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Abstract: 

 

In this paper, a salient search and optimisation algorithm based on a new reduced space 

searching strategy, is presented. This algorithm originates from an idea which relates to 

a simple experience when humans search for an optimal solution to a ‘real-life’ problem, 

i.e. when humans search for a candidate solution given a certain objective, a large area 

tends to be scanned first; should one succeed in finding clues in relation to the 

predefined objective, then the search space is greatly reduced for a more detailed search. 

Furthermore, this new algorithm is extended to the multi-objective optimisation case. 

Simulation results of optimising some challenging benchmark problems suggest that 

both the proposed single objective and multi-objective optimisation algorithms 

outperform some of the other well-known Evolutionary Algorithms (EAs). The 

proposed algorithms are further applied successfully to the optimal design problem of 

alloy steels, which aims at determining the optimal heat treatment regime and the 

required weight percentages for chemical composites to obtain the desired mechanical 

properties of steel hence minimising production costs and achieving the overarching 

aim of ‘right-first-time production’ of metals. 

 

Keywords: Nature-Inspired Algorithm, Search Strategy, Reduced Space Searching, 

Multi-Objective Optimisation, Evolutionary Algorithms, Optimal Design, Alloy Steel, 

Mechanical Property, Tensile Strength 

 

1. Introduction 

 

In the steel industry, determining the optimal heat treatment regime and the required 

weight percentages for the chemical composites to obtain the desired mechanical 

properties of the steel is always a challenging multi-objective optimisation problem. 

Usually, some objectives may conflict with each other, such as the Ultimate Tensile 

Strength (UTS) and the ductility index, the Reduction of Area (ROA). In this paper, 

details relating to the optimal design of alloy steels are presented and discussed, which 

employs a salient nature-inspired optimisation technique, the Reduced Space Searching 

Algorithm (RSSA). 
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Inspired by natural and social behaviours, researchers have developed many successful 

optimisation algorithms. For example, the Genetic Algorithm (GA) (Holland, 1975; 

Goldberg, 1989) originates from the simulation of natural evolution, while the Particle 

Swarm Optimisation (PSO) (Kennedy and Eberhart, 1995) algorithm is motivated by 

the simulation of the social behaviour of birds flock. In the same way, a new search and 

optimisation algorithm, named Reduced Space Searching Algorithm (RSSA) throughout, 

is described in (Zhang and Mahfouf, 2007)
1
, which is inspired by the simple human 

experience when searching for an ‘optimal’ solution. 

 

Compared with conventional optimisation techniques, such as hill climbing (gradient 

descent), Newton's method and Quasi-Newton method, the proposed algorithm has the 

ability to tackle a wider spectrum of problems, for it does not need the information 

relating to derivatives, which is essential for the above conventional techniques. Thus, 

this new algorithm can deal with not only the well-defined but also the more complex, 

uncertain and ill-defined problems. Unlike most of the evolutionary and social inspired 

algorithms, such as Genetic Algorithm and Particle Swarm Optimisation, which are 

population-based algorithms, the proposed algorithm does not rely on defining a 

population of candidate solutions. This feature often enables the algorithm to perform 

faster and use less evaluation times to locate the final solutions. Furthermore, the most 

important difference between the proposed algorithm and other algorithms is the 

operation emphases within a search. Most of the optimisation algorithms concentrate on 

generating new solutions using various equations (derivative-related equations, PSO 

equations, etc.) or operators (mutation, recombination, etc.), while the new method 

concentrates on transforming the search space so as to find the ‘optimal’ sub-space. The 

generation of solutions within a sub-space does not constitute the real emphasis; in this 

paper, new solutions are created as a uniform random set of solutions. Hence, this 

proposed method aims to provide an alternative optimisation and search idea and inspire 

people to think in a different way when facing such optimisation problems. 

 

The remaining parts of this paper are organised as follows. Section 2 introduces the 

Reduced Space Searching (RSS) strategy and outlines the explicit steps included in the 

proposed algorithm RSSA. In Section 3, RSSA is extended to include the multi-

objective optimisation case and the details about this new multi-objective optimisation 

algorithm MO-RSSA are introduced. Section 4 presents the results of applying RSSA to 

optimise some well-known single objective benchmark functions. A comparative study 

between RSSA and other three evolutionary algorithms is also conducted. In Section 5, 

MO-RSSA is validated using the well-known ZDT (Zitzler et al., 2002) and DTLZ (Deb 

et al., 2001) series test problems. Section 6 describes how such algorithms perform 

within the realm of a real industrial application relating to the optimal design of 

                                                 
1
 The present paper includes an extended version of the algorithm originally published at the 2007 IEEE 

Congress on Evolutionary Computation (Zhang and Mahfouf, 2007). 
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mechanical properties of alloy steel. Finally, concluding remarks are given in Section 7. 

 

2. Reduced Space Searching Algorithm (RSSA) 

2.1 Reduced Space Searching (RSS) Strategy 

 

If one approaches the optimisation issue from a totally unbiased angle it would be 

legitimate to postulate that ‘common’ sense should dictate that when searching for a 

candidate solution under predefined objectives, a relatively large search space area must 

be initially targeted. When clues are available that the objective may be met in a 

particular area, the initial search area is then justifiably reduced. This simple principle is 

being widely used in our every-day life and has proved to be effective. In the light of the 

above, a strategy of constructing a new optimisation algorithm, named Reduced Space 

Searching (RSS) throughout, is proposed. 

 

The ‘rationale’ behind this RSS strategy is as follows: given an optimisation problem, 

one should divide the initial search space into parts and rank these parts according to the 

probability of the candidates satisfying the objective(s). First, a search is conducted in 

the partial space where the probability is the highest followed by the one with the lowest 

probability. The diagram of Figure 1 illustrates the idea behind the RSS strategy. 

 

2.2 Basic Ideas behind RSSA 

 

In order to develop an algorithm following the RSS strategy one must first define how 

to divide the search space into parts and how to rank such parts in terms of priorities. In 

this work, a simple (but no simpler) method to achieve this purpose is proposed. The 

basic idea is that the search space should initially be divided into two parts: one part 

being located around the best solution found so far while the other part should represent 

the space left. The partial space around the best solution should be top-ranked (the best). 

To simplify the method, the marginal partial space can be neglected and only the space 

that includes the best solution is kept for search purposes. If the process of dividing the 

search space into smaller parts is repeated a number of times, then a small search space 

as well as a relatively good solution to the problem will be obtained. 

 

It was found that reducing the search space all the time is not the most effective way of 

locating the optimal solution. Sometimes, a too-small search space will decrease the 

speed of solution convergence and at the same time will reduce the probability of the 

solution jumping out of the local optimum. Thus, a search space ‘increase’ mechanism 

is proposed to cooperate with the original ‘decrease’ mechanism. In this new 

mechanism, if no better solution can be found in the optimisation search process, then 

the search space is reckoned to be too large for such a search and should be decreased to 

reinforce the local search. If better solutions can always be found in a particular reduced 

space, then the algorithm may certainly have got trapped in a ‘local optimum’ area. 
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Given this situation, the search space should be increased to reinforce the global search. 

It is worth noting that this proposed method attempts to strike a balance between the 

‘global’ and the ‘local’ searches to make the optimisation search process more adaptive. 

 

Figure 2 shows an example of the size of the search space decreasing or increasing in a 

two-dimensional problem. In Figure 2(a), the rectangular Region 1 is the search space 

of an optimisation problem. Solution ‘A’ is the best solution hitherto located. If there 

are several continuous randomly selected candidate solutions worse than ‘A’ in the 

fitness to the optimisation problem, as is shown in Figure 2(b), then the size of the 

search space should be decreased around the best solution ‘A’. The partial space 

(Region 2) containing ‘A’, as the centre, is set to the new space one should perform the 

search in. On the other hand, if there are several continuous randomly selected 

candidate solutions better than ‘A’ in the fitness, which is shown in Figure 2(c), then the 

size of the search space should be increased around the best solution ‘B’. The increasing 

space (Region 3) containing ‘B’, as the centre, is set to the new space one should 

perform the search in. If there are better solutions (but not continuous) that can be found 

in the search space (shown in Figure 2(d)), then the size of the search space should not 

be changed and the centre of the search space (Region 4) will be moved to the new best 

solution ‘C’. 

 

In the light of the above considerations, a good solution is obtained after a finite number 

of iterations. However, it must be stressed that the above method may only find a local 

optimal solution rather than a global optimal one. In the case of a crooked, multimodal 

fitness landscape, the RSS operator might lead to premature exit from the region where 

the global optimum actually belongs. To solve this problem and obtain the global 

optimal solution, a variation operator is employed to cooperate with the RSS operator. 

Figure 3 shows the flow chart of the overall RSSA algorithm. 

 

Three variation strategies are designed as follows: 

1. One-dimensional variation: Only one element of the decision variable vector 

will be varied. The position of this element will be randomly chosen and the 

element will be set at a random value within the search bounds. 

2. Multi-dimensional variation: The number of elements of the decision variable 

that will be varied and the positions of these elements will be randomly 

generated. These elements will then be set to some random values. 

3. All-dimensional variation: All the elements of the decision variable vector will 

be randomly varied. 

 

The RSS strategy introduced above is based on the concept of splitting the search 

(decision) space into sub-spaces. It is worth noting that some literatures (Zhang and 

Mahfouf, 2006; Chakraborti et al., 2008) also proposed the methods of splitting the 

functional (objective) space. For example, in (Chakraborti et al., 2008), a multi-
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objective optimisation genetic algorithm was developed using a neighbourhood concept. 

It splits the functional space into discrete grids and each candidate solution is mapped to 

one grid. A neighbourhood is assigned to each solution based on its functional grid 

position. Then, a genetic recombination is only conducted between the solution and one 

of its neighbours. 

 

2.3 The RSSA Algorithm 

 

Consider a single objective optimisation problem with N decision variables as follows: 

Minimise f (X), X  [Xmin1, Xmax1] × [Xmin2, Xmax2] ×…× [XminN, XmaxN]. 

 

The proposed RSSA algorithm can be summarised as follows: 

1. Randomly select one candidate solution Xa (x1, x2, … , xN) in the original search 

space and save it as the best solution Xbest = Xa. Set n = 0, which is used to 

control the bounds of the search space. 

2. Randomly select the candidate solutions Xb(s) in the current search space. If C1-

continuous Xb(s) satisfies f (Xb) < f (Xbest) and n > 1, then Xbest = Xb and n = n 

- 1. If C2-continuous Xb(s) satisfies f (Xb) > f (Xbest), then n = n + 1. If non-

continuous Xb(s) satisfies f (Xb) < f (Xbest), then Xbest = Xb. 

3. Change the size of the search space using the ratio K (0 < K < 1, in this paper K 

= 0.5 without any loss of generality). Xbest is located at the centre of the new 

space. Ymini is the lower bound of the ith decision variable in the new search 

space and Ymaxi is the upper bound. To avoid the new bounds stepping outside 

the original constraints, the following equations are used to define the new 

bounds: 

 )()(,minmaxmin iLKiXbestXY n

ii  , 

 )()(,maxminmax iLKiXbestXY n

ii  .                                                  (1) 

where i = 1, 2, … N; 0 ≤ n ≤ m; L(i) = Xmaxi − Xmini. m is a threshold value that 

depends on the precision needed and relates to the value of K. If K = 0.5, a value 

of m = 15 to 30 should prove adequate. For example, if m = 20 and K = 0.5, the 

search space can be reduced to as small as (K)
m
 = (1/2)

20
 (≈ 9.54e-7) of its 

original space. It also means the solution obtained in this sub-space have a 

precision close to 1e-6 of its value range for a decision variable. 

4. Repeat Steps 2 and 3 until n = m. 

5. Perform the variation operator on Xbest and obtain Xc. If f (Xc) < f (Xbest), then 

Xbest = Xc, n = 0 and repeat Steps 2 to 4. 

6. Repeat Step 5 until the ‘optimal’ solution is found or the termination criterion is 

reached. 

 

It is worth noting that the decreasing parameter C1 and the increasing parameter C2 play 

important roles in the RSSA algorithm. They are used to balance the ‘global’ search as 
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well as the ‘local’ search in the optimisation process. In (Zhang, 2009), experiments 

were carried out to investigate the influence of C1 and C2 general settings. It is generally 

recommended that C1 = C2 × (D/2 + 8), where D is the dimension of the test problem. 

 

3. Extension of RSSA to Multi-Objective Optimisation Problems 

 

To extend the RSSA algorithm for optimising multi-objective problems, the Random 

Weighted Aggregation (RWA) technique (Murata et al., 1996) is employed and an 

archiving approach is also included to preserve the Pareto-optimal solutions. 

 

3.1 The Random Weighted Aggregation Approach 

 

Assume a multi-objective problem that consists of finding a vector 

),,,,( 321

  DxxxxX                                                                                              (2) 

that will optimise the following vector function: 

)](,),(),(),([)( 321 XfXfXfXfXf k


 .                                                              (3) 

 

The Weighted Aggregation is one of the most common approaches for solving multi-

objective problems. In this type of approach, all the objectives are summed to a 

weighted combination as follows: 

 


k

i ii XfwF
1

)( , 1
1

 

k

i iw                                                                                 (4) 

where wi, i = 1, 2, … , k, are non-negative weights. 

 

In the Conventional Weighted Aggregation (CWA) method, the above weights are fixed 

during the optimisation process. By using CWA, only a single Pareto-optimal solution 

can be obtained in every optimisation run. If one wishes to obtain different Pareto 

solutions, the algorithm has to be repeated several times with different weights settings. 

In addition, this method cannot locate the Pareto solutions when there are concave 

regions in the true Pareto front. 

 

Random Weighted Aggregation (RWA) can overcome the limitations of CWA. In the 

RWA method, the weights are modified after every certain number of iterations during 

the optimisation. The weights are defined by the following equation: 












  

.),1(

;1),(,
)(

)(

)(
1

elsetw

Htremif
trand

trand

tw

i

k

j j

i

i                                                              (5) 

where t is the index of iteration and H is the frequency of the weight changing; randi(t) 

is a function to create a uniformly distributed random value in the range [0, 1]; rem(t, H) 

is a function to obtain the remainder from dividing t by H. 
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In this paper, the frequency parameter is calculated using the following equation: 

 )*4/(max ObjEroundH                                                                                          (6) 

where round(x) is the function that allows to round-off x to the nearest integer, Emax is 

the maximum function evaluation number and Obj is the number of objectives. 

Equation (6) aims to calculate an H, which can control the objective weights to vary 

(4*Obj) times during the whole optimisation procedure. 

 

As far as recently-developed multi-objective optimisation algorithms, one can 

distinguish them into two categories considering the fitness assignment strategies, 

which are weighted-aggregation-based and Pareto-dominance-based. Most of the 

algorithms are based on Pareto-dominance concept. They have demonstrated their 

capability in finding a well-converged and well-distributed set of near Pareto-optimal 

solutions (Zitzler and Thiele, 1998; Knowles and Corne, 2000; Deb et al., 2002). 

However, recent studies have discovered that the Pareto-dominance-based algorithms 

may face some difficulties in solving the problems with a large number of objectives, 

because the emphasis of all non-dominated solutions keeping in the population may not 

produce enough selection pressure for the population to move towards the Pareto-

optimal region fast enough (Deb et al., 2006). While the algorithms based on the 

varying weighted aggregation strategies (Jin et al., 2001; Chang et al., 2002) were 

shown to be computationally efficient. For some specific multi-objective optimisation 

problems, such as those which consist of finding the solutions near the desired region of 

decision-maker’s interest (Deb et al., 2006) or the problems to find the ‘knees’ (Branke 

et al., 2004) out of all possible Pareto-solutions, the weighted-aggregation-based 

algorithms are more practical and relatively more straightforward. It is worth noting at 

this stage that the weighted aggregation strategy has been investigated further in other 

algorithms, such as the predator-prey approach (Li, 2003; Pettersson et al., 2007), where 

the ‘preys’ employ the weighted aggregation method to assign fitness values. To 

maintain diversity between generated solutions, a ‘prey’ uses different sets of weights 

when facing different ‘predators’. 

 

3.2 Archive Design 

 

In the RWA method, the population cannot keep all the found Pareto solutions. Thus, an 

archive is used to record the Pareto solutions found so far during the optimisation search. 

To update the archive with appropriate Pareto solutions, a non-dominated selection and 

a diversity selection mechanism are employed. The non-dominated selection aims to 

obtain the Pareto-optimal solutions from the candidates. This is easy to implement. The 

diversity selection tends to obtain the solutions with a good diversity from the 

candidates. In this paper, a simple method is proposed to achieve this purpose, which 

works as follows: 

1 If the number of solutions in the present archive is more than the predefined 

maximum number, go to Step 2; else terminate this selection and return. 
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2 For every solution in the archive, calculate the value of its closeness criterion. 

The closeness criterion of the ith solution is defined as follows: 

21 iii ddcri                                                                                                      (7) 

where di1 is the distance between the ith solution to its closest neighbour and di2 

is the distance between the ith solution to its second closest neighbour. 

3 Find the solution with the minimum criterion value and remove it from the 

archive. 

4 Go to Step 1. 

In this paper and for this particular application, the size of the archive is set to be 100. 

 

3.3 Algorithm Formulation 

 

By applying the RWA method and by maintaining an archive for preserving the Pareto-

optimal solutions, the RSSA is thus extended to a multi-objective optimisation 

algorithm, named as the Multi-Objective Reduced Space Searching Algorithm (MO-

RSSA). In summary, the entire MO-RSSA can be described via the following procedure: 

1 Randomly generate the initial weights for the optimisation objectives. 

2 Optimise the related problem, whose objective is the weighted sum of the 

multiple objectives, using RSSA for one iteration. 

3 Add the present best position to the archive as the candidate solution. 

4 Execute the non-dominated selection to the archive. 

5 Execute the diversity selection to the archive. 

6 Vary the weights of the objectives using the method RWA. 

7 Repeat Step 2 to Step 6 until a stopping criterion (e.g., a maximum number of 

iterations or a sufficiently good fitness value) is achieved. 

 

4 Experimental Studies using RSSA 

4.1 Benchmark Test Functions 

 

In the field of evolutionary computation, it is common to compare different algorithms 

using a large test set. When an algorithm is evaluated, one must look for the type of 

problems where its performance is good, in order to characterise the type of problems 

for which the algorithm is suitable. In this work, the test set with some well-

characterised functions is used as it allows one to obtain and generalise the results 

regarding the kind of functions involved. All these functions are used as minimisation 

problems and the following shows their expressions and the summary of their features 

about separability and multimodality. 

1. Sphere function (Unimodal, Separable and D-dimensional): 





D

i

ixxf
1

2

1 )( , ]10,10[ix , 0)0,...,0()min( 11  ff . 

2. Schwefel’s function 2.22 (Unimodal, Non-separable and D-dimensional): 
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



D

i

i

D

i

i xxxf
11

2 )( , ]10,10[ix , 0)0,...,0()min( 22  ff . 

3. Schwefel’s function 1.2 (Unimodal, Non-separable and D-dimensional): 
2

1 1

3 )(  
 
















D

i

i

j

jxxf , ]10,10[ix , 0)0,...,0()min( 33  ff . 

4. Schwefel’s function 2.21 (Unimodal, Non-separable and D-dimensional): 

 Dixxf i
i

 1,max)(4 , ]10,10[ix , 0)0,...,0()min( 44  ff . 

5. Rosenbrock’s function (Multimodal, Non-separable and D-dimensional): 

    




 
1

1

222

15 1100)(
D

i

iii xxxxf , ]2,2[ix , 0)1,...,1()min( 55  ff . 

6. Schwefel’s function 2.26 (Multimodal, Separable and D-dimensional): 

  



D

i

ii xxxf
1

6 sin)( , ]500,500[ix , 

5.12569)9687.420,...,9687.420()min( 66  ff . 

7. Rastrigin’s function  (Multimodal, Separable and D-dimensional): 

  



D

i

ii xxxf
1

2

7 102cos10)(  , ]5,5[ix , 0)0,...,0()min( 77  ff . 

8. Ackley’s function (Multimodal, Non-separable and D-dimensional): 

ex
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D

xf
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i

D

i

i 



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

















 



20)2cos(
1

exp
1

2.0exp20)(
11

2

8  , 

]30,30[ix , 0)0,...,0()min( 88  ff . 

9. Griewank’s function (Multimodal, Non-separable and D-dimensional): 

1cos
4000

1
)(

11

2

9 







 



D

i

i
D

i

i
i

x
xxf , ]600,600[ix , 

0)0,...,0()min( 99  ff . 

10. Bohachevsky’s function (Multimodal, Separable and D-dimensional): 

 




 
1

1

1

2

1

2

10 7.0)4cos(4.0)3cos(3.02)(
D

i

iiii xxxxxf  , ]15,15[ix , 

0)0,...,0()min( 1010  ff . 

11. Schaffer’s function (Multimodal, Non-separable and D-dimensional): 

  




 
1

1

1.02

1

2225.02

1

2

11 0.1)(50sin)()(
D

i

iiii xxxxxf , ]100,100[ix , 

0)0,...,0()min( 1111  ff . 

12. Six-hump Camel-Back function (Multimodal, Non-separable and 2-dimensional): 

4

2

2

221

6

1

4

1

2

112 44
3

1
1.24)( xxxxxxxxf  , ]5,5[ix , 
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0)7126.0,08983.0()7126.0,08983.0()min( 121212  fff . 

13. Branin function (Multimodal, Non-separable and 2-dimensional): 

10cos
8

1
1106

5

4

1.5
)( 1

2

1

2

12213 
















 xxxxxf


, 

]10,5[1 x , ]15,0[2 x , )275.12,142.3()min( 1313  ff  

398.0)425.2,425.9()275.2,142.3( 1313  ff . 

14. Goldstein-Price function (Multimodal, Non-separable and 2-dimensional): 

 )361431419()1(1)( 2

2212

2

11

2

2114 xxxxxxxxxf   

 )273648123218()32(30 2

2212

2

11

2

21 xxxxxxxx  , ]2,2[ix , 

3)1,0()min( 1414  ff . 

 

A function of D variables is separable if it can be rewritten as a sum of D functions of 

just one variable. Non-separable functions are more difficult to optimise as the accurate 

search direction depends on two or more variables. On the other hand, separable 

functions can be optimised for each variable in turn. A function is multimodal if it has 

two or more local optima. The problem is more difficult if the function is multimodal. 

The search process must be able to avoid the regions around local optima in order to 

approximate, as far as possible, the global optimum. 

 

4.2 Effects of the Variation Strategies 

 

Three types of variation operators were tested and compared in this experiment. For this 

purpose, the 30-dimensional multimodal benchmark problems f5 to f11 were used as test 

beds. The decreasing parameter C1 was set to be 23 and the increasing parameter C2 was 

set to be 1 (Zhang, 2009). For each setting, 20 runs were conducted. In each run, the 

maximal function evaluation number was set to 10
6
 and the optimisation process was 

regarded as successful and stopped, when the best solution Fb satisfied the following 

condition: Fb < 10
-5

 if the true global minimum Gb = 0 or |(Fb - Gb) / Gb| < 10
-5

 if Gb ≠ 

0. 

 

From Table 1, it can be seen that the one-dimensional variation strategy performs best 

on the functions f5, f6, f7, f8, f10 and f11, while the all-dimensional variation strategy 

performs best on the problems f9. For a broad adaptation to various problems, it is 

recommended to use both the one-dimensional and multi-dimensional variation 

strategies simultaneously. 

 

4.3 A Comparison between RSSA and Other Evolutionary Algorithms 

 

In this section, experiments were carried-out between RSSA and other three salient 

evolutionary algorithms, which are the Covariance Matrix Adaptation Evolution 
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Strategy (CMA-ES) (Hansen et al., 2003), the Differential Evolution (DE) (Storn and 

Price, 1995) and the Generalised Generation Gap model with the Parent-Centric 

Recombination operator (G3+PCX) (Deb et al., 2002). 

 

The parameter settings for these algorithms are described as follows: 

1. RSSA: C1 = D/2 + 8, C2 = 1 (Zhang, 2009), K = 0.5, m = 30, where D is the 

dimension of the test problem. The variation operator worked as a combination 

of the one-dimensional variation strategy (with the 50% probability of usage) 

and the multi-dimensional variation strategy (with the 50% probability of usage). 

2. CMA-ES: There are 8 parameters to be predefined for this algorithm. All 

settings followed the instructions given in (Hansen, 2007). For instance, the 

population size λ = 4 + floor(3×lnD), the parent number μ = floor(λ/2), etc., 

where floor(x) is the function that allows to round-off x to the nearest integer 

towards -∞. 

3. DE: The DE/Rand/1 scheme was employed. The parameter settings followed the 

instructions in (Storn, 1996). The population size N = 10×D; the crossover 

probability CR = 0.9 and the weighting factor F = 0.8. 

4. G3+PCX: Following the papers by (Deb et al., 2002; Deb, 2005), the population 

size N = 10 × D; the parent size was set to 3; the offspring size was set to 2 and 

the replacement size was set to 2. For the PCX operator, the distribution 

parameter σζ = 0.1 and ση = 0.1. 

 

The optimisation process was regarded as successful and stopped when the best solution 

Fb satisfied the following condition: Fb < 10
-5

 if the true global minimum Gb = 0 or 

|(Fb - Gb) / Gb| < 10
-5

 if Gb ≠ 0. For every individual experiment, the result was 

obtained after 20 runs. For each run, the maximal function evaluation number was set to 

10
6
. 

 

Table 2 shows the optimisation results of different algorithms on various problems. 

From this table, one can observe the following: 

1. For the unimodal problems f1 to f4, CMA-ES performs best in most of the 

situations. RSSA performs best using the fewest function evaluation for f1. For f3, 

RSSA can achieve the minimum with a small function evaluation number, but it 

cannot obtain the optima of the problems f2 and f4. 

2. For the high-dimensional multimodal problems f5 to f11, RSSA performs better 

than other algorithms. For instance, for f7, f8 and f10, RSSA is able to locate the 

global optimum with the fewest function evaluations; for f6 and f9, RSSA 

performs better than the other algorithms. In most of the situations, RSSA can 

achieve the optima, while other algorithms often cannot find the ‘true’ optimal 

solutions. 

3. For the low-dimensional multimodal problems f12 to f14, RSSA is able to obtain 

the global optimum and needs fewer function evaluations, compared with other 
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algorithms. 

 

5. Experimental Studies using MO-RSSA 

 

To validate the effectiveness of the proposed multi-objective optimisation algorithm, a 

set of experimental tests were carried-out using the well-known multi-objective 

optimisation problems - the ZDT series benchmark problems (Zitzler et al., 2000) and 

DTLZ series problems (Deb et al., 2001). 

 

5.1 ZDT Series Benchmark Problems 

 

The ZDT series benchmark functions include 2 minimisation objectives and they are 

considered to be difficult to optimise, especially ZDT2, ZDT3 and ZDT4 (Zitzler et al., 

2000). The maximal function evaluation for every experiment was set to 25000, which 

is the same as the experiments configuration referred to the experiments in (Deb, 2001). 

The configuration of the algorithm was set as follows: decreasing parameter C1 = 3, 

increasing parameter C2 = 1, changing ratio K = 0.5, m = 15, frequency parameter H = 

10000 and a variation strategy of the combination of the one-dimensional variation 

(with the 75% probability of usage) and the multi-dimensional variation (with the 25% 

probability of usage). 

 

Figure 4 shows the graphical results produced by MO-RSSA. The true optimal Pareto 

fronts of the problems are represented with a continuous ‘red’ curve and the ‘round’ 

dots are the solutions obtained using the new algorithm. It can be observed that the 

algorithm possesses very good convergence properties while maintaining a good 

diversity among the Pareto solutions. Compared with the optimisation results in (Deb, 

2001), which used PAES (Knowles and Corne, 2000), SPEA (Zitzler and Thiele, 1998) 

and NSGA-II (Deb et al., 2002), MO-RSSA performs as well as and sometimes better 

than the other three salient EAs in terms of both accuracy and diversity. 

 

5.2 DTLZ Series Benchmark Problems 

 

In the second experiment, MO-RSSA was used to optimise the DTLZ series problems 

(Deb et al., 2001). All the DTLZ problems were set so as to include three objectives. 

For a meaningful comparison, MO-RSSA used the same numbers of function 

evaluations as the experiments in (Deb et al., 2001). The parameters of the algorithm 

were set the same as the previous experiments, except the weight changing frequency 

parameter H, which is now taken to be 1000. Figure 5 shows the 3-D Pareto fronts 

obtained by MO-RSSA. It can be seen that, in most of the situations, the algorithm can 

convergence to the real Pareto-optimal front with a good diversity among the solutions. 

Compared with the optimisation results in (Deb et al., 2001), MO-RSSA performs as 

well as and more often than not better than the salient EAs, SPEA2 and NSGA-II, both 
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in terms accuracy and diversity. 

 

6. Applications in Alloy Steel Design 

 

In recent years, multi-objective optimisation techniques have been applied to the design 

of alloys, including steels (Mahfouf et al., 2005), superalloys (Egorov-Yegorov et al., 

2005), bulk metallic glasses (Dulikravich et al., 2008), based on the developed 

intelligent models. Researchers have also employed multi-objective optimisation 

techniques in the structural material design based on the interatomic potentials 

(Chakraborti et al., 2009) or interionic potentials (Sreevathsan et al., 2009). In this work, 

the proposed algorithms, which perform very well on benchmark problems, were further 

applied to the optimal design of alloy steels for achieving the overarching aim of ‘right-

first-time production’ of metals (Mahfouf et al., 2009). 

 

In the steel industry, determining the optimal heat treatment regime and the required 

weight percentages for the chemical composites to obtain the desired mechanical 

properties of the steel is always a challenging multi-objective optimisation problem. 

Usually, some objectives may conflict with each other, such as the ultimate tensile 

strength (UTS) and the ductility. The steel ductility can also be reflected by its 

Reduction of Area (ROA). 

 

Previously published research included the development of intelligent models based on 

fuzzy systems in order to predict the mechanical test results for the steels characterised 

by a wide range of training data (Zhang and Mahfouf, 2008). These models can be used 

to facilitate the findings relating to the optimal heat treatment regime and the weight 

percentages for the chemical composites to obtain the desired mechanical properties. 

Figure 6 shows the prediction results of one UTS model and one ROA model. These 

two models include the same 15 input variables, which are the weight percentages for 

the chemical composites, namely Carbon (C), Silica (Si), Manganese (Mn), Sulphur (S), 

Chromium (Cr), Molybdenum (Mo), Nickel (Ni), Aluminium (Al) and Vanadium (V), 

the test depth, the size and the site of the alloy steel, the cooling medium, as well as the 

hardening and tempering temperatures. They were developed based on 3760 and 3710 

industrial data sets, respectively. In the following studies, all alloy design experiments 

are conducted using the two developed fuzzy models mentioned above. Figure 7 shows 

the strategy how robust prediction models can be exploited in a reverse-engineering 

fashion to identify ‘optimal’ recipes for system design. The parameter configurations of 

the algorithms were similar to the ones set in the experiments already described in the 

previous sections. 

 

6.1 The Optimal Design of UTS 

 

In this case, the aim is to find the optimal solution for achieving a predefined target 
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UTS value. The decision vector consists of weight percentages for the chemical 

composites, namely Carbon (C), Silica (Si), Manganese (Mn), Sulphur (S), Chromium 

(Cr), Molybdenum (Mo), Nickel (Ni), Aluminium (Al) and Vanadium (V), the test 

depth, the size and the site of the alloy steel, the cooling medium, as well as the 

hardening and tempering temperatures. 

 

The objective function was designed to be as follows: 

Minimise 

2

arg

1
900 







 


etTUTSUTS
J                                                                            (8) 

where UTSTarget is the target UTS value. 

 

In this experiment, the UTSTarget was set to 900 MPa. Figure 8 shows the optimisation 

process and Table 3 provides the optimisation results relating to 10 different runs. The 

average function evaluation number used in the RSSA algorithm is only 36. From Table 

3, it can be seen that the differences between the 10 solutions are somewhat stark, which 

means that there are many possible solutions satisfying the same defined objective. 

 

6.2 The Optimal Design of ROA 

 

In this section, details relating to finding the optimal solution for achieving a predefined 

target ROA value are presented. In this case, the decision vector is the same as the one 

used for the UTS design problem in Section 6.1. The optimisation objective function 

was designed as follows: 

Minimise 

2

arg

2
60 












 


etTROAROA
J                                                                          (9) 

where ROATarget is the target ROA value. 

 

In the first experiment, the ROATarget was set to 60%. Table 4 provides the optimisation 

results for 10 different runs and Figure 9 shows the variation of the average fitness of 

these 10 runs during the optimisation process. The average function evaluation number 

used in the RSSA algorithm is only 28. 

 

6.3 The Optimal Design of both UTS and ROA 

 

In the design of alloy steels, sometimes it is required to achieve a predefined target UTS 

value and a predefined target ROA value simultaneously. For this problem, one should 

first judge whether such requirements are possible. If the answer is ‘yes’, then the 

problem can be solved as a single objective optimisation problem by combining these 

two objectives into a weighted sum formulation. However, if the answer is ‘no’, then 

the problem should be solved using the multi-objective optimisation technique, which is 

able to offer a set of approximate candidate solutions (Pareto-optimal solutions). In 



 15 

order to ascertain both scenarios, the achievable minimum and maximum boundaries are 

needed. Such boundaries will, as a result, act as guide to the search for the Pareto fronts 

and as a result will speed up the optimisation search outcome. 

 

In this section, the decision vector of these design problems consists of weight 

percentages of Carbon (C), Manganese (Mn), Chromium (Cr), Molybdenum (Mo), and 

tempering temperature. 

 

6.3.1 Boundaries for the UTS and ROA Design 

 

To obtain the mechanical property boundaries for alloy steels design, the multi-

objective optimisation technique was employed. Two distinct relevant multi-objective 

optimisation problems were defined as follows: 

1. Minimising UTS and ROA simultaneously, i.e.: 

Objective 1: Minimise UTS 

Objective 2: Minimise ROA                                                                       (10) 

2. Maximising UTS and ROA simultaneously, i.e.: 

Objective 1: Maximise UTS 

Objective 2: Maximise ROA                                                                      (11) 

 

The MO-RSSA algorithm was employed to optimise the above problems and the 

maximum function evaluations number was set to 10,000. The obtained Pareto fronts 

using MO-RSSA are displayed in Figure 10. The region between the two fronts is where 

one can design the properties (UTS and ROA). 

 

6.3.2 The Single Objective Optimisation 

 

If the target UTS and ROA are located between the design boundaries, then the single 

objective optimisation technique can be used to obtain the desired solution by 

optimising the following objective function: 

Minimise 

2

arg

2

arg

3
60900 









 










 


etTetT ROAROAUTSUTS
J                             (12) 

where UTSTarget is the target UTS value and ROATarget is the target ROA value. 

 

For instance, if UTSTarget is 900 MPa and ROATarget is 60%, it can be seen from Figure 

10 that the targets are located between the design boundaries. Table 5 shows the results 

of applying RSSA to optimise Problem (12) for 10 different runs. The average number 

of function evaluations needed for these 10 runs is 133. 

 

6.3.3 The Multi-Objective Optimisation 
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If the target UTS and ROA are located outside the design boundaries, then no precise 

solutions can be found to satisfy the desired targets. In this case, the multi-objective 

optimisation technique can be used to obtain a set of Pareto-optimal solutions, which 

are regarded as the possible candidate solutions. The design problem can be described 

as follows: 

Objective 1: Minimise 

2

arg

1
900 












 


etTUTSUTS
J  

Objective 2: Minimise 

2

arg

2
60 












 


etTROAROA
J                                              (13) 

where UTSTarget is the target UTS value and ROATarget is the target ROA value. 

 

For example, if the design targets UTSTarget is 600 MPa and ROATarget is 50%, then from 

Figure 10 it can be seen that the targets are beyond the lower design boundary. In this 

type of a situation, the multi-objective optimisation algorithm MO-RSSA should 

suitably be employed to optimise the above Problem (13) with a maximum function 

evaluations number being set to 10,000 for instance. The obtained Pareto-optimal 

solutions are shown in Figure 11 and Table 6 provides details of 10 of these solutions. 

For those users who tend to prioritise ‘hardness’ more, they could choose a design that 

is close to the target UTS. For those users who are more concerned with ductility, they 

may choose a design that is close to the target ROA. Finally, for those users who have 

no preference between hardness and ductility, a ‘median’ design, whereby the 

mechanical properties are relatively close to the target values, may be the suitable 

choice. 

 

From the experimental results in this section, the following can be observed: 

1. For an optimal design problem with two conflicting targets, MO-RSSA is able to 

find the design boundaries, which is used to ascertain two different design 

scenarios. 

2. If the target values are located between the design boundaries, RSSA can be 

used to obtain the desired precise solutions successfully. 

3. If the target values are located outside the design boundaries, MO-RSSA can be 

used to obtain a set of approximate candidate solutions (Pareto-optimal solutions) 

successfully. 

 

6.4 The Optimal Alloy Design Considering both the Mechanical Properties and 

the Economical Factors 

 

This study consists of finding the optimal chemical compositions and heat-treatment 

process parameters in order to obtain the required UTS and ROA while minimising the 

production costs. The production costs of heat-treated steels include the costs of the 
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addition of alloying elements, such as Cr, Mo, V, etc. and the costs of energy 

consumption during the heat-treatment process. 

 

In this experiment, five decision variables, C, Mn, Cr, Mo and Tempering Temperature, 

have been considered although other composites and temperatures could also be 

included. The factors contributing to the cost of heat treatment operation are 

summarised in Tables 7, 8 (Mahfouf et al., 2002). 

 

6.4.1 The Optimal Design Considering both UTS and the Cost 

 

According to the contribution of the chemical composites and the tempering process to 

the cost of heat-treated steels, a new objective function to reflect such costs was 

introduced as follows: 
2

cos
100

600/88.4524218







 


TempMoCrMn
J t                                           (14) 

 

By taking into account such economic consideration, the problem of designing an alloy 

steel with a predefined target UTS property becomes a two-objective optimisation 

problem described as follows: 

Objective 1: Minimise 

2

arg

1
900 












 


etTUTSUTS
J  

Objective 2: Minimise  Jcost                                                                               (15) 

Figure 12 displays the obtained Pareto-optimal solutions in the objective space with the 

UTS target value UTSTarget = 900 (MPa). Ten various solutions around the UTS target 

value are selected from the Pareto-optimal solutions and listed in Table 9. 

 

6.4.2 The Optimal Design Considering both ROA and the Cost 

 

By considering both the ROA and the economical factors, the following two-objective 

optimisation problem can be set: 

Objective 1: Minimise 

2

arg

2
60 












 


etTROAROA
J  

Objective 2: Minimise  Jcost                                                                               (16) 

 

Figure 13 shows the obtained Pareto-optimal solutions in the objective space, where the 

ROA target value ROATarget is 60%. Ten different solutions around the ROA target 

value are selected from the Pareto-optimal solutions and listed in Table 10. 

 

6.4.3 The Optimal Design Considering UTS, ROA and the Cost 
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Taking into account all the three factors, i.e. UTS, ROA and the cost of the heat 

treatment, the problem of designing an alloy steel can be described as follows: 

Objective 1: Minimise 

2

arg

1
900 












 
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etTUTSUTS
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Objective 2: Minimise 

2

arg

2
60 




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

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 
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etTROAROA
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Objective 3: Minimise  Jcost                                                                               (17) 

 

An optimisation experiment has been conducted based on the above objectives where 

the target values UTSTarget = 900 (MPa) and ROATarget = 60 (%). The result of this 

experiment is shown in Figure 14. Ten solutions out of all the obtained Pareto-optimal 

solutions are selected and listed in Table 11. 

 

From the above experiments, it can be seen that, for the optimal design problems that 

consider both the mechanical properties and the economical factors, MO-RSSA is able 

to obtain a set of optional solutions (Pareto-optimal solutions), which are close to the 

predefined UTS and/or ROA targets while providing various levels of heat treatment 

costs. 

 

7. Conclusion 

 

In this paper, a new optimisation algorithm RSSA was introduced, which is inspired 

from the simulation of the simple human societal behaviour when searching for optimal 

solutions in our daily routines. This new algorithm has been validated using a set of 

well-known benchmark problems. Compared with the recently developed and most 

salient optimisation algorithms, CMA-ES, DE and G3-PCX, RSSA performs as well as 

and sometimes better than these algorithms. RSSA was then extended to the multi-

objective optimisation case, in which the random weighted aggregation was employed 

and an archive was maintained for preserving the suitable Pareto-optimal solutions. The 

experimental results of optimising some challenging problems ZDT and DTLZ series 

problems show that the proposed MO-RSSA perform as well as the other well-known 

EAs, such as PAES, SPEA and NSGA-II. 

 

Furthermore, RSSA and MO-RSSA have been successfully applied to single objective 

and multi-objective optimal design of alloy steels. This research aims at determining the 

optimal heat treatment regime and the required weight percentages for the chemical 

composites to obtain the desired mechanical properties of steel such as UTS and ROA. 

In addition, the work was later extended to include economic factors, such as the costs 

associated with the composites and the tempering operation. The simulation results 

showed that MO-RSSA is able to produce a range of well-spread optional solutions 
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around the property targets while maintaining reasonable production costs. 
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Tables: 
 

Table 1. Average performance of RSSA with different variation strategies in optimising 

f5 to f11: The integer in every cell is the average function evaluation number in 

successful runs; the value between the parentheses is the average result in the 

unsuccessful runs; the percentage value in the square brackets indicates the 

percentage of the successful runs out of all the runs; the bold values represent 

the best results. 

Function 
One-dimensional 

Variation 

Multi-dimensional 

Variation 

Multi-dimensional 

Variation 

f5 
N/A 

(0.0017) 

[0%] 

N/A 

(0.8025) 

[0%] 

N/A 

(0.0043) 

[0%] 

f6 
76645 

(N/A) 

[100%] 

108630 

(N/A) 

[100%] 

N/A 

(-7712) 

[0%] 

f7 
88647 

(N/A) 

[100%] 

318860 

(N/A) 

[100%] 

N/A 

(1.7491e+2) 

[0%] 

f8 
N/A 

(1.2877e-5) 

[0%] 

N/A 

(1.7127e-5) 

[0%] 

N/A 

(1.3796e+1) 

[0%] 

f9 

2788 

(0.0193) 

[40%] 

2935 

(0.0158) 

[50%] 

2753 

(0.0108) 

[55%] 

f10 
46969 

(N/A) 

[100%] 

312660 

(N/A) 

[100%] 

N/A 

(1.7105e+1) 

[0%] 

f11 
N/A 

(1.7736e+2) 

[0%] 

N/A 

(1.8662e+2) 

[0%] 

N/A 

(2.0294e+2) 

[0%] 
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Table 2. Average performance of various algorithms in optimising f1 to f14: The integer 

in every cell is the average function evaluation number in successful runs; the 

value between parentheses is the average result in the unsuccessful runs; the 

percentage value in the square brackets indicates the percentage of the 

successful runs out of all the runs; the bold values represent the best results. 

Function RSSA CMA-ES DE G3+PCX 

f1 
1806 

(N/A) 

[100%] 

3207 

(N/A) 

[100%] 

391770 

(N/A) 

[100%] 

7140 

(N/A) 

[100%] 

f2 
N/A 

(0.0038) 

[0%] 

11751 

(N/A) 

[100%] 

655110 

(N/A) 

[100%] 

N/A 

(12.0469) 

[0%] 

f3 
24287 

(N/A) 

[100%] 

10830 

(N/A) 

[100%] 

N/A 

(1.8527) 

[0%] 

25937 

(N/A) 

[100%] 

f4 
N/A 

(0.0147) 

[0%] 

8929 

(N/A) 

[100%] 

N/A 

(0.2004) 

[0%] 

117414 

(N/A) 

[100%] 

f5 
N/A 

(0.0074) 

[0%] 

46072 

(N/A) 

[100%] 

N/A 

(0.0158) 

[0%] 

140430 

(N/A) 

[100%] 

f6 
73451 

(N/A) 

[100%] 

N/A 

(-6665) 

[0%] 

616080 

(N/A) 

[100%] 

N/A 

(-6878) 

[0%] 

f7 
94499 

(N/A) 

[100%] 

N/A 

(106.1617) 

[0%] 

940560 

(N/A) 

[100%] 

N/A 

(142.8754) 

[0%] 

f8 
209440 

(N/A) 

[100%] 

8575 

(19.3625) 

[40%] 

694560 

(N/A) 

[100%] 

N/A; 

(3.1199) 

[0%] 

f9 
2717 

(0.0112) 

[50%] 

5586 

(0.0100) 

[75%] 

586740 

(N/A) 

[100%] 

10983 

(0.0110) 

[65%] 

f10 
52774 

(N/A) 

[100%] 

N/A 

(2.2897) 

[0%] 

510180 

(N/A) 

[100%] 

N/A 

(15.1530) 

[0%] 

f11 
N/A 

(197.8232) 

[0%] 

N/A 

(248.84) 

[0%] 

N/A 

(0.1217) 

[0%] 

N/A 

(184.4355) 

[0%] 

f12 
329 

(N/A) 

[100%] 

221 

(-19.8160) 

[95%] 

853 

(N/A) 

[100%] 

N/A 

(-0.4128) 

[0%] 

f13 
322 

(N/A) 

[100%] 

224 

(N/A) 

[100%] 

1182 

(N/A) 

[100%] 

N/A 

(0.8862) 

[0%] 

f14 
366 

(N/A) 

[100%] 

253 

(141.0000) 

[95%] 

777 

(N/A) 

[100%] 

N/A 

(35.3369) 

[0%] 
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Table 3. Optimisation solutions of 10 independent runs for the UTS design problem 

with UTSTarget = 900 (MPa). 

Solutions 1 2 3 4 5 6 7 8 9 10 

Test Depth 

(mm) 
61.8 67.8 111.4 41.9 129.6 58.1 78.6 18.8 93.9 74.2 

Size (mm) 268.9 88.1 283.2 41.5 271.3 136.6 206.7 137.6 279.6 254.9 

Site Number 2 5 5 2 5 3 6 3 3 4 

C (wt%) 0.364 0.440 0.503 0.182 0.354 0.203 0.496 0.220 0.413 0.354 

Si (wt%) 0.112 0.235 0.216 0.270 0.285 0.174 0.272 0.289 0.204 0.319 

Mn (wt%) 1.554 1.189 0.939 0.954 1.397 0.644 0.521 0.488 0.742 0.940 

S (wt%) 0.100 0.096 0.127 0.169 0.080 0.112 0.066 0.036 0.148 0.132 

Cr (wt%) 0.263 0.589 3.025 0.613 2.733 0.615 0.790 0.650 0.140 0.489 

Mo (wt%) 0.079 0.735 0.780 0.157 0.111 0.659 0.094 0.335 0.231 0.327 

Ni (wt%) 0.609 2.069 0.241 0.379 3.765 0.312 2.967 2.557 2.003 1.023 

Al (wt%) 0.641 0.028 0.029 0.842 0.190 0.093 0.086 0.253 0.260 0.495 

V (wt%) 0.163 0.149 0.095 0.181 0.047 0.225 0.043 0.030 0.203 0.077 

Hardening 

Temperature 

(°C) 

970.3 971.9 908.6 979.4 860.2 907.6 889.1 975.2 933.1 923.8 

Cooling 

Medium 

Number 

2 3 2 3 2 1 2 1 1 2 

Tempering 

Temperature 

(°C) 

497.5 644.8 590.6 475.8 596.1 660.8 625.3 704.0 629.7 651.9 

UTS (MPa) 900.1 899.9 899.9 899.9 900.0 899.6 899.9 899.8 899.9 900.0 
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Table 4. Optimisation solutions of 10 independent runs for the ROA design problem 

with ROATarget = 60 (%). 

Solutions 1 2 3 4 5 6 7 8 9 10 

Test Depth 

(mm) 
62.4 102.1 21.0 137.8 59.7 20.0 110.7 59.2 71.8 68.8 

Size (mm) 74.4 351.6 251.9 71.5 101.0 310.7 250.6 94.6 303.6 276.9 

Site Number 1 3 4 4 4 4 3 4 1 2 

C (wt%) 0.434 0.249 0.246 0.248 0.517 0.191 0.243 0.204 0.240 0.239 

Si (wt%) 0.297 0.295 0.129 0.226 0.222 0.193 0.154 0.227 0.157 0.281 

Mn (wt%) 1.321 1.339 1.164 0.805 0.823 0.809 1.156 0.391 1.191 1.141 

S (wt%) 0.033 0.041 0.128 0.208 0.114 0.158 0.181 0.189 0.012 0.095 

Cr (wt%) 1.874 1.952 1.794 2.293 1.645 2.830 2.462 2.315 1.549 1.468 

Mo (wt%) 0.207 0.747 0.384 0.151 0.024 0.152 0.335 0.667 0.955 0.797 

Ni (wt%) 0.317 3.024 3.116 2.525 1.138 1.699 0.959 2.926 0.131 2.323 

Al (wt%) 0.262 0.339 0.491 0.983 0.419 0.706 0.479 0.018 0.121 0.164 

V (wt%) 0.180 0.079 0.139 0.233 0.096 0.045 0.172 0.187 0.237 0.177 

Hardening 

Temperature 

(°C) 

924.4 958.2 901.6 885.2 823.9 893.6 880.0 936.9 962.2 962.3 

Cooling 

Medium 

Number 

1 1 2 2 1 2 1 2 1 1 

Tempering 

Temperature 

(°C) 

534.2 300.4 413.1 513.2 640.4 316.6 383.1 595.2 289.0 680.1 

ROA (%) 60.07 60.06 59.96 59.92 60.019 59.93 59.97 59.96 60.01 59.98 

 

 

Table 5. Optimisation solutions of 10 independent runs for the design problem with 

UTSTarget = 900 (MPa) and ROATarget = 60 (%). 

Solutions 1 2 3 4 5 6 7 8 9 10 

C (wt%) 0.427 0.530 0.516 0.453 0.438 0.503 0.404 0.436 0.426 0.502 

Mn (wt%) 1.642 1.484 1.160 1.281 1.511 0.362 1.189 1.561 0.692 1.047 

Cr (wt%) 1.341 0.136 0.436 0.583 1.186 1.116 0.316 1.196 0.431 0.639 

Mo (wt%) 0.886 0.230 0.208 0.252 0.884 0.233 0.633 0.879 0.848 0.183 

Tempering 

Temperature 

(°C) 

868.7 940.3 917.3 906.0 897.5 925.4 945.0 890.8 888.5 936.3 

UTS (MPa) 900.0 900.6 899.5 900.3 900.5 899.9 899.1 900.6 900.2 900.3 

ROA (%) 59.94 60.03 59.99 59.94 59.99 60.00 59.98 59.99 60.04 60.02 
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Table 6. Pareto-optimal solutions for the design problem with UTSTarget = 600 (MPa) 

and ROATarget = 50 (%). 

Solutions 1 2 3 4 5 6 7 8 9 10 

C (wt%) 0.528 0.211 0.474 0.408 0.235 0.209 0.225 0.224 0.226 0.136 

Mn (wt%) 0.523 1.485 1.668 1.535 1.157 1.535 0.731 1.128 0.474 0.634 

Cr (wt%) 1.706 3.130 1.874 2.158 1.218 2.158 0.253 0.278 0.257 1.933 

Mo (wt%) 0.751 0.679 0.987 0.988 0.897 0.988 0.662 0.063 0.056 0.890 

Tempering 

Temperature 

(°C) 

969.3 903.5 978.9 941.5 880.2 839.8 847.0 847.1 847.0 914.4 

UTS (MPa) 985.9 853.9 817.4 812.9 665.6 619.0 610.8 600.0 599.9 591.8 

ROA (%) 50.43 49.41 52.02 52.02 53.29 60.70 67.52 69.80 71.35 69.22 

 

 

Table 7. Contribution of composites to the cost of heat treatment. 

Composite Cost (US$ per tonne) 

Manganese 18 

Chromium 42 

Molybdenum 52 

 

 

Table 8. Contribution of tempering (annealing) to the cost of heat treatment. 

Item 
Cost 

(US$: 1.3GJ/tonne at 600 o C) 

Annealing (tempering) 4.88 

 

 

Table 9. Ten of the Pareto-optimal solutions for the design problem of UTSTarget = 900 

(MPa) and minimising the heat treatment cost. 

Solutions 1 2 3 4 5 6 7 8 9 10 

C (wt%) 0.619 0.618 0.619 0.618 0.619 0.619 0.619 0.619 0.619 0.619 

Mn (wt%) 1.661 0.738 1.101 1.031 0.921 0.853 0.846 0.799 0.734 0.694 

Cr (wt%) 0.050 0.050 0.051 0.061 0.050 0.050 0.060 0.050 0.060 0.051 

Mo (wt%) 0.010 0.205 0.050 0.047 0.053 0.051 0.017 0.010 0.010 0.010 

Tempering 

Temperature 

(°C) 

821.9 822.4 821.6 823.6 823.1 821.7 821.7 821.6 821.3 821.9 

UTS (MPa) 900.0 891.5 877.4 870.8 860.6 850.7 838.0 827.8 819.3 811.3 

Cost (US$) 39.22 32.75 31.30 30.33 28.20 26.81 25.38 23.73 22.96 21.88 
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Table 10. Ten of the Pareto-optimal solutions for the design problem of ROATarget = 60 

(%) and minimising the heat treatment cost. 

Solutions 1 2 3 4 5 6 7 8 9 10 

C (wt%) 0.436 0.611 0.467 0.599 0.607 0.607 0.614 0.562 0.562 0.562 

Mn (wt%) 0.839 0.820 0.995 0.454 0.597 0.579 0.448 0.351 0.351 0.351 

Cr (wt%) 0.242 0.149 0.089 0.050 0.113 0.076 0.050 0.050 0.050 0.050 

Mo (wt%) 0.126 0.194 0.058 0.169 0.010 0.025 0.010 0.010 0.010 0.010 

Tempering 

Temperature 

(°C) 

960.2 870.7 888.6 882.3 868.6 867.0 830.3 862.7 820.8 820.1 

ROA (%) 60.04 60.57 62.07 62.67 63.10 63.28 63.51 63.75 63.95 64.87 

Cost (US$) 39.65 38.23 31.94 26.27 23.11 22.03 17.44 15.96 15.62 15.61 

 

 

Table 11. Ten of the Pareto-optimal solutions for the design problem of UTSTarget = 900 

(MPa), ROATarget = 60 (%) and minimising the heat treatment cost. 

Solutions 1 2 3 4 5 6 7 8 9 10 

C (wt%) 0.612 0.602 0.604 0.598 0.441 0.613 0.606 0.536 0.531 0.619 

Mn (wt%) 0.608 0.740 1.332 0.796 0.701 0.903 0.458 0.811 0.795 0.998 

Cr (wt%) 0.357 0.295 0.050 0.050 0.878 0.050 0.366 0.244 0.208 0.050 

Mo (wt%) 0.233 0.195 0.118 0.253 0.325 0.143 0.199 0.287 0.276 0.012 

Tempering 

Temperature 

(°C) 

892.1 895.2 849.3 840.9 898.8 852.2 862.4 849.6 856.5 831.9 

UTS (MPa) 921.4 906.8 900.6 894.5 891.9 882.5 877.4 873.9 853.3 851.7 

ROA (%) 60.24 61.23 64.00 64.32 59.87 63.69 62.29 60.07 59.80 64.44 

Cost (US$) 45.34 43.21 39.14 36.45 73.75 32.73 41.05 46.71 44.44 27.51 
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Figures: 
 

 
Figure 1. The RSS strategy for dealing with optimisation problems. 
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Figure 2. An example of how to divide the search space in the case a two-dimensional 

problem. 
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Figure 3. Flow chart of the RSSA algorithm. 
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Figure 4.  Pareto fronts obtained by MO-RSSA based on ZDT series problems. 
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Figure 5. Pareto fronts obtained by MO-RSSA based on DTLZ series problems. 
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Figure 6. The prediction performance of the UTS model and the ROA models used in 

this chapter; the red and green lines delimit the +10% and -10% error bands 

respectively. 
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Figure 7. Optimal system design via reverse-engineering. 

 

 

 
Figure 8. Average fitness of 10 runs versus function evaluation for the UTS design 

problem with UTSTarget = 900 (MPa). 
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Figure 9. Average fitness of 10 runs versus function evaluation for the ROA design 

problem with ROATarget = 60 (%). 

 

 

 
Figure 10. The maximum and minimum design boundaries for the problem of designing 

UTS and ROA simultaneously. 
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Figure 11. The performance of the Pareto-optimal solutions for the design problem of 

UTSTarget = 600 (MPa) and ROATarget = 50 (%) with respect to (a) the Objective 1 

and the Objective 2 and (b) the UTS and the ROA. 

 

 

 
Figure 12. The performance of the Pareto-optimal solutions for the design problem of 

UTSTarget = 900 (MPa) and minimising the heat treatment cost with respect to (a) 

Objective 1 and Objective 2; (b) UTS and Cost. 
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Figure 13. The performance of the Pareto-optimal solutions for the design problem of 

ROATarget = 60 (%) and minimising the heat treatment cost with respect to (a) 

Objective 1 and Objective 2; (b) ROA and Cost. 

 

 
Figure 14. The performance of the Pareto-optimal solutions for the design problem of 

UTSTarget = 900 (MPa), ROATarget = 60 (%) and minimising the heat treatment 

cost with respect to (a) Objective 1 and Objective 3;  (b) Objective 2 and 

Objective 3; (c) UTS and Cost; and (d) ROA and Cost. 


