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Abstract

An automated signalized junction control system that can learn strategies from
a human expert has been developed. This system applies Machine Learning
techniques based on Logistic Regression and Neural Networks to affect a clas-
sification of state space using evidence data generated when a human expert
controls a simulated junction.

The state space is constructed from a series of bids from agents, which
monitor regions of the road network. This builds on earlier work, which has
developed the High Bid auctioning agent system to control signalized junctions
using localization probe data. For reference the performance of the Machine
Learning signal control strategies are compared to that of High Bid and the
MOVA system, which uses inductive loop detectors.

Performance is evaluated using simulation experiments on two networks.
One is an isolated T-junction and the other is a two junction network modelled
on the High Road area of Southampton, UK. The experimental results indicate
that Machine Learning junction control strategies, trained by a human expert
can outperform High Bid and MOVA both in terms of minimizing average delay
and maximizing equitability; where the variance of the distribution over journey
times is taken as a quantitative measure of equitability. Further experimental
tests indicate that the Machine Learning control strategies are robust to vari-
ation in the positioning accuracy of localization probes and to the fraction of
vehicles equipped with probes.
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1. Introduction

This paper describes the development of a Machine Learning junction control
system that employs pattern matching techniques including logistic regression
and neural network classification to find statistical trends between the signal
control decisions made by the human expert and the state of a simulated network
as described by simulated localization probe data.

1.1. Background

In the United Kingdom urban signalized road junctions are usually con-
trolled by one of two systems, MOVA (Vincent and Peirce, 1988) for use at
isolated junctions and SCOOT (Hunt et al., 1982), which can coordinate mul-
tiple adjacent junctions. Both these systems use sensors, including inductive
loops (Sreedevi, 2005) and microwave emitter/detectors (Wood et al., 2006),
to detect the presence of vehicles at fixed locations on the roads around the
junction. The data from these sensors are used as a descriptor of the state of
the network by the control algorithms to inform decisions on which colour to
set the traffic lights.

Data collected from counts of vehicles at fixed locations is called census
data. Previous reviews (e.g. (Rose, 2006)) have suggested that localization
probe data, that is dynamic position and speed data from on board vehicle sen-
sors, can present a different view of the state of the network. The European
Commission has recently invested significant resources in three major studies
to look into the benefits of vehicle to infrastructure (V2I) and vehicle to ve-
hicle (V2V) communications (Kompfner, 2008; COOPERS, 2010; SAFESPOT,
2010). Furthermore common European protocols have been set for this type of
communication (IEEE 802.11p). This has laid the ground for this technology to
become commonplace in Europe in the near future. This technological advance
would enable localization probe data to be collected and employed in urban
traffic control (UTC) systems.

1.2. Context and Motivation

Early work to investigate the scenario of localization probe data in signal
control has employed simulation to develop and evaluate control methods. Box
and Waterson (2010a) presents an auctioning agent control method. This work
showed the auctioning agent approach outperforming MOVA in simulations on
an isolated T-junction. In Waterson and Box (2011) the auctioning agent system
was subjected to a rigorous quantitative stochastic analysis, which character-
ized the effects of varying the positioning accuracy and the fraction of vehicles
equipped with probes.

The simulation test bed used for the work presented in this paper is described
in detail in Box and Waterson (2010a); Waterson and Box (2011). In summarry:
it uses S-Paramics microsimulation software to model networks and simulate
the movement of individual vehicles through junctions. Built around this are
a number of bespoke software modules for simulating localization probe data,
making control decisions, and implementing control directly in the simulation.



Box et al. (2010) showed that a human interface layer can be connected to the
simulation test bed allowing an expert human to control the signals at simulated
junctions. Results indicated that an expert human controller can outperform
both MOVA and the auctioning agent approach from Box and Waterson (2010a)
in terms of delay across the junction.

This motivates the development of Machine Learning junction control sys-
tems that can mine the data generated when a human expert controls simulated
junctions and emulate human control strategies under automated control. Box
et al. (2010) also demonstrated how the auctioning agent method could be
adapted, employing the pattern recognition technique of Logistic Regression, to
create a learning junction agent.

In this paper both the auctioning agent system and the learning agent are
developed further. The principal contributions are as follows:

1. An updated structure for the auctioning agent method introducing the
lane agent.

2. A new learning junction agent, which employs a two layer neural network
with back propagation to learn strategies from a human expert.

3. A comparison between the logistic regression and neural network learning
junction agents including variation in the resolution of the training data.

4. Simulation tests carried out on a two junction network, which models the
High Road area of Southampton, UK.

Other important work where pattern recognition and Machine learning tech-
niques have been applied to junction control include (Choy et al., 2003; Mikami
and Kakazu, 1993; Chen and Heydecker, 2009). This work has shown how to
use neural networks and other techniques to optimize certain parameters in sig-
nal control strategies or to select pre-defined strategies. In the work presented
here, Machine learning techniques are used to select signal control decisions by
directly classifying state space using evidence data generated by a human expert
(Section 3).

2. Signal Control Strategies Overview

Simulation tests were carried out on two network models. Figure 1 shows a
view of the first, the Simple T-junction. This is an isolated junction with three
signal stages. Figure 2 shows a view of the second, the High Road Junction.
This is a model of the High Rd area of Southampton, UK. It consists of two
signalized junctions a short distance apart. The westerly junction has four signal
stages and the easterly junction has three.

This section presents an overview of the junction control strategies that
were investigated using simulations on these junctions. These are: MOVA,
Auctioning Agents using the High Bid method and Auctioning Agents using
the Learning Junction Agent.



Inductive Loops

Figure 1: S-Paramics screenshot of the Simple T-Junction simulation model used in simulation
tests. Incudctive loop locations are marked by arrows.

2.1. MOVA

The MOVA control strategy (Vincent and Peirce, 1988) is a common strategy
that is employed on many isolated junctions in the real world, therefore it is used
as a baseline for junction control performance in these tests. The MOVA control
strategy was tested on the Simple T-junction only. The S-Paramics simulation
models 11 inductive loop detectors (examples are marked in Figure 1), which
measure counts of vehicles passing over. The signals from these detectors serve
as inputs to the MOVA algorithm. In fact the Simple T-junction model was
designed by The Transportation Research Laboratory (TRL) as an exemplar
for MOVA control to accompany their MOVA—-S-Paramics API. The full details
of the MOVA set up for this model are given in TRL (2007).

2.2. Auctioning agents

The auctioning agent system defines the state of the network using bids.
Sections of road or lane in the network models are monitored by Lane agents. A
lane agents receives data from vehicles in the simulation whose reported position
indicates that they are in that agent’s section. The lane agent then uses the
vehicle data to generate a bid. In simple terms the bid is designed to be a
measure of the need for priority at the next junction coming from that section
of road. Equation (1) below shows how the bid B is calculated.

B=)Y 1-aV,-BX. (1)

ceC

Here C' is the set of all vehicles monitored by the lane agent. V, is vehicle speed
and X, is the distance of the vehicle from the junction. a and g are coefficients
which can be tuned to adjust the relative influence that the number of vehicles,
the vehicle speed and the vehicle distance each have on the size of the bid. In
previous work (Box and Waterson, 2010b) it has been shown that good values



Figure 2: S-Paramics screenshot of the High Road Junction simulation model used in simula-
tion tests

are @ = 0.01 and $ = 0.001 (assuming SI units for all the terms). These values
are adopted in this work.

The lane agents fit into a larger hierarchical agent structure shown in Figure
3. Above the lane agents are stage agents, one for each stage of each junction.
Stage agents receive data from any lane agents whose lanes receive the green light
from that stage. As an example: Figure 4 shows a simple network containing
two junctions, each with the same two-stage structure. Considering stage 1 of
the West junction: the lane agents assigned to this stage are labelled (a) and
(b). Tt is possible for a lane agent to be assigned to more than one stage agent
(See Figure 3 and Section 4).

High Bid Control. Each stage agent generates an initial bid, which is simply the
sum of the bids of all its lane agents. Above the stage agents in the hierarchy is
the Junction Agent. The simplest type of control that the junction can employ
is High-Bid control. In this scenario the Junction Agents requests bids from
the stage agents at a pre-set time interval called the auctioning rate (§t). upon
receipt of the bids the junction simply gives the green light to the stage with
the highest bid.

Coordinated High Bid Control. In the case where two junctions are closely
spaced, as in Figure 4, it can be advantageous to coordinate their control. The
High Bid control method can be extended to control such junctions with the
addition of a zone agent above the Junction agents in the hierarchy (Fig 3).
Each junction agent sends the zone agent their highest initial stage bid. The
zone agent then picks the junction with the highest overall stage bid to lead the
coordination. This means that the winning junction continues as normal and
assigns priority to the stage with the highest bid. The zone agent then assigns
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Figure 3: Hierarchy of agents in the auctioning agent control system

some of the lane agents from the winning junction to the stage agents of the
losing junction to encourage coordination.

An example of this is shown in Figure 4. In this example The East junction
is the winning junction and East stage 1 is the winning stage. If controlled
independently then the West junction’s stage 1 agent receives bids from lane
agent (a) and lane agent (b) (as discussed above). However in the coordinated
case lane agent (c¢) is added to this stage also. In this case lane agent (c)
recalculates its bid based on the longer distance to the West junction and the
bid is also multiplied by a pre-set coefficient to account for the fact that some
of the vehicles in this section will be turning left. The effect of this will be
to increase the value of the bid for stage 1 of the West junction to take into
account the vehicles that are going to be released by the East junction. That is
the principle coordinated high bid control. Detailed descriptions of this control
method applied to specific junctions are given in Waterson and Box (2011).

2.83. Machine Learning Auctioning Agents

The auctioning agent system can be adapted, using a machine learning ap-
proach, to include a learning junction agent that can be trained in control
strategies by a human expert. The architecture of the auctioning agent hierar-
chy (Figure 3) is largely retained although the zone agent is discarded because
coordination can be achieved with junction agents operating independently (Fig-
ure 5).

Human Interface. The human interface to the simulator is both a junction con-
trol method itself and a tool for training the learning junction agent. The human
interface consists of a screen and keyboard. The screen displays a realistic 3D
scene of the network with simulated vehicles driving around. As with high bid
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Figure 4: Schematic of a simple twin T-junction indicating the two junction stages (top left),
which apply to both the East and West Junctions. Also highlighted are sections of that are
monitored by lane agents (bottom). When under coordinated control lane agents can be
reassigned from one junction to another (top right).

control, auctions are called at regular intervals (6t). Whenever an auction is
called the simulation is paused and the user is prompted on screen to assign pri-
ority to one stage for each of the junctions in the simulation. Thus the human
user controls the simulated junction. While human control is taking place the
lane and stage agents are calculating bids. After each auction the bids and the
stage decisions made by the human are stored in a database for offline training
that is described in Section 3.

State Descriptor. Unlike high bid control where the stage agent’s bids are con-
sidered to be proxies for the need for priority, the learning junction agent con-
siders the bids from the stage agents simply as a description of the state of the
network. Because of this it is possible for the learning junction agent to consider
the bids from the lane agents directly, bypassing the stage agents altogether (see
Figure 5). Because there are generally more lane agents than stage agents they
can provide a potentially richer description of the state of the network, although
this is at the expense of increasing the dimensionality of the problem to be solved
(see section 3). In the experiments presented in Section 4 both the stage agent
bids and the lane agent bids are used to describe the network. We adopt the
terminology of referring to the stage agent bids as the short bid data and the
lane agent bids as the long bid data. Interestingly although the bids are no
longer used as proxies for the need for priority the fact that they are designed
as such has important implications for the solution of the learning problem that
will be described in Section 3.

Junction Coordination. The learning junction agent is not restricted to consid-
ering agents that belong only to that junction but can also consider those of
neighbouring junctions. If the human expert who trains the junction agents
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Figure 5: Agent hierarchy for Machine learning auctioning agents

attempts to coordinate them in her decision making then this should result in
patterns between bids and coordinated decisions. Therefore, in the experiments
presented here, there is no explicit coordination of junction agents, rather they
operate independently and if the patterns are captured by the learning junction
agents then coordination should emerge under automated control.

3. Learning Agent

There is a number: (J — 1) of agents that are used to describe the state of
the network for the learning junction agent. The bids from these agents define a
J—1 dimensional bid space. Each new set of bids in the future will define a point
in this bid space. In order to be able to assign all possible future combinations
of bids to a given signal stage, we need to divide this bid space up into regions
that correspond to signal stage decisions.

Such a division of bid space can be done using the data generated by the
human expert controller. The expert’s decisions represent patterns between
points in bid space and signal stage decisions, therefore they can be used as
evidence for how the bid space should be divided. In the field of Machine
Learning this is a standard classification problem and there are a number of
ways to approach it (for examples see Bishop (2006)). In this paper we will
be looking at two: The multi-class logistic regression and the two layer neural
network with back propagation. Both approaches are closely related as will be
explained below.

3.1. Multi-class Logistic Regression

The approach of multi-class logistic regression is to fit a probability function
to the bid space for each of the K possible stage decisions. Thus for each new
point in bid space we can determine the probability that this point belongs to
stage k. The function used here is the softmaz function (2)(Bishop, 2006).
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where a;, is a linear function of the vector of bids b.
T
ar = ka (3)

where b = [b1,bs,--- ,bj_1,1] and wy, is a vector of parameters. The learning
task is to find the values of these parameters that minimize the error between
the probability surface defined by (2) and the evidence data provided by the
human expert. The probability given by (2) will be valid if the distribution of
evidence points in bid space for a given stage k conforms to any probability
distribution in the exponential family (e.g. Gaussian) (Bishop, 2006).

8.1.1. Learning the parameters

In this section we show how to learn the parameters W = {wq, w1,..., Wi}
from the expert training data. For each pattern b,, in the set of N patterns we
can define a target vector t,, which has K elements t,;, which equal 1 if b,, is
associated with stage k£ and 0 otherwise.

A measure of the difference between the probability functions and the evi-
dence data is given by the cross-entropy error function.

E(W) ==Y "> tunpklb,) (4)
neN keK

The values of W that minimize E(W) are found numerically using the
Newton-Raphson update formula.

Whew — Wold o VVE(WOId)—1VE(W01d) (5)

Where the second and third terms are respectively: the second and first deriva-
tives (Hessian matrix and gradient) of the cross entropy error function. The pre-
cise method for calculating these is given in Box et al. (2010). This approach is
known as iteratively re-weighted least squares. W is initialized randomly using
the approach recommended by (Nabney, 2002) shown below.

1
w~N(0|—m—— 6
() ©
Typically the above algorithm is run a number of times to avoid a result in a
poor local minimum.



8.1.2. Applying the logistic regression

Once the values of the parameters W have been learned, the probability
that a new point in bid space belongs to stage k can be found using (2). Thus
a region in bid space where stage k£ has the highest probability can be defined.
This region will be separated from neighbouring regions by J — 2 dimensional
quadratic boundaries where both stages have equal probability. This approach
to classification can work well where the evidence points for each stage are well
separated into regions that can be partitioned by such boundaries. In fact this is
why the bids, which are designed to represent need for priority, are particularly
suitable descriptors of the state of the network in this case. If they are at all
representative of the need for priority then the points for different stages will be
well separated in bid space. In cases where the separation is less clear a more
powerful approach may be needed, such as the two layer neural network.

3.2. Two-layer Neural Network with back propagation

The neural network approach allows a more flexible division of the bid space
where stage k can exist in multiple regions separated from neighbouring regions
by J — 2 hyper-surfaces that can have complex shape. The neural network
achieves this by applying a transformation function to the bid space that ar-
ranges the evidence points for each stage into positions that are more favourable
for a logistic regression. That is to say that after the transformation the softmax
function fits the evidence data with lower error that it would if it were applied
before the transformation. This transformation function can be parametrized
and the parameters learned from the evidence data in the same way as the
parameters for the softmax function are learned in the logistic regression.

The standard structure for the neural networks used here is a two layer
network with J input units, H hidden units, and K output units. Here .J is the
number of bids plus one, K is the number of signal stages and the number of
hidden units H is a variable that can be tuned to control the complexity of the
transformation. A low number of hidden units can limit the complexity of the
transformation giving a poor fit to the evidence data. A high number of hidden
units allows more complexity in the transformation but can lead to over fitting
of the data.

3.2.1. Forward Propagation
The J dimensional bid vector b is defined as in Section 3.1. For each pattern
there is also a K dimensional target vector t with elements ¢ € {0,1}, where

dokerte =1

Layer 1. The first layer of the neural network forward propagation transforms
the bid vector b onto the H dimensional hidden units vector z using the following
transformation.

zp, = tanh (ag)) (7)
a = wlp (8)

where W) is a H x J matrix of parameters (to be learned).
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Layer 2. The second layer of the neural network forward propagation substi-
tutes the new transformed bid z into the softmax function.

(2
exp(af®)
= = e (9)
Zexp(ak )
keK
a® = W@y (10)

where W) is a K x H matrix of parameters to be learned.

3.2.2. Error back propagation
The error E between the output of the neural network y and the target
vector t is measured using the cross-entropy error function.

E=- Z tk 1nyk (11)

keK

We define the K dimensional error vector 6% using

oL

5(2) =T " Yk
i 3al(c2)

— tk (12)

This error is back propagated to the first layer of the neural network using (13)
to give the H dimensional first layer error vector oW,

m_ 9B _ 21w DT
5, faa(l)f(pzh)wh 8¢ (13)
h

where wgf) is the A" column of W), The gradient of the error surface with
respect to the weights in each layer is given by

VEW®) = §@g7 (14)
VEW®M) = §WpT (15)
(16)

3.2.3. Learning the parameters

The forward propagation and back propagation of error described above
relates to a single pattern in the evidence data. To calculate the error and
gradient for the whole data set of IV patterns we simply sum them.

VE(W) = Y VE,(W) (17)

neN

The values of the parameters that minimize the error F can be learned by
gradient descent using the following iteration step.

WY = WOl VE(W) (18)

11



where 7 is the learning rate that can be adjusted dynamically during the gradient
descent to control step size (e.g. reduced if error increases).

The elements of W are initialised randomly using (6) and in the tests pre-
sented in this paper the gradient descent is performed 20 times and the result
with the lowest error is selected to avoid results in a poor local minimum.

4. Simulation Experiments

Simulation tests, designed to evaluate the junction control strategies de-
scribed in Sections 2 and 3, were carried out on the two networks shown in
Figures 1 and 2.

All simulation tests covered a simulated four hour period. During the tests
the junctions in the simulations were controlled either by MOVA or by one of the
auctioning agent algorithms. Auctioning agent tests used either the High Bid
method, or the Learning agent method and the auctioning rate was ¢t = 10s in
all cases. Learning agents were trained (Section 4.4) using either the Logistic
regression (logit) method or the two layer neural network with back propagation
(neural net). Finally for each of these training methods either the Stage agent
data (short data) were used to describe the network state or the Lane agent
data (long data) were used.

4.1. Demand Profile

Each experiment used the same demand profile. Demand is set between
origin and destination zones, these are at the end of each modelled road. The
demand between zone i and and zone j (D;;, in vehicles per minute) is a function
of the basic demand between ¢ and j d; ; and a transient demand multiplier d,
which is a function of the simulation time (equation (19)).

D =d; jdy (19)

Transient demand multiplier

0
0 50 100 150 200 250
Simulation Time (s)

Figure 6: Variation of the transient demand multiplier throughout four hour simulation period

The transient demand multiplier causes the level of demand to vary over
the time of the simulation. Under normal operation a junction will usually
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experience two peaks in demand over a 24 hour period i.e. in the morning and
evening rush hours. To conserve simulation time all simulation tests presented
here were carried out over a four hour period. This representes a “compressed
day” with peaks in demand at 1 hour and 3 hours. Figure 6 shows the profile
of the demand multiplier over the test period.

The basic demands represent the permanent trend in demand between par-
ticular origins and destinations. The basic demand matrices for the Simple
T-junction and the High Road junction are given in tables 2 and 4 respectively.

4.2. Delay Calculation

During the simulations S-Paramics records detailed information about the
journeys of every simulated vehicle. In the analysis presented here the main
measurements used are journey time ¢ and delay 6. For a given vehicle p the
time it takes to travel from its origin 7 to its destination j is its journey time %,.
The vehicle’s free flow travel time tgf) is the theoretical time that it would take
to travel between ¢ and j if it were unimpeded by other vehicles or red signals.

The delay for vehicle p is the difference between these two times.

0, =t, — (20)

4.3. Test Junctions
4.8.1. Simple T Junction

Stage 1 Stage 2 Stage 3

1 !

(@)

(b)

©

@

Figure 7: Schematic (not to scale) of the Simple T-Junction. Showing the different priorities
of the junction’s three stages (top) and the sections of road monitored by the four lane agents
(a) - (d) (bottom).

Figure 1 shows a view of the model of the Simple T-junction. Figure 7 shows
a schematic of the junction indicating the staging and the road sections that
are monitored by lane agents.

Agents. Figure 7 shows that there are four lane agents in this network labelled
a,b,c and d. Each lane agent section is indicated and these sections cover the
entire length of the modelled road. Table 1 shows which lane agents are assigned
to which stage agents in the auctioning agent hierarchy.
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Stage Agent | Assigned lane agents W E S
1 {a.c) W - 1896 5.0
2 {a,b} E 24.01 - 1.26
3 {d} S | 405 405 -
Table 1: Assignment of lane agents to stage Table 2: Basic demand matrix (vehicles
agents in the Simple T-junction model per minute) for the Simple T-junction net-

work

Demand. The basic level of demand d;; in vehicles per minute between the
origin and destination zones in the Simple T-junction model are shown in table
2.

4.8.2. High Rd Junction

Stage 1 Stage 2 Stage 3 Stage 4

1S | —'I)
West = = -

N L |

East |7 =|7 " =

(©)]
© [0}
West East

@

Figure 8: Schematic (not to scale) of the High Rd Junction. Showing the different priorities
of the East and West junction’s stages (top right) and the sections of road monitored by the
nine lane agents (a) - () (bottom).

Figure 2 shows a view of the model of the High Road junction. Figure 8
shows a schematic of the junction indicating the staging and the road sections
that are monitored by lane agents.

Agents. Figure 8 shows that there are nine lane agents in this network labelled
a to i. Each lane agent section is indicated and these sections cover the entire
length of the modelled road. Table 3 shows which lane agents are assigned to
which stage agents in the auctioning agent hierarchy.

In the case of coordinated high bid control agent reassignment takes place
following the principle outlined in Section 2. A detailed description of agent re-

14



assignment for a similar two junction network model can be found in (Waterson
and Box, 2011).

In the case of Machine learning control there are two learning junction agents
and both of these agents receive data from all of the stage/lane agents in the
network.

Junction | Stage | Assigned
Agent | lane
agents
1 {a}
2 {b} W SE E N SW
West ) 5 {c,d} W 181 876 1.95 0.19
4 {de} SE | 195 - 389  1.95  0.049
1 {1} E |87 6890 - 0.97  0.097
East | 2 {g,h} N |292 097 292 - 0.097
3 {g,i} SW | 0.097 0.097 0.097 0.097 -

Table 3: Assignment of lane agents to Table 4: Basic demand matrix (vehicles per minute) for
stage agents in the High Road junc- the High Road junction network
tion model

Demand. The basic level of demand d;; in vehicles per minute between the
origin and destination zones in the High Road junction model are shown in
table 4.

4.4. Training Phase

Training of the learning junction agent took place in a separate series of
simulations called the training phase. These simulations were set up slightly
differently from the test simulations described above.

Training sessions were short (30 simulated minutes) with a constant level
of demand. For each network (Simple T and High Rd) there were six training
sessions, each with a different level of demand. The aim of this approach was to
minimize the amount of training time required and make sure that the learning
junction agent had equal exposure to data generated at different levels of de-
mand. The total demand between each origin ¢ and destination j was calculated
using (21)

Di,j = diyjdz (21)

where d, is the demand multiplier for test x. Table 5 shows the demand multi-
pliers used in each of the six training sessions.

Number of hidden units. As discussed in Section 3.2, when using the neural
network approach to learn strategies the complexity of the fit can be controlled
by varying the number of hidden units used in the neural network. Table 6
shows the number of hidden units used for each of the neural networks employed
in these tests. These values were selected based on best performance on new
simulated data.

15



Test number | Demand
(x) multiplier
(dz)
1 0.2 Network | Agent set | Number of
2 0.4 Hidden units
3 0.6 . Long 7
4 0.8 Stmple T gt | 5
5 1.0 . Long 11
6 1.2 High Rd | gyt |8
Table 5: Basic demand matrix (ve- Table 6: The number of hidden units used in
hicles per minute) for the Simple T- the various test combinations
junction network
5. Test Results
Delay (s)
Strategy Simple-T | High Rd
MOVA 18.64 -
High Bid 17.23 19.45
Logit (Short) 18.10 90.14
Logit (Long) 15.46 83.26
Neural (Short) 15.48 17.86
Neural (Long) 14.12 17.44

Table 7: Delay averaged over all journeys during 4-hour simulation tests on the two test
junctions, using various control strategies.

5.1. Simple T-junction

This section presents results from simulation tests carried out on the Simple
T-junction model. Five different control strategies were used for the tests pre-
sented here: MOVA, High Bid, Logit (using both long and short bid vectors)
and Neural network control (using both long and short bid vectors).

The second column of Table 7 compares the measured value of delay for the
six strategies tested. Here delay is averaged across all journeys for the duration
of the test. This shows that MOVA, the baseline strategy, is outperformed by
all other strategies.

The High bid strategy outperforms MOVA, despite its simplicity, due to
the fact that the localization probe data provide a richer description of the
state of the network than the inductive loop data. Of the Machine Learning
strategies tested, the Logit algorithm using the short bid vector has the lowest
performance. Previous research has shown this strategy outperforming High
Bid on an isolated T-junction and matching human performance (Box et al.,
2010). The main difference between the tests presented here and the results
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previously published is the varying demand profile. In the previous tests demand
was constant during training and tests. Introducing the profiled demand has
increased the complexity of the problem leaving the Logit (short) strategy less
effective. When using the Long bid vector the logit algorithm acts on a bid
space with higher dimensionality (n =4 vs n = 3) and is able to capture some
of this higher complexity. The Logit (Long) strategy does outperform High Bid.
The Neural Network strategies can capture more complexity in the training data
than the Logit strategies due to greater flexibility in the division of the bid space.
Neural network control using the short bid vector matches the performance of
Logit (Long), while Neural (Long) is the best performing strategy with a ~ 25%
reduction in delay over the MOVA baseline.
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Figure 9: Delay, averaged over successive 5 minute intervals, for the duration of the four hour
simulation test on the Simple T-junction. Traces for four strategies are shown: MOVA, High
Bid, Logit (Long) and Neural Network (Long).

9 shows the transient delay traces for four strategies (MOVA, High Bid,
Logit (Long) and Neural Network (Long)). Here delay is averaged across all
journeys that ended within a five minute period, thus indicating the variation
in delay over the test period. These results show that the performance of the
strategies is similar throughout most of the test, with the exception of the two
peaks in demand at 1 hour and 3 hours. This indicates that the algorithms that
perform better do so because they deal better with high levels of demand and
can postpone or avoid the situation of saturated flow, which leads to high levels
of delay.

While delay is the single most informative metric on the performance of the
signalized junction it does not tell the full story. It is also important that the
junction is equitable. For example a strategy that holds a single vehicle at a red
light for 1 hour could still achieve a low average delay if significant numbers of
other vehicles are passing through the junction with low delays. However this
scenario is not acceptable in real world because it is unfair to the occupants
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of the stationary vehicle. This is of particular concern for the High Bid and
Machine Learning strategies, which do not explicitly consider temporal effects
in their decision making.
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Figure 10: The distribution of journey times over the four hour simulation tests on the Simple
T-junction for four control strategies: MOVA, High Bid, Logit (Long) and Neural Network
(Long).

Figure 10 shows the journey time distribution for four of the strategies tested
(MOVA, High Bid, Logit (Long) and Neural (Long)). The distribution for
MOVA shows the peak journey time is in the 30 — 40s range with significant
numbers of journeys up to 120s. There are also outlier journeys up to 300s in
length. The distribution for the high bid strategies indicates that it is outper-
forming MOVA by getting more journeys into the peak 30 — 40s range. How-
ever the fact that temporal effects are not considered in the High Bid algorithm
shows in the fact that there are significant numbers of journeys with times up to
150s. There are also outliers up to 300s. The Machine Learning algorithms are
not explicitly given any temporal information, however the human expert who
generates the training data will be considering temporal effects when making
decisions. Therefore this may be captured by the machine learning algorithms
if there are patterns relating these decisions to the instantaneous state of the
network. The distributions for the Logit and Neural network strategies show
that they have less journeys in the peak 30 — 40s range than High Bid, but
the tails of the distribution are tighter with less outliers and no journeys longer
than 190s. The distributions show that the Machine Learning strategies, which
are the best in terms of delay, are also the most equitable strategies.
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5.2. High Rd Junction

The following sections present results from tests of the control strategies
carried out on the High Road junction model. The third column of Table 7 shows
delay, averaged across all journeys, for five tests using different control strategies
(High Bid, Logit(short), Logit(Long), Neural (Short) and Neural (Long)). These
results show high delays for the strategies using the Logit algorithm, indicating
poor junction control. This is because the division of the J — 1 dimensional
bid space into regions separated by J — 2 quadratic boundaries is insufficient to
capture the complexity of the relationship between the network state and the
human controller’s decisions in the more complex High Road junction system.
However the neural network strategies can capture some of the complexity of the
human decision making process on the High Road junction and these algorithms
outperform High Bid. The best performance is achieved by neural network
control using the long bid vector, with a reduction in delay of ~ 10% over High
Bid.
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Figure 11: Delay, averaged over successive 5 minute intervals, for the duration of the four
hour simulation test on the High Rd junction. Traces for three strategies are shown: High
Bid, Logit (Long) and Neural Network (Long).

Figure 11 shows transient delay traces for three strategies (High Bid, Neural
(Short) and Neural (Long)). Here the results show the same trend that was seen
with the Simple-T results. The better performing strategies show lower delay
mainly at the two peaks in demand at 1 hour and 3 hours. This indicates that
these strategies achieve their performance advantage by better controlling flow
at high demand and avoiding or postponing the saturated flow condition.

Figure 12 shows the distribution over journey times across the test dura-
tion for four of strategies (High Bid, Logit (Long), Neural (Short) and Neural
(Long)). The distribution for the Logit strategy indicates why its performance
is poor. While it has approximately the same amount of trips in the 30 — 40s
peak as the High Bid strategy, the tail of the distribution extends to 500s with
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Figure 12: The distribution of journey times over the four hour simulation tests on the High
Rd junction for four control strategies: High Bid, Logit (Long), Neural Network (Short) and
Neural Network (Long).

outliers beyond 1000s. Interestingly the Neural Network strategies do not have
as many vehicles getting through the junction quickly as the High Bid and Logit
strategies with their peaks in the 40 —50 s range. However the distributions have
low variance, with almost no trips above 150s.

5.3. Stranded Vehicles

A potential floor in the auctioning agent method is that it evaluates the state
of the network using an instantaneous snapshot of vehicle position and speed
and does not consider any temporal effects. A manifestation of this potential
floor would be inequality in the delay experienced by different vehicles passing
through the network. An example of this would be a single vehicle held at a red
light for an indefinite length of time (the stranded vehicle problem).

The High Rd junction network in Southampton is particularly apt to testing
the stranded vehicle scenario as the southern arm of the West junction leads
to a small industrial car park and has very low demand both as an origin and
as a destination (see Table 4). In fact this problem does arise under High
bid control, while the distribution of journey times presented in Figure 12 is
generally tight there are a few outliers with one unlucky vehicle spending 16
minutes in the simulation. However it is a different story under Neural Network
control. Here the human controller is considering temporal effects and while the
learning junction agent does not receive any explicit temporal information the
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instantaneous bids may still be informative. The results show that the Neural
network strategies are the most equitable strategies that were tested, more so
even than MOVA. On the High Rd junction test the longest vehicle journey
under neural network (long) control was 3.5 minutes.

5.4. Stochastic Analysis

In all the experiments described so far in this paper perfect information has
been assumed. That is to say that it has been assumed that vehicle position is
known and accurately communicated by every vehicle in the simulation. Or in
the case where inductive loops have been used for MOVA controlled simulations
it has been assumed that all detectors are working and detect every vehicle that
passes over. In the real world localization sensors in vehicles would be subject to
noise and errors making position estimation uncertain. Furthermore it is likely
that not all vehicles would have working systems.

This section we examines results of simulation tests where uncertainty in
position estimates and reduced fractions of instrumented vehicles has been mod-
elled. The method used to model uncertainty has been described in detail in
(Waterson and Box, 2011). To summarize: the position estimates from the sim-
ulated localization systems are degraded by the addition of Gaussian noise with
1o ranging between 2 — 32m. The number of vehicles in the simulation that are
equipped with simulated localization systems is varied between 5% — 100%.

Figure 13 shows results for twelve sets of simulation test on the Simple
T-junction controlled by the Neural Network (Long) controller and twelve sim-
ulation tests on the High Road junction controlled again by the Neural Network
(Long) controller Each test consited of ten simulation runs and the results are
averaged. The graph on the left shows results for six pairs of tests where the
simulated position of the vehicles has had Gaussian noise with a different vari-
ance added to it. The graph shows plots of delay averaged across all vehicles.
This shows the expected trend of increasing delay with increase in the uncer-
tainty of position. Significantly higher delays are observed in the case of the
Simple T-Junction. The reason for this is that the demand placed on the Sim-
ple T-junction in these tests was comparatively higher than that placed on the
High road junction (see Tables 2 and 4). This means that if a poor decision is
made on the simple T-junction there is a higher chance that this will lead to
long queues or even saturated flow. This unstable behaviour at high demands
was also observed in similar tests looking at the High Bid algorithm that were
published in Waterson and Box (2011).

The plot on the right in Figure 13 shows results for six pairs of tests with
varying level of vehicle instrumentation in the simulation. The 1o accuracy in
position is constant at 2m in all tests. These plots show average delay increas-
ing approximately exponentially with reducing fraction of instrumented vehi-
cles. These results indicate that the performance of the junction controllers is
robust to reductions in the percentage of instrumented vehicles down to around
50 % with reasonable performance maintained down to 20 %. The plot for the
Simple T-junction experiments show a steeper increase in delay below 20 %
instrumented vehicles. This is again due the the instability of operating at
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Figure 13: Average delay against (left): positioning accuracy of the simulated localization
systems and (right): percentage of instrumented vehicles

higher levels of relative demand as discussed above. The practical significance
of this result is that it indicates that even quite a low percentage (20 — 40%) of
the vehicle fleet instrumneted, this simulation results indicate the low delay is
achievable.

6. Conclusions

The principal results of the tests presented in Section 5 are summarized
below:

e High Bid control can outperform the MOVA control system on an isolated
junction in terms of delay. This is largely due to the fact that the auction-
ing agent control system uses localization probe data to describe the state
of the network. This is a richer source of information than the inductive
loop data employed by MOVA.

e Tests using machine learning auctioning agents showed that in all cases
the neural network method produced signal control strategies that out
performed those produced using the logistic regression method. This was
due to the more flexible division of bid space enabled by the neural network
approach.

e In all cases the long data set performed better that the short data set.
This was due to the fact that there were more lane agents and therefore
more information. In principle the number of lane agents in a network
can be varied without upper limits. This means it is possible to increase
the resolution of information in the state estimate at the cost of increasing
the dimensionality of the bid space.

e Transient delay traces indicated that the performance of most of the con-
trol strategies was similar when the demand was low and that the main
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differences in performance occurred in the peaks of demand. This sug-
gests that the strategies that are performing better are achieving this by
postponing or avoiding the condition of saturated flow at high demand.

e Analysis of the journey time distributions showed that neural network
control was the most equitable strategy and robust to the stranded vehicle
problem.

e Stochastic tests indicated that the neural network control strategy is ro-
bust to variation in the positioning accuracy of localization probes and to
the fraction of vehicles equipped with probes.

This work has demonstrated the potential for applying machine learning
techniques to control signalized junctions with expert human data used to train
the system. While this supervised learning task has been shown to be useful
there are some caveats that need to be attached to this approach. Firstly, by
using a human expert trainer the junction controller’s performance is effectively
limited to being as good as the human, but it is possible that better control is
achievable. Secondly, this approach implicitly assumes that all decisions made
by the human are good ones, where in reality we know the human will make
mistakes.

Because the positions and speeds of vehicles passing through the junction are
being measured it is possible in principle to evaluate decisions and classify then
as good or bad. This raises the possibility of feeding this information back into
the learning agent as training data, resulting in a junction control agent that
learns from experience. A (Reinforcement Learning) approach to this problem
by the method of temporal differences (Sutton and Barto, 1998) is the focus of
the current work in this area.
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