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Congestion, pollution, security, parking, noise, and many other problems derived from vehicular traffic
are present every day in most cities around the world. The growing number of traffic lights that control
the vehicular flow requires a complex scheduling, and hence, automatic systems are indispensable
nowadays for optimally tackling this task. In this work, we propose a Swarm Intelligence approach to
find successful cycle programs of traffic lights. Using a microscopic traffic simulator, the solutions
obtained by our algorithm are evaluated in the context of two large and heterogeneous metropolitan
areas located in the cities of Malaga and Sevilla (in Spain). In comparison with cycle programs
predefined by experts (close to real ones), our proposal obtains significant profits in terms of two main

indicators: the number of vehicles that reach their destinations on time and the global trip time.
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1. Introduction

Nowadays, most cities in the world suffer from an excessive
vehicular traffic that provokes severe problems like pollution,
congestion, security, parking, and many others. Since changes in
the urban area infrastructure are usually not possible researchers
often agree in that a correct scheduling of traffic lights can help to
reduce these problems by improving the flow of vehicles through
the cities (McCrea and Moutari, 2010; Sanchez et al., 2008; Spall
and Chin, 1997). At the same time, as traffic lights are installed in
cities and its number grows, their joint scheduling becomes
complex due to the huge number of combinations that appear,
and hence, the use of automatic systems for the optimal cycle
programming of traffic lights is a necessary choice.

Current initiatives are focused in the use of simulators
(Hewage and Ruwanpura, 2004; Karakuzu and Demirci, 2010;
Lim et al., 2001) since they provide an immediate and continuous
source of information about the traffic flow. Recent studies in the
literature about traffic simulation focused on both, macroscopic
(McCrea and Moutari, 2010) and microscopic (Sanchez et al,,
2008; Tolba et al., 2005) traffic views. In the last few years, the
main efforts are directed towards an accurate microscopic mod-
eling of traffic flow (Karakuzu and Demirci, 2010; Sanchez et al.,
2008) and the programming of convenient cycles of traffic lights
(Brockfeld et al., 2001; Nagatani, 2010).
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In this sense, the use of intelligent methods have demon-
strated their usefulness to the optimization of cycle programs of
traffic lights (Angulo et al., 2008; Sanchez et al., 2008). However,
authors in general have addressed specific urban areas with few
intersections and small number of traffic lights (Brockfeld et al.,
2001), and most of them apply ad-hoc algorithms designed only
for one specific instance (Angulo et al., 2008; Sanchez et al., 2008).
The use of intelligent techniques for large and heterogeneous
cases of study is still an open issue (Nagatani, 2010; Rouphail
et al., 2000).

All these motivations drive us to propose an optimization
strategy here based in a particle swarm optimization (PSO)
algorithm (Montes de Oca et al., 2009; Kennedy and Eberhart,
2001) that can find successful cycle programs of traffic lights.
Several features led us to use PSO instead of other evolutionary
methods: first, the PSO is a well-known algorithm shown to
perform a fast converge to suitable solutions (Clerc and
Kennedy, 2002). This is a highly desirable property for the
optimal cycle program of traffic lights, where new immediate
traffic light schedules should be required to face updating
events in traffic scenarios. Second, the canonical PSO is easy
to implement, and requires few tuning parameters (Clerc and
Kennedy, 2002; Montes de Oca et al., 2009; Kennedy and
Eberhart, 2001). Third, PSO is a kind of Swarm Intelligence
algorithm that can inform us on future issues to deal with this
problem using independent agents in the system for online
adaptation (a future line of us).

A microscopic traffic simulator is then coupled with our PSO
for the evaluation of cycle programs (codified as vector solutions)
for the traffic lights that control the flow of vehicles through a
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given scenario instance. In this particular work we use SUMO
(simulator of urban mobility) (Krajzewicz et al., 2006).

As a first contribution of this work, our proposed PSO is tested
with real data of two large and heterogeneous metropolitan areas
with hundreds of traffic lights located in the cities of Sevilla and
Malaga, in Spain. The results are analyzed under different road
conditions. Secondly, in comparison with predefined cycle programs
close to real ones, our PSO will be shown to obtain quantitative
improvements in terms of two main objectives: the number of
vehicles that reach their destinations and their global trip time.

The remaining of this article is organized as follows. In Section 2,
a review of related works in the literature is presented. In Section 3,
our optimization approach is described. Section 4 presents the
experimental methodology used and the results obtained. Conclu-
sions and future work are given in Section 5.

2. Literature overview

Recently, metaheuristic algorithms (Blum and Roli, 2003) have
become very popular as optimization methods for solving traffic
light scheduling problems. A first attempt corresponds to
Rouphail et al. (2000), where a genetic algorithm (GA) was
coupled with the CORSIM (Holm et al., 2007) microsimulator for
the timing optimization of nine intersections in the city of
Chicago (USA). The results, in terms of total queue size, where
limited due to the delayed convergence behavior of the GA.

In Teklu et al. (2007), the impact of signal time changes with
respect to the drivers were analyzed. More precisely, authors
considered the problem of determining optimum signal timings
while anticipating the responses of drivers as an instance of the
network design problem (NDP). In order to solve the traffic
equilibrium problem they used the SATURN package (simula-
tion-assignment modeling software, Van Vliet, 1982). Authors
applied a macroscopic point of view of the traffic flow and they
employed a GA to compute the signal setting NDP (cycle time,
offset, and green light times for stages). It is important to note
that the chromosome (grey-code) encoding was done differently
for each particular instance under study. The algorithm was
tested with the city of Chester in UK, mainly addressing a
complete GA parameter analysis, not actually the traffic problem.

In Sanchez et al. (2008), following the model proposed in
Brockfeld et al. (2001), the authors designed a GA with the objective
of optimizing the cycle programming of traffic lights. This GA was
tested in a commercial area in Santa Cruz de Tenerife (Spain). In this
work, every intersection was considered to have independent
cycles. As individual encoding they used a similar binary (grey-
code) representation to the one used in Teklu et al. (2007). The
computation of valid states was done before the algorithm runs,
and it strongly depended on the scenario instance tackled.

Turky et al. (2009) used a GA to improve the performance of
traffic lights and pedestrians crossing control in a unique inter-
section with four-way two-lane. The algorithm solved the limita-
tions of traditional fixed-time control for passing vehicles and
pedestrians, and it employed a dynamic control system to
monitor two sets of parameters.

A few works (three) related to the application of particle
swarm optimization for the schedule of traffic lights also exist.
One of the most representative was developed by Chen and Xu
(2006), where they applied a PSO for training a fuzzy logic
controller located in each intersection by determining the effec-
tive time of green for each phase of the traffic lights. A very simple
network with two basic junctions was used for testing this PSO.

More recently, Peng et al. (2009) presented a PSO with
isolation niches to the schedule of traffic lights. In this approach,
a custom microscopic view of the traffic flow was proposed for

the evaluation of the solutions. One single academic instance with
a restrictive one-way road with two intersections was used to test
the PSO. Nevertheless, this last study was focused on the capacity
of isolation niches to maintain the diversity of the PSO population,
and was not very involved with the problem itself.

Finally, in Kachroudi and Bhouri (2009) a multiobjective
version of PSO is applied for optimizing cycle programs using a
predictive model control based on a public transport progression
model. In this work, private and public vehicles’'models are used
performing simulations on a virtual urban road network made up
of 16 intersections and 51 links. Each intersection is then
controlled by a traffic light with the same cycle time of 80 s.

All these approaches focused on different aspects of the traffic
light scheduling. However, three common weak points can be
found in all of them:

e They tackled limited vehicular networks with very few traffic
lights and a small number of other elements (roads, intersec-
tions, directions, etc.). In contrast, our PSO can find optimized
cycle programs for large scenarios with hundreds of traffic
lights, vehicles, and other elements.

e They were designed for only one specific scenario. Some of
them studied the influence of the traffic density. Our approach
can be easily adapted to different scenario topologies.

e They were not compared against other techniques. Our PSO is
compared here against two different approaches: a Random
Search algorithm and the cycle program generator provided
by SUMO.

3. PSO for traffic light scheduling

This section describes our optimization approach proposed for
the optimal cycle programs of traffic lights. It details the solution
encoding, the fitness function, and finally the global optimization
procedure. Previous to this, basic notions about the PSO algorithm
are given.

3.1. Particle swarm optimization

Inspired in the social behavior of birds within a flock, particle
swarm optimization (Montes de Oca et al., 2009; Kennedy and
Eberhart, 2001) is a population-based metaheuristic initially
designed for continuous optimization problems. In PSO, each
potential solution to the problem is called particle position and
the population of particles is called the swarm. In this algorithm,
each particle position x' is updated each iteration g by means of

Xy g Xg+Vi, 1 (1)
where term vfg +1 Is the velocity of the particle, given by the
following equation:

Vh 1< W Vi+@, - UN©,1) - (py—Xy)+@, - UN©,1) - (bg—xp).  (2)

In this formula, pé is the best solution that the particle i has
seen so far, by is the global best particle (also known as the leader)
that the entire swarm has ever created, and w is the inertia
weight of the particle (it controls the trade-off between explora-
tion and exploitation). Finally, ¢, and ¢, are specific parameters
which control the relative effect of the personal and global best
particles, while UN(0,1) is a uniform random value in [0,1] which
is sampled anew for each component of the velocity vector and
for every particle and iteration.

Algorithm 1 describes the pseudo-code of PSO. The algorithm
starts by initializing the swarm (Line 1), which includes both the
positions and velocities of the particles. The corresponding p’ of
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each particle is randomly initialized, and the leader b is computed
as the best particle of the swarm (Line 2). Then, during a
maximum number of iterations, each particle moves through the
search space updating its velocity and position (Lines 5 and 6).
The particles are then evaluated (Line 7), and their personal best
positions p' are also recalculated (Line 8). At the end of each
iteration, the leader b is also updated.

Algorithm 1. Pseudocode of PSO.

initializeSwarm()

locateLeader(b)

while g < maxGenerations do

for each particle x; do

updateVelocity(v:) do //Eq. (2)
updatePosition(x})// Eq. (1)
evaluate(x.)
update(p})

end for

0. updateLeader(b,)

1. end while

TSR ND U W=

The particle swarm optimization algorithm is currently
employed in multitude of engineering problems (Alba et al.,
2008; Garcia-Nieto and Alba, 2010; Kennedy and Eberhart,
2001; Parsopoulos, 2005) showing a successful performance, even
in comparison with other modern optimization techniques (Alba
et al., 2007a; Garcia-Nieto et al., 2010). We also hope so in the
cycle program of traffic lights problem using real data.

3.2. Cycle program of traffic lights
A urban traffic scenario is basically composed by: intersec-

tions, traffic lights, roads, directions, and vehicles moving through
their previously specified routes. The traffic lights are located in

intersection id="i+1"

intersections, and control the flow of vehicles by following their
programs of color states and cycle durations. In this context, all
traffic lights located in the same intersection are governed by a
common program, since they have to be necessarily synchronized
for traffic security. In addition, for all the traffic lights in an
intersection, the combination of color states during a cycle period
is always kept valid (Leung et al., 2004) and it must follow the
specific traffic rules of intersections, in order to avoid vehicle
collisions and accidents. In this sense, we work only with valid
combinations of color states for each intersection, which cannot
be modified during the optimization process. This avoids invalid
combinations of color states and restricts the optimization
approach to work only with feasible states.

In this context, our main objective is to find optimized cycle
programs (OCP) for all the traffic lights located in a given urban
area. Specifically, cycle programs are refereed to the time span a
set of traffic lights (in a junction) keep their color states. At the
same time, these programs have to coordinate traffic lights in
adjacent intersections with the aim of improving the global flow
of vehicles circulating according to traffic regulations.

An example of this mechanism can be observed in Fig. 1 where
the intersection with id="i" contains seven phases with dura-
tions 40, 5, 40, 10, 36, 6, and 22 s (simulation steps). In these
phases, the states have fourteen signals (colors), corresponding
each one of them to one of the fourteen traffic lights located in the
studied intersection. These states are the valid ones generated by
the simulator (SUMO in this work) attending to real traffic rules.
In this instance, the fifth phase contains the state “rrrr GGr rrrr
GGr” meaning that four traffic lights are in green (G), and the ten
others are in red (r) during 36 s. The following phase changes the
state of the four traffic lights to other valid combination, for
example, “GGGG yyr GGGG yyr” (y means yellow) during 6 s, and
so on. The last phase is followed by the first one, and this cycle is
repeated during all the simulation time. All the intersections in
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Fig. 1. Cycle program (phase duration) of traffic lights within intersections. Integer codification inside a PSO tentative solution.
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the complete scenario perform their own programming cycles of
phases at the same time, hence conforming the global schedule of
traffic lights. As commented before, computing OCP consists in
optimizing the combination of phase durations of all traffic lights
(in all intersections) with the aim of improving the global flow of
vehicles circulating in a urban scenario instance.

A final indication in this sense concerns the behavior of the
vehicles involved in a SUMO simulation, that depends on both
road directions and speed. SUMO employs a space-discrete
extended model as introduced by KrauR (1998). In this model,
the streets are divided into cells and the vehicles circulating
through the streets go from one cell to another if both, the sense
and the direction are allowed. The speed of each vehicle depends
on its distance to the vehicle in front of it, with a preestablished
maximum speed typical of urban areas (50 km/h in our study).

3.3. Solution encoding

In our approach, the OCP is encoded by means of a vector of
integers (see Fig. 1) following the SUMO structure of program-
ming cycles, where each element represents a phase duration of
one state of the traffic lights involved in a given intersection.

In spite of its simplicity, this solution representation allows
our PSO to take into account the interdependency of variables,
not only between phase durations of a state of traffic lights in
an intersection, but also between traffic lights in adjacent
intersections.

3.4. Fitness function

In order to evaluate each cycle program generated by our
PSO the following fitness function is used, which considers the
information obtained from the events happening during the
simulation:

TT+SW +(NVST)

fitness = VILp

€)]

The main objective (Eq. (3)) is to maximize the number of
vehicles that reach their destinations (V) and minimize the global
trip time of all the vehicles (TT), during the simulation time (ST).
The number of vehicles that arrive to their destinations is squared
(V2) in order to prioritize it over the other terms and factors.
Obviously, the number of vehicles that do not reach their
destinations (NV) has to be minimized. The global trip time
concerns an aggregation of the trip time of vehicles that reach
their destinations during the simulation process. On the contrary,
vehicles with uncompleted travels consume all the simulation
time, which implies an additional penalization.

Another important term that we have considered (to mini-
mize) concerns the state of the traffic lights in each precise
moment, since it influences the time that each vehicle must stop
and wait (SW), with the consequent delay over its own trip time.
On the one hand, a prolonged state of traffic lights in red could
collapse the intersection where it is, and even other close
intersections. However, a prolonged state in green could improve
the traffic flow in a given area or direction, but also makes the
traffic flow of other areas and directions worse. On the other
hand, we observed in some specific simulations that large waiting
times (in certain traffic lights) could lead stopped vehicles to
avoid immediate collapsed intersections, and hence contributing
to alleviate them. The fact of remaining stopped in a traffic jam
could yield a higher delay in the trip time of vehicles, and even
increment the number of vehicles that do not reach their
destinations during the simulation time. This behavior led us to
believe that more waiting time did not necessarily entail more

time to finish the trip, and hence, to explicitly add this value (SW)
to the fitness function.

Finally, the balanced proportion of colors in the phase
duration of the states should promote those states with more
traffic lights in green located in streets with a high number of
vehicles circulating, and traffic lights in red located in streets
with a low number of vehicles moving. The proportion of colors
in each phase (ph) of all the intersections t! can be formulated
as follows:

tl  ph le
P= ZZSkJ*( "), e

k=0j=0 Tk

where Gy; is the number of traffic lights in green, and ry; is
number of traffic lights in red in the phase state j (with duration
sij) and in the intersection k. The minimum value of red; is 1 in
order to avoid division by 0.

3.5. PSO for OCP

The proposed optimization strategy is then composed by
two main parts: an optimization algorithm and a simulation
procedure.

The optimization part is carried out by means of the PSO
algorithm which has been specially adapted to optimize cycle
programs for traffic lights. Concretely, three main modifications
have been carried out as follows:

1. The initial swarm is composed by a number of particles
(solutions) initialized with a set of random values representing
the phase durations. These values are within the time interval
[5,50] e Z*, and constitute the range of possible time spans (in
seconds) a traffic light can kept a signal color (only green or
red, the time for yellow is a constant value). We have specified
this interval by following several examples of real traffic light
schedules provided by the City Council of Malaga (Spain).

2. The velocity calculation has been softly modified in order to
deal with integer combinatorial values by truncating (with
floor and ceiling functions) all positions of the new velocity
vector as Eq. (5) shows:

i { Wi, 1) if UN©O1Y <2,
Vgi1= ; . (5
Vgi12] otherwise.
In this formula, vi ,, is the intermediate velocity value
obtained from Eq. (2). The parameter 4 determines the prob-
ability of performing ceil or floor functions in the velocity
calculation (1=0.5 for this study). The specific choice of
randomly applying of ceil/floor (instead of simply approximat-
ing the velocity value to ceil or floor functions) can alleviate
the problem of vanishing velocities that may appear after
some iterations as the (real) velocity vector approaches zero.
3. The inertia weight changes linearly through the optimization
process by using the following equation:

_ (Omax—WOmin) - &

@ — Wmax
8total

(6)
This way, at the beginning of the process a high inertia (Wmax)
value is introduced, which decreases until reaching its lowest
value (Wpi). A high inertia value provides the algorithm with
exploration capability and a low inertia promotes exploitation.

The simulation procedure is the way of assigning a quantita-
tive quality value (fitness) to the solutions, thus leading to
optimized cycle programs tailored to a given urban scenario
instance. This task is tackled by the SUMO microscopic traffic
simulator, which accepts new cycle programs of traffic lights and
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Fig. 2. Optimization strategy for the cycle program configuration of traffic lights.
The algorithm invokes SUMO for each solution evaluation.

compute the required values in Eq. (3). Fig. 2 illustrates the
complete optimization strategy used in this work.

When PSO generates a new solution, it is used for updating the
cycle program. Then, SUMO is started to simulate the instance
with streets, directions, obstacles, traffic lights, vehicles, speed,
routes, etc., under the new defined schedule of cycle programs.
After the simulation, SUMO returns the global information neces-
sary to compute the fitness function. Each solution evaluation
requires only one simulation procedure since vehicle routes in
SUMO were generated deterministically. In fact, as suggested in
Sanchez Medina et al. (2005), stochastic traffic simulators obtain
similar results to deterministic ones, the latter allowing huge
computing savings.

We must notice that each new cycle program is statically
loaded for each simulation procedure. Our aim here is not to
generate cycle programs dynamically during an isolated simula-
tion as done in agent-based algorithms (Krajzewicz et al., 2005),
but obtaining optimized cycle programs for a given scenario and
timetable. In this sense, what real traffic light human schedulers
actually demand are constant cycle programs for specific areas
and for preestablished time periods (rush hours, nocturne peri-
ods, etc.), which led us to take this focus.

4. Experiments and results

In this section we present the experimental framework fol-
lowed to assess the performance of our PSO algorithm for creating
OCP. First, we describe the scenario instances generated specifi-
cally for this work, the implementation details of our approach,
and the parameter settings. Later, results and comparisons are
presented. A study of resulted cycle programs is also carried out
in order to show the real benefits of using our proposal.

4.1. Instances

As we are interested in developing an optimization solver
capable of dealing with close-to-reality and generic urban areas,
we have generated two scenarios by extracting actual information
from real digital maps. These two scenarios cover similar areas of
approximately 0.75 km?, and they are physically located in the
cities of Sevilla and Malaga in Spain. The information used
concerns: traffic rules, traffic element locations, buildings, road
directions, streets, intersections, etc. Moreover, we have set the
number of vehicles circulating, as well as their speeds by follow-
ing current specifications available in the Mobility Delegation of
the City Hall of Malaga (http://movilidad.malaga.eu/). This infor-
mation was collected from sensorized points in certain streets
obtaining a measure of traffic density in several time intervals. In
the case of Sevilla we consulted the Mobility Delegation of Sevilla
Council (http://www.trajano.com/).

In Fig. 3, the selected areas of the two cities are shown with
their corresponding snapshots of Google Earth, OpenStreetMap,
and SUMO. This figure illustrates the process of generating the
traffic network instances. The specific features of these areas are
as follows:

1. Sevilla: Located in the popular district of Nervién in the city
center of Sevilla (Fig. 3, left), it is made up of intersections
between streets including from 4 to 17 traffic lights. The
complete area shows a regular organization with almost all
the junctions connecting between three and four streets. The
main avenues crossing this neighborhood are: Menéndez
Pelayo, Eduardo Dato, San Francisco Javier, Montoto, Galvan,
and Buharia.

2. Malaga: In the zone between the city center and the harbor.
This irregular scenario (Fig. 3, right) is composed by streets
with different widths and lengths, and several roundabouts. It
contains junctions including from 4 to 16 traffic lights each
one of them. The main avenues found in this area are: Alameda
Principal, Andalucia, Manuel Agustin Heredia, Col6n, and
Aurora.

We have chosen these two scenarios since they constitute
different metropolitan areas with heterogeneous structures and
traffic organizations. The number of studied intersections is 70 for
the two instances, and circulating 500 vehicles through each one
of them. We have to notice that in spite of having in both
instances a similar number of intersections (70), the number of
traffic lights is not exactly the same, since they contain different
intersection shapes (368 traffic lights in Sevilla and 312 ones in
the case of Malaga).

In the simulations, each one of the vehicles performs its own
route from origin to destination circulating with a maximum
speed of 50 km/h (typical in urban areas). The routes were
previously generated by following random paths. The simulation
time was set to 500 s (iterations of microsimulation) for each
instance. This time was determined as a maximum time for a car
to complete its route, even if it must stop in all the traffic lights it
finds. When a vehicle leaves the scenario network, it will not
appear again.

4.2. Experimental setup

We have used the implementation in C++ of the PSO algorithm
provided by the MALLBA (Alba et al., 2007b) framework. The
simulation phase is carried out by executing (for the evaluation of
particles) the traffic simulator SUMO release 0.12.0 for Linux. The
experiments were performed in computers of the laboratories of
the Department of Computer Science of the University of Malaga
(Spain). Most of them are equipped with modern dual core
processors, 1 GB RAM, and Linux Debian O.S. They operate under
a Condor (Thain et al., 2005) middleware platform that acts as a
distributed task scheduler (each task dealing with one indepen-
dent run of PSO).

For each scenario instance we have carried out 30 independent
runs of our PSO. The swarm (population) size was set to 100
particles performing 300 iteration steps, hence resulting a num-
ber of 30,000 solution evaluations (SUMO simulations) per run
and instance. As previously mentioned, the particle size directly
depends on the number of traffic lights of each instance. The
remaining parameters are summarized in Table 1. These para-
meters were set after preliminary executions of our approach
with the Malaga instance. Specific parameters of PSO were
selected as recommended in the study about the convergence of
this algorithm in Clerc and Kennedy (2002).
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Sevilla

Google Map
view

OpenStreetMap
view i

SUMO
view

Fig. 3. Process of creation of real-world instances for study. Urban centre of Sevilla (37" 38'14”S 5° 97'23"0) and Malaga (36" 43'60"N 4’ 25'87"0) instance views. After
selecting our area of interest (Google Earth view), it is interpreted by means of the OpenStreetMap tool, and then exported to SUMO format.

Table 1
Simulation and PSO parameters.

Solver phase Parameter Value

Simulation details Simulation time (steps) 500s
Simulation area 0.75 km?
Number of vehicles 500
Vehicle speed 0-50 km/h
No. of studied intersections 70

PSO parameters Max. no. of evaluations 30,000
Swarm size 100
Particle size (no. traffic lights) 368

312

Local coefficient (¢,) 2.0
Social coefficient (¢,) 2.0
Maximum inertia (Wpax) 0.5
Minimum inertia (Wy,;,) 0.1
Velocity truncation factor (1) 0.5

Additionally, we have implemented a Random Search algo-
rithm, also in the scope of the MALLBA library, with the aim of
establishing comparisons against our PSO. Thus, performing the
same experimentation procedure with PSO and Random Search
algorithm we expect to obtain some insights into the power of our
proposal (how much intelligent it is). The pseudocode of the
Random Search algorithm (RANDOM from now on) is shown in
Algorithm 2. The maximum number of evaluations was set to
30,000, as for PSO.

Algorithm 2. Pseudocode of RANDOM.

1. initializeSolution(x)

2. i<0

3. while i < Max_Number_of_Evaluations do
4, generate(x;) //new solution

5. if f(x) > f(x;) then

6. X —X;

7. end if

8. i—i+1

9. end while

SUMO provides a deterministic algorithm for generating cycle
programs (SCPG). Then we also compare the cycle programs
obtained by our PSO against the ones obtained by SUMO. This
last algorithm basically consists in assigning to the phase dura-
tions of the traffic logics fresh values in the range of [6,31],
according to three different factors:

1. the proportion of green states in the phases,
2. the number of incoming lanes to the intersection, and
3. the braking time of the vehicles approaching to their traffic lights.

Further information about this algorithm can be found in
Krajzewicz et al. (2006).
4.3. Results and comparisons

In this section, we are first interested to analyze the internal
performance of our PSO. Graphically, Fig. 4 plots the trace
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Malaga - 70 Intersections — 500 Vehicles
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Fig. 4. Trace progress of the best fitness values in 30 independent runs of PSO
tackling the Malaga instance.

progress of the obtained in 30 independent runs of our technique
when solving the Malaga instance. In this figure, we can observe
that for all executions our algorithm practically converged after
the first 200 iterations (20,000 evaluations), using the remaining
time to only slightly refine solutions. In addition, all the computed
solutions are close each other in quality, but different among
them. They are almost all in the range of fitness values between
1 and 3. In terms of convergence and robustness, these are
desirable features since we can offer to the expert a varied set
of accurate cycle programs in a first stage of optimization.

Concerning each individual execution, a representative exam-
ple can be observed in Fig. 5 where the absolute frequency of the
fitness distribution of the entire swarm through the optimization
process is plotted. In concrete, it illustrates one of the thirty
independent runs of our PSO tackling the Malaga instance. We
can notice that the initial particles are diverse and with high
fitness values (~8), although during the second half of the
optimization process they get convergence on solutions with
low fitness values ( < 1.5).

Table 2 contains the maximum, median, minimum, mean, and
standard deviation of the fitness values obtained (out of 30
independent runs) by the proposed PSO for the two scenario
instances: Sevilla and Malaga. Additionally, the values obtained
by the RANDOM algorithm, and the results of the SCPG are also
provided in order to allow comparisons. We can clearly observe in
this table that PSO obtained the best results (marked in boldface).
Furthermore, the maximum values of our proposal are lower than
the mean values showed by both, RANDOM and SCPG algorithms.

With the aim of providing these comparisons with statistical
meaning we have applied different t-test (Sheskin, 2007) to the
numerical values and distributions of the results. We have used
this parametric test since the resulting distributions show the
conditions of normality and equality of variances. The confidence
level was set to 95% (p-value=0.05), which allows us to ensure
that all these distributions are statistically different if they result
in p-value < 0.05.

In effect, the t-test of independent samples applied to the mean
values of the distributions of PSO and RANDOM (Table 2) resulted
in p-values < 0.05, for the two instances: Malaga and Sevilla. In a

Malaga - Fitness Histogram Evolution
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Fig. 5. Swarm fitness histogram through 300 iterations in the optimization of the
Malaga scenario.

Table 2
Median fitness values obtained by PSO for Sevilla and Malaga instances. Median
fitness obtained by RANDOM and by SCPG algorithms are also provided.

Instance Value PSO RANDOM SCPG

Sevilla Maximum 6.53E+00 9.04E+00 7.24E+00
Median 5.06E-+00 8.45E+00 7.24E+00
Minimum 3.08E-+00 7.73E+00 7.24E+00
Mean 4.95E+00 8.43E+00 7.24E+00
Std. 6.68E—01 2.58E-01 0.00E+00

Malaga Maximum 3.01E+00 4.67E+00 5.19E+00
Median 1.80E+00 4.43E+00 5.19E+00
Minimum 1.10E+00 3.63E+00 5.19E+00
Mean 1.81E+00 4.37E+00 5.19E+00
Std. 4.22E-01 2.55E-01 0.00E+00

similar way, the t-test of a simple sample applied to the mean of
the distribution of PSO against the simple value of SCPG also
resulted in p-values < 0.05. Therefore, we can claim that our PSO
obtained statistically better results than the other two compared
algorithms: RANDOM (stochastic search) and SCPG (determinis-
tic). This also means that our algorithm is intelligent and
competent when compared to greedy information and human
expert guidelines.

From a graphical point of view, Fig. 6 shows the boxplots of the
distribution results of PSO, and RANDOM. The results of SCPG are
represented with a 4 point since this technique always returns
the same deterministic result. As expected, the distributions of
PSO show better lower quartiles, medians, and upper quartiles
than RANDOM and SCPG. For the Sevilla instance, the RANDOM
algorithm obtained worse results than SCPG. On the contrary, for
the Malaga instance the results of RANDOM are better than the
one of SCPG. Possibly, the higher number of traffic lights in the
case of Sevilla makes the SCPG algorithm to obtain more success-
ful cycle programs than RANDOM. This last evidently shows a
limited performance for the most complex instance (Sevilla).

4.4. Analysis of resulting traffic light schedules

In this section we focus on the cycle programs obtained by our
PSO, and the possible profits they can offer to the actual users in
this field. Then we show the real impact of using our optimization
technique, able of computing realistic and comprehensive traffic
light cycle programs.

In this context, for each iteration step of the PSO and for each
particle in the swarm, we have saved the information obtained
from each simulation (solution evaluation) about the number of
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Fig. 6. Boxplots representation of distributions results of Sevilla (left) and Malaga (right) instances. The results of SCPG are represented with a 4 point since this technique

always returns the same deterministic result for a given instance.
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Fig. 7. Number of vehicles that did reach their destinations (continuous lines)
versus vehicles that did not reach their destinations (dotted lines). Overlapped
curves show the mean number of vehicles (out of 30 independent runs) that did
arrive and did not arrive to their destinations. SCPG results are also showed with
dotted straight lines.

vehicles that reached their destinations, the average duration of
their trips and, the moment they leaved the simulation procedure.
In this way, we can distinguish the progressive improvement in
the traffic flow obtained from the initial solutions to the final
ones, throughout the complete optimization procedure.

A representative example can be observed in the optimization
process of the Malaga instance. First, in Fig. 7 we can see the trace
of the number of vehicles that did reach their destinations (upper
continuous curve) versus the number of vehicles that did not
reach their destinations (lower dotted curve) for each iteration
step in a run of PSO. The overlapped curves show the mean
number of vehicles (out of 30 independent runs) that did arrive
and did not arrive to their destinations. In addition, this figure
also shows the results (in dotted straight lines) of the SCPG for
this same instance.

We can easily observe in Fig. 7 how the amount of vehicles
that did arrive (did not arrive) to their destinations increases
(decreases) as the algorithm gets the stop condition of 300
iterations. In fact, at the initial steps of the optimization process,
the number of vehicles that reached their destinations was lower
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Fig. 8. Evolution of the number of vehicles leaving the scenario during the
simulation of the best cycle programs (solutions) found in one representative
independent run of PSO and RANDOM, and SCPG for the Sevilla and Malaga
instances.
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than the ones resulting in the cycle program generated by SCPG.
However, at the final steps of the PSO procedure, the evolved
solutions show a high quality in terms of the traffic flow, since
349 vehicles of the initial 500 (69.8%) finalized their trips
successfully. Moreover, a mean number of 340 vehicles com-
pleted their trips in the final solutions of PSO (average of 30 runs).
This contrasts to the 314 vehicles that reached their destinations
in the SUMO cycle program: the improvement obtained by our
PSO over SCPG is 10.13%.

Following this analysis, we now compare the number of
vehicles that leave the traffic network (reach their destinations)
during the simulation of the final solutions. Then, Fig. 8 plots the
evolution of the number of vehicles that leave the network (in
Sevilla and Malaga) during the simulation of the best cycle
programs found with PSO, RANDOM, and SCPG.

Similar traces can be observed in Fig. 8 for the two instances:
at the initial steps of the simulation, PSO and SCPG deliver quite
similar number of vehicles, even showing SCPG a better perfor-
mance over PSO. However, during the second half of the simula-
tion, the cycle programs of PSO get a higher number of cars that
reach their destinations. The greedy SCPG cycle program deterio-
rates with the simulation time, even performing worse than
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Fig. 9. Mean trip time of vehicles calculated for each one of the simulations
performed through a representative run of PSO. SCPG results are also showed with
a dotted straight line. Y axis represents the trip time in seconds.

RANDOM for the Malaga instance. Evidently, the generation of
traffic jams during the simulation procedure directly influences
on the ability of cycle programs to manage them. Nevertheless,
the learning process performed by PSO leads the generation of
cycle programs able to avoid large queues of cars, hence improv-
ing the global traffic flow even at the final steps of the simulation
when the possibility of congestion is higher.

From a different point of view, Fig. 9 plots the trace of the
average trip time employed by the vehicles in the resulted
solutions of PSO through all the iterations of an example run. In
this case, the trip time becomes shorter as the algorithm
approaches the stop condition. We must notice that, in the
calculation of the trip time, the vehicles that did not arrive to
their destinations took 500 s, the complete simulation time. For
this reason, SCPG solutions showed an averaged trip time of 660 s
while PSO solutions obtained a trip duration of 557 s, which
represents an improvement of 15.7% respect to the SCPG solution.

Finally, with the aim of better understanding the final implica-
tions of using (or not using) an optimized cycle program, Fig. 10
shows the simulation traces of the traffic flow resulted from
solutions generated by both, SCPG (left) and PSO (right). The
pictures were captured at the final of the simulation time, and
correspond to two simulation procedures of a selected area of the
Malaga instance including: Andalucia avenue, Aurora avenue, and
Guadalmedina street. As we can observe, the traffic density of the
SCPG cycle program is clearly higher than the one of PSO, even
showing the former several intersections with traffic jams. As to
the PSO cycle program, all intersections are unblocked at the end
of the study.

5. Conclusions

Based on PSO, we have proposed in this work an optimization
technique able to find successful cycle programs of traffic lights.
For this study we have used two extensive traffic networks
located in the metropolitan center of the cities of Sevilla and
Malaga (in Spain).

A series of analysis have been carried out from different points
of view: the performance of the optimization technique and the
quality of solutions in the domain of the traffic lights. From these,
the following conclusions are extracted:

1. The proposed PSO shows a successful performance in big
realistic traffic scenarios. For the two instances, our proposal
obtained results statistically better than the two other com-
pared algorithms: the SUMO cycle programs generator (SCPG)
and a Random Search algorithm (RANDOM).

2. The final solutions obtained by PSO can improve the number of
vehicles that reach their destinations and the mean trip time,

Fig. 10. Simulation traces of the traffic flow (cars in white) resulting from the cycle programs generated by both, SCPG (left) and PSO (right) in Malaga. The pictures show
snapshots at the end of the simulation time. The reader can notice that the SCPG leaves a dense traffic while PSO has cleaned the routes and the traffic is very fluid and

sparse.
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for the two instances. In particular, for Malaga, the improve-
ment obtained is around 10.13% in the number of completed
trips and 15.7% in the trip time, regarding SCPG.

3. Moreover, an analysis of the traffic flow shows that the cycle
traffic light schedules provided by our PSO improve the global
traffic flow in the road network. All this means an actual
improvement in traffic for citizens.

As future work, with the final aim of assisting the human
expert in the decision making process, we will be tackling the
optimal cycle program with current sophisticated versions of PSO
(like Standards 2007 and 2011), other metaheuristic algorithms,
and other optimization strategies like multiobjective or parallel
versions. We are also interested in using other traffic simulators
and create new large dimension instances, as close as possible to
real scenarios of a whole city.
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