e., all meetings ðX

Aj

l ; dpÞ 2 CalendarAi for which
W Xk

oW X l
. This can be viewed as arc consistency

enforcement. A copy of the deleted proposals should be
saved for other use in case the meeting X

Aj

l is cancelled
(Algorithm 1 line 7). Finally, the Proposer agent must send
the obtained reduced set of possible dates of X

Ai
k to all of

the Participant agents to ask them to first, adapt it to their
convenience, and then rank15 the remaining possible dates
according to their preferences (Algorithm 1 line 11).
The main goal of this heuristic is to define an ordinal

relationship between all the proposals for each meeting
according to users’ interests. We can thus especially avoid
the classical problem in constructing a common inter-
personal utility function, which is how to compare
preferences not relying on the same preference scale.
Each Participant agent that has received the message

containing the reduced set of possible dates, starts first by
reinforcing node and arc consistency (Algorithm 2 lines
1–5), then by ranking the obtained slot times (Algorithm 2
line 9) according to its preferences (from the most preferred
to the less preferred date). The higher an agent ranks a
particular date, the more points that date will receive.
Specifically, a date is awarded one point for each rank
below it.
Algorithm 1. Start message executed by a User agent Ai for

each meeting X
Ai
k .

Start
1:
 Delete from D
Ai
k all non-viable values;
2:
 if D
Ai
k ¼ ; then
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3:
16To av

of non-av
Change meeting possible dates for X
Ai
k ;
4:
 else
5:
 for all (X
Aj

l such that ðX
Aj

l ; dtpÞ 2 CalendarAi Þ

AND ðW X l
4W Xk

)

do
6:
 Delete(D
Ai
k , dtp);
7:
 Add(DReserveAi [k], dtp);
8:
 if D
Ai
k ¼ ; then
9:
 Change meeting possible dates for X
Ai
k ;
10:
 else
11:
 forall Aj 2 PartðX
Ai
k Þ do
12:
 Send(self, Aj, RedMeetCalendar:

D
Ai
k with:W X k

);
13:
 end for
14:
 end if
15:
 end for
16:
 end if
Finally this agent must return the obtained set of possible dates
to the Proposer agent (Algorithm 2 line 10). However, if the set
of possible dates for a meeting becomes empty, this Participant
agent must send a message to the Proposer agent to inform it
about the non-possible meeting (Algorithm 2 lines 3 and 7).
We should emphasize the fact that during this step all the
agents try to look ahead for already scheduled meetings while
reinforcing arc-consistency; this is in order to avoid maximum
backtracking16 in the next step. Otherwise, the first step is
finished and the second step can be started. The Proposer
agent tries first to find the proposal that satisfies all the
participants’ hard constraints and at the same time maximizes
the utility of the meeting (Algorithm 3 line 3), and then sends it
to the concerned acquaintances (Algorithm 3 line 10). To
compute the utility of each proposal, the Proposer agent
creates a pseudo common-scale based on the obtained ranking
and then computes the utility of each possible meeting time
and choose the proposal according to the optimality criteria
described in Section 3. All the aforementioned interactions,
between the Proposer agent Ai and the Participant agents, are
summarized in Fig. 2 (Part I). The coming discussed
interactions are summarized in Fig. 3 (Part II).

Each agent Aj that has received a proposal for a meeting
X

Ai
k must check whether it can still accept it or not. In the

case of conflict (Algorithm 4 line 1), i.e., the agent Aj has
meanwhile received a proposal for another meeting X Am

l at
the same time as the meeting X

Ai
k , the agent should act as

follows:
�
 If W Xk
oW X l

, it must send a negative answer to the
Proposer agent Ai and ask it to relax its proposal
(Algorithm 4 line 1).

�
 Otherwise, in the case of W Xk

4W Xl
, the agent must

proceed in two steps: first, send a positive answer to the
oid that the proposer choose a date and come back on it in case

ailability of at least one participants.
Proposer Ai and second send a message to the Proposer
agent Aj of the meeting X

Aj

l to invite it to relax its
preferences for this meeting (Algorithm 4 line 4).

�
 Finally, in the case where W Xh

¼W Xl
(case of conflict

between two meetings), the agent will try to apply one of
the three proposed issues (Section 3), i.e., choose always
the best, choose one of the meetings at random or apply
the metropolis criterion, to decide which agent should
relax its preferences (Algorithm 4 line 8).

Accordingly, each agent that has proposed a meeting and
received at least one negative answer must change its
proposal (Algorithm 5 line 4) if possible. The same process
resumes until an agreement is reached among all of the
participants or until testing all of the solutions, no
agreement has been reached. In the latter case, the
Proposer agent must inform the participants that the
meeting is cancelled. Note that this dynamic allows a
premature detection of failure: absence of solution for a
meeting. This in the case when the set of possible dates of
the concerned meeting becomes empty (Algorithm 5 line
10).
Algorithm 2. RedMeetCalendar: with: message corpus
executed by each Participant agent Ai.
RedMeetCalendar: D with: W
1:
 Delete from D all non-viable values;

2:
 if D ¼ ; then
3:
 Send(self, sender, MeetNotPossible);

4:
 else
5:
 for all X
Aj

l such that ððX
Aj

l ; dtpÞ 2 CalendarAi Þ

AND ðW X l
4W Þ do
6:
 Delete(D, dtp);
7:
 if D ¼ ; then
8:
 Send(self, sender, MeetNotPossible);

9:
 else
10:
 Rank(D); =� According to Ai’s preferences

wAi
p � =
11:
 Send(self, sender, Reply:D);

12:
 end if
13:
 end for
14:
 end if
Algorithm 3. Reply: message corpus executed by each
Proposer agent Ai.
Reply: D
1:
 if All ranked D are received from all

Aj 2 PartðX
Ai
k ) then
2:
 Update(D
Ai
k ); =� According to received Ds �=
3:
 dtp  the date with higher utility;
=� The choice of the date should be done
according to the two equations (2) and (3) given in
section 3. Because Ai does not know the real
preferences of the participants, Ai will assign an

implicit degree of preferences Iw
Aj

f to each possible
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Dk
Ai

becomes
empty

Proposer Agent Ai Participant Agent A1 Participant Agent Am… 

oui

non 

Propose possible dates Dk
Ai. 

Filter Dk
Ai.

Send Dk
Ai to all 

participants

RedMeetCalendar: Dk
Ai with: WXk

… 

Filter received Dk
Ai. 

Rank & Send Result … 

Reply:Dk

Filter received Dk
Ai. 

Rank & Send Result

Reply:Dk… 

Send msg Meeting 
impossible

Determine ∩ received Dk. 

Empty

 set

oui

non 

MeetNotPossible

… 

*
Determine and send

best date d       ∈  Dk. 

ReceiveProp:d with: WXk
… 

Fig. 2. Possible interactions between a Proposer agent Ai and a set of Participants for scheduling the meeting X
Ai
k (Part I).

d reserved

for Xh
Af. 

non 

Send two Msg: ok

for Xk and

rescheduling of Xh

UpdateProp:d with: WXh

oui

Participant Agent Af

WXk
< WXh

non oui

Apply one of the

three issues to decide

MeetingOk

Check CalendarA1

for d. 

Send OK msg

UpdateProp:d with: WXk

Send NotOK msg

WXk
> WXh

non 

oui

MeetingOk

Participant Agent A1Proposer Agent Ai … 

Fig. 3. Main behavior of each Participant receiving a proposal (Part II).
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date dtf 2 D
Ai
k per participant Aj according to the

received rank. �=

4:
 if dtp ¼ nil then
5:
 for all Aj 2 PartðX
Ai
k Þ do
6:
 Send(self, Aj, MeetNotPossible);
7:
 end for
8:
 else
9:
 for all Aj 2 PartðX
Ai
k Þ
10:
 Send(self, Aj, ReceiveProp:dtp with:W X k
);
11:
 end for
12:
 end if
13:
 end if
Algorithm 4. ReceiveProp: with: message corpus executed
by each Participant agent Ai.
ReceiveProp:Prop with:W

1:
 if ð9ðX

Aj

l ; dtpÞ 2 CalendarAi such that Prop ¼ dtp

and W Xl
4W ) then
2:
 Send(self, sender, UpdateProp:Prop with:W);

3:
 else
4:
 if (9 (X
Aj

l , dtp) 2 CalendarAi such that Prop ¼ dtp

and W Xl
oW )
then
5:
 Send(self, Aj, UpdateProp:dtp with: W Xl
);
6:
 Send(self, sender, MeetingOK);

7:
 else
8:
 Apply one of the three proposed issues
(Section 3.) to decide which agent should relax its
preferences;
9:
 end if
10:
 end if
Algorithm 5. UpdateProp: with: message corpus executed by
each Proposer agent Ai in case of conflict.
UpdateProp:Prop with:W

1: D
elete (D

Ai
k , Prop);
2: A
dd(DReserveAi [k], Prop);

3: i
f D

Ai
k a; then
4:
 dtp  the date with higher utility in D
Ai
k ;
5:
 for all Aj 2 PartðX
Ai
k Þ
6:
 Send(self, Aj, ReceiveProp: dtp with: W X k
);
7:
 end for
8: e
lse
9:
 for all Aj 2 PartðX
Ai
k Þ do
10:
 Send(self, Aj, MeetNotPossible);
11:
 end for
12: e
nd if
4.3. Process of dynamic meetings

In real-world applications MS problems are subject to
many changes, defined on one side by the arrival of new,
more important meetings (especially when all the other
meetings have been already approved) and on the other
side by the cancellation of one (or more) meeting(s) which,
can lead to the possibility of scheduling other meetings,
previously detected as non-possible. Therefore, we have
used an incremental approach that can handle all forms of
alteration in the system without restarting the solving
process from scratch. However, since this approach deals
directly with human-being, re-scheduling process may lead
to several issues especially, ‘‘nervousness’’. To deal with
such issue, we propose to define a threshold for the
maximum number of allowed modifications for each user.
This psychological issues will be considered in more details
in future work.
In the following, we present the behavior of our protocol

in the case of restrictions and relaxations.

4.3.1. The restrictions

For each new arrival meeting X
Ai
k with the priority W

Ai
X k

,
the Proposer agent must first eliminate non-viable values
from the domain of this meeting by enforcing node and arc
consistency and secondly, must send the obtained slot
times to the participants. At the end of this step, and after
receiving all the answers from the participants, the agent
must choose the date that maximizes the global utility of
meeting X

Ai
k . If this date is used by another less significant

meeting, X
Aj

l , where W
Ai
Xk

4W
Aj

X l
, then the latter meeting

X
Aj

l must be changed. Therefore, the agent Aj (the
Proposer of X

Aj

l ) should be invited to relax its preferences.
The proposed date must be communicated to all the
participants. Each one of them must check the date and
reply to the Proposer, and the same dynamic resumes until
the system reaches its temporary stable equilibrium state
(because of the dynamics of the system). We must note that
in the worst case, all meetings X

Aj

l with lower priority will
be relaxed and the system will stop temporarily with the
schedule of the meeting having the lowest priority. The
revision of all the decisions to fix a new meeting (when
adding a new meeting with highest priority) is slightly
unrealistic. Then, in our system we propose applying a
penalty (a decrement in the priority of the new meeting)
according to the number of involved meetings that must be
rescheduled at each step. The main goal of this new process
is to speed up the search for the new optimal solution.

4.3.2. Relaxations

For each cancelled meeting X
Ai
k , the concerned agent

must check if it can increase the utility of another already
scheduled meeting (one or more by propagation). To
achieve this goal, this agent must first examine all meetings
X

Aj

l (called candidate meetings) with Ai 2 PartðX
Aj

l Þ and
W

Ai
Xk

4W
Aj

Xl
(starting with the most important candidate

meeting). In other words, the agent Ai can ask the
participants in X

Aj

l for further negotiation, if it realizes
that this meeting can be held in the date that was taken by
the cancelled meeting. Nevertheless, this process may
increase the utility of some (or all) candidate meetings.
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This protocol may also allow some meetings, which had
been checked as non-possible, to be scheduled (e.g., some
meetings that could not be scheduled before may become
possible). In addition, we can assume a certain threshold
for the meetings to be rescheduled and this is in order to
avoid the need to reschedule all meetings in the worst case.

5. Evaluation

5.1. Theoretical evaluation

5.1.1. Termination

The MSRAC process stops temporarily (dynamic
system) when the system reaches a stable equilibrium state.
In this state all the agents are temporarily satisfied. An
agent is satisfied when it has no meetings to schedule or
when it has received all the confirmations from all the other
Proposer agents. We assume that between t and t0 there is
no new (resp. cancelled) meeting. Thus, at time t, the
number of meetings to be fixed is limited and finite, so the
proposed approach stops after making at most this many
meetings. We assume that MSRAC approach goes into an
infinite loop. This may happen in two cases:
(1)
17

mee

seco
While scheduling a meeting.

(2)
 While rescheduling a meeting.
For the first assumption, to schedule a meeting X
Ai
l all the

participants will cooperate together to find the best date for
this meeting. The system will go into an infinite loop while
scheduling X

Ai
l if and only if the Participant agents

reprocess the checked dates (cycle) when no solution is
found. However, the number of possible dates per meeting
is discrete and finite. In addition, every checked date is
removed from the system to avoid a return to it later. The
system will stop when a ‘‘good’’ date if found or when all
possible dates for X

Ai
l are processed and no possible

solution has been found. Therefore our assumption is not
true.

For the second assumption, the system goes into an
infinite loop if the rescheduling of X

Ai
l leads to the

rescheduling of X
Aj
p and the rescheduling of X

Aj
p leads the

same to the rescheduling of X Ak
q and finally the reschedul-

ing of X Ak
q leads to the rescheduling of X

Ai
l . However the

rescheduling of X
Ai
l leads to the rescheduling of X

Aj
p if and

only if W X l
4 W Xp and the same for the other meetings17.

Therefore W Xl
o W X p means that the reschedule of X Ak

q

will never lead to the reschedule of X
Ai
l . This contradicts

our assumption.
We have to note that the satisfaction state of all the

agents in a distributed system can be detected by taking a
snapshot of the system, using the well-known Chandy–
Lamport algorithm (Lamport and Chandy, 1985). The
The rescheduling of a meeting leads to the rescheduling of another

ting if and only if the first meeting is more ‘‘important’’ than the

nd.
termination occurs when all agents are waiting for a
message and there is no message in the transmission
channels. The cost of the termination process can be
mitigated by combining snapshot messages with our
protocol messages.

5.1.2. Complexity

Let us consider the complexity of adding a new meeting
into an existing schedule. The corresponding MS problem
involves n for total number of users, d for the maximal
number of possible dates for each meeting and c for the
total number of preferred dates for each user. The total
number of agents in this system is n the same as the total
number of users. Suppose that each meeting involves n

attendees and each user has m already scheduled meetings
in the calendar. Our approach is composed of two steps.
�

1

1

In the first step, each agent performs Oðcd þmd þ

dLogðdÞÞ operations to reinforce node and arc-consis-
tency and to rank the remaining dates. The Proposer
agent then determines the intersection of the received
sets of possible dates leading to ðn	 1Þd2 operations,
and the utility of each dates with O(nd). Thus, the
temporal complexity of this step in the worst case is
Oðnðcd þmd þ dLogðdÞÞ þ ðn	 1Þd2

þ ndÞ.

�
 In the second step, in order to compute the cost of

rescheduling, we assume that at each step the chosen
date leads to the rescheduling of one meeting (at most18)
in the worst case. This leads to m successive iterations.
Each agent checks its calendar m and sends its answer to
the proposer in order to choose a new value. This
process requires Oðmðnmþ dÞÞ operations in the worst
case. The space complexity, for all the agents, is
Oðnðd þmÞÞ.

5.1.3. Message passing optimality

In order to show that our approach requires the
minimum amount of messages passing to reach an
agreement among all the attendees, let us assume that we
have n agents fA1; . . . ;Ang, each has an already scheduled
meeting X

Ai
1 at the date dl with l 2 f1; . . . ; kg. The total

number of scheduled meetings in the whole system is k at
the dates fd1; d2; . . . ; dkg.
Suppose that the agent Aj proposes a new meeting X

Aj

2

involving all the agents of the system. The possible dates
for this meeting are fd1; d2; . . . ; dk; dkþ1g. According to the
mast of the approaches proposed in the literature
(including Franzin et al., 2002; Tsuruta and Shintani,
2000; Franzin et al., 2004), a proposal dhðh 2

fd1; d2; . . . ; dk; dkþ1gÞ is selected by agent Aj and passed
to all the other agents. Each agent which receives this
proposal, replies to the proposer only with a rejection or an
acceptance. The same process resumes with another
proposal given by another agent.19 In this case at least
8Because we assume that all the users are participants in all meetings.
9we assume that each agent has n possible proposals.
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Table 4

Summary of the different instance parameters used in the three kinds of

experiments

Experiments I n ¼ 10; m ¼ 5; 8; 10; 15; p ¼ 6; D ¼ 50;

d ¼ 100%;

wc 2 ½0::1�; W X l
2 ½1::20�; jChj ¼ 10; Tp ¼ 10

Each instance is executed 30 times.

Experiments II n ¼ 10; m ¼ 5; p ¼ 8; D ¼ 40; d 2

f12:5%; 25%; 37:5% and 50%};

wc 2 ½0::1�; W X l
2 ½1::20�; jChj ¼ 10; c ¼ 50

10 instances generated for each d

Experiments III Groups I–III, n ¼ 10; m ¼ f5; 8; 10g; p ¼ 7;

D ¼ 50;

d ¼ 60%; wc 2 ½0::1�; W X l
2 ½1::20�; jChj ¼ 10;

c ¼ 50

Groups IV–VI, n ¼ 20; m ¼ f10; 15; 20g; p ¼ 13;

D ¼ 100;

d ¼ 60%; wc 2 ½0::1�; W X l
2 ½1::20�; jChj ¼ 20;

c ¼ 50

20to increase the probability of having several meetings with same

degree of importance.
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one agent will reject the proposal. Therefore to reach an
agreement among all the participants, this process requires
at least 2nðk þ 1Þ messages.

With MSRAC, the proposer sends all the possible
candidate dates for a meeting to the participants. Each
participant receiving this message will first reinforce arc
consistency on the received possible dates in order to avoid
as much fruitless backtracking as possible in the next steps.
It then ranks the obtained set and sends it only to the
Proposer, which determines the intersection of the received
sets and obtains the agreement among all of them. Thus the
number of required messages in MSRAC is 2n. Note that
receiving all the candidate meeting dates from participants
may reveal some information about their local calendars
(loss of some privacy). However the only information that
Proposer agent Ai may deduce from a participant Aj is its
non-availability for some dates. The non-availability of an
attendee is due to many different reason, such as another
meeting, a business trip, a vacation, personal preference,
etc. The proposer cannot reveal the reason of the rejection
of the candidate date but he may slowly collect more
knowledge by asking for the same date or nearby dates.
This is also a common problem for the other approaches.
In the worst case the same amount of information will be
revealed by all the approaches. Therefore, in order to
decrease privacy loss for our approach, we propose to hide

the identity of the sender. The Proposer agent will then get
answers from the attendees without knowing to whom each
answer belongs.

5.2. Experimental comparative evaluation

To evaluate the proposed MSRAC approach, we have
developed the multi-agent dynamic with Actalk, an object-
oriented concurrent programming language using the
Smalltalk-80 environment. In our experiment, we gener-
ated random meeting problems. The parameters used are: n

agents in the system, m meetings per agent, p participants
in each meeting, D global calendar, d percentage of
possible dates per meeting, wc weights for the soft
constraints to express users’ preferences, while W Xl

weight
of the event (variable) X l ( to express importance of the
event) and c the control parameter. However, the weight of
each hard constraint is equal to 1. We carried out three
kinds of experiments to test the proposed approach.
Table 4 summarizes the design of these experiments. The
main goal of the first experiment was to evaluate the
efficiency of the three issues proposed to be used in case of
conflict. We used the three versions of MSRAC (defined in
Section 3): (i) MSRAC-1, the deterministic approach in
which agents try always to increase their (LU); (ii)
MSRAC-2, the non-deterministic approach based on
random choice; (iii) MSRAC-3, the non-deterministic
approach based on the metropolis criteria. We generated
random instances with different numbers of meetings to
schedule, in order to vary the number of possible conflicts
that may occur, with n ¼ 10, m ¼ f5; 8; 10; 15g, p ¼ 6;
D ¼ 50, i.e., each meeting starts between 8AM and
6PM, from Monday to Friday and is 1 h long,
wc 2 ½0::1�, W Xl

2 ½1::20�,20 d ¼ 100%, jChj ¼ 10 and
Tp ¼ 10. The total number of meetings per instance is,
respectively 50, 80, 100, 150. Each instance is executed 30
times. For MSRAC-3 the initial temperature Tp is
decreased slowly at each run.
Fig. 4 illustrates the obtained results of the three versions

of MSRAC in term of the number of scheduled meetings
while Fig. 5 illustrates the corresponding detected number
of conflicts for the non-deterministic versions. Fig. 4 shows
that for the most part, MSRAC-3 is closer to MSRAC-1 in
number of scheduled meetings. MSRAC-2 oscillates more
especially when the number of conflicts increases
(Fig. 5(c2) and (d2)) leading to a great deterioration in
the result (in Fig. 4(c1) the number of scheduled meetings
vary from 34 to 44). This difference can be justified by the
fact that MSRAC-3 accepts a deterioration of the LU
(accept a meeting with lower LU) only when the difference
in LU between the two conflicting meetings is small, with
MSRAC-2 the selection of the meeting is totally random
which may also increase the number of conflicts. Note that
the number of generated conflicts for MSRAC-3 is almost
always the same for all the runs, while there is a big
variation for MSRAC-2 (Fig. 5(a2)–(d2)). Hence, using
metropolis criterion to solve the conflict might be more
appropriate than random choice and may lead to a better
solution than the deterministic approach MSRAC-1
(Fig. 4(b1) and (c1)).
In the second kind of experiment, we used two

approaches with MSRAC-3, which we will call MSRAC:
Asynchronous Backtracking (Yokoo and Hirayama, 2000)
(ABT) and Tsuruta’s approach (Tsuruta and Shintani,
2000). Recall that, the ABT algorithm is used as a witness
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Fig. 4. Results obtained by the three approaches in mean of number of scheduled meetings (a1–d1).
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approach to appraise the correctness of the results obtained
with our approach. As mentioned in Section 1, ABT is a
generic and complete algorithm for solving non-dynamic
distributed constraint satisfaction problems. Therefore, for
this algorithm all the applied problems are treated as static
instances. Each agent in the system maintains one variable
of the instance. The agents are ordered according to the
degree of importance of the variables, i.e., degree of
importance (W Xl

) of the underlying meeting X l . The
variables (meetings) sharing the same constraint (at least
one same participant) are linked together. The approach in
(Tsuruta and Shintani, 2000) presents some restrictions: on
the one hand, the handle of the hard constraints (i.e., all the
constraints could be relaxed by this approach) and on other
hand, the discrimination between meetings. This approach
independently processes all the proposed meetings without
regard to their importance to either of the proposer or the
attendees.

However, in the real world, meetings are not equivalent.
Our approach tries then, in its solving process (second
step), to schedule the most important meeting maintained
by each agent first (unlike the approach in (Tsuruta and
Shintani, 2000)). For this purpose and for the second kind
of experiments, instances including hard constraints are
randomly generated with n ¼ 10, m ¼ 5, p ¼ 8, D ¼ 40,
wc 2 ½0::1�, W Xl

2 ½0::1�, d 2 f12:5%; 25%; 37:5% and
50%}, jChj ¼ 10 and c ¼ 50. The total number of meetings
per instance is 50. For each d we generated 10 instances,
then measured the average of the results.
These results are expressed in terms of five criteria: the

CPU time (in milliseconds), the number of scheduled
meetings, the importance of the meetings, the measurement
of real global utility, and the number of exchanged
messages. Notice that the first three criteria allow us to
especially measure the efficiency of MSRAC. To this end,
we have introduced some modifications to the approach in
(Tsuruta and Shintani, 2000) to make it worthwhile for
both hard and soft constraints. We carried out the three
approaches on the same generated examples using the same
parameters.
To simulate a dynamic environment, at each time t each

agent knows only about one of its meetings (an arbitrary
one from its m meetings) and either schedules it or declares
its failure to find a solution for it. Once finished the agent
will receive a new meeting (another one chosen arbitrarily
from the remaining meetings) with higher or lesser
importance to process. Every new meetings may lead to
the rescheduling of another scheduled one (depending on
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Fig. 5. The corresponding detected conflicts (a2–d2).
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its importance and the candidate date that will be chosen).
Hence at each time t, 1 or n new meetings might be added
to the system according to the time required to process the
previous ones.

The obtained results show that the MSRAC approach
requires, in the majority of cases, less CPU time than the
other approaches (Fig. 7(a)), while the CPU time needed by
the approach in (Tsuruta and Shintani, 2000) is about three
times more than that needed by our approach. This can be
elucidated by the fact that the first step (reinforcement of
local consistency) is useful in order to discard the dates that
cannot be in any solution and consequently to avoid
exploiting them in the solving process, which leads to CPU
time consumption. Let us consider the case of over-
constrained instances (possible dates less than or equal
25%). Fig. 7(a) shows that ABT requires less CPU time
than MSRAC. The main reason is that in such instances,
the number of conflicts between meetings is high which
may lead to the augmentation of the number of resched-
uled meetings. For ABT on the other hand, there is no
conflict between meetings; the whole problem, the number
of all the possible meetings that may occur in the system is
static and known in advance.
As for the number of scheduled meetings (Fig. 6), ABT

and MSRAC schedule almost the same number of meet-
ings, while the Tsuruta approach schedules fewer meetings,
than the other two approaches. This result shows the
efficiency of MSRAC. The small difference noticed in the
number of results given by ABT and MSRAC can be
justified by the fact that MSRAC uses the metropolis

criterion in case of conflict. Thus the final result depends on
the decision taken towards conflicting meetings. Never-
theless, both approaches provide the same results for the
degree of importance of the scheduled meetings (Fig. 6(b))
and the same real global utility (Fig. 6(c)).
In the case of over-constrained problems (d ¼ 12; 5%),

ABT requires fewer exchanged messages than our ap-
proach (Fig. 7(b)). This can be justified by the fact that for
this kind of problem, the agents in ABT can discover
merely the absence of solutions due to the low number of
possible dates to check. While this number increases, the
total number of exchanged messages increases also. With
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Fig. 6. Results obtained in mean of number of scheduled meetings, importance of scheduled meetings and the real global utility.

Fig. 7. Results obtained in term CPU time and exchanged messages.
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Table 5

Results obtained in mean of CPU time

Group I Group II Group III Group IV Group V Group VI

h10; 5i h10; 8i h10; 10i h20; 10i h20; 15i h20; 20i

Tsuruta App 1115.03 1635.51 2046 21334.6 30989.6 41105.1

ABT App 1264.38 4677.13 33186 78977.9 1685469 1179846

MSRAC 509 788.78 938 6468.44 8377.93 11948.5

Table 6

Results obtained in mean of percentage of scheduling meetings

Group I Group II Group III Group IV Group V Group VI

h10; 5i% h10; 8i% h10; 10i% h20; 10i% h20; 15i% h20; 20i%

Tsuruta App 45 32 24 11 8 7

ABT App 59 42 33 26 18 14

MSRAC 67.4 46.6 36.2 28 20 16
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our approach the number of conflicts increases for over-
constrained problems, leading to more rescheduling and
consequently to more exchanged messages. It is remarkable
that the observed difference in the number of exchanged
messages between ABT and MSRAC for over-constrained
problems is negligible, while the approach in (Tsuruta and
Shintani, 2000), requires more than three times the number
of exchanged messages needed for our approach.

To highlight the scalability of our approach, we
conducted a third kind of experiment in which we tried
to increase the size of the problem. We generated six
groups of random problems. The parameters of the three
first groups (groups I–III) were: n ¼ 10; m 2 f5; 8; 10g;
D ¼ 50; d ¼ 60%; p ¼ 7 and jChj ¼ 10. While for the three
last groups (groups IV, V and VI): n ¼ 20; m ¼ f10; 15; 20g;
D ¼ 100; d ¼ 60%; p ¼ 13 and jChj ¼ 20.

We generated 10 instances for each pair hn;mi. Each
instance was executed 10 times. Tables 5 and 6 show the
average of the obtained results in term of CPU time and
percentage of scheduled meetings for the three approaches.
From these results, we can conclude that MSRAC is
scalable, up to 4 times faster than the Tsuruta approach
(case of h20; 15i21 and h20; 20i) and up to 100 times faster
than the ABT approach (h20; 20i). For the number of
scheduled meetings, MSRAC and ABT planned almost
same percentage of meetings, while for Tsuruta approach
in (Tsuruta and Shintani, 2000), the number of scheduled
meetings at each instance is about 50% of that achieved by
the two other approaches. Hence, it is noteworthy that our
approach seems to be more appropriate to real-world
applications by dealing with users’ hard constraints and by
bringing forward consideration of discrimination among
the proposed meetings. In addition, the first step of the
proposed approach can prematurely detect the impossi-
21For 20 agents and 15 meetings per agent.
bility for reaching any agreement among all the partici-
pants.

6. Conclusion

In this paper, we propose a new scalable and dynamic
approach (MSRAC) to solve meeting scheduling (MS)
problems. In this approach, we tried to integrate the main
features of the MS problem such as: user preferences, user
non-availability, importance of the meeting, etc. to reflect
ideally real-world applications. To this end, we proposed to
use two kinds of constraints to model the users’ require-
ments: hard constraints to model the non-availability of a
user and soft constraints to define the user’s preferences.
Note that the integration of these features transforms the
problem into an optimization problem for which we define
some criteria to reach the optimal (or good enough)
solutions.
The multi-agent architecture, based on the DRAC

model, associates an agent with each user and makes the
agents interact by sending point-to point messages contain-
ing only relevant information. Basically, this approach
consists of two steps. The first reduces the initial problem
by reinforcing some level of local consistency (node and arc
consistency). The second step solves the resulting MS
problem while maintaining arc-consistency. In the pro-
posed protocol, the information shared among all the
agents is kept to a minimum without reflecting on the
efficiency of the cooperative decision taken by all these
agents.
All the meetings can be processed in a parallel and

distributed manner, while achieving the meetings’ higher
utilities. This can be obtained as a side effect of interactions
between the agents of the system, while both minimizing
the amount of message passing and ensuring the user’s
privacy. We should note that the underlying protocol
forbids only parallel meetings with common participants.
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The MSRAC approach was compared with the ABT
approach (Yokoo and Hirayama, 2000) and Tsuruta’s
approach (Tsuruta and Shintani, 2000). The obtained
results show that our approach is efficient, scales better and
performs less message passing for almost the same
solutions. Nevertheless, industrial applications may lead
to more complex problems, therefore, in future work, we
will first evaluate the performance of this approach on real
applications, then we will integrate the learning process.
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