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ABSTRACT 7 
Data-driven techniques such as Auto-Regressive Moving Average (ARMA), K-Nearest-Neighbors (KNN), and 8 
Artificial Neural Networks (ANN), are widely applied to hydrologic time series prediction. This paper investigates 9 
different data-driven models to determine the optimal approach of predicting monthly streamflow time series. Four 10 
sets of data from different locations of People’s Republic of China (Xiangjiaba, Cuntan, Manwan, and 11 
Danjiangkou) are applied for the investigation process. Correlation integral and False Nearest Neighbors (FNN) 12 
are first employed for Phase Space Reconstruction (PSR). Four models, ARMA, ANN, KNN, and Phase Space 13 
Reconstruction-based Artificial Neural Networks (ANN-PSR) are then compared by one-month-ahead forecast 14 
using Cuntan and Danjiangkou data. The KNN model performs the best among the four models, but only exhibits 15 
weak superiority to ARMA. Further analysis demonstrates that a low correlation between model inputs and 16 
outputs could be the main reason to restrict the power of ANN. A Moving Average Artificial Neural Networks 17 
(MA-ANN), using the moving average of streamflow series as inputs, is also proposed in this study. The results 18 
show that the MA-ANN has a significant improvement on the forecast accuracy compared with the original four 19 
models. This is mainly due to the improvement of correlation between inputs and outputs depending on the 20 
moving average operation. The optimal memory lengths of the moving average were three and six for Cuntan and 21 
Danjiangkou respectively when the optimal model inputs are recognized as the previous twelve months.  22 
 23 
Keywords: Hydrologic time series, Auto-Regressive Moving Average, K-Nearest-Neighbors, Artificial Neural 24 

Networks, Phase Space Reconstruction, False Nearest Neighbors, dynamics of chaos.   25 
 26 

1. Introduction 27 

Many data-driven models, including linear, nonparametric or nonlinear approaches, are 28 
developed for hydrologic discharge time series prediction in the past decades (Marques et al., 29 
2006). Generally, there are two basic assumptions underlay different model techniques. The 30 
first assumption suggests that a time series is originated from a stochastic process with an 31 
infinite number of degrees of freedom. Under this assumption, linear models such as 32 
AutoRegressive (AR), AutoRegressive Moving Average (ARMA), AutoRegressive Integrated 33 
Moving Average (ARIMA), and Seasonal ARIMA (SARIMA) had made a great success in 34 
river flow prediction (Carlson et al., 1970; Salas et al., 1985; Haltiner and Salas, 1988; Yu and 35 
Tseng, 1996; Kothyari and Singh, 1999; Huang et al., 2004; María et al., 2004). 36 

 The second assumption is that a random-looking hydrologic time series is derived from 37 
a deterministic dynamic system such as chaos. In the past two decades, chaos-based streamflow 38 
prediction techniques have been increasingly obtaining interests of the hydrology community 39 
(Jayawardena and Lai, 1994; Jayawardena and Gurung, 2000; Elshorbagy et al., 2002; Wang 40 
et al, 2006b) although some doubts have been raised in terms of the existence of chaos in 41 
hydrologic data (Ghilardi and Rosso, 1990; Koutsoyiannis and Pachakis, 1996; Pasternack, 42 
1999; Schertzer et al., 2002; Wang et al., 2006a).  Generally, the prediction techniques for a 43 
dynamic system can be roughly divided into two approaches: local and global. Local approach 44 
uses only nearby states to make predictions whereas global approach involves all the states. K-45 
Nearest-Neighbors (KNN) algorithm, Artificial Neural Networks (ANN) and Support Vectors 46 
Machine (SVM) are some typical forecast methods for dynamic systems (Sivapragasam et al., 47 
2001; Laio et al. ,2003; Wang et al., 2006b). Phase-Space-Reconstruction (PSR) is a 48 
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precondition before performing any predictions of the dynamic system. Typical methods 1 
involved in PSR are correlation integral, singular-value decomposition of the sample 2 
covariance matrix, False Nearest Neighbors (FNN), and true vector fields (Grassberger and 3 
Procaccia, 1983;Abarbanel et al., 1993).  4 

Comparative studies on the above prediction techniques have been further carried out 5 
by some researchers. Sivakumar et al. (2002) found that the performance of the KNN approach 6 
was consistently better than ANN in short-term river flow prediction. Laio et al. (2003) carried 7 
out a comparison of KNN and ANN for flood predictions and found that KNN performed 8 
slightly better at short forecast time while the situation was reversed for longer time. Similarly, 9 
Yu et al. (2004) proposed that KNN performed worse than ARIMA on the basis of daily 10 
streamflow prediction. The conclusions in literature are very inconsistent. It is difficult to 11 
justify which modeling technique is more suitable for a streamflow forecast. 12 

The above two assumptions are in the extremes of a hydrologic streamflow series. Salas 13 
et al. (1985) suggested that a streamflow process should be treated as an integration of 14 
stochastic (or random) and deterministic components. Describing it as either a totally linear 15 
stochastic process or fully nonlinear deterministic chaos is not a practical approach (Elshorbagy 16 
et al. 2002). Therefore, the model based on either of two assumptions may not be the most 17 
suitable. An investigation on an optimal prediction model is worthy to further study with 18 
different real monthly streamflow data (Xiangjiaba, Cuntan, Manwan, and Danjiangkou).  19 

The scope of this study is to compare four forecast models, ARMA, ANN, KNN, and 20 
ANN-PSR and develop an optimal model for monthly streamflow prediction. This paper is 21 
organized in the following manner. Section 2 presents the four sets of streamflow data used in 22 
this study. Section 3 first describes the principles of PSR and then identifies its parameters 23 
using the correlation integral approach and the FNN approach. The implementation of the 24 
forecast models, including data preparation and selection of parameters, is discussed in Section 25 
4. Forecast results are described in Section 5 and conclusions of the study are presented in 26 
Section 6.  27 

2. Streamflow Data 28 

 Monthly streamflow series of three watersheds and one river, i.e. Xiangjiaba, Manwan, 29 
Danjiangkou, and Yangtze River, were analyzed in this study.  30 

The largest watershed, Xiangjiaba, is at the upstream of Yangtze river with average 31 
yearly discharge of 4538 m3/s. Monthly streamflow series were taken from the hydrological 32 
station near the Xiangjiaba Dam site located in Sichuan Province. The basin area contributed to 33 
the streamflow series is around 45.88×104 km2. The period of the data was from January 1940 34 
to December 1997.   35 

The medium watershed, Manwan, is located in the Lancang River which originates 36 
from the Qinghai-Tibet Plateau. Monthly streamflow series were taken from the hydrological 37 
station near the Manwan Dam site located in Sichuan Province. The catchment area controlled 38 
by the station is 11.45×104 km2, and the average yearly discharge is 1230 m3/s based on a 39 
statistic of 30-year data (January 1974 to December 2003).  40 

The smallest watershed, Danjiangkou, lies at the upstream of Han river with average 41 
yearly discharge of 1203 m3/s. Monthly streamflow data came from the hydrology station at the 42 
Danjiangkou Dam site which is located in Hubei Province. The catchment area at the dam site 43 
is around 9.5×104 km2. The data range was from January 1930 to December 1981.  44 
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The last streamflow series is Yangtze River, the largest river in China. The selected 1 
monthly streamflow data were from the hydrology station of Cuntan located in the middle 2 
stream of the river. The stream flow series spanned from January 1893 to December 2007.  3 

Four monthly streamflow series are shown in Fig. 1. Monthly streamflow data in 4 
Xiangjiaba, Manwan, and Cuntan are characterized by a smooth process whereas monthly 5 
streamflow data in Danjiangkou exhibits complex oscillations. The linear fits (dotted lines in 6 
Fig. 1) verify the consistency of the streamflow series. All series exhibit good consistency 7 
because the linear fits are closed to horizontal. Since there was no large-scale hydraulic works 8 
such as dams built during the data collection period, the streamflow process is fairly pristine in 9 
each case.  10 

3. Reconstruction of Dynamics 11 

3.1. Phase Space Reconstruction 12 

To describe the temporal evolution of a dynamical system in a multi-dimensional phase 13 
space with a scale time series, it is essential to employ some techniques to unfold the multi-14 
dimensional structure using the available data (Wang et al., 2006a). The most frequently used 15 
reconstruction method for a univariate or multivariate time series is the delay-time method 16 
(Takens, 1981; Farmer and Sidorowich ,1987; Sauer et al. ,1991; Jayawardena and Lai, 1994). 17 
A dynamic univariate time series  1 2, , , Nx x x , may be reconstructed into a series of delay 18 

vectors of the type  t 2 ( 1), , , ,t t t t mx x x x     Y  , 1,2, , ( 1)t N m    , where 
t R mY ,  is the 19 

delay time as a multiple of the sampling period and m is the embedding dimension. Under ideal 20 
conditions of time series of infinite length, all the reconstructions would be analogous and 21 
topologically equivalent to the real system. Owing to the shortness of real time series and the 22 
inevitable presence of dynamical noise, optimal reconstruction is involved in the choice of 23 
m and (Laio et al., 2003).  24 

The time evolution of the dynamic system is given as a mapping (t) (t+T)Y Y  25 

t+T(or )tY Y . The function relationship between the current state (t)Y  at time t and the 26 

predicted state F (t+T)Y at time t T can be written as follows: 27 

                                            F (t+T) ( (t)) tf e Y Y                                                        (1) 28 

where te is a typical noise term. In the form of time series, it can be expressed 29 

as ( 2) ( 1) ( 2) ( 1)[ , , , , ] ([ , , , ])F F F F
t T t T t T m t T m t t t m t m tx x x x f x x x x e                     . Therefore, 30 

predicting future trajectory by current trajectory becomes viable once the function )(f is 31 
determined. In practice, the expression is often defined as:  32 

                                           ( 1) ( (t))F
t T m tx f e    Y                                                        (2) 33 

where only the last component in F (t+T)Y is indicated since normally the prediction of this last 34 
component is of concern (Laio et al., 2003). For more details and examples of phase space 35 
reconstruction, please refer to Laio et al. (2003). 36 

Both global and local methods can be applied to estimate the function of )(f in Eq. (2). 37 
The global approach depends on the observations at all points whereas the local approach 38 
depends on observations that are in some finite neighborhood of the point of estimate. The 39 
KNN algorithm is a widely-used local method, which was originally developed by Farmer and 40 
Sidorowich (1987). The basic idea behind KNN is that only nearby states are used to make 41 
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predictions for the local approximation. This method is similar to the Nearest Neighbor Method 1 
(NNM) (Yakowitz and Karlsson, 1987; Toth et al., 2000; Solomatine et al., 2008) once an 2 
attractor is correctly unfolded or the phase space of the dynamical system is correctly 3 
reconstructed. Attractor reconstruction refers to those methods for inference of geometrical and 4 
topological information about a dynamical attractor from observations. An attractor is the point 5 
where the dynamics are discontinuous, through which the minimum embedding dimension can 6 
be determined. For the purpose of comparisons, a local approach of KNN algorithm (Farmer 7 
and Sidorowich, 1987; Jayawardena and Lai, 1994) and a global approach of ANN were 8 
discussed in this study. 9 

3.2. Determination of Parameters ( , m )   10 

Many methods, as mentioned in Section 1, are able to reconstruct the phase space by 11 
identifying the parameter pair ( , m ). The correlation integral and FNN were employed to the 12 
following discussion. The correlation integral identifies the two parameters for the perspective 13 
of verifying the existence of chaos. 14 
(1) Correlation exponent  15 
 The correlation exponent method is commonly used to investigate the existence of 16 
chaos in hydrology community (Jayawardena and Lai, 1994; Sivakumar et al., 1998; 17 
Sivakumar et al., 2001). Correlation integral is generally applied to verify the existence of 18 
chaotic dynamics using the saturation value of the correlation dimension. The diagnosis of the 19 
existence of chaos can begin if the phase space has been reconstructed. The PSR requires two 20 
parameters ( , m ), where m can be identified from the plot of the correlation dimension (d2) 21 
versus m when it reaches a saturation value (D2) (Tsonis, 1992). In other words, the saturation 22 
value must be obtained prior the achievement of m . However, m is subject to  (often called 23 
decorrelation time) and should be first determined. Also, some researchers thought that  and m  24 
should not be determined separately. The length of the embedding window,  )1(  mw  25 

(Broomhead and King, 1986; Mees et al., 1987; Martinerie et al., 1992) and optimizing the 26 
triplet ( km ,, ) using Genetic Algorithm (GA)  (Liong et al., 2002) are typical examples of 27 
determining  and m  together . In the present study, we tend to adopt a widely accepted 28 
method to obtain  .   29 
 Determination of  and m have been reported in numerous works (Grassberger and 30 
Procaccia,1983; Fraser and Swinney, 1986; Casdagli et al., 1991; Tsonis, 1992; Abarbanel et 31 
al., 1993; Kugiumtzis, 1996; Hegger et al., 1999; and Kantz and Schreiber, 2004). Generally, 32 
 can be defined when the AutoCorrelation Function (ACF) attains the value of zero or below a 33 
small value, or the Average Mutual Information (AMI) reaches the first minimum. The 34 
calculations of ACF and AMI are discussed in detail in the works of Fraser and Swinney (1986), 35 
Tsonis (1992), and Abarbanel et al. (1993). Fig. 2 displays the ACF and AMI for the four 36 
monthly streamflow series. The ACF for all series are first attained zeros at the same lag time 37 
of 3. Since the AMI gives the same estimates of  as the ACF,  was consistently chosen at the 38 
lag time of 3 for all cases.  39 

It is also suggested that a relationship of /T m   (where T represents the dominant 40 
periodicity of the original series as revealed by Fourier analysis) exists if ACF is periodic 41 
(Tsonis, 1992). Fig. 2 also demonstrates that the present cases suffice the condition. If all 42 
streamflow series are chaotic, the potential m  are therefore around 4 (i.e. m = 12/3) with all the 43 
predominant periodicity of 12 months and of 3.  44 
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After the primary determination of , the correlation dimension can be computed by the 1 
correlation integral according the formula of Grassberger-Procaccia algorithm (Grassberger 2 
and Procaccia,1983). This original formula was modified by Theiler (1986) for the estimation 3 
of the correlation integral in a time series which poses serious problems of temporal 4 
correlations. Thus, the modified correlation integral )(rC for a m-dimension phase space is 5 
defined as:  6 

1 1pairs

2
( ) H( - )

N N i

i j
i j i w

C r r
N



   

   Y Y                                      (3) 7 

where pairs ( 1)( )N N w N w    , w  is the Theiler window excluding those points which are 8 

temporally correlated, iY and N are already discussed in Section 3.1, r is the radius of a ball 9 

centered on iY , H is the Heaviside step function with H( ) 1u   if 0u   and H( ) 0u   if 0u  . 10 

The correlation integral only counts the pairs ( ,i jY Y ) whose distance, in a Euclidean sense, is 11 

smaller than r . In the limit of an infinite amount of data ( N  ) and sufficiently small r , the 12 
relation of 2( ) DC r r between )(rC and r is expected when m exceeds the correlation 13 
dimension of the chaos system. The correlation exponent  and the correlation dimension D2 14 
can be defined as: 15 

ln ( )

ln

C r

r
 



                                                               (4) 16 

                                                            2 0
lim
r
N

D 



                                                                    (5) 17 

Since D2 is unknown before conducting the computation, the convergence of the correlation 18 
dimension D2 in m  must be examined.  19 
 The procedure of the computation is first to plot ln ( )C r versus ln r  with a given m . 20 
Then, the potential scaling region is determined wherever the slope (i.e. the correlation 21 
exponent  ) of the curve for the given m is approximately constant. The constant slope can be 22 
estimated by a straight line fitting of the scaling region. In general, the best way to define the 23 
scaling region is to produce another figure which demonstrates the slope of the ln ( )C r as a 24 
function of ln r . If a scaling region exists, a plateau should be shown in the figure. This plateau 25 
provides an estimate for d2, a correlation dimension of the possible attractor for the present m . 26 
If d2 converges to a finite value D2 (i.e. saturation value) after repeating the above procedure for 27 
successively higher m, a true attractor of dimension D2 is formed and the system may be 28 
considered as chaos. Meanwhile, m can be identified as the value that corresponds to the first 29 
occurrence of the saturation value D2 in the plot of d2 versus m .  30 
 For a finite dataset, there is a radius r below which there are no pairs of points (i.e. 31 
depopulation zone). Conversely, when r approaches the diameter of the cloud of points, the 32 
number of pairs will increase no further as r increases (i.e. saturation zone). The scaling region 33 
would be found somewhere between the depopulation and the saturation zones. In view 34 
of 2( ) DC r r , the population of pairs of points for a finite data set on small scales is smaller 35 
than the population of pairs on large scales. This leads to poor statistics at small r  and the 36 
function ( )C r  may be distorted. Nevertheless, the scaling region over large r ’s should remain 37 
unchanged if there are sufficient points available. On the contrary, the scaling region may be 38 
completely masked if there are inadequate points. Also, the scaling region can be “lost” 39 
between the depopulation and the saturation zones by increasing the m  while the number of 40 
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points remain the same positions. Thus, an accurate estimation of d2 requires a minimum 1 
number of points.  2 
 Many literatures focus on the quantity of data required to determine the reliable value of 3 
d2 (Abarbanel et al., 1993 and Wang et al., 2006a). Some researches claim that the size should 4 
be 10A (Procaccia, 1988) or 102+0.4m (Tsonis, 1992), where A is the greatest integer smaller than 5 
d2 and m ( 20m  ) is the embedding dimension used for estimating d2 with an error less than 6 
5%. Whereas other researches found that smaller data size is needed. For instance, the 7 
minimum data points for reliable  d2 is 2d / 210  (Ruelle, 1990; Essex and Nerenberg, 1991), or 8 

2

27.5
d

 (Hong and Hong, 1994) and empirical results of dimension calculations are not 9 
substantially altered by going from 3000 or 6000 points to subsets of 500 points (Abraham et 10 
al., 1986).  11 
 The ln ( )C r versus ln r graphs and the correlation exponent   versus ln r  for the four 12 
streamflow series are shown in Figs. 4 and 5 respectively. Fig. 5 demonstrates that the scaling 13 
region cannot be identified for any m ( 20m  ) in Danjiangkou catchment whereas the scaling 14 
region can be determined in other three cases. Obviously, Danjiangkou series cannot be totally 15 
defined as non-chaotic or random process because its number of data is as small as 624. A fact 16 
should be noted for the other three streamflow series is that the identified scaling regions 17 
become narrow or even “lost” as the saturation zone occurs over larger scales with the increase 18 
of m .  If the number of data in the streamflow series decreases, the speed for the scaling region 19 
to narrow or “lost” with the increase of m will become faster. A representative detail of these 20 
curves in Fig. 5 is presented in Fig. 6 by taking curves at m  1, 4, 8 and 20.  The scaling region 21 
becomes ambiguous at 8m   for Manwan and Xiangjiaba whereas a narrow scaling region can 22 
still be defined even at 20m  for Cuntan which has 1380 points from data of 114 years. 23 
However, the length of data size in Danjiangkou, Cuntan and Manwan is adequate in defining 24 
the scaling region when 4m  . Based on the results of Fig. 5, the relationship between 25 
correlation dimension d2 and embedding dimension m is depicted in Fig. 7. The saturation 26 
values D2 for the three streamflow series are at interval of (1.5, 2). Generally, a sufficient 27 
condition for the smallest m is that m is an integer larger than 2D2. The associated m is 28 
therefore set the value of 4 for the three series. A test for the robustness of m with variable 29 
 from 1 to 5 was performed, which implied that m is insensitive to . 30 

With the potential values on D2 or m , some criteria such as 10A can be satisfied whereas 31 
other criteria such as 102+0.4m cannot be satisfied. The latter criteria means that few hydrologic 32 
records can be assessed for 5m   attractors since as many as 10,000 points require 27 years of 33 
daily records or around 900 years of monthly records. Thus, the three monthly series of 34 
Danjiangkou, Cuntan and Manwan may be treated as chaotic with suggested variable 4m  . 35 
Furthermore, the phase portraits of four streamflow series are portrayed in Fig. 8 where ( , )m is 36 
(3,3). Obviously, the state spaces in the 3-dimensional maps are clearly unfolded for Xiangjiaba, 37 
Cuntan, and Manwan whereas no clear trajectory is revealed for Danjiangkou. 38 
(2) False Nearest Neighbors(FNN) 39 
 The correlation integral method appears to be data intensive and certainly subjective. 40 
For simplicity, the FNN method is commonly employed for the PSR of a hydrologic 41 
streamflow series (Wang et al., 2006b). The FNN algorithm was originally developed for 42 
determining the number of time-delay coordinates needed to recreate autonomous dynamics 43 
directly from properties of the data itself (Kennel et al., 1992; Abarbanel et al., 1993). The 44 
following discussion outlines the basic concepts of the FNN algorithm. Suppose the point 45 
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 i 2 ( 1), , , ,i i i i mx x x x     Y  has a neighbor  j 2 ( 1), , , ,j j j j mx x x x     Y  , the criterion that 1 

jY  is viewed as a false neighbor of iY is: 2 

 tol

i j

R
-

i m j mx x  


Y Y
                                                       (6) 3 

where stands for the distance in a Euclidean sense, tolR is some threshold with the common 4 

range of 10 to 30 (Wang et al., 2006b). For all points i  in the vector state space, Eq. (6) is 5 
performed and then the percentage of points which have FNNs is calculated. The algorithm is 6 
repeated for increasing m until the percentage of FNNs drops to zero, or some acceptable small 7 
number such as 1%, where m is the target m  (Abarbanel et al., 1993).  8 
 The sensitivity analysis of the percentage of FNNs (FNNP) on tolR  is respectively 9 

demonstrated in Fig. 9, where  is set as value of 3 and tolR  is from 10 to 30 with a step size of 10 

5. Fig. 9 shows that FNNP is stable when tolR 15 . Fig. 10 demonstrates FNNPs for the four 11 

streamflow series with tolR 15 . The identified m is 4 for Manwan and 5 for other three cases. 12 

Two random series with the same data size as Cuntan and Danjiakou were respectively 13 
generated by the random function. Their FNNPs with  of 3 and tolR of 15 are demonstrated in 14 

Fig. 11 where a similar m  was found. The FNN technique may not be able to distinguish 15 
random process from deterministic system. Therefore, the phase space reconstructed by the 16 
FNN may not reveal the true trajectory hidden in the dynamic system. In other words, the FNN 17 
technique is not concerned with a dynamic system being deterministic or not. Thus, the 18 
correlation integral method can be more reliable for unfolding a dynamical system. The 19 
preliminary parameter pair ( , )m in PSR is (3, 4) for Xiangjiaba, Cuntan, and Manwan. For the 20 
purpose of the symmetry in models comparison, the parameter pair ( , )m for Danjiangkou is (3, 21 
5) from Fig. 10. Certainly, these parameters pair need to be checked further for their robustness 22 
when they are used in KNN model.  23 

4. Implementation of prediction models  24 

4.1 Data preparation 25 

Streamflow series data were divided into three parts: model training, cross-validation 26 
and validation. The last ten years’ streamflow data, called validation set, were set aside for 27 
validation. This validation set would not be used until all model development and training was 28 
finished completely. Of the remaining data, the first two-thirds called training set was for 29 
model training, and the other one-third called cross-validation set was for the purpose of 30 
confirming and validating the initial analysis. The ANN model has difficulties to extrapolate 31 
beyond the range of the data used for training. As a consequence, poor predictions can be 32 
expected when the validation data contains values outside the range of those used for training. 33 
It is also imperative that the training and validation sets are representative of the same 34 
population. Statistical properties (mean, deviation, range) from them are compared in order to 35 
measure the representative. Table 1 displays the statistical properties of these data sets. 36 
Generally, the division of data is satisfied for ANN since the statistical parameters of the 37 
training sets for all the streamflow series are closed to the cross-validation sets and the testing 38 
sets.  39 
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4.2 Evaluation of model performances  1 

The Pearson’s correlation coefficient (r) or the coefficient of determination (R2=r2), 2 
have been identified as inappropriate measures in hydrologic model evaluation by Legates and 3 
McCabe (1999). The coefficient of efficiency (CE) (Nash and Sutcliffe, 1970) is a good 4 
alternative to r or R2 as a “goodness-of-fit” or relative error measure in that it is sensitive to 5 
differences in the observed and forecasted means and variances. Legates and McCabe (1999) 6 
also suggested that a complete assessment of model performance should include at least one 7 
absolute error measure (e.g., Root Mean Square Error) as necessary supplement to a relative 8 
error measure. Besides, the Persistence Index (PI) (Kitanidis And Bras, 1980) is able to check 9 
the prediction lag effect. 10 

Thus, three measures of evaluating model performance are used in the present paper 11 
comprising Root Mean Square Error (RMSE), the Nash-Sutcliffe Coefficient of Efficiency (CE) 12 
(Nash and Sutcliffe, 1970), and the PI (Kitanidis And Bras, 1980). They are respectively 13 

formulated as: N 2
i ii=1

1 ˆRMSE (T - T )
N

  ),
N N

2 2
i i i

i=1 i=1

ˆCE 1- (T -T ) (T -T)    and 14 

N N
2 2

i i i i-L
i=1 i=1

ˆPI 1- (T -T ) (T -T )   . In these equations, N =number of observations, iT̂ =predicted 15 

streamflow, iT =observed streamflow, T =average observed streamflow, and i-LT is the 16 

streamflow estimated from a so-call persistence model (or called naïve model) that basically 17 
takes the last streamflow observation (at time i  minus the lead time L ) as a prediction. CE  18 
and PI values of 1 indicate perfect fits. 19 

4.3 Configurations of models and parameters optimization 20 

 Cuntan streamflow series was used as a representative case due to the similarity among 21 
Xiangjiaba, Cuntan, and Manwan. Two cases, Cuntan and Danjiangkou, are therefore analyzed 22 
in the rest of this article.  23 

Autoregressive-moving-average (ARMA) models are mathematical models of the 24 
persistence, or autocorrelation, in a time series. ARMA models can contribute to understanding 25 
the physical hydrological system by disclosing some information about the physical process 26 
that builds persistence into the series. Models of ARMA and ANN were used for the purpose of 27 
comparison with models based on PSR. The order of the ARMA model is included in 28 
parentheses as ARMA(p,q), where p is the autoregressive order and q the moving-average order. 29 
Parameters (p, q) in ARMA were estimated by trial and error with each of them varied over the 30 
range of 0 to 12, excluding the unfeasible case where both of them are simultaneously equal to 31 
0, in view of the predominant periodicity of 12 months (Figs. 3 and 4). The best pair of (p, q) is 32 
associated with the minimal value of Akaike Information Criterion (AIC), which is a 33 
commonly adopted statistical measures of goodness-of-fit of an ARMA(p,q) model. Goodness 34 
of fit might be expected to be measured by some function of the variance of the model residuals, 35 
i.e., the fit improves as the residuals become smaller.  36 

ANNs mimic the functioning of the human brain and nervous systems in a simplified 37 
computational form. They are constituted by highly interconnected simple elements (termed 38 
artificial neurons or sometimes termed nodes) which receive information, elaborate them 39 
through mathematical functions and pass them to other artificial neurons (Alvisi et al., 2006). 40 
They acquire knowledge through a learning process that involves finding an optimal set of 41 
weights for the connections and threshold values for the neurons. ANNs can be categorized as 42 
single layer, bilayer and multilayer according to the number of layers, and as feed-forward, 43 
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recurrent, and self-organizing according to the direction of information flow and processing 1 
(ASCE, 2000a). With respect to ANN model, the type of ANN and its architecture must be 2 
determined. The ANN type used in this study was the static multilayer feed-forward network. 3 
The static ANN is able to capture the dynamics of a system in the network model by using 4 
delay time inputs. The architecture design of the ANN comprises the number of hidden layers 5 
and the number of neurons in input layer, hidden layers and output layer. ANNs with one 6 
hidden layer are commonly used in hydrologic modeling (Dawson and Wilby, 2001; de Vos 7 
and Rientjes, 2005) since these networks are considered to provide enough complexity to 8 
accurately simulate the dynamic and nonlinear-properties of the hydrologic process. Therefore, 9 
a three-layer static ANN was finally employed.  10 

One output neuron was selected whilst the input neurons were determined by following 11 
the popular approach of examining the dependence between the input and output time series. 12 
The model inputs are originally considered to take the previous three sequential data because 13 
the ACF first attains zero and AMI achieves the first local minima at the lag time of 3 14 
simultaneously (Fig. 3). A trial and error method was then performed to check the three inputs 15 
by systematically increasing the number of inputs from the latest month to the past twelve 16 
months. The test results showed that the model with the 12-month data as inputs was optimal 17 
for Cuntan and Danjiangkou.  18 

The ensuing task is to optimize the size of the hidden layer with the chosen three inputs 19 
and one output. The optimal size of the hidden layer was found by systematically increasing the 20 
number of hidden neurons from 1 to 20 until the network performance on the cross-validation 21 
set was no longer improved significantly. The optimal number of hidden neurons may be 22 
affected by the use of a training algorithm. The most popular supervised training algorithms are 23 
gradient descent techniques (e.g. BackPropagation (BP) algorithm) and Newton or quasi-24 
Newton optimization techniques (e.g., Levenberg-Marquart (LM) algorithm, and Broyden-25 
Fltecher-Goldfarb-Shanno (BFGS) algorithm). They are called local optimization techniques. 26 
Alternatives to these methods are global optimization techniques such as the Particle Swarm 27 
Optimization (PSO), the Genetic algorithm (GA), and the Shuffled Complex Evolution (SCE-28 
UA). Generally, these local optimization methods have fast convergence but are susceptible to 29 
local minima and unstable. The global optimization methods, on the other hand, are able to 30 
overcome local minima and obtain more stable solutions but are slow convergence and tend to 31 
find out a relative optimal solution. As an attempt to combine their merits of the two 32 
optimization techniques, an integrated training algorithm combining LM with GA is adopted 33 
(Chau et al., 2005). The basic idea behind this algorithm is that GA is first utilized in search of 34 
a set of weights and biases for ANN. These chosen weights and biases are then used as initial 35 
values for a further optimization via the LM algorithm. Consider Danjingkou as a pilot case, 36 
Table 2 demonstrates the one-step-ahead forecast performance statistics with 30 time runs in 37 
terms of RMSE, CE and PI along with training time of three training algorithms of LM, PSO 38 
and integrated algorithm of LM and GA. As expected, the PSO has better stability of 39 
performance at the expense of training time whereas the LM has faster convergence but 40 
exhibits a weak stability of performance in terms of the performance values in the Range 41 
column (last column of Table 2). The hybrid algorithm indeed combines their merits with both 42 
fast convergence and good stability of performance. Thus, the LM-GA algorithm was used for 43 
training in the following study. The PSO is also acceptable because the time-consuming in 44 
training is not too long. It was found that the optimal size of the hidden layer was 5 for all three 45 
algorithms. Finally, a 12-5-1 configuration of the ANN model with the LM-GA algorithm was 46 
designed for Danjiangkou. Similarly, a 12-13-1 configuration of ANN was applied to Cuntan. 47 
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The hyperbolic tangent functions were used as a transfer function in the hidden layer and output 1 
layer. All input and output data were linearly scaled to the range of [-1, 1] because the output of 2 
this transfer function is bounded to the range of [-1, 1].  3 

The KNN method is based on local approximation which makes use of only nearby 4 
observations of the point of estimate. It has its origins as a non-parametric statistical pattern 5 
recognition procedure, aiming at distinguishing between different patterns according to chosen 6 
criteria (Mack and Rosenblatt, 1979; Aha et al., 1991). Amongst various non-parametric kernel 7 
methods, the K-NN method seems more intuitive, but nevertheless possesses powerful 8 
statistical properties (Karlsson and Yakowitz, 1987a, b). Yakowitz (1987) and Karlsson and 9 
Yakowitz (1987a, b) did considerable work in extending the KNN method to time-series and 10 
forecasting problems, obtaining satisfactory results and constructing a robust theoretical base 11 
for the KNN method. Please refer to Karlsson and Yakowitz (1987a) for details. 12 

Two PSR-based models, KNN and ANN (hereafter referred to as ANN-PSR), were 13 
applied to the following study. ANN-PSR is the phase space reconstruction-based artificial 14 
neural networks integrating the techniques of phase space reconstruction and ANN. Both the 15 
above two models have the same inputs which were the m coordinates of PSR. The number of 16 
k  was used as 1k m  (Sugihara and Mary, 1990), but 1k m   (Farmer and Sidorowich, 17 
1987) was applied to ensure the stability of the solution. In order to verify the robustness of 18 
m and , a trial-and-error procedure (i.e. testing the optimal combinations of   and m ) still 19 
have to be performed although the preliminary parameter values of them have been 20 
recommended previously. With all thirty-five combinations of   (1 to 5) and m  (2 to 8), the 21 
identified optimal parameter pair ( , m ) in terms of RMSE were (5, 7) for Cuntan and (5, 6) for 22 
Danjiangkou. Correspondingly, the fixed 8k  and 7k  were respectively adopted in Cuntan 23 
and Danjiangkou. The ANN-PSR also employed the LM-GA algorithm for training. The 24 
optimal size of the hidden layer was determined via the same method mentioned above. Finally, 25 
the architectures of the ANN-PSR are 5-9-1 for both Cuntan and Danjiangkou. A summary on 26 
relevant model parameters for one-step-ahead prediction were displayed in Table 3.  27 

5. Results and discussion 28 

5.1. Main results 29 

Table 3 shows the one-month-ahead forecast performance of various models in terms of 30 
the RMSE, CE, and PI for Cuntan and Danjiangkou. The KNN outperformed other models in 31 
terms of the three performance indexes. However, the advantage of KNN over ARMA is very 32 
weak. The comparison between ANN and ARMA demonstrates that the ANN cannot perfectly 33 
capture the autocorrelation relationship in each streamflow series. ANN-PSR model displays 34 
worse performance than the KNN in each case, which suggests that the local approach may be 35 
more suitable for one-month-ahead forecast. For the perspective of different cases, the 36 
performance indexes from each model are very low for Danjiangkou. Actually, Danjiangkou 37 
series was characterized by very complex oscillations as depicted in Fig. 1. Its main signal was 38 
heavily contaminated by noises as an evidence of appearance of many high frequency signals 39 
(Fig. 2). 40 

Figs. 12 and 13 present the detail of the observed and predicted validation data series, 41 
their errors (predicted-observed), and relative errors (hereafter referred to REs) of forecasts 42 
from four prediction models for Cuntan. These models exhibit good overall match between the 43 
observed and predicted data series. The plots of errors (middle graphs of Figs. 12 and 13) 44 
illustrates that each model underestimates or overestimates quite a number of peaks of 45 
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streamflows although the grand mean of REs is around 20%.  The plots of REs (bottom graphs 1 
of Figs. 12 and 13) suggest that the low streamflows are mostly well forecasted. This is due to 2 
the frequent occurrences of the low streamflow patterns which allow the trained model to have 3 
better generalization of these regions. Figs. 12 and 13 also demonstrate that the timing of the 4 
peaks for these models is quite good. The results are consistent with the high PI in Table 3. 5 

Figs. 14 and 15 show the detail of the observed and predicted validation data series, 6 
their errors, and REs from four prediction models for Danjiangkou. The forecasts of the peaks 7 
of streamflows are mostly underestimated although these models can capture the whole trend of 8 
validation data series. The grand mean of REs are about 50% but the maximum RE is up to 9 
300% as shown in the plots of REs. There is a lag effect in the timing of the peaks for these 10 
models by visual inspection, which is reflected by the low PI in Table 3.  11 

Histograms of forecast errors of one-month-ahead prediction for Cuntan are presented 12 
in Fig. 16, and corresponding Auto-Correlation Functions (ACFs) of forecast errors are 13 
depicted in Fig. 17. The histograms are quasi-normal distributions and errors satisfy random 14 
processes in terms of ACFs. The results suggest that employed four models were indeed trained 15 
fully and forecasts from them are reliable. Similar results also can be found for Dangjiangkou.   16 

5.2. Discussion 17 

The parameter of k in KNN model poses a great impact on the performance of KNN. 18 
As mentioned previously, the choice of k  should still ensure the stability of the solution 19 
although a preliminary value of k  is based on 1k m  . The verification of stability of k in 20 
terms of RMSE is presented in Fig. 18. The new value of k was 9 for both Cuntan and 21 
Danjiangkou (recall that the original k was 8 and 7 respectively). The performance of KNN 22 
with new k  is presented in Table 4. Comparison of performance between the new KNN and the 23 
original KNN (Table 3) suggests that taking 1k m   tends to be reasonable because the 24 
new k is nearby 1m   and there is only a small improvement of performance for the KNN with 25 
the new k .  26 

The issue of lagged predictions in the ANN model has been mentioned by some 27 
researchers (Dawson and Wilby, 1999; Jian and Srinivasulu, 2004; de Vos and Rientjes, 2005; 28 
Muttil and Chau, 2006). The work of de Vos and Rientjes (2005) in the context of rainfall-29 
runoff modeling investigated sources of the prediction lag effect and suggested two types of 30 
methods to resolve the issue. One of identified sources is due to the use of previous observed 31 
streamflow data as ANN inputs. Thus, the ANN tends to give the most weight to the latest 32 
streamflow input if the model inputs are highly auto-correlative. As a consequence, ANN 33 
models underrate the information contained in other input signals such as precipitation. An 34 
effective solution is to decrease the weight of streamflow components as model inputs by using 35 
a moving average time series of original streamflows as streamflow input components of the 36 
rainfall-runoff ANN.   37 

Fig. 19 investigates the existence of the forecast lag effect by Cross-Correlation 38 
Functions (CCFs) between the predicted and observed validation data series. As expected by 39 
visual inspection previously, there is no lag effect for Cuntan whereas there is obvious lag 40 
effect in all models except for the KNN for Danjiangkou. The moving average operation was 41 
used to generate new monthly streamflow time series to construct the model inputs of ANN. 42 
Based on trial and error method, the optimal memory lengths of three months and six months 43 
were respectively used in the moving average of the streamflow series of Cuntan and 44 
Danjiangkou. With the same architecture as the original ANN, the new moving average ANN 45 
(hereafter referred to MA-ANN) achieved a significant improvement in performance of 46 
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predictions. Table 4 presents the forecast results using the MA-ANN for Cuntan and 1 
Danjiangkou. The high PI (over 0.9) indicates the elimination of timing error. Fig. 20 depicts 2 
the detail of forecasts of MA-ANN for Cuntan and Danjiangkou. The observed data was fitted 3 
perfectly in particular for Cuntan. The errors and REs also significantly decreased. Fig. 21 4 
compares the CCFs between inputs and outputs in the MA-ANN model and the ANN model. 5 
The results show that absolute CCFs in the first twelve lags from the former are mostly larger 6 
than those from the latter, in particular for Danjiangkou. Therefore, the improved performance 7 
from MA-ANN is due to the increase of the correlation between inputs and outputs by moving 8 
average operation on original streamflow time series. This conclusion was different from the 9 
effect of the moving average method employed in the work of de Vos and Rientjes (2005). The 10 
moving average operation is however beneficial to the performance of ANN for one-step-ahead 11 
streamflow prediction indeed.  12 

6. Conclusions  13 

The purpose of this study attempts to determine a relative optimal forecast model for 14 
monthly streamflow data. Two methods of the PSR, the correlation dimension and the FNN, 15 
were employed. The results show that three cases, Xiangjiaba, Cuntan, and Manwan, exhibit 16 
chaotic characteristics on the basis of the correlation integral technique. The parameter pair 17 
( , m ) identified by the correlation integral and FNN is only preliminary for the KNN and 18 
ANN-PSR models, and they need to be further chosen by trial and error method. The final 19 
(  , m ) is (5,7) and (5,6) for Cuntan and Danjiangkou respectively. Comparison of the 20 
performance for different models indicates that the KNN exhibited no obvious superiority to 21 
traditional ARMA.  With respect to the PSR-based prediction model, the KNN outperformed 22 
the ANN-PSR. This implies that the local approximation technique is better than the global 23 
approximation technique for one-month-ahead discharge prediction (at least in the current 24 
cases). Additionally, the common three-layer-feed-forward ANN did not expose its powerful 25 
ability of mapping any complex function because its prediction performance was worse than 26 
ARMA. The CCFs between the observed and predicted data series show that the forecast lag 27 
effect exists for Danjiangkou. The operation of moving average on original streamflow series 28 
can significantly improve the performance of ANN and eliminate the timing error by increasing 29 
the correlation between inputs and outputs of ANN. For instance, the PI for Danjiangkou is 30 
from 0.39 in original ANN to 0.93 in MA-ANN and its corresponding CE is from 0.47 to 0.93. 31 
Based on the findings of this paper, the MA-ANN can be proposed as the optimal model for 32 
one-month-ahead forecast.  33 

 34 
 35 

Abbreviation 36 
ACF   AutoCorrelation Function 37 
AIC    Akaike Information Criterion 38 
AMI   Average Mutual Information 39 
ANN   Artificial Neural Networks 40 
AR   Auto-Regressive 41 
ARMA   Auto-Regressive Moving Average 42 
ARIMA    Auto-Regressive Integrated Moving Average 43 
BFGS   Broyden-Fltecher-Goldfarb-Shanno 44 
BP    BackPropagation 45 
CCF   Cross-Correlation Function 46 
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CE   Coefficient of Efficiency 1 
CT   Cuntan 2 
DJK   Danjiangkou 3 
FNN   False Nearest Neighbors 4 
FNNP   Percentage of FNN 5 
GA   Genetic algorithm 6 
KNN   K-Nearest-Neighbors 7 
LM   Levenberg-Marquart 8 
LM-GA   Levenberg-Marquart and Genetic algorithm 9 
MA-ANN  Moving Average Artificial Neural Networks  10 
MW   Manwan 11 
NNM   Nearest Neighbor Method 12 
PI   Persistence Index 13 
RE   Relative Error 14 
PSO   Particle Swarm Optimization 15 
PSR   Phase Space Reconstruction 16 
ANN-PSR  Phase Space Reconstruction-based Artificial Neural Networks 17 
RMSE    Root Mean Square Error 18 
SARIMA  Seasonal ARIMA 19 
SEC-UA   Shuffled Complex Evolution 20 
SVM   Support Vectors Machine 21 
XJB   Xiangjiaba 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
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Figure 1. Monthly discharge series of (1) Xiangjiaba, (2) Cuntan, (3) Manwan, and (4) Danjiangkou 2 
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Figure 2. ACF and AMI of (1) Xiangjiaba, (2) Cuntan, (3) Manwan, and (4) Danjiangkou 5 
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Figure 3. Periodogram of (1) Xiangjiaba, (2) Cuntan (3) Manwan, and (4) Danjiangkou 2 

2 4 6 8 10 12

-8

-6

-4

-2

0

lnr

ln
C

(r
)

Xiangjiaba

2 4 6 8 10 12
-12

-9

-8 

-3

0

lnr

ln
C

(r
)

Cuntan

2 4 6 8 10

-8

-6

-4

-2

0

lnr

ln
C

(r
)

Manwan

2 4 6 8 10
-10

-8

-6

-4

-2

0

lnr

ln
C

(r
)

Danjiangkou

(1) (2)

(3) (4)

 3 
Figure 4. ln ( )C r versus ln r  plot for (1) Xiangjiaba, (2) Cuntan (3) Manwan, and (4) Danjiangkou 4 
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Figure 5.  The estimation of correlation dimension (

2d ) for (1) Xiangjiaba, (2) Cuntan (3) Manwan, and (4) 2 
Danjiangkou. 3  and m  is at the interval of [1,20] (increasing from bottom to top in each pane).  3 
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Figure 6.  The estimation of correlation dimension (

2d ) for (1) Xiangjiaba, (2) Cuntan (3) Manwan, and (4) 5 
Danjiangkou. 3  and m  is at 1(solid line with dots),4(solid line),8 (dashed line), and 20 (solid line with crosses). 6 
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Figure 7. Relationship between

2d and m for monthly discharges of Xiangjiaba, Cuntan, and Manwan 2 
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Figure 8. Phase portraits for (1) Xiangjiaba, (2) Cuntan (3) Manwan, and (4) Danjiangkou when m 3 and 3  . 5 
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Figure 9. FNNP plots for (1) Xiangjiaba, (2) Cuntan (3) Manwan, and (4) Danjiangkou when 3  and 

tolR  is 10 2 
to 30. 3 
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Figure 10. FNNP for Xiangjiaba, Cuntan, Manwan, and Danjiangkou when 3  and 

tolR 15 . 5 
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Figure 11. FNNP for Random process 1 with a data size of 1380 and Random process 2 with a data size of 696 2 
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Figure 12. KNN (left column) and ARMA (right column) model results for one-day-ahead forecast on Cuntan:  4 

(1) observed vs. predicted (2) error (observed – predicted) and (3) RE (representing Relative Error)  5 



Engineering Applications of Artificial Intelligence, Vol. 23, No. 8, 2010, pp. 1350-1367 

24 

20 40 60 80 100 120

1

2

3

4

x 10
4

d
is

ch
a

rg
e

 (
m

3
)

ANN

20 40 60 80 100 120

-1

0

1

x 10
4

e
rr

o
r 

(m
3
)

20 40 60 80 100 120
-50

0

100

200

R
E

 (
%

)

time (months,1998-2007)

20 40 60 80 100 120

1

2

3

4

x 10
4

d
is

ch
a

rg
e

 (
m

3
)

PSR-ANN

20 40 60 80 100 120

-1

0

1

x 10
4

e
rr

o
r 

(m
3
)

20 40 60 80 100 120
-50

0

100

200

R
E

 (
%

)

time (months,1998-2007)

Observed
Predicted

Observed
Predicted

(3)

(2)

(1)

(3)

(2)

(1)

 1 
Figure 13. ANN (left column) and ANN-PSR (right column) model results for one-day-ahead forecast on Cuntan: 2 

(1) observed vs. predicted (2) error (observed – predicted) and (3) RE (representing Relative Error)  3 
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Figure 14. KNN (left lists) and ARMA (right lists) model results for one-day-ahead forecast on Danjiangkou:  6 

(1) observed vs. predicted (2) error (observed – predicted) and (3) RE (representing Relative Error)  7 
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Figure 15. KNN (left lists) and ARMA (right lists) model results for one-day-ahead forecast on Danjiangkou:  2 

(1) observed vs. predicted (2) error (observed – predicted) and (3) RE (representing Relative Error) 3 
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Figure 16. Histograms of errors of (1) K-NN, (2) ARMA, (3) ANN, and (4) ANN-PSR for Cuntan 7 
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Figure 17. ACF of errors of (1) K-NN, (2) ARMA, (3) ANN, and (4) ANN-PSR for Cuntan 2 
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Figure 18. The check of stability of k  in KNN method for (1) Cunan and (2) Danjiangkou 6 
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Figure 19. The check of the prediction lag effect via CCF between observed and predicted values. (a) for Cuntan 2 

and (b) for Danjiangkou ((1) K-NN, (2) ARMA, (3) ANN, and (4) ANN-PSR)  3 
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Figure 20. MA-ANN model results of one-day-ahead forecast for (a) Cuntan and (b) Danjiangkou. ((1) observed 5 

vs. predicted (2) error (observed – predicted) and (3) RE (representing Relative Error) ) 6 
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Figure 21. CCFs between inputs and outputs from the MA-ANN model and the ANN model for (1) Cuntan and (2) 2 

Danjiangkou.  3 
4 



Engineering Applications of Artificial Intelligence, Vol. 23, No. 8, 2010, pp. 1350-1367 

29 

 1 
Table 1. Statistical parameters for training, testing, and validation sets 2 

Watershed 
and datasets 

Statistical parameters 

Mean 
Standard 
deviation 

Minimum Maximum Range 
Watershed area 
and data period 

Xiangjiaba       

Original data 4538.2 3671.5 1100 18700 17600 Area: 
45.88×104km2 

Data period: 
January 1940 to 
December 1997 

Training set 4678.2 3832.4 1130 18700 17570 

Cross-validation set 4297.6 3411.2 1110 15300 14190 

Testing set 4475.2 3552.3 1100 15000 13900 

Cuntan       
Original data 11118 8649.7 2250 41700 39450 Area:  

 

Data period: 
January 1893 to 
December 2007 

Training set 11342 8892.6 2250 41700 39450 

Cross-validation set 10766 8195.7 2420 34800 32380 

Testing set 10774 8488.7 2610 40800 38190 

Manwan       
Original data 1268.2 908.66 316 4860 4544 Area: 

11.45×104km2 

Data period: 
January 1974 to 
December 2003 

Training set 1192.7 862.29 329 3710 3381 

Cross-validation set 1371.3 944.26 373 4860 4487 

Testing set 1300.1 943.19 316 3944 3628 

Danjiangkou       
Original data 1203.3 1285.1 139 9010 8871 Area: 

9.5×104km2 

Data period: 
January 1930 to 
December 1981 

Training set 1203 1348.1 140 8800 8660 

Cross-validation set 1256.1 1310.7 139 9010 8871 

Testing set 1130 1053.5 159 4980 4821 

 3 

Table 2 Statistics of ANN model performance using various training algorithms with 30 time 4 

runs 5 

Training algorithm and 
performance  

Statistical parameters 

Mean 
Standard 

Minimum Maximum Range 
deviation 

LM      

RMSE 844.9 114.1  774.6  1429.5  654.9  

CE 0.3  0.2  -0.9  0.5  1.3  

PI 0.3  0.2  -1.0  0.4  1.4  

Training time(sec.) 0.7  0.2  0.5  1.5  0.9  

PSO      

RMSE 795.9 29.1  763.1  912.5  149.4  

CE 0.4  0.0  0.2  0.5  0.2  

PI 0.4  0.0  0.2  0.4  0.2  

Training time(sec) 74.6  1.0  70.9  76.0  5.0  

LM-GA      

RMSE 808.7 24.1  760.1  861.0  100.9  



Engineering Applications of Artificial Intelligence, Vol. 23, No. 8, 2010, pp. 1350-1367 

30 

CE 0.4  0.0  0.3  0.5  0.1  

PI 0.4  0.0  0.3  0.4  0.1  

Training time(sec.) 19.3  0.7  18.3  21.0  2.7  

  1 

Table 3. Comparison of model performance for one-step-ahead forecast on validation data and 2 
model parameters  3 

Watershed Model RMSE CE PI 
Model parameters 

Architecture ( , m , k) (p, q) 

Cuntan        

 ARMA 3498.60 0.83 0.69   (11,11) 

 ANN* 3557.10 0.82 0.68 (12,13,1)   

 K-NN 3495.50 0.83 0.69  (5,7,8)  

 ANN-PSR* 3878.60 0.79 0.61 (7,9,1)   

Danjiangkou        

 ARMA 763.81 0.47 0.44   (11,10) 

 ANN* 794.98 0.43 0.39 (12,5,1)   

 K-NN 741.58 0.50 0.47  (5,6,7)  

  ANN-PSR* 814.74 0.40 0.36 (6,9,1)     
Note:* the index of performance is an average over the best 10 runs of total 30 runs. 4 

 5 

 6 

Table 4. Improvement of model performance for one-step-ahead forecast from K-NN and MA-7 
ANN models and model parameters 8 

Watershed Model RMSE CE PI 

Model parameters 

Architecture ( , m , k) 
Memory length 
for the moving 

average  

Cuntan   

 MA-ANN 687.37 0.99 0.99 (12,13,1)  3 

 K-NN 3453.90 0.83 0.69  (5,7,9)  

Danjiangkou        

 MA-ANN 268.71 0.93 0.93 (12,5,1)  6 

  K-NN 710.73 0.54 0.51   (5,6,9)   
  9 
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 11 
 12 




