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Abstract 
This paper deals with the development of an intelligent distributed and supervised control approach for high-
volume production systems in which the flow of parts can be approximated by a continuous (fluid) model. The 
proposed approach is based on the decomposition of the production system into elementary modules in order to 
reduce the control design computational complexity. In this context, a two levels control structure is proposed. 
At the local level, a surplus-based principle is adopted to regulate the production flow for each module according 
to the distributed structure. The proposed control methodology decides how to adjust the production rate in order 
to avoid system overloading and eliminate machine starvation or blocking. In this context, the local control law 
is synthesized by using the Takagi-Sugeno fuzzy systems. At the high level, a supervisory controller is designed 
to improve the overall system performances. A supervisor provides an additive component for each local 
controller when the overall system performances deviate from their acceptable domains (degraded mode). This is 
done by combining both local and global information into a unified formalism by using aggregation operators 
and according to fuzzy interval representation of the desired objectives. Finally, the feasibility of the proposed 
methodology is validated with simulation examples. 
 
Key words: Production Systems; Intelligent Control; Distributed Fuzzy Control; Supervisory Control; 
Aggregation Operators; Continuous-Flow Simulation. 

1. Introduction 
Many industrial production systems, such as semiconductor manufacturing, generate typical processes of large-
scale, time-varying and stochastic systems. They involve different kinds of operation (transformation, assembly 
or disassembly), operate in an uncertain and unpredictable environment and manufacture a high-volume and 
medium-variety of products (product types generally are limited). These features make the system complex. 
Generally, these processes are designed to operate continuously under some optimal operating conditions. 
However, the operations may deviate away from the normal operating modes due to changing of the production 
demands properties or the environmental conditions. Therefore, a control decision strategy should be designed so 
as the most important performance measures (throughput, backlog, work-in-process, etc.) stay within the desired 
specifications. 
 
Actually, complexity and uncertainty seriously limit the effectiveness of the conventional modelling and control 
approaches. As a result, complex production systems are not amenable to accurate and exact modelling. In this 
framework, in order to overcome the system complexity analysis and its control design, a decomposition of the 
system into elementary subsystems is frequently considered [42, 43, 46]. Thus, a production system composed of 
N machines and a set of buffers can be viewed as a collection of a set of N elementary production modules 
PM(i), i = 1, …, N. Each one is defined by a machine and its sets of upstream and downstream buffers. In this 
context, the study of the global system can be handled from a generic analysis of an elementary subsystem. 
According to this decomposition, a distributed control structure can be adopted to avoid the inflexibility and the 
rigidity, conventionally associated with the centralized control architecture. Indeed, it is now recognized that 
distributed control architectures have a number of inherent advantages, such as modularity, reconfigurability, 
adaptability, fault tolerance, extensibility, etc [14, 45]. 
 
Since an exact analytical control design cannot be determined in realistic manufacturing conditions, intelligent 
methods seem to be a very effective tool to develop control strategies for these systems where complete 
mathematical models are not available. Indeed, intelligent control offers an alternative to conventional control 
for designing controllers. In this case, the structure and the consequent outputs in response to external 
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disturbances and environmental conditions are determined by empirical evidence, i.e., observed input/output 
behaviour of the system. 
In the literature, the intelligent distributed control for production systems has been introduced either through 
some paradigms such as holonic systems [6, 22, 23, 26] and agent-based systems [36, 37] or by using artificial 
intelligent techniques such as neural networks and fuzzy logic [1, 33, 46]. In the former case, the distributed 
control means that the control algorithm is distributed over a number of entities (software components) that 
combine their calculation power and their local knowledge to optimise the global performances. In the latter 
case, from a control theory point of view, the distributed control methodology consists in performing a controller 
for each production module independently to preserve the simplicity and computational advantages. In this 
article, the proposed approach is based on the last idea where a fuzzy control using a Takagi-Sugeno fuzzy 
system [40] is adopted. The application of fuzzy techniques in distributed control structures is not new. Indeed, 
several works have been already published. For example, in [33] the authors propose a distributed neural-
network scheduling methodology approaching machine scheduling as a control regulation. In [1, 12], complex 
control problems of scheduling and planning have been addressed in a distributed fashion by using fuzzy control 
theory. In [46], Tsourveloudis et al. develop a distributed fuzzy system for work-in-process inventory control of 
unreliable machines. 
 
It is well-known that if distributed control architectures offer prospects of reduced complexity, flexibility and 
robustness against disturbances, they cannot guarantee optimal performances and the system behaviour can be 
unpredictable [6]. Usually, the elements of these architectures have no access to global information and, 
therefore, global performances cannot be guaranteed. Moreover, the presence of multiple objectives which are 
often conflicting, such as short lead time, timely delivery, low WIP, etc., have compelled researchers to look for 
more appropriate control methods [25]. In this context, in order to improve the global performances, distributed-
supervised control structures have emerged as an interesting and powerful solution. 
 
The role of a supervisor consists in elaborating the production plans for the entities under its coordination 
domain by using performance indicators characterizing the overall system current behaviours [6]. In this case, 
the supervisor provides an action able to tune the distributed controllers to ultimately achieve desired 
specifications [31]. For example, in order to improve the WIP performance, the authors [20] introduce a fuzzy 
supervisor to tune the lower level of the distributed fuzzy controllers given in [46]. In [47], an evolutionary 
algorithm strategy is used for the optimisation of the approaches provided in [46] and [20]. In [48] a model based 
predictive supervisory controller for semiconductor re-entrant lines is developed. However, in the most proposed 
approaches, the dynamic of the internal production modules and the influence of the conflicting objectives in the 
supervisor synthesis are not explicitly taken into account. The method proposed in this article aims at resolving 
these problems where a two-level structure (a supervisor at the higher level and a distributed fuzzy controllers at 
the lower level) is developed. Thus, the control architecture is characterized by: 
 
 Distributed local and autonomous controllers based on local information. Indeed, each control module is 

designed in order to regulate the production-flow at each production module by adjusting the machine 
processing rates with regard to its maximum production capacity. 

 A supervisory controller able to combine the overall performance measures such as a best compromise is 
achieved between the multiple and possibly conflicting objectives. Indeed, when the global performances 
deviate from their acceptable domains (objectives), the supervisor provides an additive component which 
either distributes the remaining production capacity or reduces the production throughput. This is done 
according to the actual processing rate of each production module given by the local control law. The 
proposed supervisory decision-making process is based on the aggregation operators and fuzzy interval 
representation of the objectives. 

 
To analyze the proposed method and its performances, continuous-flow simulation techniques based on fluid 
modelling are adopted. In this case, in contrast with discrete modelling, it is not necessary to track individual 
parts in the model evaluation. Indeed, the part movement can be approximated by a continuous-flow (fluid) so 
that the dimension of the model is reduced [4, 5, 17, 24, 35]. 
 
The rest of the article is organized as follows. Section 2 introduces the problem statements and faces the major 
questions considered in this article. Section 3 develops a distributed fuzzy control methodology. Section 4 
describes the aggregation mechanisms of the supervised approach. Section 5 includes an extension of the 
proposed control methodology to the multiple-part-type systems and simulation results along with comparisons 
between the unsupervised distributed fuzzy control and the supervised one. Our contributions are summarized in 
Section 6. 
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2. Problem statements and assumptions 

A production system is usually viewed as a network of machines and buffers. In this context, when considering a 
production system composed of N machines and according to the operation type (transformation, assembly and 
disassembly), it may be decomposed into N basic production modules PM(i). Each one is composed of a 
machine Mi and its sets of upstream and downstream buffers denoted respectively by B+(i) and B-(i). For 
instance, in the case of a transformation line illustrated in Fig. 1, the production module is defined as PM(i) = 
{Bi-1, Mi, Bi}. 

 

 

Fig. 1. Transformation line. 

For the sake of simplicity, the developments are given for a single-part-type transformation line. The 
generalization to the multiple-part-type production systems is detailed in paragraph 5.2.1. The control design 
when assembly and/or disassembly operations are involved is discussed at the end of section 3. In the sequel, the 
following assumptions are assumed: 
 
 The machines are unreliable, where their uptimes and downtimes are assumed to be exponentially 

distributed with rates λi and μi respectively. 
 The intrinsic availability of Mi (when taken in isolation) is given by ei = λi/(λi + μi). 
 ui

max = 1/τi is the maximum production rate at which Mi can operate with a processing time τi. 
 The demand is constant with a rate d. 
 The condition of feasibility of the demand rate is given as follows [32]: 

 max
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 ui(t) is the instantaneous production rate of an operation performed on Mi and i(t) is the machine state 
(i(t) = 1 if Mi is up and i(t) = 0 if it is down). Then, 
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 ri(t) is the fraction of the capacity of Mi devoted for processing at time t (the weighting factor of the 
maximum production rate). It represents the control variable which fix the production rate and given by: 

max
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)(

i

i
i

u
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tr  , with  1,0)( tri  (3)

 xi
max is the maximal capacity (size) of the buffer Bi. 

 xi(t) is the level of Bi at time t. Its dynamic is given by (Fig. 1): 

)()()( 1 tututx iii  , with max)(0 ii xtx   (4)

This dynamic equation represents the basis of the continuous model used in simulation. Indeed, when 
considering a production system composed of N production modules, its dynamic is governed by N differential 
equations in the form (4). 
 
 The system surplus dynamic which defines the cumulative difference between production and demand is 

defined as: 

dtuts ii  )()(  (5)

When si(t) is positive, an inventory surplus is observed and when it is negative, a backlog is occurred. 
 
Giving a set of production modules constituting the production system, the originality of this work lies in 
answering given to the following questions: 
 What is the best control structure able to preserve the simplicity and the computational advantages? 

max
1ix

PM(i) PM(i+1)PM(i-1)

MiBi-1Mi-1 Bi-2 Mi+1 Bi+1Bi

max
ix
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 For a feasible demand rate, is it possible to synthesize a tracking policy able to maintain a bounded surplus 
for each production module? 

 Giving tolerance domains defining normal operating conditions and specified by the designer for the 
overall objectives, is it possible to synthesize a control strategy able to maintain the system performances 
within these tolerance domains? 

 How the local and global information are aggregated to achieve the desired performances? 

3. Distributed Fuzzy Control Architecture 

Let us consider a general production system decomposed in N production modules PM(i). Each one is associated 
to a fuzzy controller FC(i) resulting on a distributed fuzzy control architecture as illustrated in Fig. 2. The major 
advantage of this architecture resides in its modularity and distributivity that enhance the flexibility and make 
easy its implementation for complex production systems. 

 
Fig. 2. Distributed fuzzy control architecture. 

In the sequel, the control synthesis is handled through a generic analysis and design of one fuzzy controller FC(i) 
for a transformation operation (Fig. 1). In this case, the control structure is illustrated in Fig. 3. 

 
Fig. 3. Controlled production module. 

Thus, giving a production module PM(i) and a feasible demand rate d, a fuzzy controller FC(i) is synthesised 
with the objectives of: 
 Tracking the demand trajectory by reducing the difference between the cumulative production and demand 

(the surplus), 
 Synchronising the operations by avoiding overload and eliminating machine starvation or blocking, 

 
In this case, a controller attempts to keep the buffers neither full nor empty by regulating the machine production 
rate. The following input variables are then considered: 
 The levels of upstream and downstream buffers xi-1(t) and xi(t). 
 The production surplus si(t) of PM(i). 

 
The output variable of the controller is the weighting factor ri(t) adjusting the production rate of PM(i) between 
zero and its maximum. According to a fuzzy control vision, this is achieved according to the two following rules: 
 If the surplus level is satisfying, then try to prevent starving or blocking by increasing or decreasing the 

production rate of the machine. 
 If the surplus is either too low or too high, then produce respectively with the maximum or zero rate. 

 
Moreover, the expert distinguishes several zones to be controlled by observing the error between the production 
and the desired demand (surplus and backlog). According to expert observations and analysis, a partitioning of 
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the universes of discourse in fuzzy subsets is given. This partitioning consists to affect labels allowing the 
description of the numerical values using words. Indeed, the expert interprets the preceding situations by 
linguistic terms according to whether the actual production is “in delay”, “correct” or “in advance” with regard 
to the demand. This classification is easily retranscribed in terms of “Low”, “Normal” and “High” by defining 
the surplus as the difference between machine production and the demand. The “normal” level of surplus 
represents a hedging level [3] able to absorb the disturbances due to the machine failures. 
The expert is also sensitive to the events that may occur, especially the changes in buffer levels according to the 
machine states. In this case, the buffers may be “Empty”, “Almost Empty”, “Normal”, “Almost Full” or “Full”. 
The partitioning of different universes of discourse is illustrated in Fig. 4. 
 
Lastly, according to his perception, the expert determines the action to be adopted concerning the production 
rate: “Zero”, “Small”, “Average”, “Large” or “Maximum”. These terms can be interpreted with regard to the 
maximum production rate ui

max by constant values giving the fraction of capacity devoted to processing: 0, 0.25, 
0.5, 0.75 or 1. 

 
Fig. 4. Fuzzy partitions associated with the variables: (a) buffer level, (b) surplus. 

It appears from this partitioning that the determination of the buffer sizes and the hedging level are crucial for the 
controller performance. These parameters are estimated by the heuristic described in [3]. This heuristic is based 
on the formulation of the relationship among starvation, blockage, demand and the parameters of the machines. 
In the obtained relation, the buffers sizes xi

max are approximated by a nonlinear optimization problem minimizing 
the buffer hedging level zi

s and space zi
b, which represent respectively the buffer level and the available free 

space in the buffer when the production module reaches its hedging point. The hedging point zi, which is used to 
fix the surplus universe of discourse, is estimated from the average surplus loss caused by failure, starvation and 
blockage, such that the final product inventory and backlog are minimized. The detailed derivation of this 
heuristic is given in [2, 3]. 
 
According to the universe of discourse partitioning, the fuzzy controller FC(i) can be formalized as a Takagi-
Sugeno fuzzy system [40] given by a collection of rules in the following form: 
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),,( 321321221 then ,isandis andisIF: iii
ii

i
ii
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i
ii

iii
i rSsXxXxR   (6)

where: 
 xi-1 and xi are respectively the levels of the upstream and downstream buffers of Mi and si the production 

surplus. 

 321 and,1
i
i

i
i

i
i SXX   correspond respectively to the ikth linguistic term of the input variable xi-1, xi and si (Fig. 

4). 

 ),,( 321 iii
i  is the real value involved in the rule conclusion indexed by ),,( 321 iii . 

 
For the input variables and when assuming a strict partitioning of the different universe of discourse, the output 
generated by the fuzzy controller is given by: 










    1)(if,),,(

0)(if,0
)(

),,(

),,(
1

),,(

321

321321 tsxx

t
tr

iIiii

iii
iiii

iii
i

i

i 


 (7)

where )()()(),,(
321

1

321
11

),,(
iSiXiXiii

iii
i sxxsxx i

i
i
i

i
i

  


 represents the truth value of the premises of the rules 

(6), and 321 IIII   indicates the set of labels representing the rules base, with iνIν = {1, …, 5} for ν = 1, 2 

and i3I3 = {1, 2, 3}. Thus, the complete base of rules for a fuzzy controller of a transformation module is 
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composed of 75 rules [43]. The different output values of the rule conclusions are obtained from expertise and 
summarized in Table 1. 

Table 1. The rules base of FC(i) for a transformation module. 

Inputs Output Rule 

1
1

i
iX   2i

iX  3i
iS  ),,( 321 iii

i  
1 Empty ANY ANY 0 
2 ANY Full ANY 0 
3 Not Empty Not Full Low 1 
4 Almost Empty Not Full High 0 
5 Normal Not Full High 0 
6 Almost Full Empty High 0.75 
7 Almost Full Almost Empty High 0.5 
8 Almost Full Normal High 0.25 
9 Almost Full Almost Full High 0.25 
10 Full Empty High 1 
11 Full Almost Empty High 0.75 
12 Full Normal High 0.5 
13 Full Almost Full High 0.25 
14 Almost Empty Empty Normal 0.5 
15 Almost Empty Almost Empty Normal 0.25 
16 Almost Empty Normal Normal 0.25 
17 Almost Empty Almost Full Normal 0.25 
18 Normal Empty Normal 1 
19 Normal Almost Empty Normal 0.75 
20 Normal Normal Normal 0.5 
21 Normal Almost Full Normal 0.25 
22 Almost Full Empty Normal 1 
23 Almost Full Almost Empty Normal 0.75 
24 Almost Full Normal Normal 0.5 
25 Almost Full Almost Full Normal 0.25 
26 Full Empty Normal 1 
27 Full Almost Empty Normal 1 
28 Full Normal Normal 1 
29 Full Almost Full Normal 0.5 

ANY means that the corresponding input variable can be substituted by any linguistic value of its set of terms, 
while Not X means all the terms except X. 
 
Some remarks and design considerations can now be expressed concerning the control methodology presented 
above: 
 It is important to note that most applications using fuzzy controllers [1, 12, 20, 34, 38, 46] are based on 

fuzzy Mamdani systems [27] where the nonlinear min/max operators are used in the inference mechanism. 
In the context of our research, we did not find any advantage to exploit the min/max operators at least in a 
control context. On the contrary, the use of the latter operators involves the appearance of nonlinearities 
which may potentially deteriorate the control performances and the stability. Conversely, it has been shown 
in [7, 16] that the Takagi-Sugeno systems are more suitable in a local control design strategy. 

 The TS fuzzy system present structural properties [39] that allow exact piecewise multi-linear 
representation. This representation permit to integrate the fuzzy control design in some adaptive or learning 
strategies to specify the rule base parameters. In our previous work, adaptive fuzzy control strategy has 
been proposed to adjust some parameters so that the tacking error (surplus) converges to zero [41]. 
However, the adaptive strategy is time consuming and, in some cases, induces instability problems. This is 
the reason for which the expertise is used to select the rule base conclusions in this article. 

 In the case of assembly and disassembly modules, the proposed methodology can be extended by tacking 
into account more than one upstream buffer level (assembly module) or more than one downstream buffer 
level (disassembly module) as input variables in the fuzzy controller synthesis. The rule bases are then built 
in such a way to synchronize the operations with regards to the surplus and buffer levels. In this case, the 
applicability of the distributed fuzzy control structure has been shown in [42, 43] by considering a test case 
of a multiple-product reentrant production system involving assembly and disassembly operations. 
However, the augmentation of the input-output variables can induce difficulties in the control synthesis 
(rule base conception and synchronization). In [42, 43], the assembly and disassembly modules have been 
limited to two upstream buffers and two downstream buffers respectively. 
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4. Distributed-supervised Fuzzy Control Architecture 

Although the distributed structure can give sometimes good control performances [14, 45, 46], it does not 
guarantee optimal control performances since the global information is not integrated in the distributed local 
control synthesis (performances are considered myopically). Indeed, the production objectives which are often 
conflicting are evaluated by global performance indicators. Therefore, an aggregation methodology between 
different objectives has to be sought. In order to achieve this goal, higher supervisor based on global 
performance indicators aggregation is proposed. 
In the literature related to control-systems, a supervisor is viewed as a controller that uses global information to 
adjust the current behaviour of the overall system when a degraded operating mode is detected. Potentially, this 
can be achieved either by reconfiguring and tuning a new local control law or by providing an additive 
component to the local controller. In both cases, the supervisory action aims at maintaining the overall system in 
the normal operating mode and relieves decision-making process in a degraded situation to ultimately achieve 
desired specifications (objectives) [31]. The approach adopted in this paper is based on the second principle 
where the supervisor is synthesized without modifying the proposed distributed local architecture. The 
supervisor takes into account the state of each production module and is able to cope with conflicting objectives. 
 
The proposed distributed-supervised control structure is illustrated in Fig. 5. Starting from a set of performance 
indicators {P1,…, PL} associated to the objectives {P1

obj,…, PL
obj} that define the tolerance domains of these 

indicators, the supervisory controller aims at determining an additive component 
is

r  to the local control law 
icr  

in order to improve the performances when a degradation is appeared. In this case, the production rate in relation 
with the global control law can be written as: 

maxmax )())()(()( iiisci utrutrtrtu
ii

  (8)

 
Fig. 5. Supervisory control architecture. 

The supervision mechanism reported in this paper expands and improves our precedent work given in [42, 43]. 
The resulted supervisory action is deployed by either allocating the remaining capacity or reducing the 
production rate. This action is resulted from the aggregation of both local and global information to supervise the 
production flow. The key idea of the proposed method resides in the fuzzy intervals representation of the 
objectives and an aggregation mechanism based on mathematical operators. 

4.1. Fuzzy intervals representation of the objectives 

It is well know that fuzzy interval representation of the objectives permits preference degree specifications. 
Indeed, a fuzzy performance objective can be considered as the fuzzy quantity that should be reached. For 
example, when one wants to reach a performance for the WIP one would rather specify it by a fuzzy expression 
like “about 5 products”, and model it by a membership function rather than give precise information. Based on 
expertise, this approach consists in associating a membership function μ with the performance indicator. Many 
shapes can be used such as triangular, trapezoidal or Gaussian. In this case, the grade of membership can be 
considered as a degree of preference. The higher degree is the more preferred value to be reached by the 
performance indicator is. The -cut of this fuzzy objective is the set of all the values satisfying the performance 
at least with a preference degree of  and the support is the set of values with preference greater than 0. The 
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kernel is the subset of the most preferred values. The complement of the support is the set of undesirable values. 
Thus, fuzzy intervals are interesting tools for characterizing result reliability and developing sensitiveness 
studies. Moreover, fuzzy intervals encapsulate within a single formalism the optimistic case (total satisfaction) 
and the pessimistic one (fully unsatisfied). 
 
Giving a trapezoidal fuzzy interval Pl

obj that represents the objective associated to the performance indicator Pl as 
illustrated in Fig. 6, the following notations are used: 
 The support and kernel are respectively denoted: 

S(Pl
obj) = Pl

obj(0) = [(Pl
obj)-(0), (Pl

obj)+(0)] and K(Pl
obj) = Pl

obj(1) = [(Pl
obj)-(1), (Pl

obj)+(1)] 

 In order to specify the fuzzy interval shape, two additional functions are used to link the support and the 
kernel values according to the vertical dimension. These functions, denoted by (Pl

obj)- (the increasing part in 
Fig. 6) and (Pl

obj)+ (the decreasing part in Fig. 6), are respectively called the left and right profiles [9, 10, 
13]. They are defined by (9) where  is given on the vertical dimension (the -cut, [0, 1]). 
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
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l




 (9)

 Any -cut of a fuzzy performance is the set of the values satisfying the objective Pl
obj at least with a degree 

 [8]. Thus, the switching between the different operating modes is conducted in a gradual way by the left 
and right profiles of the fuzzy interval. 

 
Fig. 6. Trapezoidal fuzzy interval representation. 

The satisfaction may be total when the performance indicator evolves within the kernel (normal mode), not 
satisfactory at all if it is outside the support (fully degraded mode), and not satisfactory with different degree 
when it is bounded by the left or right profiles (partially degraded mode) (Fig. 6). These different situations 
distinguish the operating modes of the production system. 

4.2. Supervisory control based aggregation operators 

In the supervisory control design, two aggregation mechanisms are developed. The first one is based on the 
aggregation of the actions. Indeed, for each performance indicator, an appropriate action is determined 
independently and the resulted action of the supervisor is obtained by the aggregation of these various actions. 
The second mechanism consists on an aggregation of the performance indicator measures to determine the action 
associated with the aggregated objective. 
 
The main difference between these two approaches resides in the application of the aggregation operator. Indeed, 
in the first mechanism, the aggregation is based on the assumption that all the actions have the same importance. 
This is due to the fact that each action is designed according to the satisfaction degree of its objective taken 
independently from the others. In this case, the objectives are considered without specifying any preference or 
any interaction between them. However, the objectives can present conflict behaviours resulted from interaction 
between the related performances. Thus, the second proposed mechanism is used in this situation where the 
aggregation is done according to the specified preferences and, if any, their interactions. 

4.2.1. The aggregation methodology of actions 

This methodology of supervision is designed according to the two following steps: 

 For each performance indicator Pl, the associated action l
si

r  is determined according to the system 

operating mode. 
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 The obtained actions l
si

r  for l = 1,…, L, are combined according to an aggregation operator providing the 

additive component 
isr . 

The principle of the methodology is illustrated in Fig. 7. 

 
Fig. 7. Synopsis of the aggregation principle of actions. 

Let us consider the objective Pl
obj represented by its fuzzy interval as illustrated in Fig. 6. For a performance 

measure Pl, the associated action l
si

r  is determined according to the following statements: 

 If Pl evolves within the kernel of Pl
obj, the system behaviour is in normal mode (domain D2 in Fig. 6). This 

means that the satisfaction degree of the objective is total ( = 1). In this case, the supervisor does not 
provide additive component: 

0)( then  ,)1( If obj  trPP l
sll i

 (10)

The action value in (10) defines the kernel of a triangular fuzzy interval that represents the supervisory law 
domain. 

 If Pl evolves outside the support of Pl
obj, a fully degraded operating mode is detected (domains D1 or D3 in 

Fig. 6). The objective in this case is totally unsatisfied ( = 0), and the supervisory action is given by: 

)()(then   ,)0( If obj trtrPP
ii c

l
sll   (11)

where 










 



)0()( if,0

)0()( if,1
obj

obj

ll

ll

PP

PP  (12)

In this case, the action consists in either allocating the maximum remaining capacity ( = 1) or stop the 
productivity of the module ( = 0). The interval ]1,[

ii cc rr   defines the support of a triangular fuzzy 

interval for the supervisory law admissible domain. 
 If Pl is between the domains D1 and D2 (Fig. 6) or between D2 and D3, the system is said in the degraded 

mode (or switching mode). In these cases, the corresponding -cut of the fuzzy interval Pl
obj represents the 

satisfaction degree. Indeed, when Pl is between D1 and D2, the -cut level is given by the reverse of the left 
profile function as follows: 

 
)0()()1()(

)0()(
)()( then ,)]1()(),0()[( If

objobj
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1objobjobj










ll

ll
lllll PP

PP
PPPPP   (13)

In this case, the supervisory action attempts to allocate the remaining capacity as: 

 )(1)1()( trtr
ii c

l
s    (14)

On the other hand, when Pl is between D2 and D3, the -cut level is given by the reverse of the right profile 
function as follows: 
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objobj
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1objobjobj










ll

ll
lllll PP

PP
PPPPP   (15)

and the supervisory action attempts to reduce the productivity of the controlled module: 

 )()1()( trtr
ii c

l
s    (16)

The actions given by (14) and (16) represent respectively the right and left profiles of a triangular fuzzy 
interval which represents the supervisory control domain. 
 

The different values of )(tr l
si

 represent a triangular fuzzy interval denoted by l
s i

R  where its support is 

]1,[)0(
iii cc

l
s rrR   and its kernel is 0)1( l

s i
R . This principle is illustrated in Fig. 8. It can be observed that in 

the degraded mode, the switching between the operating modes is gradual which may reduce the chattering 
phenomenon and involve more stable performances. 

 
Fig. 8. The evolution of the supervisory control law. 

Finally, the different actions l
si

r  related to each performance indicator Pl are aggregated to determine the additive 

component 
isr . For example, by exploiting the arithmetic mean operator, the expression of 

isr  is given by: 

  



L

l

l
s

L
sss tr

L
trtrtr

iiii
1

1 )(
1

)(,),()(   (17)

The methodology described in this paragraph supposes that the objectives are specified with the same degree of 
importance. However, in some conflict situations, preferences are attributed to the objectives. For instance, in 
order to reduce the backlog, one has to increase the system’s throughput. Unfortunately, this is achieved by an 
increased work-in-process (WIP), consequently a trade-off between the WIP and backlog must be found. In these 
situations, it is more suitable to aggregate (combine) the objectives in a way achieving a best compromise 
between the multiple conflicting objectives. Thus, the supervisory action results from the evaluation of the 
aggregated performance measure versus the aggregated objective as described in the following paragraph. 

4.2.2. The aggregation methodology of objectives 

The proposed mechanism here is based on the following three steps: 
 The aggregation of the objectives P1

obj, …, PL
obj through an uncertain aggregation operator , since they 

are defined by fuzzy intervals. This results in a fuzzy aggregated interval obj
agP . 

 The aggregation of the performance measures P1, …, PL by the precise version of the aggregation operator 
 denoted by ψ. This operation leads to an aggregated performance measure Pag. 

 The “fuzzification” of the precise aggregated performance measure Pag on the fuzzy aggregated objective 
obj

agP  which results in the satisfaction degree of the overall aggregated performance (the -cut). The 

supervisory control law is synthesized by following the same principle detailed in the aggregated actions 
mechanism. 

The principle of this methodology is illustrated in Fig. 9. 
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Fig. 9. Synopsis of the objectives aggregation principle. 

At the first step, the aggregation of the objectives is to use arithmetic operations on fuzzy intervals. In this case, 
the arithmetic operations used and defined for conventional intervals can be directly extended to the fuzzy ones 
according to the profiles representation [9, 21]. In the same way, the MIN and MAX operations for fuzzy 
intervals can be easily obtained [10, 11, 28, 29]. In order to illustrate the aggregation of the objectives, the 
Choquet integral is used [18, 19, 30]. The Choquet integrals are well-known aggregation operators [13, 30] able 
to handle different types of interactions between the information to be aggregated. In this framework, a particular 
case of the 2-additive Choquet integral [18, 19], where only pairwise interactions are exploited, is considered. 
Thus, the aggregation of fuzzy objectives by the 2-additive Choquet integral takes the following form: 
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with respect to the property l-(1/2)k≠l|Ikl| ≥ 0, and where l are the Shapley indices representing the importance 
of the objectives. Ikl represents the mutual interaction between the performance indicators Pk and Pl. Their values 
must be in the interval [-1, 1] and are interpreted as follows: 
 positive Ikl means that the performance indicators are complementary, 
 negative Ikl means that the performance indicators are redundant, 
 null Ikl means that the performance indicators are independent. 

 
The MIN and the MAX operators are given by: 
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
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PPPPPPMIN  (19)

The analytical expressions of the MIN and MAX operators are detailed in [10, 28, 29]. 
 
The second step of the aggregation mechanism is performed in the same way by considering the performance 
measures P1, …, PL according to the precise operator ψ: 
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 (20)

Finally, from the aggregated performance measure Pag a -cut level is determined on the aggregated fuzzy 

interval objective obj
agP . The obtained value is used to determine the additive component 

isr  (supervisory law) 

according to the principle given in the paragraph 4.2.1. 

5. Simulation examples 

To illustrate the feasibility of the proposed method, simulations have been carried out through continuous-flow 
simulator. Two production systems are considered. The first one is a single-part-type transfer line dedicated to 
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illustrate the control methodology performance (academic example). The second one is a study case of wafer 
fabrication in semiconductor industry (the MIT Integrated Circuit Laboratory [2]) used to investigate the 
applicability of the proposed technique to existent manufacturing systems. The system manufactures multiple 
types of products with re-entrant flow and involves only transformation operations. The proposed control 
methodology is implemented by means of Simulink and Floulib toolbox [15] (available at http://www.listic.univ-
savoie.fr). 

5.1. Illustrative example 

The considered system is composed of four machines with transformation operations and producing one part 
type. The parameters of machines and the processing times are chosen as follows: 

,7.0,01.0,3.0

,6.0,2.0,3.0

,3.0,05.0,2.0

,5.0,3.0,5.0

444

333

222

111











 

In this case, the feasibility condition (1) of the demand rate is expressed as d ≤ 1. Thus, giving that the demand 
rate is 0.7 part per time unit, the parameters of the control module (buffer sizes and hedging point) are listed in 
Table 2 and computed according to the heuristic given in [2, 3]. 

Table 2. Control module parameters for d = 0.7. 

i zi
s zi

b xi
max zi 

1 1.40 0.00 2 3.96 
2 0.00 2.34 3 2.56 
3 1.36 2.34 5 2.56 
4 - - - 1.20 

 
The global objectives are specified in terms of backlog and work-in-process minimization. Then, the following 
performance indicators are adopted: 
 The mean end-surplus (P1), 
 The instantaneous end-surplus (P2), 
 The instantaneous work-in-process (P3). 

 
Both indicators P1 and P2 are used to keep the production close to the demand (reduce the backlog and the 
inventory surplus), while P3 is used to limit the number of parts in processing (minimize the WIP). The fuzzy 
interval representations of the associated objectives Pl

obj for l = 1,…, 3; are specified by their supports and 
kernels as follows: 
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Ten simulation runs of 1000 time units for each one have been performed. The evolution of the different 
performance measures are given by the average over the total ten simulation runs. Fig. 10(a)-(b) shows, in terms 
of mean values versus time, the evolution of WIP and backlog when applying the following control methods: 
 The distributed fuzzy control, 
 The supervisory control based on the aggregation of actions using the arithmetic mean operator, 
 The supervisory control based on the aggregation of objectives using the 2-additive Choquet integral 

operator. 
Since the performance indicators P1 and P2 are redundant and both are complement with P3, the parameters of 
the Choquet integral (18) and (20) are chosen according to the expert knowledge as follows: l = 1/3 for l = 1, 2, 
3 and I12 = -0.3, I13 = 0.2, I23 = 0.2. 
 
For the tested demand pattern, the analysis of the obtained results leads to the following observations: 
 The distributed/supervised approaches achieve a substantial reduction of backlog and relative improvement 

of WIP compared with the distributed fuzzy control. 
 The distributed/supervised control based on the aggregation of objectives reaches better performances when 

compared with the method based on the aggregation of actions. 
 When using the 2-additive Choquet integral operator, backlog and WIP are maintained in their admissible 

domain bounds. 
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Fig. 10. Control performances: (a) Backlog, (b) WIP. 

The performance of the control methodology is highly dependent on the demand levels and patterns. 
Consequently, a constant demand rate close to the maximum productivity of the system is considered. In this 
case, when considering the WIP and backlog as performance measures, the supervisory control leads to reduce 
the backlog since it is more important (in the action law) than the WIP. However, when the demand rate is low, 
the backlog is at low levels since there is enough capacity to satisfy the demand. In this case, the distributed and 
supervised approaches may achieve comparable performances. These results are due to the fact that the WIP and 
backlog are conflicting performance measures and a best compromise must be achieved between them. 

5.2. Application to the multiple-part-type systems 

As the complexity of a production system is related to its dimension, uncertainties, variety of products, re-entrant 
sequences, etc., an application to actual multiple-part-type processes is studied in this paragraph [2, 20, 42]. 

5.2.1. Multipe-part-type formulation 

Let consider a single production module PM(i) that operates on different part types j such that jQ(i), where Q(i) 
the set of part types processed on PM(i), each of them may involves Kij (k = 1,…,Kij) different operations. In this 

case, the original module PM(i) is virtually divided into    iQjj ijK  single-part-type sub-modules. Thus, there 

are as many sub-modules as the number of the operations to be performed in the original module PM(i). 
Let us denote pm(i, j, k) be the sub-module of PM(i) which performs the kth operation on the part of type j and 
τijk its processing time. When considering a constant demand rate dj of the production of the part type j, the 
feasibility condition becomes: 

   


)( 1
,,1,

iQjj i
K

k ijkj Niedij
  (21)

To distribute the machine operating time to the different part types, and consequently the decision of the 
production rate uijk of every sub-module pm(i, j, k), the assumption that all part types are of equal importance is 
considered. In this case, the maximum production rate of the sub-module pm(i, j, k) is equal to: 


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
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
 (22)

And the production rate uijk of each operation k of every product j would be: 

maxmax ))()(()()( ijkscijkijkijk utrtrutrtu
ijkijk

  (23)

where 
ijkcr  is the outcome of the local fuzzy sub-control module associated to the sub-module pm(i, j, k), and 

ijksr the additive control component provided by the supervisor of the flow of part type j. The remaining 

operating time of PM(i) is calculated as follows: 

   


)( 1
)(1)(

iQjj

K

k ijkijki
ij AtrtRT  (24)
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The value of (24) is distributed to the operations with the highest priority. It is given to the operations having the 
global control law rijk equal to 1. The extra machine time devoted to the operations with the highest priority is: 

)()()( tCtRTtE ijkiijk   (25)

where  
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Finally, the production rate of the sub-module pm(i, j, k) is: 
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5.2.2. Semiconductor application 

In order to illustrate the feasibility of the supervisory control approaches in the case of multiple-part-type 
systems with re-entrant flow, an application of two actual processes of wafer fabrication in semiconductor 
industry is studied [2]. The first process called poly-gate capacitor consists of 17 operations and the second 
called poly-monitor involves 7 operations. 
The part type 1 follows the poly-gate capacitor process while the type 2 goes through the system following the 
poly-monitor process. The parameters of machines are listed in Table 3. The processing times are in Table 4 
where the time unit is hour and the unit of part is lot. 

Table 3. Machine parameters (1/hour). 

Machine (i)  
1 2 3 4 5 6 7 8 9 10 

λi 0.01 0.001 0.002 0.002 0.017 0.002 0.002 0.01 0.001 0.01 
μi 0.5 0.5 0.5 0.5 0.33 0.5 0.33 0.5 0.5 0.33 

Table 4. The processing times ijk for the two processes (hours). 

Machine (i) Process (j) Operation (k) 
1 2 3 4 5 6 7 8 9 10 

1 0.25 0.469 0.969 0.469 0.469 0.25 0.156 0.188 0.131 0.469 
2 0.25 - - - - - 0.156 0.188 0.131 0.469 

Process 1: d1 = 
0.6 (lot/hour) 

3 - - - - - - - 0.188 0.163 - 
Process 2: d2 = 
0.5 (lot/hour) 

1 0.25 - 0.656 0.469 0.469 - 0.156 - 0.163 0.469 

The feasibility condition (1) provides d1 ≤ 0.65 and d2 ≤ 0.54. Giving the demand rates of 0.6 (lot/hour) for the 
poly-gate capacitor process and 0.5 (lot/hour) for the poly-monitor process, the parameters of each sub-control 
module (buffer sizes and hedging levels) are calculated and respectively listed in Table 5 and Table 6. 

Table 5. The parameters of the sub-controllers for the process 1. 

Machine (i)  

1 2 3 4 5 6 7 8 9 10 

zi,1,1 6.307 3.907 6.307 2.088 5.107 0.888 3.907 3.907 5.107 5.107 

zi,1,2 5.107 - - - - - 0.888 2.088 2.088 0.888 

Surplus 
hedging 
levels 

zi,1,3 - - - - - -  0.888 0.888  

zi,1,1
s 0 0 1.2 1.2 0 - 1.818 0 0 0 

zi,1,2
s 1.2 - - - - - 0 0 0 0 

Starvation 
parameters 

zi,1,3
s - - - - - - - 0 0 - 

xi,1,1
max 1 1 5 3 1 - 2 1 4 2 

xi,1,2
max 1 - - - - - 2 1 1 2 

Buffer sizes 

xi,1,3
max - - - - - - - 2 2 - 
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Table 6. The parameters of the sub-controllers for the process 2. 

Machine (i)  

1 2 3 4 5 6 7 8 9 10 

zi,2,1 4.315 - 3.115 1.915 1.915 - 0.715 - 0.715 0.715 

zi,2,1
s 1.2 - 1.2 1.2 0 - - - 0 0 

xi,2,1
max 1 - 5 1 1 - - - 2 2 

The performance measures used in the supervisory mechanism for each process (j = 1, 2) are: the instantaneous 
end-surplus (Pj1), the work-in-process (Pj2) and the production lead time (Pj3). The objectives are expressed in 
terms of mean value for the backlog, the work-in-process and the lead time for each part type. In order to 
establish the tolerance intervals related to each objective, one has to estimate the limit bounds of the desired 
performance measures. For the surplus, the tolerance interval is chosen in such a way to keep the production 
close to the demand: Pj1

obj = [-1, 1]. The overall WIP level in the system is the sum of all parts in buffers and 
parts processed on machines. Since the buffer sizes are calculated with regard to the starvation parameters zi,j,k

s, 
the WIPj bounds are approximated by: 

    2,1,)(WIP
)( 1

max
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K

k kjijiQji

K

k

s
kji

ijij  (28)

The real values of buffer sizes and starvation parameters are approximated to integer values. Referring to the 
values in Table 5 and Table 6, equation (28) leads to: 5  WIP1(t)  31 and 3  WIP2(t)  12. Thus, the related 
tolerance intervals are chosen as follows: P12

obj = [5, 10]; P22
obj = [3, 6]. Based on these values and using the 

Little’s law (WIPj = djTj), the tolerance intervals for the production lead time are fixed as: P13
obj = [9, 16]; P23

obj = 
[6, 12]. 
The supervision based on the objectives aggregation is adopted with the 2-additive Choquet integral operator. 
This choice is motivated by the fact that the performances of the backlog and the WIP are conflicting. Since the 
WIP and the lead time express the same aspect of performance, they exhibit redundant aspect. Thus, according to 
experts, the associated Choquet integral parameters are: jl = 1/3 for l = 1, 2, 3 and I12 = 0.2, I13 = 0.25, I23 = -0.3, 
the others being equal to 0. Comparative results for the backlog, WIP and production lead time for both 
processes are respectively shown in Fig. 11, Fig. 12 and Fig. 13. 
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Fig. 11. Mean backlog: (a) part type 1, (b) part type 2. 
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Fig. 12. Mean WIP: (a) part type 1, (b) part type 2. 
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Fig. 13. Mean lead time: (a) part type 1, (b) part type 2. 

Table 7 shows the statistical significance of the results obtained in 10 simulation runs. Each run represents about 
12 months of production (2880 hours). 
Based on the obtained results, the distributed/supervised control approach achieves a substantial reduction of 
backlog for both part types (Fig. 11). The performances of the WIP and lead time for each part type are similar in 
both methods but they are maintained within their tolerance intervals (Fig. 12, Fig. 13). These results are due to 
the fact that the supervisory mechanism provides an action in such a way that some trade-off is achieved with 
regard to the objective values, their importance and interactions. Indeed, as the performances of the distributed 
control in terms of WIP and lead time are satisfied, the supervisor provides an action which allocates the 
remaining capacity in order to reduce the backlog. In this case, the Choquet integral operator ensures the 
coherence of the satisfaction degrees of each performance by taking into account the relative importance of the 
performances and their mutual interactions. 
We can conclude that the distributed/supervised control strategy exhibits better performance in almost every 
case. These results are very promising, since the decision method is very flexible and combining several control 
objectives with the local control one. This may help to cope with the multiple and conflicting control objectives 
and make the decision-making process more efficient in the production-flow control. 

Table 7. Statistical significance of the simulation results. 

Distributed fuzzy control Supervisory control based on 
objectives aggregation 

 

WIP 
(lots) 

Backlog 
(lots) 

Lead time 
(hours) 

WIP 
(lots) 

Backlog 
(lots) 

Lead time 
(hours) 

Mean 9.768 4.801 9.300 9.908 0.447 9.316 

Standard 
deviation 

0.136 1.505 0.199 0.128 0.167 0.303 

Maximum 9.883 7.059 9.567 10.052 0.642 9.745 

Process 1: d1 = 0.6 
(lots/hour) 

 

Confidence 
level 

0.99 0.95 0.99 0.99 0.99 0.99 

Mean 5.491 3.026 6.433 5.771 0.296 6.541 

Standard 
deviation 

0.063 0.943 0.187 0.065 0.128 0.336 

Maximum 5.590 4.392 6.594 5.875 0.450 6.883 

Process 2: d2 = 0.5 
(lots/hour) 

Confidence 
level 

0.95 0.99 0.975 0.95 0.99 0.99 

6. Conclusion 

In this article, intelligent distributed and supervised control architecture for continuous-flow production systems 
has been presented. The hierarchical structure consists of a lower level of distributed fuzzy controllers, which is 
supervised by a higher level of decision-making. The lower level regulates the production flow by adjusting the 
machine processing rates. It uses a fuzzy controller based on the Takagi-Sugeno fuzzy system. The higher level 
of supervision monitors the system by using global performance indicators. The supervisory mechanism is based 
on aggregation operator mechanisms which provide an additive component to the local controller when degraded 
operating modes are detected. The supervisor is built according to the satisfaction degree of the different and 
possibility conflicting objectives quantified by fuzzy intervals. 
For the studied cases, the obtained results show a promise improvement of performances when compared with 
the unsupervised distributed control. To summarize, the main advantages of the proposed control approach are: 
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 It takes into account the different degrees of importance for each control objective, 
 It facilitates the implementation phase due to the modularity and the distributivity of the control 

architecture. 
The robustness of the proposed approach is evaluated regardless to the demand variation (random variation) in 
[44]. The obtained results show acceptable improvement of performances providing that the demand changes 
don’t exceed the system’s capacity. An attractive extension is to study the structured methods traditionally used 
in the multiple criteria decision problems in order to quantify the fuzzy intervals of the desired objectives. 
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