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Abstract 
Harmful algal blooms, which are considered a serious environmental problem nowadays, 
occur in coastal waters in many parts of the world. They cause acute ecological damage and 
ensuing economic losses, due to fish kills and shellfish poisoning as well as public health 
threats posed by toxic blooms. Recently, data-driven models including machine learning (ML) 
techniques have been employed to mimic dynamics of algal blooms. One of the most 
important steps in the application of a ML technique is the selection of significant model 
input variables. In the present paper, we use two extensively used ML techniques, artificial 
neural networks (ANN) and genetic programming (GP) for selecting the significant input 
variables. The efficacy of these techniques is first demonstrated on a test problem with 
known dependence and then they are applied to a real-world case study of water quality data 
from Tolo Harbour, Hong Kong. These ML techniques overcome some of the limitations of 
the currently used techniques for input variable selection, a review of which is also presented. 
The interpretation of the weights of the trained ANN and the GP evolved equations 
demonstrate their ability to identify the ecologically significant variables precisely. The 
significant variables suggested by the ML techniques also indicate chlorophyll-a itself to be 
the most significant input in predicting the algal blooms, suggesting an auto-regressive nature 
or persistence in the algal bloom dynamics, which may be related to the long flushing time in 
the semi-enclosed coastal waters. The study also confirms the previous understanding that the 
algal blooms in coastal waters of Hong Kong often occur with a life cycle of the order of 1 - 2 
weeks.  
 
Keywords: Harmful algal blooms; Red tides; Machine learning techniques; Data-driven 
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1. Introduction 
 An explosive growth and accumulation of harmful microscopic algae or 
phytoplankton may result in harmful algal blooms (HABs). The red tide is a well-known 
form of algal bloom. Owing to its negative impacts on human health and aquatic life, this 
widely reported phenomenon has become a serious environmental problem. It might lead to 
harmful effects such as beach closure, mariculture loss arising from oxygen depletion or toxic 
algae, anoxia or shellfish poisoning, and so on (Anderson, 1994). An increasing trend in the 
occurrence of HABs has been recorded throughout the world during the past decade. For 
example, the worst fish kill in Hong Kong's history in April 1998 as a result of a devastating 
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red tide destroyed over 3400 tonnes or 80 percent of cultured fish stock and the resulting 
economic loss was estimated to exceed HK$312 million (Chau, 2004). Hence, a capability to 
analyze and predict the occurrence of algal blooms precisely with sufficient lead-time would 
contribute significantly to fisheries and environmental management. Conventional 
knowledge-driven models address the physical problem by solving a highly coupled, non-
linear, partial differential equation set with finite difference method, finite element method, 
etc. However, physical processes affecting HAB occurrence are highly complex and 
uncertain, and are difficult to be captured in some form of deterministic model. Moreover, the 
accuracy of the prediction is to a great extent dependent on the accuracy of the open 
boundary conditions, model parameters used, and the numerical scheme adopted 
 With the recent advancements in artificial intelligence (AI) techniques and availability 
of unrivalled computational power, extensive use of machine learning (ML) techniques or 
data-driven approaches in ecological modelling was reported (Recknagel, 2001). Amongst 
others, they include artificial neural networks (ANN) (Recknagel et al., 1997, 2002; 
Yabunaka et al., 1997; Maier et al., 1998; Scardi and Harding, 1999; Karul et al., 2000; Jeong 
et al., 2001; Scardi, 2001; Wei et al., 2001; Lee et al., 2003), evolutionary based techniques 
(Bobbin and Recknagel, 2001; Recknagel et al., 2002; Jeong et al., 2003; Muttil and Lee, 
2005), fuzzy and neuro-fuzzy techniques (Maier et al., 2001; Chen and Mynett, 2003), and so 
on. Whilst many of them were undertaken in freshwater environments (i.e., limnological or 
riverine systems), some have been applied to saltwater eutrophic areas (Scardi and Harding, 
1999; Scardi, 2001; Lee et al., 2003; Muttil and Lee, 2005). 
 One of the most important steps in the application of a ML technique is the selection 
of significant model input variables. The aim is to determine a set of significant inputs from a 
superset of potentially useful inputs, which will lead to a superior model as measured by 
some optimality criterion. Since data-driven models are usually assumed to be able to 
determine which model inputs are critical, researchers often tend to present a large number of 
inputs to the model. Such inclusion of a large number of inputs leads to “the curse of 
dimensionality”, which is associated with the following shortcomings (Bowden et al., 2005): 

 As the input dimensionality increases, the computational complexity and memory 
requirements of the model increase, which in turn increase the time to build the 
models. 

 As the input variables increase, the number of training samples required also increase. 
 Misconvergence and poor model accuracy may result from the inclusion of irrelevant 

inputs due to an increase in the number of local minima present in the error surface. 
 Interpreting complex models is more difficult than interpreting simple models that 

give comparable results. 
 
 Thus, there are obvious advantages in selecting an appropriate set of significant inputs 
for a data-driven model. The complexity of the problem is further increased in time-series 
modelling of dynamical systems, where better predictions are obtained by the use of lagged 
input variables also. As the maximum lag or memory length increases, so too does the 
number of inputs and the complexity of the model. Recently, researchers have recognized the 
importance of input variable selection for the application of data-driven models in ecological 
modelling. In their work on applying ANN for modelling of coastal algal blooms, Lee et al. 
(2003) noted that most of the literature they reviewed did not build in an optimal choice of 
input variables based on ecological considerations and many used almost all possible 
environmental parameters as inputs. Since the effects of some of the input variables may be 
duplicated (for example, during blooms, algal density and turbidity or secchi-disc depth are 
strongly correlated), the use of all possible input variables may present the model with noise, 
rather than useful information. Maier and Dandy (2000) extensively reviewed a number of 
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journal articles from 1992 to 1998, which employed ANN for modelling and forecasting of 
water resources variables. They concluded that in many cases, the lack of a methodology for 
determining input variables raised doubt about the optimality of the inputs used and in some 
cases, inputs were even chosen arbitrarily. 
 In the present paper, we employ two extensively used data-driven models for 
selecting the significant input variables, namely, artificial neural networks (ANN) and genetic 
programming (GP) using first, a test problem from fluid mechanics and then using the 
biweekly water quality data from Tolo Harbour, Hong Kong. It should be noted that this 
work is not a hybrid combination of ANN and GP analysis in a two-stage procedure or ANN 
encapsulated within the GP framework. This work applies two distinct data-driven models, 
i.e. ANN and GP, to analyse the significant input variables in eutrophication phenomenon 
and the results by these two methods are compared. Since the data-driven model is itself used 
for input variable selection, there is no need to select any other analytical procedure. 
Moreover, Recknagel (2001) considered ANN and genetic algorithms to be the most 
innovative techniques for ecological modelling. Maier and Dandy (2000) also reported ANN 
to be the most widely used model in water resources variable modelling.  

In the following sections, we first present a review of the input variable selection 
techniques used in ecological modelling applications of data-driven models. Then, details of 
the data and modelling approach are presented, followed by the application of ANN and GP 
for selection of the significant input variables. 
 
2. Review of previous work on input selection 
  The main approaches that have been employed for input determination in ecological 
modelling literature can be broadly classified into five methods, which are presented in the 
following sub-sections. Other than the methods presented below, few studies have also used 
all available variables as inputs to their model, without considering any technique for 
selecting the significant variables (Recknagel et al., 1997; Karul et al., 2000; Jeong et al., 
2003). 
 

2.1. Methods based on ecological considerations 
 A commonly adopted approach in the choice of the initial set of input variables is to 
apply a priori knowledge of causal variables and physical/ecological insight into the problem. 
If important candidate inputs are not included, then some information about the system may 
be lost and if spurious inputs are included, it may provide the model with noise and thus may 
confuse the training process. Many of the papers reviewed relied on a combination of a priori 
knowledge and analytical approaches to select the appropriate model inputs and lags of inputs 
(Maier et al., 1998; Chen and Mynett, 2003; Lee et al., 2003; Muttil and Lee, 2005). 
 

2.2. Methods based on linear correlation 
 When the relationship to be modeled is not well understood, then an analytical 
technique, such as correlation analysis, is often employed to select inputs and their lags. 
Correlated variables introduce redundancy in the model in the sense that no additional 
information is gained by adding them. Lee et al. (2003) used auto-correlation of chlorophyll 
concentrations to select the time lags of input variables. They showed that algal dynamics in 
coastal waters of Hong Kong are correlated up to time lags of around 2 weeks. The major 
disadvantage associated with using a correlation analysis is that it is only able to detect linear 
dependence between two variables. Therefore, such an analysis is unable to capture any non-
linear dependence that may exist between the inputs and the output, and may possibly result 
in the omission of important inputs that are related to the output in a non-linear fashion. 
 



 

 4

2.3. Methods based on data mining techniques 
 Some researchers used data mining techniques like principal component analysis 
(PCA), cluster analysis, etc., for selecting the significant input variables. Chen and Mynett 
(2003) used PCA to identify the major abiotic driving factors and to reduce the input 
dimensionality. In their application of fuzzy logic to model eutrophication in Taihu Lake, 
Chen and Mynett (2003) noted that the size of fuzzy ruleset grows exponentially with the 
number of variables (dimension), which results in not only redundancy, but also difficulties 
for interpretation and formulisation. Petersen et al. (2001) also used PCA to provide a 
reduced description of the system using a few significant and interpretable PCA patterns 
which reflect the most relevant processes and which can be used in other models. Brosse et al. 
(2001) compared Kohonen self-organizing maps (SOM) and PCA to analyse the spatial 
occupancy of several European freshwater fish species in the littoral zone of a large French 
lake. They concluded that only SOM was able to reliably visualise the entire fish assemblage 
in a two-dimensional space and PCA provided irrelevant ecological information for some 
species. They note that this may be because the information given by PCA techniques suffers 
from some drawbacks in that the relationships between variables in environmental sciences 
are often non-linear, while the methods used in PCA are based on linear principles. 
 

2.4. Forward selection and backward elimination methods 
 In this approach, an optimization of the input variables is performed. The two 
standard approaches are forward selection and backward elimination methods. Forward 
selection starts by finding the best single input and selecting it for the final model. In each 
subsequent step, given a set of selected inputs, the input that improves the model’s 
performance most is added to the final model. Backward elimination (network trimming) 
starts with a set of all inputs, and sequentially deletes the input that reduces performance the 
least. Maier et al. (1998) used a forward selection approach to determine the important input 
variables for forecasting the concentration of the cyanobacteria Anabaena spp. in the River 
Murray, Australia. Lee et al. (2003) used a network trimming approach, staring with the most 
complicated network scenario and then removing one parameter at a time for the subsequent 
scenarios. Each scenario would indicate how significant the excluded parameter would affect 
the network performance. The main disadvantage of these approaches is that they are based 
on trial-and-error, and as such, there is no guarantee that they will find the globally best 
subsets. The forward selection approach may also fail when there is interaction amongst 
variables, i.e., when a variable that is useless by itself may provide a significant performance 
improvement when taken with others. Another disadvantage of these stepwise approaches is 
that they are computationally intensive. 
 

2.5. Sensitivity analysis using trained ANN 
 Sensitivity analyses are the most commonly used method of extracting information 
from a trained ANN (Maier et al., 1998; Scardi and Harding, 1999; Lee et al., 2003). A 
stepwise analysis is carried out by varying each input variable, one at a time by a 
predetermined constant percentage while keeping the others constant. These new input data 
series are used to compute the predictions from the network trained with the original inputs. 
However, the difficulty with this approach is choosing a reasonable value to perturb the input 
by and selecting the appropriate cut-off point for input significance. 
 
3. Data and modelling approach 
 In this section, we give an account of the test problem, the real-world case study and 
details of the analysis. 
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3.1. The test problem 
 To test the capability of ANN and GP for selecting the significant input variables, 
they are first tested on a test problem with known dependence. A simple example from fluid 
mechanics, the Bernoulli’s equation is used. Ignoring any losses, the total energy head, E, can 
be expressed as: 

 const
g

vp
zE 

2

2


      (1) 

where z is the vertical distance above a datum (m), p is the pressure (N/m2), v is the velocity 
(m/s),  is the specific gravity of water (9810 N/m3), and g is the gravitational acceleration 
(9.81 m/s2). Using a standard random number generator, 1000 samples of different 
combinations of z, p and v are generated. The values of the energy head, E, are then 
computed using Eqn. (1). In addition to these 3 input variables of z, p and v, 7 more variables, 
ran1, ran2,…,ran7 are also randomly generated, making a total of 10 input variables. The 
dependent variable E, is actually dependent on only 3 input variables, namely z, p and v and 
the remaining 7 inputs are spurious, with no relationship with E. All the randomly generated 
input variables are within the range of 0 to 100, except z and v, which have random numbers 
in the range of 0 to 25. This restriction was imposed on these 2 variables because large values 
for them would highly increase their significance, especially that of v, which has a squared 
relationship with E. 
 

3.2. The real-world case study 
 The excessive growth of aquatic plants, both attached and planktonic, to levels that 
are considered to be an interference with desirable water uses bring about the eutrophication 
phenomenon. The growth of aquatic plants results from many causes. Harmful Algae are the 
microscopic single celled organisms that are present in the sea. These algae contain reddish 
pigments thus the water seems to be appearing in red color in their presence. The red tide 
occurs when there is a rapid production in the single celled organisms because of the 
increased levels of temperature, salinity and nutrient concentration such as nitrogen, 
phosphorus, etc. in the sea water, resulting in reddish water. It should be mentioned that only 
a few dozen of the many thousands of species of microscopic and macroscopic algae are 
repeatedly associated with toxic or harmful blooms. The specific type of species 
"Gymnodinium Breve" contains the neurotoxic shell fish poisoning. Similar events world 
wide include Florida, US (Kirkpatrick et al., 2006),Yeosu and Tongyeong, Korea (Lee, 
2006),Osaka Bay, Japan (Tsujimoto et al., 2006), etc. 

Tolo Harbour, a semi-enclosed bay in the northeastern coastal waters of Hong Kong, is 
connected to the open sea at Mirs Bay (Figure 1). The water quality generally declines from 
the better flushed outer “Channel Subzone” towards the more enclosed and densely populated 
inner “Harbour Subzone”. Over the past two decades, one of the major environmental 
concerns in the harbour is the nutrient enrichment arising from municipal and livestock waste 
discharges. Whilst point sources of organic loads are mainly derived from the two major 
treatment plants at Shatin and Taipo, non-point sources come from direct runoff and waste 
from mariculture. Several previous studies (Morton, 1988; Xu et al., 2004) demonstrated that 
the healthy state of the marine coastal ecosystem in the Tolo Harbour had been deteriorating 
continuously as a result of the nutrient enrichment in the harbour brought about by 
urbanization, industrialization and livestock rearing. Eutrophication phenomenon with 
frequent algal blooms and red tides has been reported particularly in the weakly flushed tidal 
inlets inshore. Consequently, occasional massive fish kills were recorded as a result of severe 
dissolved oxygen depletion or toxic algal blooms. Morton (1988) reported that the inner Tolo 
Harbour was effectively dead as a marine disaster in the late 1980s. At that time, a critical 
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stage had been reached, which prompted the Hong Kong Government to implement an 
integrated Tolo Harbour Action Plan (THAP). THAP resulted in a significant reduction of 
pollutant loading which in turn improved the water quality.  Moreover, both field and 
process-based modeling efforts have been made to address the eutrophication phenomenon 
and dissolved oxygen dynamics in Tolo Harbour (e.g., Chan and Hodgkiss, 1987; Chau and 
Jin, 1998; Jin et al., 1998; Chau, 2004; Chau, 2005; Xu et al., 2004). 
 In this study, the depth-averaged monthly/biweekly water quality data, which were 
measured under a water quality monitoring program by the Environmental Protection 
Department of the Hong Kong government is employed. Amongst others, the data from the 
most weakly flushed monitoring station, TM3, are purposely chosen so as to minimize 
hydrodynamic effects. Preprocessing of the biweekly observed data is required to obtain the 
daily values by linear interpolation. Furthermore, daily meteorological data of wind speed, 
solar radiation and rainfall supplied by the Hong Kong Observatory are employed. The data 
from 1988 – 1992 are used for training both data-driven models. For more details on the 
water quality data, readers are referred to Lee et al. (2003). 
 

3.3. Interpolation effect 
 As mentioned above, the biweekly water quality data is linearly interpolated to get the 
daily values. We would like to point out that when interpolation is applied to produce time 
series from longer sampling frequency to a shorter time step, future observations are used to 
drive the predictions, as pointed out by Lee et al. (2003). An approach to avoid this use of 
"future data" in the predictions is to predict the algal dynamics with a lead-time equal to or 
greater than the sampling frequency of the original observations. 
 

3.4. Input variables and time lags 
 The following nine variables are chosen as the initial set of input variables: 
chlorophyll-a, Chl-a (µg/L); total inorganic nitrogen, TIN (mg/L); phosphorus, PO4 (mg/L); 
dissolved oxygen, DO (mg/L); secchi-disc depth, SD (m); water temperature, Temp (˚C); 
daily rainfall, Rain (mm); daily solar radiation, SR (MJ/m2) and daily average wind speed, 
WS (m/s). These variables are found to exhibit significant effects on the algal dynamics of 
Tolo Harbour according to several previous field and modelling studies in the weakly flushed 
embayment (Chau et al., 1996; Chau, 2002; Lee at al., 2003; Chau, 2005). Although it was 
found in previous studies that the variation of salinity in the seawater might result in reddish 
water, its value within this almost isolated water body is nearly a constant. Its variation 
mainly comes from the precipitation and hence daily rainfall value is included instead. The 
model output is chlorophyll-a, which is an indicator of the algal biomass. 
 In Tolo Harbour and coastal waters of Hong Kong, algal blooms often occur with a 
life cycle of the order of 1 – 2 weeks. Lee et al. (2003) used auto-correlation of measured 
daily-averaged chlorophyll concentration from a monitoring station (Kat O) in north-eastern 
coastal waters of Hong Kong, to indicate that the algal dynamics is significantly correlated up 
to time lags of around 2 weeks. Based on this consideration of the ecological process, a one-
week lead-time is used for the predictions to identify the significant input variables. But, as 
this lead-time is less than the data sampling frequency of two weeks, the predictions would be 
affected by the interpolation effect, as discussed in the previous sub-section. Since a biweekly 
or more lead-time prediction would be free of this "interpolation effect", a biweekly 
prediction is also carried out. In the one-week predictions, a time lag of 7 - 13 days is 
introduced for each of the input variables and in the biweekly predictions, a time lag of 14 - 
20 days is introduced, whereas for both the predictions, Chl-a is predicted at time t. 
 For both the one-week and biweekly predictions, each of the nine input variables 
comprise seven time-lagged variables, amounting to a total of 9 × 7 (= 63) input variables. 
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The significant input variables are to be selected from amongst them. Relationships between 
the Chl-a concentration at time t and the time-lagged input variables are developed by 
training ANN networks and evolving GP equations, details of which are presented in the 
following section. 
 
4. Proposed techniques 
 In this section, we present the application of ANN and GP for input variable selection. 
Since these two data-driven models are themselves used for significant input variable 
selection, there is no need for going for any other analytical procedure for the same. 
Moreover, these models overcome some of the limitations associated with the commonly 
used selection techniques presented in Section 2. They can learn problems involving very 
non-linear and complex data and can identify correlated patterns between input data sets and 
corresponding target values. Both ANN and GP can take into account the interaction amongst 
variables and thus identify variables that may not be significant by itself, but are significant in 
combination with other variables. Thus, these data-driven models are ideally suited for the 
identifying significant variables in ecological processes, which are known to be very complex 
and often non-linear. 
 

4.1. Artificial neural networks (ANN) 
 An ANN is tailored to mimic natural neural networks in terms of computing paradigm 
(Haykin, 1999).  Amongst many types of ANNs, the most widely used is the feed-forward 
neural network, multi-layer perceptron (MLP) or back-propagation network. The MLP is 
organized as layers of computing elements, known as neurons, which are connected between 
layers via weights. Apart from an input layer receiving inputs from the environment and an 
output layer generating the network's response, one or more intermediate hidden layers occur 
in between. 
 When triggered, each neuron will compute a response from the weighted sum of its 
inputs from neurons connected to it, on the basis of a predetermined activation function. In 
turn, its output will become the inputs of other neurons located in the next layer. Whilst there 
are many commonly used activation functions, the sigmoid and the hyperbolic-tangent (tanh) 
functions are amongst the most popular. A back-propagation method is used in the training 
process to adjust the connection weights in the network in order to best match the network's 
response with the desired response. The optimization is executed by using an approximation 
to a gradient descent method (Haykin, 1999; Tarassenko, 1998). 
 

4.2. Significant input variables based on ANN weights 
 A MLP neural network, which is trained using a back propagation algorithm with a 
momentum term, is employed. It comprises three layers, namely, an input, a hidden and an 
output layers. An interpretation of the connection weights from the input layer to the hidden 
layer of the trained network is undertaken. The inputs with the largest weight values denote 
the most significant input variables. An input significance measure Sn of the input variable n 
is defined as follows: 

   



H

j
jnn wS

1

||         (2) 

where H is the number of hidden nodes, wjn is the weight from input variable n to the hidden 
layer j. The summation of absolute values of weights is employed because some weight 
values may be positive and others negative. Belue and Bauer (1995) proposed using the sum 
of the squared weights as a saliency metric, but we found that such a measure magnifies the 
significance of inputs with larger weight values and diminishes the significance of those with 
smaller weights. 
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 A point that needs attention is the over-training problem which might produce 
incorrect results. The over-training of a network depends on the optimal number of nodes in 
the hidden layer. In this study, the number of nodes in the hidden layer is determined by a 
trial and error procedure. The number is increased gradually from 3 to a maximum value 
dictated by the rule of thumb, i.e., the number of samples in the training set should at least be 
greater than the number of synaptic weights in the network (Tarassenko, 1998). The network 
training is terminated after a fixed number of epochs, which is also found by trial and error. 
 The neural network is first trained using the data from the test problem of Bernoulli’s 
equation, which has 10 input variables and E is the dependent variable. The optimal number 
of nodes in the hidden layer was found to be 8. Trial and error method is also employed to 
determine the learning rate parameter and the momentum term. Their finally adopted values 
are 0.05 and 0.5, respectively. For both hidden and output layers, the hyperbolic-tangent 
function is adopted as the activation function. The network training is terminated after 1000 
epochs. Figure 2 shows the input significance of all the 10 inputs using the weights of the 
trained network. It is observed that the input significance corresponding to the variables z, p 
and v are significantly larger in magnitude than other spurious input variables correctly. 
 It is then applied to the real-world case study of predicting the algal biomass. Neural 
networks are trained for both one-week and biweekly predictions. For both the predictions, 
there are 63 nodes in the input layer and the predicted Chl-a concentration is the only neuron 
in the output layer. Figure 3 shows the network structure for both predictions. The optimal 
number of hidden nodes is found to be 6 and 4 for one-week and biweekly predictions, 
respectively. The learning rate and the momentum term values are found to be 0.05 and 0.1, 
respectively and as before, the hyperbolic-tangent function was used as the activation 
function. The stopping criterion for the back propagation training is 500 epochs, which is 
obtained by trial and error.  
 Figure 4 and Figure 5 show the input significance of each input variable for one-week 
and biweekly predictions, respectively. If all input variables have equal significance, then 
each input will have a significance of 1/63 (= 1.58%) of the total value of 137.23. We assume 
that those variables having an input significance greater than 1.58% are relatively more 
significant, and columns representing these variables are shaded dark in Figure 4 and Figure 
5. It can be observed that Chl-a is the most significant input variable. In the one-week ahead 
algal biomass prediction, the effect of Chl-a reduces with an increase in time lag and in the 
biweekly predictions, the significance of Chl-a is up to the time lag of (t-14). Apart from Chl-
a, TIN, PO4, DO and SD are found to be significant. For the biweekly predictions, Temp is 
significant and SR at (t-20) is slightly significant. 
 

4.3. Genetic programming (GP) 
 GP (Koza, 1992) is an offshoot of genetic algorithm (Goldberg, 1989), which imitates 
biological evolution. The major distinction is that it operates on parse trees whilst genetic 
algorithm operates on bit strings. A function set and a terminal set together build up the parse 
tree. The function set comprises various operators (for example, multiplication, division, 
addition, subtraction and so on), whilst the terminal set comprises input variables and 
constants. The solution space of the available parse trees is constituted by all polynomials of 
any form over the input variables and constants. Figure 6 shows an example of a parse tree 
for the model: y = 2e-0.5x - 0.6. 
 GP starts with an initial generation of a population of random parse trees, calculation 
of their fitness in solving the problem domain and selection of the better parse trees for 
reproduction and evolution to a new generation. These processes iterate until a certain 
stopping criterion is met. The crossover operation takes place by randomly swapping sub-
trees between the selected individuals (Babovic and Abbott, 1997; Babovic and Keijzer, 



 

 9

2000). An apparent advantage of using GP for the modeling process is its ability to produce 
models that are in the form of an interpretable equation (or formula). This is particularly 
useful for "data rich, theory poor" cases, since it can self evolve, through the genetic loop, a 
population of function trees so as to generate an "optimal" model that facilitates physical 
interpretation. Since these GP evolved equations or formulae relating input and output 
variables might shed physical insight into the ecological processes involved, they are used to 
identify the significant variables. 
 In this study, the GP software, GPKernel, developed by DHI Water and Environment 
is employed. It is a command line based tool to determine functions based on the available 
data. The optimal solution is obtained in all GPKernel runs after it is run for 30 CPU minutes 
on a Pentium 4 1.4 GHz PC with 1021 MB RAM. 
 

4.4. Significant input variables using GP equations 
 Table 1 shows the GPKernel parameters adopted for all GP runs for the selection of 
significant input variables. The value of "maximum initial tree size", representing the 
maximum size of the tree of the initial population, is constrained to 45. The value of 
"maximum tree size", representing the population of subsequent generations, is constrained to 
20. It is found that, with these constraints, the evolved equations are easy to interpret and 
contain only 4 to 8 significant variables. All variables are preprocessed and normalized by 
dividing with their respective maximum values to avoid the occurrence of any dimensionally 
non-homogenous terms in the functional relationship of the evolved GP model.  
 Similar to the case of ANN, GP is first applied for input variable selection on the test 
problem with known dependence between the output and input variables. Using the simple 
math operators (+, -, *, /) as the function set, 10 different GP models are evolved using 
different initial seed for each GP run. Figure 7 presents the number of times each of the input 
variables is selected in the 10 GP equations, which is the measure of its significance. It is 
observed that the evolved equations are mainly made up of 3 significant input variables of z, 
p and v, clearly demonstrating that GP can detect their significance in predicting the 
dependent variable, E. 
 Next, GP is applied on the problem of algal bloom prediction. GP models are evolved 
using 4 different function sets, which are presented in Table 2. For each of the 4 function sets, 
20 GP equations are evolved with different initial seeds, resulting in 80 equations each, for 
one-week and biweekly predictions. Small and simple function sets are employed since GP is 
very creative and effective at taking simple functions and evolving easily interpretable 
equations by combining them (Banzhaf et al., 1998). Figure 8 and Figure 9 show the total 
number of times of selection of the 63 input variables in the 80 evolved equations for one-
week and biweekly predictions, respectively. As in the ANN analysis, columns representing 
the significant variables are shaded dark, which are those with number of terms more than 
1.58% of the total number of terms in the 80 GP equations. For example, there are 790 terms 
in the 80 GP equations for one-week predictions. In Figure 8, those input variables having 
more than 13 (= 1.58% of 790) terms are assumed to be significant. From Figure 8, it can be 
observed that the Chl-a value plays a key role in predicting its value one-week ahead. 
Moreover, the effect of Chl-a reduces with the increase in the time lag, which aligns with the 
ANN analysis. PO4, DO, SD and TIN are other significant variables. For biweekly 
predictions, the significance of Temp increases slightly and 2 terms of SR have slight 
significance. 
 
5. Discussion on results 
 It is evident that Chl-a values are significant in predicting itself since both ML 
techniques gave the same conclusion. Chl-a at (t-7), with an input significance of 12.58 in the 
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ANN weight analysis and with 229 terms out of a total of 790 in the GP equation analysis, is 
the most significant in algal biomass prediction one-week ahead. The effect of Chl-a reduces 
with the increase in time lag and in biweekly predictions, Chl-a is significant up to a time lag 
of (t-14) in the ANN analysis and up to (t-17) in the GP analysis. This indicates n auto-
regressive nature or "persistence" of the algal dynamics. This phenomenon is frequently 
exhibited in geophysical time series owing to inertia or carryover process in the physical 
system. In fact, modelling is a way in contributing to understanding the physical system as 
well as the process that builds persistence into the series. In this case, the auto-regressive 
nature of chlorophyll dynamics may be related to the long residence time in the semi-
enclosed coastal waters. The average tidal current velocity is merely 0.04 m/s in the inner 
Harbour Subzone and 0.08 m/s in the outer Channel Subzone (EPD, 2005). It is justifiable 
that the landlocked nature of the estuary results in weak tidal flushing, which adds persistence 
into the algal dynamics. Furthermore, the two factors, i.e. the persistence of Chl-a reduces 
with the increase in time-lag and significant persistence is observed only up to a time lag of 
about (t-14), confirm our understanding that algal blooms in coastal waters of Hong Kong 
often occur with a life cycle of the order of 1 – 2 weeks. 
 Apart from Chl-a, both ML techniques suggest that the nutrients (PO4 and TIN), DO 
and SD (to a lesser extent) are significant. It is reasonable that nutrients are significant, since 
the growth and reproduction of phytoplankton mainly rely on their availability. The 
significance of DO is also justifiable in subtropical coastal waters with mariculture activities, 
since it contributes to the production and respiration of algal organisms as well as to some 
chemical reactions.  
 In general, it is observed that the significant input variables from one-week 
predictions are basically similar to those from biweekly predictions. The only exception to 
this is Temp and SR, which have slight significance in biweekly predictions. Thus, it can be 
concluded that the significant input variables from one-week predictions are not completely 
driven by the interpolation effect. It appears that they exhibit at large cause-effect relationship 
between the time-lagged input variables and future algal biomass. 
 It should be mentioned that the results of this study regarding the significance of Chl-
a in predicting itself are quite in contrast to several previous studies, which conventionally 
use a number of input variables (Jeong et al., 2003; Jeong et al., 2001; Wei et al., 2001; 
Recknagel et al., 1997; Yabunaka et al., 1997). The result that the use of previous data of 
algal biomass alone is good enough for future prediction might reduce the dependency on 
expensive equipment, such as automatic nutrient analyzers for ammonia and nitrate nitrogen, 
in algal bloom warning systems in coastal waters. This can attain significant cost savings. 
 
6. Conclusions 
 This paper presents the prototype application of two distinct ML techniques (ANN 
and GP) for the selection of significant input variables, first using a test problem with known 
input-output dependence and then using data from a monitoring station in coastal waters of 
Hong Kong. It is evident that the identification of the key input variables are feasible with the 
interpretation of the trained ANN weights or of the evolved GP equations, which is basically 
in line with ecological reasoning. It is found that chlorophyll is the most significant variable 
in predicting algal blooms. The auto-regressive nature of the algal bloom dynamics in this 
semi-enclosed coastal water body is justifiable owing to the long flushing time. The result 
that the use of previous data of algal biomass alone is good enough for future prediction 
might reduce the dependency on expensive equipment in algal bloom warning systems in 
coastal waters. 
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Table 1. Values of control parameters used in 

GP runs 
 

Parameter Value 

Maximum initial tree size 45 

Maximum tree size 20 

Crossover rate 1 

Mutation rate 0.05 

Population Size 500 

Elitism used Yes 
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Table 2. Function sets used 

for the GP runs  

Function set 

+, -, *, / 

+, -, *, /, ex 

+, -, *, /, x2 

+, -, *, /, xy 
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Figure 7. 
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