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a b s t r a c t

A novel data-model-fusion prognostic framework is developed in this paper to improve the accuracy of

system state long-horizon forecasting. This framework strategically integrates the strengths of the

data-driven prognostic method and the model-based particle filtering approach in system state

prediction while alleviating their limitations. In the proposed methodology, particle filtering is applied

for system state estimation in parallel with parameter identification of the prediction model (with

unknown parameters) based on Bayesian learning. Simultaneously, a data-driven predictor is employed

to learn the system degradation pattern from history data so as to predict system evolution (or future

measurements). An innovative feature of the proposed fusion prognostic framework is that the

predicted measurements (with uncertainties) from the data-driven predictor will be properly managed

and utilized by the particle filtering to further update the prediction model parameters, thereby

enabling markedly better prognosis as well as improved forecasting transparency. As an application

example, the developed fusion prognostic framework is employed to predict the remaining useful life of

lithium ion batteries through electrochemical impedance spectroscopy tests. The investigation results

demonstrate that the proposed fusion prognostic framework is an effective forecasting tool that can

integrate the strengths of both the data-driven method and the particle filtering approach to achieve

more accurate state forecasting.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Condition-based maintenance is a program that recommends
maintenance decisions based on the information collected
through system condition monitoring (or system state estima-
tion) and equipment failure prognostics (or system state fore-
casting), in which prognostics still remains as the least mature
element in both research and real-world applications (Jardine
et al., 2006). Prognostics entails the use of the current and
previous system states (or observations) to predict the future
states of a dynamic system. Reliable forecast information can be
used to schedule repairs and maintenance in advance and provide
an alarm before faults reach critical levels so as to prevent
machinery performance degradation, malfunction, or even cata-
strophic failures (Liu et al., 2009).
ll rights reserved.

7; fax: þ1 613 5205715.
In general, prognostics can be conducted using either data-
driven methods or model-based approaches. Data-driven meth-
ods use pattern recognition and machine learning to detect
changes in system states (Yagiz et al., 2009; Gupta and Ray,
2007). The classical data-driven methods for nonlinear system
prediction include the use of stochastic models such as the
autoregressive (AR) model, the threshold AR model (Tong and
Lim, 1980), the bilinear model (Subba, 1981), the projection
pursuit (Friedman and Stuetzle, 1981), the multivariate adaptive
regression splines (Friedman, 1991), and the Volterra series
expansion (Brillinger, 1970). Since the last decade, more research
interests in data-driven system state forecasting have been
focused on the use of flexible models such as various types of
neural networks (NNs) (Atiya et al., 1999; Liang and Liang, 2006)
and neural fuzzy (NF) systems (Husmeier, 1999; Korbicz, 2004;
Jang, 1993). Data-driven methods rely on past patterns of the
degradation of similar systems to project future system states;
their forecasting accuracy depends on not only the quantity
but also the quality of system history data, which could be a
challenging task in many real applications (Liu et al., 2009;
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Wang and Vrbanek, 2008). Another principal disadvantage of
data-driven methods is that the prognostic reasoning process is
usually opaque to users (Tse and Atherton, 1999); consequently,
they are not suitable for some advanced applications where
forecast reasoning transparency is required (e.g., credit card
cheating, earthquake and stock market prediction).

Model-based approaches typically involve building models
(or mathematical functions) to describe the physics of the system
states and failure modes; they incorporate physical understand-
ing of the system into the estimation of system state and/or
remaining useful life (RUL) (Adams, 2002; Luo et al., 2003;
Chelidze and Cusumano, 2004). Model-based approaches, how-
ever, may not be suitable for many industrial applications where
the physical parameters and fault modes may vary under differ-
ent operation conditions (Pecht and Jaai, 2010). On one hand, it is
usually difficult to tune the derived models in situ to accommo-
date time-varying system dynamics. On the other hand, model-
based approaches cannot be used for complex systems whose
internal state variables are inaccessible (or hard) to direct
measurement using general sensors. In this case, inference has
to be made from indirect measurements using techniques such as
particle filtering (PF). The PF-based approaches have been used
for prognostic applications (Saha et al., 2009), in which the PF is
employed to update the nonlinear prediction model and the
identified model is applied for system state forecasting. However,
a limitation associated with the classical PF-based predictors is
that the prediction model parameters cannot be updated during
the prognostic period since no new measurements are available.
The prediction accuracy could be low in many applications
because the identified model during the state estimation period
may not be accurate and robust.

To address the aforementioned challenges, a data-model-
fusion framework is proposed in this work for system state
prognostics. The developed framework aims to integrate the
strengths of the data-driven prognostic method and the model-
based PF approach for a more reliable system state forecasting.
The proposed fusion framework is new in the following aspects:
(1) the prediction uncertainties from the data-driven predictor
can be properly managed and utilized through the fusion frame-
work so as to further update the prediction model parameters;
(2) the fusion prognostic framework can overcome the aforemen-
tioned limitations of both the data-driven method and the model-
based PF approach so as to make prediction models more
interpretable and transparent; (3) as an application example,
the developed fusion prognostic framework is implemented for
the RUL prediction of lithium-ion batteries.

This paper is organized as follows. The proposed fusion
prognostic framework is described in Section 2. The effectiveness
of this fusion framework is demonstrated in Section 3 via an
application in battery RUL prediction. A summary of important
observations and conclusive remarks are given in Section 4.
2. The fusion prognostic framework for dynamic system state
forecasting

In this section, we first briefly discuss two principal compo-
nents of the proposed fusion prognostic framework: the data-
driven prognostic method and the PF-based prognostic approach.
The limitations of each component will be examined, which,
in turn, motivates the advanced research of this work. The
fusion prognostic framework will then be described. This frame-
work aims to integrate the advantages of both the data-driven
predictor and the PF approach while alleviating their respective
limitations, so as to develop a more reliable system state fore-
casting paradigm.
2.1. The data-driven prognostic method

Data-driven predictors employ pattern recognition and
machine learning to forecast changes in system states (Yagiz
et al., 2009; Gupta and Ray, 2007). Since the last decade, more
research interests in data-driven system state forecasting have
shifted to the use of flexible models such as NNs (Atiya et al.,
1999; Husmeier, 1999), NF systems (Jang, 1993), and recurrent
neural fuzzy (RNF) systems (Liu et al., 2009). The authors’
research group has also developed several data-driven predictors
for machinery applications (Liu et al., 2009; Wang and Vrbanek,
2008), and the investigation results have shown that if an NF
predictor is properly trained, it performs better than both the
feedforward and the recurrent NN forecasting schemes. The
prediction output of a data-driven predictor can be generally
described as

Yk ¼ gðC1:q, Y1:k�1Þþuk, ð1Þ

where Yk is the predicted measurement at step k, Y1:k�1 is the
system’s historical measurements up to time step k�1, C1:q are
the system inputs (or system operational conditions), g( � ) denotes
the nonlinear prediction reasoning, and uk is a random noise that
represents the prediction uncertainty. The uncertainty term uk gen-
erally pertains to the specific data-driven prognostic scheme (i.e., the
structure and training algorithm) as well as the quality and quantity
of training data, which can be estimated through a large number of
simulations (Tiwari and Chatterjee, 2010).

Although data-driven prognostic methods have demonstrated
some superior properties to other classical forecasting tools, they
still have some limitations in industrial applications (Walter and
Pronzato, 1997): (1) the forecasting accuracy strictly depends on
if the training data are adequate and representative of all the
possible application conditions. Such a requirement is usually
difficult to achieve in real-world applications because, on one
hand, running a system to failure could be a lengthy and rather
costly process and the training data are usually inadequate in
industrial applications; on the other hand, most machines/sys-
tems operate in noisy and/or uncertain environments and
machinery dynamic characteristics may change suddenly (e.g.,
just after repairs or regular maintenance), thus the training data
cannot cover all the possible operational conditions. (2) For NN/
NF-based predictors, the forecasting reasoning structures are
usually difficult to be understood by users. This limits their
applications in which reasoning transparency (or understandabil-
ity) is required. (3) The prediction uncertainty uk usually increases
dramatically as the prediction step becomes larger; as a result, an
appropriate filtering process is required to further improve the
forecasting accuracy. The aforementioned limitations associated
with data-driven prognostic methods can be properly alleviated
through the proposed data-model-fusion framework, which will
be discussed in Section 2.3.

2.2. The particle filtering-based prognostic approach

For complex systems whose internal state variables are inac-
cessible (or hard) to direct measurement using general sensors,
inference has to be made from indirect measurements, for which
Bayesian learning provides a rigorous framework. Given a general
discrete-time state estimation problem, the unobservable state
vector XkARn evolves according to the following system model

Xk ¼ f ðXk�1Þþwk, ð2Þ

where f:Rn-Rn is the system state transition function and wkARn

is a noise whose known distribution is independent of time. At
each discrete time instant, an observation (or measurement)
YkARp becomes available. This observation is related to the
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unobservable state vector via the observation equation

Yk ¼ hðXkÞþvk, ð3Þ

where h:Rn-Rp is the measurement function and vkARp is
another noise whose known distribution is independent of the
system noise and time. The Bayesian learning approach to system
state estimation is to recursively estimate the probability density
function (pdf) of the unobservable state Xk based on a sequence of
noisy measurements Y1:k, k¼1,y, K. Assume that Xk has an initial
density p(X0) and the probability transition density is represented
by p(Xk9Xk�1). The inference of the property of the states Xk relies
on the marginal filtering density p(Xk9Y1:k). Suppose that the
density p(Xk�19Yk�1) is available at step k�1. The prior density
of the state at step k can then be estimated via the transition
density p(Xk9Xk�1),

pðXk9Y1:k�1Þ ¼

Z
pðXk9Xk�1ÞpðXk�19Y1:k�1ÞdXk�1: ð4Þ

Correspondingly, the marginal filtering density is computed
via the Bayes’ theorem,

pðXk9Y1:kÞ ¼
pðYk9XkÞpðXk9Y1:k�1Þ

pðYk9Y1:k�1Þ
, ð5Þ

where the normalizing constant is determined by

pðYk9Y1:k�1Þ ¼

Z
pðYk9XkÞpðXk9Y1:k�1ÞdXk: ð6Þ

Eqs. (4)–(6) constitute the formal solution to the Bayesian
recursive state estimation problem. If the system is linear with
Gaussian noise, the above method reduces to the Kalman filter.
For nonlinear/non-Gaussian systems, there are no closed-form
solutions and thus numerical approximations are usually
employed (Simon, 2006).

The PF is a technique for implementing the recursive Bayesian
filtering via Monte Carlo simulations, whereby the posterior density
function p(Xk9Y1:k) is represented by a set of random samples
(particles) X1

k ,. . .,XM
k and their associated weights p1

k ,. . .,pM
k , that is,

pðXk9Y1:kÞ �
XM
i ¼ 1

pi
kdðXk�Xi

kÞ,
XM
i ¼ 1

pi
k ¼ 1, ð7Þ

where M is the number of particles, the weights pi
k can be recursively

updated using the importance sampling with an importance density
GðXk9X

i
k�1,YkÞ,

pi
kppi

k�1

pðYk9X
i
kÞpðX

i
k9X

i
k�1Þ

GðXi
k9X

i
k�1,YkÞ

: ð8Þ
Historical
Database

Sensor/
Data

Machine/
System

Feature
Extraction

Data-Driven Method

Yk=g(C1:q,Y1:k-1)+uk

P

State Estimation/
Parameter Identification

Offline
Training

Online
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Fig. 1. The schematic diagram of the system
When the importance density is approximated as p(Xk9Xk�1),
(8) becomes

pi
kppi

k�1pðYk9X
i
kÞ: ð9Þ

In implementation, resampling is applied in every single step to
obtain equally-weighted samples so as to avoid the degeneracy
problem of the algorithm (Douc et al., 2005).

The PF-based approaches have been used for prognostic
applications (Saha et al., 2009), in which the PF is employed to
identify the nonlinear prediction model parameters during the
state estimation period. The identified model is then applied for
system state forecasting. However, a limitation associated with
these classical PF-based predictors is that the prediction model
parameters cannot be updated during the prognostic period. As a
result, the identified model may not be accurate and robust, and
the prediction accuracy could be low in many applications,
especially in long-horizon forecasting with limited measure-
ments. This limitation associated with the classical PF-based
prognostic approach, however, can be properly alleviated through
the proposed data-model-fusion framework, which will be
described in the following subsection.

2.3. The proposed data-model-fusion prognostic framework

Both the data-driven prognostic method and the model-based
PF approach have their own strengths and limitations in prog-
nostic applications. The proposed fusion prognostic framework
aims to integrate these two methods in a manner that can take
the strengths of each approach while overcoming their respective
limitations. To achieve this goal, the fusion prognostic framework
incorporates the data-driven prediction into the PF learning
structure, such that the predicted future measurements (with
uncertainty uk) from the data-driven predictor can be properly
managed and utilized by the PF approach so as to keep updating
the system model parameters during the prognostic period,
thereby resulting a more reliable system state forecasting.

The schematic diagram of system condition (or state) mon-
itoring and prognostics is shown in Fig. 1. The diagnostic routine
starts with data acquisition using sensors and data acquisition
boards (i.e., Sensor/Data) (Pecht and Jaai, 2010). Appropriate
signal processing techniques will then be applied to extract
representative features and/or system model parameters from
the collected data (i.e., Feature Extraction) (Eren and Devaney,
2004; Wang and Gao, 2003; Yu, 2011). These features will be used
to determine the health condition of the system (i.e., Healthy
Baseline). Health condition monitoring is performed to track
the degradation trajectories of these features (i.e., In-Situ
Anomaly?

RUL

Healthy
Baseline

In-Situ
Monitoring Alarm

F: Xk=f(Xk-1)+wk

Yk=h(Xk)+vk

State Prediction/
RUL Estimation

Yes

No

Diagnostic

Prognostic

condition monitoring and prognostics.
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Monitoring). It should be noted that feature extraction plays a
significant role for system health condition monitoring, whereas
non-robust features may lead to false alarms (i.e., an alarm is
triggered by some noise instead of a real system fault) or missed
alarms (i.e., the monitoring tool cannot recognize the existence of
a system defect) in diagnostic operations. In general, different
signal processing techniques are required to extract representa-
tive features in different applications; this issue will not be
discussed in this paper. Interested readers can refer to
(Liu et al., 2008; Goebel et al., 2008) for more information about
feature extraction. Once the degradation trajectories of the
features (or some system model parameters) reach the predeter-
mined thresholds, an alarm will be generated to indicate that a
fault has been detected, which then triggers the prognostic
routine.

The subsequent system state prognostics will be conducted
through the proposed data-model-fusion framework. First, the
selected data-driven predictor is off-line trained using some
history data collected from systems with similar degradation
trajectories (i.e., Offline Training). The initially-trained data-dri-
ven predictor will then be tuned using the available data from the
target system so as to accommodate the new system dynamics
(i.e., Online Training). The training of the data-driven predictor
can be conducted using appropriate recursive learning algorithms
(e.g., the recursive Levenberg–Marquardt method developed by
the authors’ research group (Liu et al., 2009)). The system
prediction model with unknown (or initial/empirical) model
parameters is then fed into the PF learning structure, as per
(2) and (3). The PF will perform state estimation in parallel with
model parameter identification in a recursive manner as new
observations (or measurements) become available. The interac-
tive mechanics between the data-driven predictor and the model-
based PF approach is given below. Suppose the prognostic routine
starts from step k�1. First, the data-driven predictor is applied to
forecast the next measurement Yk, where Yk¼g(C1:q, Y1:k�1)þuk,
as per (1). The predicted measurement Yk is then incorporated
into the PF learning structure as a new observation, which can be
used to update the prediction model parameters (i.e., Xk). In this
process, the prediction uncertainty uk of the data-driven predictor
is incorporated into the PF measurement function by

gðC1:q,Y1:k�1Þ ¼ hðXkÞþðvk�ukÞ: ð10Þ

The prediction uncertainty uk will increase dramatically as the
prediction step becomes larger, which can be estimated using the
history data through simulations (Tiwari and Chatterjee, 2010).
The measurement uncertainty vk is related to the sensors, the
measurement procedure, the skill of the operator, and the
environment; it is usually assumed as a constant pdf in applica-
tions (Simon, 2006). The forecast measurements g(C1:q, Y1:k�1)
from the data-driven predictor will thus be properly utilized by
the PF through the Bayesian learning (as discussed in Section 2.2),
such that the prediction model parameters can be updated in a
continuous and recursive manner, thereby resulting a more
accurate system state forecasting. In Section 3, the proposed
data-model-fusion prognostic framework will be applied for the
RUL prediction of lithium-ion batteries, which serves as an
application example to future enhance the understandability of
the proposed fusion framework and also to verify its viability.
RE

RCT RW

Fig. 2. Lumped parameter model of a lithium ion battery.
3. Performance evaluation

The effectiveness of the proposed fusion prognostic framework
is examined through an application in battery RUL prediction. Its
performance will be compared with the related classical PF-based
prognostic method and three data-driven predictors based on the
feedforward NN, the NF paradigm, and the RNF scheme. Batteries
are widely used in various engineering and household systems.
An effective prognostic tool is critically needed to estimate the
health conditions of a battery and predict its RUL. The predicted
battery RUL information can be used not only for preventing
performance degradation of the related equipment, but also for
scheduling battery recharge and replacement, which is critical in
many applications such as the emerging electric cars and aero-
space vehicles.

Dynamic models have been built for health management and
RUL prediction of lithium ion batteries (Gao et al., 2002). These
models take into account nonlinear equilibrium potentials, rate
and temperature dependencies, thermal effects, and transient
power response. However, it still remains a challenge to accu-
rately predict the RUL of a battery using a model-based approach
when environmental and operating conditions change. Further-
more, modeling a lithium-ion battery from the first principles of
the internal electrochemical reactions can be very tedious and
computationally intractable. The PF-based prognostic was inves-
tigated by the Prognostics Center of Excellence at NASA Ames
Research Center (Saha et al., 2009). A lumped parameter model
was used to characterize the inside chemistry of batteries though
a simple electrical circuit, as shown in Fig. 2, where RE denotes the
electrolyte resistance, RCT is the charge transfer resistance, RW is
the Warburg impedance, and CDL is the dual layer capacitance.
The change in resistive components of the circuit can be used to
explain the deterioration in battery capacity.

The battery RUL is estimated in terms of capacity degradation.
The failure threshold is usually defined by the manufacturer for
specific applications. Generally, a lithium-ion battery is deemed
to fail when its capacity C/1 fades by 30% of the rated value
(Liu et al., 2010). The batteries’ capacity, however, is usually
inaccessible through direct measurements; therefore, the lumped
parameters RE and RCT are employed for battery RUL prediction.
REþRCT is typically inversely proportional to the capacity C/1 and
can be estimated through the electrochemical impedance spectro-
scopy test (Saha et al., 2009). The battery prediction model (with
unknown parameters) is described as follows:

Z0 ¼F; L0 ¼L

Zk ¼ Zk�1expLkþwk

Lk ¼Lk�1þuk

Xk ¼ ½Zk; Lk�

Yk ¼ Zkþvk ð11Þ

where the vector Z denotes battery parameters REþRCT, and F and
L are exponential growth model parameters. The Z and L vectors
are combined to form the state vector X. The measurement vector
Y consists of the battery parameters (i.e., REþRCT) inferred from
measurements. The parameter F takes the initial value of REþRCT.
The value of L is recursively updated, whose initial value is
derived from the training data using a least-square estimator. The
vectors w, u, and v are zero-mean Gaussian noise.
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3.1. Battery RUL prediction using data-driven prognostic methods

In this comparison study, three data-driven predictors, based
on the feedforward NN, the NF and the RNF schemes (Liu et al.,
2009), will be applied for battery RUL prediction. Each predictor
has five inputs in this case. The RNF predictor is a hybrid model of
direct, adaptive and recursive predictions and its network archi-
tecture is schematically shown in Fig. 3. This RNF predictor is
constructed based on a feedforward NF paradigm with recurrent
feedback links in the second and third layers. The network output
is adaptively fed back to the input layer to represent temporal
information spatially. The NF predictor has the same structure as
the RNF predictor but without these recurrent feedback links. The
nonlinear parameters in both the RNF and NF predictors (i.e., the
membership function parameters and/or feedback link weights)
are trained using the recursive Levenberg–Marquardt method,
whereas the linear parameters (i.e., the parameters in the con-
sequents) are optimized by using the recursive least-square
estimate method (Liu et al., 2009). The feedforward NN predictor
has two hidden layers with each layer having four nodes; it is
trained using the Levenberg–Marquardt method as well. It is
worth mentioning that the recursive Levenberg–Marquardt
method was developed in (Liu et al., 2009) for training the
nonlinear parameters in neural networks or neural fuzzy systems.
This technique has been applied for the sunspot activity forecast-
ing, Mackey–Glass data forecasting and gear health condition
forecasting (Liu et al., 2009). Testing results have shown that this
network training method has a better capability than the classical
gradient descent-based methods in escaping from the local
minima. Accordingly in this work, we have applied this recursive
Levenberg-Marquardt training method for battery life prediction.

The data REþRCT used in this study were from the second
generation, Gen 2, 18650-size lithium-ion cells that were cycle-life
tested at different temperatures (Saha et al., 2009; Liu et al., 2010).
The data-driven predictors are trained using the history data of
REþRCT. Since the temperature plays an important role in deter-
mining charge retention capacity of a battery, it is used as a
network input to facilitate prediction of battery RUL at different
Z-1

C1

Z-1 Z-1

Z-1

. . .

T T

N N

1

2

3

4

5

CqM
U
X

Y

Fig. 3. The network architec
temperatures. The maximum adaptive output feedback depth for
all three data-driven predictors is set to three. The trained data-
driven predictors are employed to forecast an unknown trajectory
of REþRCT collected at 45 1C. Predictions are generated continu-
ously from week 20 to week 64 at every four weeks’ interval.
For each prediction, 50 program runs are taken to obtain 50
trajectories of REþRCT. Fig. 4 shows examples of the forecasting
results, respectively, from the implemented RNF predictor
(Fig. 4(a)), the NF predictor (Fig. 4(b)), and the NN predictor
(Fig. 4(c)), in which the prediction is triggered at week 20. It is
seen that the prediction means from these 50 trajectories of
REþRCT cannot properly track the true trajectory and the predic-
tion error (or uncertainty) rises as the prediction step increases.
The poor forecasting performance from these data-driven predic-
tors are mainly because the available data of REþRCT in this work
for network training are quite limited (Liu et al., 2010). As can be
seen from Fig. 4, the batteries usually took more than a year to age,
and running such a system to failure in a lab environment is a
tedious and costly process. The prediction uncertainty from the
data-driven predictors, however, can be properly managed and
utilized through the proposed fusion prognostic framework so as
to further improve the forecasting accuracy, which will be demon-
strated in the following subsection.

3.2. Battery RUL prediction using the PF-based method and the

fusion prognostic framework

The developed fusion prognostic framework takes two steps to
perform the prognostics: current state estimation and future state
forecasting. During the state estimation period, the fusion frame-
work performs system state estimation in parallel with model
parameter identification based on the true REþRCT measure-
ments. During the state forecasting period, the identified model
parameter (i.e., L in this case) can be further tuned based on the
predicted system evolution (or future measurements) from the
data-driven predictor. By tests, the uncertainty term (vk�uk)
associated with these data-driven predictions is characterized in
this work by a zero-mean Gaussian noise with an increasing
Z-1

Z-1 Z-1

Z-1. . .

. . .

. . .

T T

N N
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standard deviation given as 0:005F3ðk�KtÞ, where k is the iteration
step and Kt is the step index at which the first prognostic is
triggered. As a comparison, the classical PF-based predictor is also
implemented for this application. In each iteration, a total of
M¼1000 particles are employed for processing this 2-dimensional
problem. Fig. 5(a) shows the respective state tracking and future
state forecasting for the battery parameter REþRCT when the RNF
predictor and the PF are fused through the proposed data-model-
fusion framework. The prognostic is initiated at week 20. It can be
seen that the proposed fusion framework can provide a
more accurate forecasting for the battery parameter REþRCT than
both the RNF predictor and the classical PF-based predictor.
Fig. 5(b) shows the estimation of the corresponding model para-
meter L. It can be seen that Lremains constant in prognosis when
the classical PF-based predictor is employed, whereas the pro-
posed fusion prognostic framework can keep updating this para-
meter by adaptively incorporating the available forecast
information from the RNF predictor. By a linear transformation,
the derived capacities are plotted in Fig. 6, in which the shaded
area represents the distribution of the predicted RULs over 100
program runs. The RUL threshold is chosen to be 70% of the rated
capacity. The proposed fusion prognostic framework yields an RUL
error of 1.59 weeks early, which outperforms both the classical
PF-based predictor (33.25 weeks late) and the RNF predictor (4.18
weeks late).

Fig. 7 shows the testing results when the PF and the NF
predictor are fused by using the proposed fusion prognostic
framework. The fusion framework yields an RUL error of 0.23
weeks early, which is much more accurate than both the classical
PF-based predictor (33.70 weeks late) and the NF predictor (7.55
weeks late). Likewise, Fig. 8 illustrates the processing results
when the PF and the NN predictor are fused by using the
proposed fusion prognostic framework. It is obvious that the
proposed fusion framework can achieve a more accurate state
forecasting (2.25 weeks early) than the classical PF-based pre-
dictor (32.81 weeks late) and the NF predictor (3.94 weeks late).

The results shown in Figs. 5–8 are obtained when the predic-
tion is triggered at week 20. Actually in our tests, the predictions
are triggered anytime between week 20 and week 60 at a four-
week interval. The a�l prognostic metric (Saxena et al., 2010) is
employed to quantify the prognostic performance, in this case,
a¼0.1 (i.e., 10% prediction error or 90% prediction accuracy) and
l¼0.5 (i.e., 50% remaining time from the earliest prediction to the
actual end-of-life of a battery). Figs. 9–11 show the predicted
battery RULs from the proposed fusion prognostic framework, the
classical PF-based predictor, and three data-driven predictors. It



0 10 20 30 40 50 60 70
0.015

0.02

0.025

0.03

0.035

0.04

Time (week)

R
E +

 R
C

T (
)

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

Time (week)

Prediction @ week 20

State Estimation

State Prediction

 Ground Truth

Prediction by RNF
Prediction by PF
Prediction by Fusion Technique

RE + RCT

Parameter Estimation by PF
Parameter Estimatiion by Fusion Technique

Fig. 5. (a) State tracking and future state prediction at week 20 for the battery parameter REþRCT by using the proposed fusion prognostic framework (triangles, in blue), the

classical PF-based predictor (triangles, in magenta), and the RNF predictor (circles, in black). (b) Parameter Lestimation by using the proposed fusion framework (stars, in blue) and

the classical PF-based predictor (stars, in magenta). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

0 10 20 30 40 50 60 70

0.6

0.7

0.8

0.9

1

Time (week)

C
/1

 C
ap

ac
ity

 (m
A

h)

State Prediction

State Estimation

Prediction @ week 20

Prediction by RNF
Prediction by PF
Prediction by Fusion Technique
Real Measurement Data

Fig. 6. Battery RUL prediction at week 20 by using the proposed fusion prognostic

framework (diamonds, in blue), the classical PF-based predictor (diamonds, in

magenta), and the RNF predictor (circles, in black); the distribution (shaded area)

of the RULs is evaluated over 100 program runs of the proposed fusion prognostic

framework. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

J. Liu et al. / Engineering Applications of Artificial Intelligence 25 (2012) 814–823820
can be seen that the fusion prognostic framework can effectively
incorporate all these three data-driven predictors and provide
more accurate forecasting on the battery RUL during the first 50%
remaining useful time period (i.e., l¼0.5). Furthermore, the
proposed fusion framework can generate an earlier RUL predic-
tion than the other related predictors, which is considered more
favorable than a late prediction to avoid some unanticipated
failures. The superior prognostic performance of the developed
fusion framework over the classical PF-based predictor lies in the
fact that the fusion framework is capable of updating the predic-
tion model parameters in a continuous and recursive manner by
properly incorporating the available forecast information from
the data-driven predictor through the Bayesian learning. It should
be noted that a condition based maintenance program usually
involves five sequential modules: sensing, feature extraction, fault
diagnostics, failure prognostics, and maintenance action. This
manuscript focuses on failure prognostics. The fault diagnostic
information is only used to trigger the prognostic routine when
the feature indices have reached some predetermined thresholds.
In this work, these thresholds are assumed to be the values of
REþRCT at week 20 to week 64, respectively.
4. Conclusions

A data-model-fusion prognostic framework has been devel-
oped in this work for system state forecasting. This fusion
framework is able to integrate the strengths of both the data-
driven prognostic method and the model-based particle filtering
in system state prediction while alleviating their respective
limitations. A unique feature of the proposed fusion framework
is to improve the transparency of the data-driven method in the
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sense that its prediction uncertainty can be properly managed
and utilized by a particle filtering based learning process. As a
result, the nonlinear prediction model parameters can be updated
in a continuous and recursive manner so as to further improve the
prediction accuracy. The effectiveness of the developed fusion
prognostic framework has been demonstrated through an appli-
cation example in predicting the remaining useful life of lithium
ion batteries. The test results have indicated that the proposed
fusion prognostic framework can effectively track system states
by incorporating the predicted measurements from the data-
driven predictor so as to adaptively update the prediction model
parameters; thereby it outperforms the related data-driven pre-
dictors and the classical particle filtering based approaches in
system state forecasting.

As a final note, it is also worth mentioning the following
considerations: (1) the goal of this paper is to propose a novel
data-model fusion framework for prognostic applications. This
concept can be analogous to sensor fusion using the extended
Kalman filter in the field of fault diagnostics. In implementation,
this fusion prognostic framework involves two principal compo-
nents: a data driven prognostic method by which the uncertainty
of the associated data driven forecasting can be estimated, and a
particle filtering based system degradation model by which the
system aging trend can be interpreted. For different applications,
these two components will differ and must be determined. (2) In
this work, three data-driven prognostic methods (i.e., the NN
predictor, the NF predictor, and the RNF predictor) and a generic
particle filtering have been tested. Testing results have shown
that the proposed fusion framework outperforms each of these
prognostic methods. Actually, it is safe to say that the proposed
fusion framework could work well with virtually any data-driven
prognostic methods as long as the prediction uncertainty can be
estimated. (3) The authors have applied the most commonly-used
metric (i.e., the a�l prognostic metric where a is the prediction
error andl is the remaining time from the earliest prediction to
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the actual end-of-life of a system) in failure prediction to quantify
the prognostic performance of the proposed data-model fusion
prognostic framework; (4) The motivation of this work is elabo-
rated in Section 2 in which the limitations of two principal
components of the proposed fusion prognostic framework are
discussed. This framework aims to integrate the advantages of
both the data-driven predictor and the PF approach while alle-
viating their respective limitations, so as to develop a more
reliable system state forecasting paradigm. (5) Battery prediction
is employed in this work as an application example to demon-
strate the effectiveness of the proposed fusion framework. The
authors use this example instead of others because they have
been working on battery RUL prediction for a few years and both
the experimental data and the physical prediction model for
battery RUL prediction are readily available. It is also expected
that the readers or other researchers will apply this framework in
the areas of their expertise to further investigate its effectiveness.
(6) Compared to fault diagnostic, failure prognostic is a much less
mature and more challenging research area. One of the main
reasons is the lack of sufficient experimental/field data to support
fundamental studies for developing proper prognostic models.
Taking the lithium ion battery RUL prediction as an example, it
usually takes more than a year (Fig. 4) to age a battery in a lab
environment. (7) A collaborative research is currently underway
among Carleton University, Nanjing University, and National
Research Council of Canada to extend this prognostic framework
to failure prognostics of auxiliary power units (APUs) of aircrafts.
However, considering the complexity of APUs (thus the associated
data base), the research work, including the development of both
the physical prognostic model, data-driven prognostic model, will
take years to finish and the research results will be published in
the follow-up publications. (8) The in-depth statistical analysis
(as suggested by one of the reviewers) of the proposed prognostic
method deserve further investigation and will be conducted when
the testing results from the APUs are obtained. (9) The perfor-
mance comparison of the proposed fusion framework with
other related prognostic methods, e.g., Gaussian process regres-
sion (Goebel et al., 2008), independent component analysis
(Lee et al., 2004), and Gaussian mixture model (Yu and Qin,
2008, 2009), will remain as topics for future studies.
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