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This paper proposes a methodology that analyses and classifies the electromyographic (EMG) signals

using neural networks to control multifunction prostheses. The control of these prostheses can be made

using myoelectric signals taken from surface electrodes. Finger motions discrimination is the key

problem in this study. Thus the emphasis, in the proposed work, is put on myoelectric signal processing

approaches. The EMG signals classification system was established using the linear neural network. The

experimental results show a promising performance in classification of motions based on biosignal

patterns.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Biomedical signal means a set of electrical signals acquired
from any organ that represents a physical variable of interest.
These signals are normally a function of time and can be analyzed
in its amplitudes, frequency and phase. In the proposed method it
is used biomedical signal—electromyographic (EMG)—to control
the movement of prostheses.

Prosthesis systems for upper limb are mainly based on
myoelectric control, recognizing EMG signals that occur during
muscle contraction on the skin surface. Myoelectric control takes
advantage of the fact that, after a hand amputation, great majority
of the muscles that generate finger motion is left in the stump.
The activity of these muscles still depends on the patient’s will, so
biosignals that occur during it, can be used to control prosthesis
motion.

The control strategy of prostheses is based on to generate set of
repeatable muscle contraction that is different from ordinary arm
function. Contrary to conventional prosthesis control methods, it
is possible to extract some feature from the myoelectric signals
which may provide information about muscle activity below the
skin. The extraction of features can be accomplished using various
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techniques including signal amplitude, coefficients of EMG
autoregressive (AR) model (Asres et al., 1996; Knox and Brooks,
1994), EMG frequency characteristic and power spectrum ana-
lyzed by fast Fourier transform (FFT) method (Kuribayachi et al.,
1992; Hirawa et al., 1989), the integral of the absolute value (IAV)
(Kuribayachi et al., 1993; Khoshaba et al., 1990), time and
frequency histograms (Amaral et al., 2008).

In the proposed approach, an identification system will try to
recognize a certain group of hand movements based on electrical
signals (EMG signals) recorded on a patients forearm. The features
used are based on time and energy histograms combined with a
neural network based classification. The measurements were
done on a specialized stand designed for such research.

2. Measurement stand

Measurement set was created specially for obtaining signals
from patients arm. The configuration used in the measurement
contained four input channels, which came from EMG sensors
(Bagnoli-4 EM System User manual) acquiring analog myoelectric
potentials from skin surface. Output is the file containing digital
values of measured channels. For all measurements, videos are
taken by digital camera allowing extracting data from specific
stages of movement. General conception of acquisition system is
presented in Fig. 1.

As shown on the schema, there are four main parts:
�
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AC card,

�
 galvanic separator,
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Fig. 2. Forearm sensors placement.
Measurement set was equipped with Ni 4477 card made by
National Instruments (National Instruments, NI 4477 User
Manual). The acquisition card has eight measurement channels
with individual analog/digital converters (each has resolution 24
bits per channel) (Table 1).

The card was placed on PC board in a slot located as far as
possible from others equipment (i.e. power supply, graphic card,
hard disc, etc.). To provide additional noise protection special
metal cage was prepared, applied and grounded. A very useful
feature of the card is antialiasing filter that automatically adjusts
to the desired frequency of sampling. This filter stifle signal in the
band of 110 dB, which helps eliminate frequency components
above the Nyquist border (Wolczowski and Krysztoforski, 2002).

Detailed location of four EMG sensors is presented in Table 2.
Those sensors were placed at the left hand. Two of them were
situated close to the wrist and another two close to the elbow. One
sensor from pair was attached to inner forearm side and second to
outer side. Lines which determine distance from elbow and wrist
are shown in Fig. 2.
G Sensors

Galvanic
Separator

PC
AC
Card

Channels
1−4

Digital Camera

Fig. 1. Acquisition system.
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477 card characteristic.

nnels number 8

log input type Bipolar, range �1-Vp-p

ut impedance 1MOhm

pling resolution 24 bits, 1:19mV

et voltage �3 mV

pling frequency f s 1–102.4 kHz

ialiasing filter DC (0 Hz) is

0.4535 f s for passband

0.5465 f s for stopband

Damping 110 dB

le 2
nnels used in the acquisition system.
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ear wrist 2
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ear elbow 3

ear wrist 4
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3. Methodology description

Using the acquisition system presented in the previous section,
five files containing data were obtained. Each one include only one
specified move repeated many times. To determine how many
times and when exactly the movement took place it was essential
to compare the data with the video. The video duration and the
number of taken measurements are presented in Table 3.

The main control functions of the prosthesis are hand closing
and opening, palmar flexion and dorsiflexion, wrist pronation and
supination (Asres et al., 1996; Kuribayachi et al., 1992; Barrero
et al., 2001). The list of grip movements used in the proposed
work are:
1.
gni
palm (Fig. 3),

2.
 tip (Fig. 4),

3.
 cylindrical (high diagonal object) (Fig. 5),

4.
 cylindrical (small diagonal object) (Fig. 5),

5.
 spherical (Fig. 6).
3.1. Data visualization and analysis

Each file containing data were divided into smaller parts. Each
part contains only one grasp movement shown in Fig. 7 which will
be used in the feature extraction stage. In process of getting the
feature vectors it is necessary to obtain the energy of each
measurement and the corresponding number of signal crossing
zero. In Fig. 8 the energy of a single grasp movement is illustrated.

Data were sampled with 1 KHz frequency, so before getting
feature vectors it was decided to apply 300 Hz lowpass Butter-
worth filter to eliminate same noises.

3.2. Feature extraction

Feature vector is twice the number of channels which is being
analyzed. In this particular example there are four channels,
which means that the length of feature vector is eight. From each
channel are obtained the zero-crossing (ZC) number and the
energy of the signal grasp movement defined by the following
stages:
1.
 Calculate normalized number of zero-crossings in channel i:

ZCi ¼
zi

li
(1)
tion based on biosignal analysis. Engineering Applications of
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Table 3
Videos details.

Move Number of meas. Video length

1st 20 0:57:199

2nd 20 1:00:759

3rd 22 1:26:280

4th 25 1:25:799

5th 27 1:32:079

Fig. 3. Palm grip.

Fig. 4. Tip grip.

Fig. 5. Cylindrical grip.

Fig. 6. Spherical grip.
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where zi is the number of zero-crossings in channel i and li is
its length.
2.
 Calculate normalized sum of energy in channel i:

Ei ¼

Pl
k¼1 jciðkÞj

li
(2)

where ciðkÞ is kth absolute value in channel i and li is its length.

3.
 Repeat steps 1 and 2 for each channel of one measurement.

4.
 Divide all ZCi by the highest value of zero crossings from all

measurements.

5.
 Divide all Ei by the highest value of energy from all

measurements.

6.
 Join all features in one feature vector, so for n channels

measurement the structure of the feature vector would be like
the one presented in Table 4.
lease cite this article as: Wojtczak, P., et al., Hand movement reco
rtificial Intelligence (2009), doi:10.1016/j.engappai.2008.12.004
The subscript digits in the zero crossing (ZC) and energy (E)
values determine channel number.

Based on acquired data 114 feature vectors were obtained and
divided in two groups: the learning and testing groups.
3.3. Classification method

The obtained feature vectors are used as inputs in the neural
network. The output have the same length as the number of
recognized moves and it is assumed that the highest value on
output determine the type of grasp movement.
gnition based on biosignal analysis. Engineering Applications of
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Fig. 7. Single move measurement.

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14
x 107 EMG [Move 2] [Channel 4]

time [ms]

am
pl

itu
de

 [u
V

]

Fig. 8. Single move energy measurement.

Table 4
Feature vector.

1 2 3 4 � � � 2n� 1 2n

ZC1 E1 ZC2 E2 � � � ZCn En

+

W

b

a

S x 1

S x 1
nS x R

S x 1

1

R

p

R x 1

Fig. 9. Neural network structure.
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Fig. 9 presents the structure of the neural network used to
analyze biosignals, where
�

P
A

p—input feature vector,

�
 R—number of elements in input feature vector,

�
 S—length of output vector,

�
 a—output vector,

�
 W—matrix of weighs,

�
 b—bias.
Neural network used for classification had one five-neuron layer
and the transfer function in each neuron was positive linear
function:

poslinðxÞ ¼
0 if xp0

x if x40

(
(3)
lease cite this article as: Wojtczak, P., et al., Hand movement reco
rtificial Intelligence (2009), doi:10.1016/j.engappai.2008.12.004
The neural network output is expressed by

a ¼ poslinðp �W þ bÞ (4)

where the weight matrix W and biases vector b were initiated
with zeros. During the training weights and biases are updated
with Widrow–Hoff learning function MATLAB:

Wðkþ 1Þ ¼WðkÞ þ 2aeðkÞpTðkÞ (5)

bðkþ 1Þ ¼ bðkÞ þ 2aeðkÞ (6)

where k is the iteration number; a, the learning rate; e, the error
vector; p, the input vector matrix. The error vector is obtained by
the difference between target and neural network output:

eqðkÞ ¼ tqðkÞ � pqðkÞ (7)

In the network learning rule it is provided a set of examples of
desired network behavior:

fp1; t1g; fp2; t2g; . . . ; fpq; tqg; . . . ; fpQ ; tQ g. (8)

The pq value is an input to the network, and tq value is the
corresponding target output. As each input is applied to the
network, the network output is compared to the target. The error
is calculated as the difference between the target output and the
network output. The goal is to minimize the objective function
given by the average of the sum of these errors (9).

mse ¼
1

Q

XQ

k¼1

eðkÞ2 ¼
1

Q

XQ

k¼1

ðtðkÞ � aðkÞÞ2 (9)

The least mean square (LMS) error algorithm adjusts the weighs
and biases of the linear network so as to minimize these objective
functions MATLAB.
4. Experimental results

For testing the biosignal recognition system 114 feature vectors
were obtained from acquired data. All tests were performed in the
Matlab running on a processor AMD Turion 64 X 2 Mobile
2 x 800 MHz with 1024 MB of physical memory.

Vectors were used to train and test linear neural network.
While the number of learning and testing vectors is similar the
classification results are quite good, but when the ratio between
the number of testing and learning vectors is growing, overall
classification accuracy is decreasing (Fig. 10). These happens
because there is a lost of representative samples in the population
of the learning data set.

4.1. Data divided into two sets

When all the 114 features vectors were divided into two sets
(learning and testing) the experimental result was 100% overall
gnition based on biosignal analysis. Engineering Applications of

dx.doi.org/10.1016/j.engappai.2008.12.004


ARTICLE IN PRESS

Fig. 10. Learning/testing vectors ratio.

Table 5
Results (2 sets).

Move number

1 2 3 4 5

Learn/test 10/10 10/10 11/11 13/12 13/14

Correct/wrong 10/0 10/0 11/0 12/0 14/0

[%] 100 100 100 100 100

Fig. 11. Training of the neural network (set I).

Fig. 12. Training of the neural network (set I).

Table 6
Classification set I.

Move 1st 2nd 3rd 4th 5th

1st 13 0 0 0 0

2nd 0 12 1 0 0

3rd 0 0 15 0 0

4th 0 0 0 17 0

5th 0 0 0 0 18
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classification accuracy (Table 5). This result was obtained
independently whose set was choose for testing and for learning.

Training performance goal was set to 0.025, learning rate
coefficient was set to 0.03 and average training network time was
1.72 seconds. Neural network training process is shown in Fig. 11.
The same training performance was obtained choosing the
training vector as testing vector and vice versa.
4.2. Data divided into three sets

In this experience, the data were divided into three sets, each
contains similar number of each type vectors with a difference
between quantity equal to or less than 1 vector. The number of
testing vectors is approximately twice the number of learning
vectors.

Training performance was set to 0.02, learning rate coefficient
was set to 0.03 and average training network time was 1.89
seconds. Neural network training process is shown in Fig. 12. The
difference in the training process between the three possible sets
of learning feature vectors is the epoch’s number necessary to
reach the training performance goal. This goal was obtained in the
three experiences, approximately, after 475, 1050 and 1300
epochs.

The obtained result was 95.62% overall classification accuracy
choosing in each experimental one of the three possible learning
vectors (Tables 6–8). The 3rd and 4th type movements were
Please cite this article as: Wojtczak, P., et al., Hand movement reco
Artificial Intelligence (2009), doi:10.1016/j.engappai.2008.12.004
perfectly recognized, but the other moves were incorrectly
classified, but only up to two times.
4.3. Data divided into four sets

In the following experience, the data were divided into four
sets, each contains similar number of each type vectors also with a
difference between quantity equal to or less than 1.

Training performance was set to 0.02, learning rate coefficient
was set to 0.03 and average training network time was 2.03
seconds. Neural network training process is shown in Fig. 13.

The obtained result was 93.81% overall classification accuracy
choosing in each experience one of the four possible learning
vectors (Tables 9–12). The 3rd type movement was the most
difficult to recognize, because mistake was taken five times in all
the four experiences. Only the 4th and 5th moves were recognized
without mistakes in the four tests.
gnition based on biosignal analysis. Engineering Applications of
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Table 7
Classification set II.

Move 1st 2nd 3rd 4th 5th

1st 13 0 0 0 0

2nd 0 13 1 0 0

3rd 0 0 14 0 0

4th 0 0 0 17 0

5th 0 0 1 0 17

Table 8
Classification set III.

Move 1st 2nd 3rd 4th 5th

1st 13 0 1 0 0

2nd 0 12 1 0 0

3rd 0 0 15 0 0

4th 0 0 0 16 0

5th 0 0 0 0 18

Fig. 13. Training of the neural network (set I).

Table 9
Classification set I.

Move 1st 2nd 3rd 4th 5th

1st 15 0 0 0 0

2nd 0 15 0 0 0

3rd 0 0 16 0 0

4th 0 0 0 19 0

5th 0 0 0 0 20

Table 10
Classification set II.

Move 1st 2nd 3rd 4th 5th

1st 15 0 0 0 0

2nd 0 15 0 0 0

3rd 1 1 14 0 0

4th 0 0 0 19 0

5th 0 0 0 0 20

Table 11
Classification set III.

Move 1st 2nd 3rd 4th 5th

1st 15 0 0 0 0

2nd 0 14 1 0 0

3rd 1 0 16 0 0

4th 0 0 0 18 0

5th 0 0 0 0 21

Table 12
Classification set IV.

Move 1st 2nd 3rd 4th 5th

1st 14 0 0 1 0

2nd 0 15 0 0 0

3rd 1 1 15 0 0

4th 0 0 0 19 0

5th 0 0 0 0 20

Fig. 14. Training of the neural network (set I).
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4.4. Data divided into five sets

In the last experience, the data were divided into five sets, each
containing a similar number of type vectors and also with a
difference between quantity equal to or less than 1. Training
performance was set to 0.02, the learning rate coefficient was set
to 0.03 and the average training network time was 2.10 seconds.
Neural network training process is shown in Fig. 14. The only
difference in the training process between the five possible sets of
learning feature vectors was the epochs number necessary to
reach the training performance goal.
Please cite this article as: Wojtczak, P., et al., Hand movement reco
Artificial Intelligence (2009), doi:10.1016/j.engappai.2008.12.004
The obtained result was 90.43% overall classification accuracy
choosing in each experience one of the five possible learning
vectors (Tables 13–17). In this case only 4th and 5th moves were
always correctly recognized. The worst recognition was observed
with 3rd type movement with five recognition faults.

Comparison results of different movement recognition techni-
ques obtained in other research works are presented in Table 18
(Reaz et al., 2006). In the proposed work, the used of time and
energy histograms as input features in the neural network based
classification obtained an 100% of accuracy rate. In this case the
set feature vectors were divided in the middle creating the
learning and testing vectors sets.
gnition based on biosignal analysis. Engineering Applications of
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Table 13
Classification set I.

Move 1st 2nd 3rd 4th 5th

1st 16 0 0 0 0

2nd 0 15 1 0 0

3rd 0 0 17 0 0

4th 0 0 0 20 0

5th 0 0 0 0 22

Table 14
Classification set II.

Move 1st 2nd 3rd 4th 5th

1st 16 0 0 0 0

2nd 0 15 1 0 0

3rd 0 0 17 0 0

4th 0 0 0 20 0

5th 0 0 0 0 22

Table 15
Classification set III.

Move 1st 2nd 3rd 4th 5th

1st 15 0 0 1 0

2nd 0 16 0 0 0

3rd 1 1 16 0 0

4th 0 0 0 20 0

5th 0 0 0 0 21

Table 16
Classification set IV.

Move 1st 2nd 3rd 4th 5th

1st 15 0 0 1 0

2nd 0 15 0 0 1

3rd 1 1 14 0 0

4th 0 0 0 20 0

5th 0 0 0 0 22

Table 17
Classification set V.

Move 1st 2nd 3rd 4th 5th

1st 16 0 0 0 0

2nd 0 15 0 0 0

3rd 1 0 17 0 0

4th 1 0 0 19 0

5th 0 0 0 0 22

Table 18
Typical EMG classification accuracy rate.

Method Accuracy rate (%)

Coefficient of AR 99

Neural networks 84

Fuzzy system 85
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If the learning data set of a neural network contain represen-
tative information of the hand movement then the test results will
be better than those obtained if it misses some important
information in the learning data set.

In these studies, the training process and classification results
of the fuzzy system gives more consistent classification results
and is insensitive to over-training (Cheron et al., 1996). Normally,
the coefficients of an EMG AR model are used as input features in
a classification.

The use of the neural network techniques are very suitable for
EMG signal recognition tasks where the variety and separability of
the EMG patterns can be very complicated. The main difficulty
with the use of the EMG signals is in the continuous control of
prostheses where it is presented the non-linearity and non-
stationarity characteristics of the EMG sensor information (Kristin
et al., 1996). However, since the neural networks can acquire non-
linear mapping of data, it has also been applied in the prothesis
control of other parts of the human body namely in the ankle–foot
(Au et al., 2005), in the lower limb (Lee and Lee, 2005) or in the
hand (Kristin et al., 1996).
Please cite this article as: Wojtczak, P., et al., Hand movement reco
Artificial Intelligence (2009), doi:10.1016/j.engappai.2008.12.004
5. Conclusion

We have shown that a simple linear neural network can
determine with great accuracy, of which five movements were
performed. Furthermore, this was accomplished using only the
normalized RMS power from each of the four sensors placed
around the forearm. Use of different features and classifiers will
undoubtedly improve the classification of the existing signals and
allow classification on additional categories of hand kinematics.

The decomposition of each movement type in a set of
individual movements will be one of the future directions of
study.
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