
Engineering Applications of Artificial Intelligence 25 (2012) 1182–1193
Contents lists available at SciVerse ScienceDirect
Engineering Applications of Artificial Intelligence
0952-19

http://d

n Corr

E-m

zhang@
journal homepage: www.elsevier.com/locate/engappai
Parse-matrix evolution for symbolic regression
Changtong Luo a,n, Shao-Liang Zhang b

a Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
b Department of Computational Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
a r t i c l e i n f o

Article history:

Received 24 February 2011

Received in revised form

31 March 2012

Accepted 16 May 2012
Available online 8 June 2012

Keywords:

Genetic programming

Data analysis

Symbolic regression

Grammatical evolution

Artificial intelligence

Evolutionary computation
76/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.engappai.2012.05.015

esponding author.

ail addresses: luo@imech.ac.cn (C. Luo),

na.cse.nagoya-u.ac.jp (S.-L. Zhang).
a b s t r a c t

Data-driven model is highly desirable for industrial data analysis in case the experimental model

structure is unknown or wrong, or the concerned system has changed. Symbolic regression is a useful

method to construct the data-driven model (regression equation). Existing algorithms for symbolic

regression such as genetic programming and grammatical evolution are difficult to use due to their

special target programming language (i.e., LISP) or additional function parsing process. In this paper, a

new evolutionary algorithm, parse-matrix evolution (PME), for symbolic regression is proposed. A

chromosome in PME is a parse-matrix with integer entries. The mapping process from the chromosome

to the regression equation is based on a mapping table. PME can easily be implemented in any

programming language and free to control. Furthermore, it does not need any additional function

parsing process. Numerical results show that PME can solve the symbolic regression problems

effectively.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Symbolic regression aims at finding a symbolic, mathematical
model that can describe and predict a given system based on
observed input-response data. It plays an increasingly important
role in many engineering applications including structural
mechanics (Yang et al., 2005), signal processing (Yao and Lin,
2009), system identification (Patelli and Ferariu, 2010), industrial
data analysis (Vladislavleva et al., 2010), etc.

As is well known, regression analysis (Chatterjee and Hadi,
2006) is a statistical technique for the modelling and analysis of
numeric input-response data. Conventional linear/nonlinear
regression is based on a certain model structure and optimizes
the coefficients in the model, which can be described as follows:

an ¼ arg min
aARk

X
i

Jf ðxðiÞ,aÞ�yiJ,

where xðiÞARd,yiAR are numeric input-response data, and the
model function f : Rdþk/R.

However, if the model structure is unknown or wrong, or the
concerned system has changed and the old model becomes
untrustful, conventional regression does not work any more. In
these cases, data-driven models are very helpful and desirable.
Fortunately, symbolic regression can solve such problems
ll rights reserved.
(Vladislavleva et al., 2009). Symbolic regression can optimize
the model structure and coefficients simultaneously. The objec-
tive of symbolic regression is to find an appropriate model from a
space of all possible expressions S defined by a set of given
operations (e.g., þ , -, n, /, etc.) and functions (e.g., sin(),
cos(),exp(),ln(), etc.), which can be described as follows:

f n ¼ arg min
f AS

X
i

Jf ðxðiÞÞ�yiJ:

Genetic programming (GP) (Koza, 1992) is a classical method
for symbolic regression. The chromosome of GP is the parse tree
of an actual program. This tree-based representation makes GP
difficult (although not impossible) to be implemented in general-
purpose programming languages such as C/Cþþ and Fortran. As a
result, GP is originally implemented in LISP (Goldberg, 1996),
which is a functional programming language. Most of us are more
familiar with and prefer to use the general-purpose programming
languages. Consequently, GP’s applications are limited.

To overcome this difficulty, O’Neill and Ryan (2001) proposed
a grammatical evolution (GE). GE introduced a binary string for its
chromosome presentation. This is the essential difference
between GE and the classical GP. Due to the string-based
representation, GE can be implemented in any programming
language. However, GE is still not so easy to use. First, the
implementation of GE is complicated because it needs an addi-
tional function parser for the encoding and decoding process.
Next, the incomplete mapping and extra codons problems (O’Neill
and Ryan, 2001; O’Neill and Brabazon, 2006) are common but
difficult to handle.

www.elsevier.com/locate/engappai
www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2012.05.015
dx.doi.org/10.1016/j.engappai.2012.05.015
dx.doi.org/10.1016/j.engappai.2012.05.015
mailto:luo@imech.ac.cn
mailto:zhang@na.cse.nagoya-u.ac.jp
dx.doi.org/10.1016/j.engappai.2012.05.015

Fig. 1. An example parse tree: sinðx2
1�x2Þþ lnðx1þx2Þ.

C. Luo, S.-L. Zhang / Engineering Applications of Artificial Intelligence 25 (2012) 1182–1193 1183
GE is not easy to programme without an external function
parser and difficult to control without a careful treatment of
incomplete mapping and extra codons. These difficulties are
caused by its chromosome representation. In fact, GE uses a
binary string to represent an individual. The chromosome is a
one-dimensional string, which can be regarded as a highly
compressed parse tree. In our view, GE has over compressed the
parse tree, and useful information might be lost due to this
compression. The decoding process of GE becomes not straight-
forward any more. Therefore, the difficulties (including incom-
plete mapping and extra codons) arise.

To keep more useful information, we propose a less com-
pressed parse tree called parse-matrix in this paper. It uses a two-
dimensional matrix with integer entries for its chromosome
representation.

The two-dimensional matrix with integer entries can carry
more information than the one-dimensional binary string (used in
GE). Consequently, the decoding process (of mapping from the
parse-matrix to its corresponding expression) are simplified and
becomes straightforward. The evolutionary algorithm that uses
the parse-matrix representation is referred to as parse-matrix
evolution (PME). PME is very easy to use and free to control. It
does not need any special target programming language or
additional function parser. Numerical experiments show that
PME can solve the symbolic regression problems effectively.
2. Chromosome of genetic programming

Chromosome presentation is the fundamental and most
important element to be addressed in genetic programming.
Besides the above mentioned Koza’s tree-based and O’Neill’s
string-based presentations, linear-based and graph-based presen-
tations are also widely used. Graph-based presentation is a
natural extension to the tree-based one (Trees are special types
of graphs). Several graph-based GPs including parallel distributed
genetic programming (PDGP) (Poli, 1996) and Genetic Network
Programming (GNP) (Mabu et al., 2007) have been proposed. They
use directed edges to connect the nodes. This structure enables
them to re-use the subtree evaluations for those are repeatedly
emerged in an individual. In order to make a better use of
computer architectures (computer programs are represented in
a linear fashion) and avoid the use of computationally expensive
interpreters or compilers, linear genetic programming (LGP) is
proposed (Poli et al., 2008; Brameier and Banzhaf, 2007). In LGP, a
chromosome is represented as a sequence of instructions.

Only tree-based and string-based representations are closely
related to our new proposal and will be discussed in detail as
follows.

2.1. Tree-based chromosome representation

In canonical genetic programming (GP), an individual is
represented as a parse tree, in which every internal node has an
operator/function and every leaf node has an operand. For
example, the analytical expression sinðx2

1�x2Þþ lnðx1þx2Þ can be
represented as the parse tree shown in Fig. 1. The crossover
between two individuals is applied by exchanging their subtrees.
The mutation of an individual is applied by replacing a randomly
chosen subtree by another randomly generated subtree. Because
of its tree-based representation, GP is easy to be implemented
in functional programming languages (Goldberg, 1996) (e.g.,
LISP), but difficult to be coded in general-purpose programming
languages such as C/Cþþ and Fortran. Obviously, most people
know about general-purpose programming languages better and
prefer using it if possible. There are a number of C/Cþþ/JAVA
implementations of GP like Lil-GP, GPCþþ, and DGPF (See Wiki-
pedia item Genetic programming at http://en.wikipedia.org/wiki/
Genetic_programming). Although it may be not so difficult to use
any one of them as a standalone program, none of them is easy to
be adapted for your own needs because of its complexity.

2.2. String-based chromosome representation

Grammatical evolution (GE) (O’Neill and Ryan, 2001) is a new
variant of genetic programming, it uses a variable-length binary
string to describe an individual. The binary string (genotype) has
the following form:

I¼ b1b2b3 � � � bM , where bkAf0;1g:

GE decodes its chromosome as follows. First, the binary string is
converted to an integer string of the form:

I¼ ½i1,i2, . . . ,iM=8�,

where each integer entry ik maps to an 8-bit segment in the
binary string. Next, the integer string is decoded component-wise
to a derivation tree using a Backus-Naur form (BNF) grammar.
Then, the derivation tree is decoded to a parse tree. Finally, the
parse tree will be parsed to an analytical expression (phenotype)
by a function parser (see O’Neill and Brabazon, 2006 for more
details).

The BNF grammar used in GE can be represented by the tuple
{N, T, P, S}, where N is the set of nonterminals, T the set of
terminals, P a set of production rules that maps the elements of N

to T, and S is a start symbol that is a member of N. Now we give a
simple example BNF grammar as follows:
(a)
 N¼ fexpr,opg;

(b)
 T ¼ fþ ,�,n,x,yg;

(c)
 S¼/exprS;

(d)
 the production rules P satisfies:

/exprS ::¼ /exprS/opS/exprS ð0Þ

9/varS ð1Þ

/opS :: ¼ þ ð0Þ

9� ð1Þ

9n ð2Þ

/varS :: ¼ x ð0Þ

9y ð1Þ
Suppose we have a chromosome I¼[88, 211, 8, 35 133, 81, 68],
and we want to decode it based on the above BNF grammar, then
the decoding process can be listed in Table 1. We can see that the
phenotype of I is xny. Table 1 shows that the decoding process

http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Genetic_programming

Table 1
Decoding process of the chromosome I¼[88, 211, 8, 35, 133, 81, 68] using the example BNF grammar.

Step Codon Decoding No. of choice Operation Choice Resulting string

0 /exprS
1 88 /exprS 2 88 mod 2¼0 /exprS/opS/exprS /exprS/opS/exprS
2 211 /exprS 2 211 mod 2¼1 /varS /varS/opS/exprS
3 8 /varS 2 8 mod 2¼0 x x/opS/exprS
4 35 /opS 3 35 mod 3¼2 n xn/exprS
5 133 /exprS 2 133 mod 2¼1 /varS xn/varS
6 81 /varS 2 81 mod 2¼1 y xny

68

Fig. 2. Different level subtrees of the parse tree shown in Fig. 1.

C. Luo, S.-L. Zhang / Engineering Applications of Artificial Intelligence 25 (2012) 1182–11931184
terminates until the codon ‘81’. As a result, the last codon ‘68’ is
an extra codon. Obviously, if the chromosome I has more codons
besides the listed codons, e.g., I¼[88, 211, 8, 35, 133, 81, 68,
54,108, 36, y], all codons after the codon ‘81’ will be regarded as
extra codons and ignored by the function parser. On the contrary,
if the chromosome I has less codons, e.g., I¼[88, 211, 8, 35, 133],
we will get xn/varS, which is an illegal analytical expression. In
this case, the decoding process is incomplete.

GE uses a string-based chromosome. The string is one-dimen-
sional, and it can be regarded as a highly compressed parse tree.
This linearized non-tree representation makes GE easier to
implement in general-purpose programming languages than
classical GP.

However, GE is still not so easy to use. As can be seen from the
above example, GE’s mapping process from the genotype (a
binary string) to the phenotype (an expression) is rather compli-
cated. Consequently, GE needs an additional function parser for
the decoding process. We can also see that the incomplete
mapping and extra codons are common problems during the
decoding process, which make GE harder to control.

In our view, GE has encountered these difficulties because it
has over compressed the parse tree, and some useful information
is lost due to the over-compression. This motivates us to design a
less compressed, two-dimensional, non-tree chromosome repre-
sentation, which has a simpler decoding process. The proposed
chromosome representation called parse-matrix. It represents an
individual as a two-dimensional matrix with integer entries.
Obviously, it contains more information than one-dimensional
binary string. Detailed description of parse-matrix will be pre-
sented in the next subsection.

Recently, McKay et al. (2010) present a survey of grammar-
based genetic programming. They summarized different ways of
chromosome representation, and classified them into several
groups: tree-based grammar, linearized grammar, semantic
grammars, logic grammars, tree adjoining grammar, etc. We
confine our discussion to the tree-based and linearized grammar
in this paper because these two chromosome representations are
closely related to our proposal.

2.3. Parse-matrix chromosome representation

The new proposed chromosome representation, parse-matrix,
is also derived from the parse-tree of genetic programming. First,
let us take a deep look at the parse tree of GP and its evolutionary
process. Usually, a parse tree consists of many subtrees. These
subtrees can be classified into different levels. For example, the
parse tree in Fig. 1 has four levels of subtrees, which is denoted by
Sð1Þ,Sð2Þ,Sð3Þ,Sð4Þ (see Fig. 2). Higher level subtrees are produced
from lower level subtrees.

For general symbolic regression problems, there are two kinds
of operators – unary operators U (such as sin(), cos(), exp(), ln(),
etc.), and binary operators B (such as þ , -, n, /, etc.). Let the set of
operators at internal nodes be T ¼ fþ ,�, � ,=,sinðÞ,cosðÞ,expðÞ,
lnðÞ,etc:g. For the sake of simplicity, we define Tðs1,s2Þ as follows
to unify the two kinds of operators:

Tðs1,s2Þ ¼
Tðs1,s2Þ if TAB;
Tðs1Þ if TAU:

(

Let Sð0Þ be the set of terminal expressions (level zero subtrees),
e.g., Sð0Þ ¼ f1:0,x1,x2, . . . ,xdg, and Sð1Þ be the set of all possible
subtrees produced by the operators in T with terminals from
Sð0Þ, then Sð2Þ is the set of all possible subtrees produced by the
operators in T with subtrees from Sð0Þ [Sð1Þ. Similarly, Sðiþ1Þ is the
set of all possible subtrees produced by the operators in T with
subtrees from Sð0Þ [Sð1Þ [� � � [SðiÞ, and so on and so forth. Suppose
the highest-level subtrees be SðKÞ, the objective of symbolic
regression is to find an optimal tree (represents an optimal
expression) within all level sets of subtrees Sð0Þ [Sð1Þ [� � � [SðKÞ.
In other words, symbolic regression needs to find an optimal
function fn, such that

f n ¼ arg min
f A Sð0Þ[Sð1Þ[���[SðKÞ

X
i

Jf ðxðiÞÞ�yiJ,

where xðiÞARn,yiAR are numeric input-response data.
We can see that there are inclusion relationships between the

sets of different level subtrees. First, we have Sð0Þ � Sð1Þ. In fact,
8sASð0Þ, (sASð1Þ, s.t. s¼ 1:0ns. Since Sð2Þ is generated from
Sð0Þ [Sð1Þ, and Sð0Þ � Sð1Þ, we can also say that Sð2Þ is generated
from Sð1Þ. Similarly, we have Sði�1Þ

� SðiÞ, and Sð0Þ [Sð1Þ [� � � [

SðiÞ ¼ SðiÞ. So the optimal tree can be found within the set of top
level subtrees SðKÞ. Based on this fact, we can define a parse-
matrix to represent the set of top level subtrees. Thus, the
objective of symbolic regression becomes to find an optimal parse
matrix which maps to the optimal function fn. To store the lower
level subtrees for reuse, intermediate expressions such as f1, f2 are
also introduced.

C. Luo, S.-L. Zhang / Engineering Applications of Artificial Intelligence 25 (2012) 1182–1193 1185
Based on the above discussion, we introduce a matrix with
four columns of the form

A¼

a11 a12 a13 a14

a21 a22 a23 a24

� � � � � � � � � � � �

am1 am3 am3 am4

0
BBBB@

1
CCCCA

to represent an individual (or ‘chromosome’) , where the entries
aij are bounded integers near zero. The first column a�1 indicates
the active operator from set T . The 2nd and 3rd columns a�2,a�3
indicate the active operands. The 4th column a�4 decides which
intermediate expression (f1 or f2) will be updated.
3. Parse-matrix evolution

The evolutionary algorithm that uses parse-matrix (see Section
2.3) as its chromosome presentation is referred to as parse-matrix
evolution (PME) in this paper.

PME does not use the BNF grammar for its encoding or
decoding. Alternatively, it uses a table of mapping rules which
is much easier to understand and use. Table 2 gives an example
mapping table, where d is the dimension of the target model. We
will use this table to do our numerical experiments in the
following section (see Section 6). Of course you can define your
own table of mapping rules according to different problems.

3.1. Encoding of PME

The phenotype of PME (i.e., the target function of symbolic
regression) is an analytical function/expression. The encoding
from the phenotype to the genotype (a parse-matrix) is straight-
forward. For example, the expression sinðx2

1�x2Þþ lnðx1þx2Þ can
be produced in the steps listed in Table 3.

According to the mapping rules in Table 2 and the encoding
steps in Table 3, the expression sinðx2

1�x2Þþ lnðx1þx2Þ can be
described by the parse-matrix as follows:

A¼

2 1 1 0

1 1 2 1

�1 �1 2 0

�4 �2 1 1

3 �1 2 �1

1 �3 �2 0

0
BBBBBBBB@

1
CCCCCCCCA
:

Table 2
An example mapping table for parse-matrix evolution.

a�1 �4 �3 �2 �1 0 1 2 3 4

T ln cos / – skip þ n sin exp

a�2 ,a�3 �3 �2 �1 0 1 2 � � � d

expr f f2 f1 1.0 x1 x2 � � � xd

a�4 �1 0 1

f-f k Skip f1 f2

Table 3

Encoding steps of the expression sinðx2
1�x2Þþ lnðx1þx2Þ.

Step T s1 s2 Which one is to be updated: f1 or f2?

1 n x1 x1 Update f1

2 þ x1 x2 Update f2

3 – f1 x2 Update f1

4 ln f2 x1 Update f 2

5 sin f1 x2 None

6 þ f f2 Update f1
We can see that the encoding of PME is a natural and easy
process. Note that it is hard to imagine how to encode an
expression to a binary string in GE.

3.2. Decoding of PME

The genotype of an individual (a chromosome) in PME is a
parse-matrix. Its corresponding phenotype is an expression (a
function). A parse-matrix will be decoded according to the
mapping rules listed in Table 2 row by row as follows.

Procedure of decoding:
for (i¼0; iom; iþþ){
determine operands s1 and s2 according to a�2 and a�3;
switch (T){

case a�1: f¼T(s1, s2);
update f1 or f2 according to a�4;

}
}

Suppose we have an individual (a parse-matrix, the genotype)

A¼

2 1 2 0

3 �1 1 1

1 1 �2 �1

0 �1 �2 0

�4 �3 2 0

0 2 �1 1

0
BBBBBBBB@

1
CCCCCCCCA

,

and we want to get its phenotype. The decoding process can be
listed in Table 4.

From Table 4, we can see that the decoding process is also
natural and easy.

Although the mapping between the set of parse matrices and the
set of symbolic expressions is not one-to-one, the interpretation
between them is very straightforward and easy. We can see from
the above examples that the coding plan (encoding and decoding)
of PME is almost invertible. This is a favourable feature. As we know
that it is almost impossible to reduce a symbolic expression to its
original binary string in GE. Furthermore, GE’s decoding from a
binary string to its phenotype (a symbolic expression) is also not so
easy. For example, the incomplete mapping might result in an
illegal analytical expression; the extra codons often confuse users,
and you could not predict where the first extra codon occurs unless
you decode it bit by bit and find that the decoding process comes to
an end. This makes GE hard to control.

Remark A. The height of the parse-matrix m reflects the level of
top subtree K. It is easy to see that Krm. As a result, m can be
used to control the depth of searching process.

Remark B. Provided f 1,f 2,f are properly initialized (e.g., set
f 1 ¼ f 2 ¼ f ¼ 1), every row of the parse-matrix maps to a complete
operation and updating process. Thus, there is no incomplete
mapping problem in PME.
Table 4
Decoding steps of the individual A.

Step f1 f2 f

1 x1nx2 x1 x1nx2

2 x1nx2 sinðx1nx2Þ sinðx1nx2Þ

3 x1nx2 sinðx1nx2Þ x1þsinðx1nx2Þ

4 Nothing changed

5 x1þsinðx1nx2Þ sinðx1nx2Þ lnðx1þsinðx1nx2ÞÞ

6 Nothing changed

C. Luo, S.-L. Zhang / Engineering Applications of Artificial Intelligence 25 (2012) 1182–11931186
Remark C. Only unary and binary operators are considered here.
As a result, the column number of the parse-matrix equals to 4.
However, parse-matrix could easily be extended so that it can
cope with multiple operators (e.g., the scalar triple product
a � ðb� cÞÞ. In general, suppose the operator T has p operands,
we can just increase the column number to pþ2 and define

Tðs1, . . . ,spÞ ¼

Tðs1Þ if TAU;
Tðs1,s2Þ if TAB;
� � � , � � � ;

Tðs1, . . . ,spÞ if T has p operands:

8>>>><
>>>>:

then the operators with different number of operands can be unified.

3.3. Biological background

The representation of PME is inspired from the structure of
genetic system (Hartl and Jones, 2008). In fact, the meaning of a
parse-matrix in PME may be compared to a chromosome in
biology (see Fig. 3):
1.
 An element of the parse-matrix itself has no explicit meaning.
It functions like a base in a codon.
2.
 Every row of the parse-matrix maps to a complete operation
and updating process. It functions like a four-base codon.
3.
 The whole parse-matrix carries all information of an expres-
sion. It plays the role of a chromosome.

3.4. Evolutionary operators

PME uses a parse-matrix for its chromosome representation,
and a table of mapping rules for its encoding and decoding. Note
that each row of the matrix represents a complete operation and
updating process. Therefore, it is very easy to design evolutionary
operators for PME.
�
 Crossover: Traditional crossover is easy to be adapted for PME.
For example, we can define a one-point crossover as follows
(see Fig. 4(a)): Select a cross-point rc from f1;2, . . . ,m�1g at
random, and exchange the last m�rc rows of two parents of
parent matrices. We can also define a two-point crossover (see
Fig. 4(b)) that the two parents exchange their middle rows
between r1 and r2, where r1,r2A1;2, . . . ,m�1 are two cross-
over points such that r1or2. A cut-and-splice crossover (see
Fig. 4(c)) might also be used, where the first r1 rows of parent
A and the first r2 rows of parent B are exchanged. We can see
that the offsprings generated by any of the three kind of
crossovers are valid if and only if their parents are valid
(because each row of the parse-matrix represents a complete
Fig. 3. Biological interpretation of parse-matrix.
operation and updating process). That is, there is no incom-
plete mapping issue.

�
 Mutation: The mutation operator is also easy to design. For

example, a uniform mutation (see Fig. 4(d)) can be defined as
follows. Generate a random number rijA ½0;1� for each entry of
the parse-matrix to decide whether to mutate aij or not (accord-
ing to the preset mutation probability Pm). The mutated entry a0ij
will be randomly chosen from the set a�j\faijg, where a�j denotes
the set of all possible values of the j-th column as listed in Table 2.

3.5. Search engine

Suppose that the dimension of the target system is d, the
height of the parse-matrix m, and we use the mapping Table 2,
then the parse-matrix entries a�1Af�4,�3, . . . ,3;4g, a�jA
f�3,�2, . . . ,dgðj¼ 2;3Þ, and a�4Af�1;0,1g. Thus there are ð9 �
ð4þdÞ � ð4þdÞ � 3Þm combinations of the parse-matrix ðai,jÞm�4. If
d¼2, m¼4, we have

ð9 � ð4þdÞ � ð4þdÞ � 3Þm ¼ 2:8� 1012:

We can see that the search space of PME is very large in general.
Therefore, enumeration method is impractical and effective
search engines are necessary.

Fortunately, many state-of-the-art search engines are still
applicable to PME. In fact, PME uses a parse-matrix as its
chromosome presentation, and the evolutionary operators (cross-
over and mutation) are slightly modified from traditional ones.
Therefore, PME does not require any special search engine. For
example, the classic genetic algorithm (GA) with roulette-wheel
selection or the steady-state GA (Blickle and Thiele, 1996) with
tournament selection could easily be adapted to PME. In this
paper, we choose the steady-state GA as PME’s search engine to
do our numerical experiments because it is very easy to imple-
ment and it has less stochastic noise.

3.6. Procedure

Despite different search engines might be used, the general
procedure of PME could be described as follows.

Procedure of PME:
Step 1
 : Input evolutionary parameters: population size N, initial
bounds of entries for each columns l,uAZ4, and set t :¼ 0;
Initialize the current and intermediate expressions f, f1 and
f2.

!

Step 2
 : Initialize population A ðtÞ ¼ fA1ðtÞ,A2ðtÞ, . . . ,ANðtÞg and

evaluate each individual of the current population A
!
ðtÞ,

where the individual Ai(t) is a matrix in Zm�4;

Step 3
 : Repeat the following steps until some stopping criter-

ion is satisfied.
(3.1) Reproduction: Apply the crossover and mutation

operators to generate a trial population A
!0
ðtÞ based

on the current population A
!
ðtÞ (see Section 3.4).

(3.2) Decoding: Decode each individual of the trial
population (see Section 3.2);

(3.3) Evaluation: Evaluate each individual A0iðtÞ of the new
population A

!0
ðtÞ according to the residual between

its represented model and the exact model:

r¼
X

i

Jf A0
i
ðtÞðx

ðiÞÞ�yiJ;

(3.4) Selection: Select offspring individuals for next
generation A

!
ðtþ1Þ, i.e., select N individuals among

the current population A
!
ðtÞ and the trial popula-

tion A
!0
ðtÞ.

Fig. 4. Possible reproduction operators. (a) One-point Crossover, (b) Two-point Crossover, (c) Cut-and-splice Crossover and (d) Uniform Mutation.

C. Luo, S.-L. Zhang / Engineering Applications of Artificial Intelligence 25 (2012) 1182–1193 1187
(3.5) Check point: If some stopping criterion is satisfied,
output the best-so-far individual An and its func-
tion value f ðXn

Þ; Otherwise, set the current genera-
tion t :¼ tþ1, set the current position i :¼ 1 and
then return to step 3.
3.7. Exceptions

Note that infeasible individuals might be generated due to the
existence of logarithmic (log()) and divisional (/) operators. An
individual is said to be infeasible if its expression contains a
logarithmic operator and the argument is negative or zero at
some trial points, or its expression contains a divisional operator
and the denominator happens to be zero at some trial points.

In our implement of PME, infeasible individuals are differently
treated at different evolutionary stages. At the initialization stage,
an infeasible individuals will be replaced by a random-generated
feasible individual. As a result, all individuals in the initial
population will be feasible. During the reproduction stage, once
an infeasible individual is detected, it will be labelled as a looser
and its fitness will be defined as zero. Consequently it cannot
survive to the next generation.
4. Remarks for engineering applications

4.1. Practical difficulties

Practical engineering problems are hard. Calculation of the
response can be computationally/experimentally expensive. The
design variables are not necessarily independent. The input-
response data might be high dimensional, not designed, noisy,
redundant, sparse, and/or with multiple time scales. They may
cause many difficulties to genetic programming (including PME)
for extracting valuable information from the data. Over-fitting,
bloat, premature convergence are ‘classical’ difficulties in the GP
field. Many problems are beyond the scope of this paper, and will
be addressed in future studies.
4.2. Complexity control

Let us compare the target functional spaces of conventional
linear/nonlinear regression:

an ¼ arg min
aARk

X
i

Jf ðxðiÞ,aÞ�yiJ

C. Luo, S.-L. Zhang / Engineering Applications of Artificial Intelligence 25 (2012) 1182–11931188
and symbolic regression

f n ¼ arg min
f AS

X
i

Jf ðxðiÞÞ�yiJ:

For the conventional linear/nonlinear regression, the target
function space F ¼ ff ðx,aÞ9 aARk

g. It is obviously that F � S. That
is, symbolic regression has a larger target function space, and
linear/nonlinear regression might be considered as a special case
of symbolic regression. This is the reason why a symbolic
regression algorithm is expected to get a better model than a
linear/nonlinear regression method.

Beware that too large searching space might result in unreal
models (over-fitting). This phenomenon has been detected in
numerical analysis. A case in point is Runge’s phenomenon, in
which a problem of oscillation that occurs when interpolating
with high degree polynomials. Such phenomenon might also
appear if the symbolic regression uses high level parse trees.
Therefore, it is very important to properly confine the target
function to a subset of function space. If we can find the minimum
space where the minimum complexity model lies, the symbolic
regression becomes easier.

PME is designed easily to control the complexity of the evolved
expression. The height of the parse matrix (m) in PME is an
explicit control parameter that can upper-bound the subtree-level
of evolved expression. So it can be used to confine PME’s target
function space. The parse tree will not bloat if we choose a fixed m

(as we did in this work) or a controlled m, and the over-fitting
difficulty is also avoided. It is easy for PME to balance the trade-
off between the accuracy (model error) and complexity. In this
sense, PME is free to control.

4.3. Premature avoidance

To avoid premature convergence, a multi-start technique
(Martı́, 2003) is used in PME. Every T generations the population
is re-initialized. The archived best individuals remain survived
separately from the population.

4.4. Cost of symbolic regression is negligible

We have to point out that symbolic regression is not the most
expensive part to construct a data-driven model in practical
applications. In fact, symbolic regression is just an analytical
process. Usually, it only consumes CPU time from minutes to
hours. But the training points are obtained by costly physical
experiments or computational intensive simulation process. So it
is much more expensive to get the set of training points (the
input-response data). Therefore, it is very important for a sym-
bolic regression algorithm to rebuild the best structure of the
data-driven model at ‘any’ cost.
5. Coefficient optimization

The mission of symbolic regression is to optimize both the
structure and coefficients of a target function that describes an
input-response system. PME, as well as other symbolic regression
algorithms, distinguishes from linear/nonlinear regression in that
its capability of ‘structure optimization’, which is its true value.

We do have enabled PME capable of optimizing the structure
and coefficients simultaneously, and it works well (see Section
6.2). But in our real-world application of ground-to-flight data
correlation, we find that the revolved results are difficult to
physically interpret and the physicist (decision maker) do not
accept them. Therefore, we introduced some techniques to avoid
the ‘coefficient optimization’, and only use PME’s ‘structure
optimization’ capability to carry out adaptive space transforms.
The results become interpretable and acceptable. We conclude
that PME is NOT just an alternative to symbolic modeling. It can
be used to detect the underlying physical relationships between
different parameters.

To enable PME’s capability of coefficient optimization, we have
re-designed the decoding and individual evaluation process. In
the modified decoding process, coefficients are introduced, and
during the individual evaluation process, a global optimization
algorithm, low dimensional simplex evolution (LDSE) (Luo and
Yu, 2012), is embedded to complete the online optimization of the
introduced coefficients.

There are several possible ways to introduce coefficients into
the evolving function.
(a)
 Using multi-gene techniques as in the GP software GPTIPS
(Searson et al., 2010), in which the evolved functions are
linear combinations of low order non-linear transformations
of the input variables.
(b)
 Using the random numeric terminal as the reference (Streeter
and Becker, 2003).
(c)
 Adding coefficients during the decoding process and optimiz-
ing them during the individual evaluation (our proposal).
We choose plan (c) in our work. Here is the reason: Plan
(a) combines linear and non-linear optimization process, so the
revolved model accuracy is likely high. But the result is hard to
interpret. Plan (b) is very ease to implement and will not increase
much computation cost, but the inherent randomness is hard to
be accepted by the decision maker.

Symbolic regression is superior to linear/non-linear regression
in that it can detect the desired function structure (usually non-
linear) without making any priory assumptions on the target
function. Plan (c) can hold this advantage.

In this work, coefficients are added in the following way:
whenever the intermediate expression f2 is updated (in case
a�4 ¼ 1 in Table 2), a new coefficient will be introduced and the
intermediate expression will be further updated to f 2 ¼ lkf 2,
where k starts from 1 and krm.

For example, suppose we have two individuals from Sections
3.1 and 3.2 respectively, then the new decoding process will get
f ¼ sinðx1nðx1Þ�x2Þþl2nlnðl1nðx1þx2ÞÞ and f ¼ lnðx1þl1n sinðx1n x2ÞÞ

respectively.
Of course, one can introduce more intermediate expressions

(e.g., f 3,f 4, � � �) and attach coefficients whenever they are updated.
The modified PME process can be described as a bi-level

optimization process of the following form.

min
AAZm�4

min
lAD � Rm

MSEðA,l,xÞ ¼
1

K

XK

i ¼ 1

Jf Aðx
ðiÞÞ�yiJ2

where MSE denotes the mean square error, A is the individual
(parse matrix) of PME, fA is the phenotype of A (an analytical
function), l is the coefficient vector, J � J2 denotes 2-norm.

The inner optimization (LDSE) will be invoked to optimize the
coefficients in the model whenever an individual A is evaluated.
The outer optimization (basic PME described in the previous
sections) aims at optimizing the model structure. Their relations
is shown in Fig. 5.
6. Numerical results

PME has been implemented in C programming language, using
steady-stage GA with multi-start technique (Martı́, 2003) as its
search engine. For the sake of easy use, we use a Boolean variable

Fig. 5. Optimization process of modified PME.

Table 5
Test models and performance of PME.

No. Dim Target model Domain No.

samples

Ave no.

eval

Ave no.

start

1 1 x2�sinx 1,3] 8 3230 4.8

2 1 sin xþ2x [1,3] 8 2071 1.1

3 1 cos x2�x [1,3] 8 2603 2.3

4 1 sin xþcos x�x [1,3] 8 3646 7.4

5 2 x1þ2x2 ½1;3�2 16 1047 1.0

6 2 ðx1þx2Þ=x2 ½1;3�2 16 1701 1.3

7 2 sinðx1þx2Þ ½1;3�2 16 1537 1.0

8 2 cosðx1þx2Þ�x2 ½1;3�2 16 2798 1.5

9 2 lnðx1þx2Þ ½1;3�2 16 1584 1.2

10 2 x1�ex1 þx2 ½1;3�2 16 3593 1.8

11 2 lnðx1þx2Þþsinðx1þx2Þ ½1;3�2 16 4911 5.7

12 2 sinðx2
1�x2Þþ lnðx1þx2Þ ½1;3�

2 16 7637 13.2

13 3 x1þx2�x3 ½1;3�3 64 4505 1.9

14 3 x1x2�x3 ½1;3�3 64 3164 2.7

15 3 sinðx1x2Þþx3 ½1;3�3 64 3302 11.6

C. Luo, S.-L. Zhang / Engineering Applications of Artificial Intelligence 25 (2012) 1182–1193 1189
to switch on/off the coefficient optimization process described in
Section 5.

Our test problems are partitioned into two groups: Exact
fitting problems (Section 6.1) and test problems from literature
(Section 6.2). As we know, practical engineering applications of
symbolic regression are generally complex (see Section 4.1), so
we do not expect a GP algorithm (including PME) capable of
getting the exact solution. However, exact fitting problems (they
are usually man-made) can help us evaluate PME’s capability of
‘structure optimization’. Test problems from literature give a
comprehensive test of PME. They help us evaluate PME’s overall
capability of ‘structure and coefficient optimization’.

In all our numerical experiments (except Prob. 6 in Section
6.2), uniform inner grid points are used as training points. For
example, if we consider a function within the region ½0;1� �
½�1;0� and we want to use two training points at each direction,
there will be four training points located at (0.333, �0.333),
(0.333, �0.666), (0.666, �0.333) and (0.666, �0.666). Note that
the number of inner grid points will be quite large for high
dimensional problems. To avoid unnecessary sampling, experi-
mental design method such as Latin Hypercube (McKay et al.,
1979) and Uniform Design (Fang and Wang, 1994) might be
applied. However, according to our experience, too few training
points might result in unreliable results.

In our tests, the current and intermediate expressions are
initialized as follows:

f ¼ 1, f 1 ¼ 1 and f 2 ¼ 1:

6.1. Exact fitting problems

In this test group, 15 problems (see Table 5) are chosen to test
PME’s capability of ‘structure optimization’. The coefficient opti-
mization process of PME is switched off. All of them have exact
fitting models in the search space. So you may expect to get the
target model itself by using PME. However, PME might give you
an equivalent alternative to the target expression. Suppose you
have a set of training points whose target model is
lnðx1þx2Þþsinðx1þx2Þ, then PME might give you the equivalent
solution sinðx2þx1Þþ lnðx2þx1Þ, sinðx1þx2Þþ lnðx1þx2Þ�lnð1Þ, or
lnððexpðsinðx1þx2ÞÞÞnðx1þx2ÞÞ, etc. Therefore, we suggest the
users using symbolic processors such as Maple or Mathematica
to simplify the result from PME.

In case the target model is out of the search space, PME is
capable of providing an approximate model. Suppose that we use
Table 2 as the mapping rules, and the target model is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1þx2
p

,
then it is not in the search space. (Note that the coefficient
optimization process of PME is switched off.) By PME, we can
get its best approximate model within the search space
lnðx1þx2Þ=cosð1Þ.

The control parameters of PME are set as follows. The height of
the parse-matrix m¼6. The population size N¼100 and the
maximum generations for re-initialization T is set to 10,000 (i.e.,
trTÞ. The tournament size in steady state GA s¼5. PME will
terminate immediately if the exact target function (or its equiva-
lent alternative) is detected, and restart automatically if it fails
until generation T. To reduce the influence of randomness, 100
runs for each test problems are carried out. The average number
of residual evaluations and the average number of restarts are
recorded to show the efficiency of PME.

Table 5 shows the test models and PME’s average performance
of the 100 independent runs with different initial populations.
The full names of the notations in Table 5 are the dimension of
modelled system (Dim), the target model (Target model), the
domain of the target model (Domain), the number of training
points (No. samples), the average number of residual evaluations
of all successful runs (Ave no. eval), and the average number of
restarts of 100 runs to get the target model (Ave no. start).

The computation results from Table 5 show that PME can
recover the target models for all these test problems. The
computational cost depends on the complexity of target model.
6.2. Test problems from literature

In this test group, we take all test problems from Keijzer
(2003) into account to give PME an overall evaluation of its
performance, including its ‘structure optimization’ and ‘coeffi-
cient optimization’ capabilities. The coefficient optimization pro-
cess of PME is switched on. The control parameters are set as
follows. The population size of PME N¼500, and the maximum
generations for re-initialization T is set to 20,000, the maximum
number of restart M¼20. The tournament size in steady state GA
s¼5. In the embedded LDSE, the population size NLDSE ¼ 20, the
maximum generations for termination TLDSE ¼ 200, the adsorption
probability pa¼0.1 (Luo et al., 2012). The coefficients are bonded
by lA ½�50;50�6. The default target accuracy etarget ¼ 10�8.

Similar to the first test group, 100 runs for each test problems
are carried out. The algorithm will exit immediately if the mean
square error is small enough (MSEretarget), and the number of
restarts (no.start) is recorded.

Table 6 shows the overall performance of the modified PME in
the 100 independent runs with different initial populations. We
can see that PME can solve most of the problems (12 of 15)
without changing any control parameters. The number of restart
range from 1 to 9 (except Prob. 4), and the average number of
restart to solve these problems is acceptable. By increasing the
model complexity (set m¼7), Prob. 15 is also solved. You can also
expect PME capable of solving Prob. 4 by increasing m. But we
would rather let PME concentrate on ‘structure optimization’ as
discussed in Section 5. For detailed results, refer to Appendix A.

Table 6
Performance of modified PME on Keijzer’problems.

No. No. samples MSE No. start range Ave no. start Remarks

1 100 retarget [1, 4] 2.76 Solution is almost exact

2 100 retarget [1, 4] 2.55 Solution is almost exact

3 100 retarget [1, 4] 2.6 Solution is almost exact

4 100 [1.556, 1.562] �10�2 [20, 20] 20 Failed to reach the target accuracy

5 1000 retarget [1, 5] 3.35 Solution is almost exact

6 50 [7.426, 7.937] �10�7 [1, 4] 2.26 (etarget ¼ 10�6, see Appendix A)

7 100 retarget [1, 2] 1.12 Solution is almost exact

8 100 retarget [1, 4] 2.92 Solution is almost exact

9 100 retarget [1, 6] 4.26 Solution is almost exact

10 100 retarget [1, 3] 1.47 Solution is almost exact

11 100 retarget [1, 7] 5.68 Solution is almost exact

12 100 retarget [1, 6] 4.03 Solution is almost exact

13 100 retarget [1, 4] 2.94 Solution is almost exact

14 100 retarget [1, 4] 3.51 Solution is almost exact

15 100 rentarget [2, 9] 6.97 (m¼7, see Appendix A)

C. Luo, S.-L. Zhang / Engineering Applications of Artificial Intelligence 25 (2012) 1182–11931190
7. Conclusion

We have introduced a new symbolic regression method: parse-
matrix evolution (PME). It uses parse-matrix as its chromosome
presentation. It is easier than ever. It can easily be implemented in
any programming language and free to control. Furthermore, it does
not need any additional function parsing process. Numerical results
show that PME can recover the structure of a target model with
plenty of input-response data, provided that the structure is not so
complex. PME is also capable of optimizing the structure and
coefficients simultaneously.

PME is NOT just an alternative to linear/nonlinear regression.
The true value of PME is its ‘structure optimization’ ability, which
can be used to detect the underlying physical relationships
between different parameters.

Further research is necessary to make PME more effective for
symbolic regression. For example, more efficient search engine is
desired. The steady-stage GA is used as the search engine of PME
in this paper, but its efficiency is not satisfactory for complex
problems with high level optimal subtrees. Other search engines
might be more efficient.

The idea of PME is generic. Although PME is only applied to
symbolic regression in this paper, it could be easily adapted for
other automatic programming problems such as the analytical
solution of partial differential equations (Tsoulos and Lagaris,
2006), credit classification (Brabazon and O’Neill, 2006), Santa Fe
ant trail and symbolic integration, etc.
Acknowledgements

This work was partially supported by the National Natural
Science Foundation of China (Grant No. 90916028).
Appendix A. Test results in detail

To comply with the literature, we use x, y, z instead of x1,x2,x3 (which are used in our program). That is, x¼ x1,y¼ x2,z¼ x3.
Prob 1–3.
 f ðxÞ ¼ 0:3x sinð2pxÞ, where xA ½�1;1�, xA ½�2;2�, xA ½�3;3� respectively.
An example best individual output from PME is

An
¼

2 0 1 1

3 �2 1 0

2 1 �3 1

0 �3 �1 1

2 �2 0 0

0 �2 2 1

0
BBBBBBBB@

1
CCCCCCCCA

and its corresponding analytical expression is f ¼ ðl2nððx1Þnðsinðl1nðð1Þnðx1ÞÞÞÞÞÞnð1Þ¼l2x1 sinðl1x1Þ, where l1 ¼ 6:283,

l2 ¼ 0:300. The coefficient vector optimized by LDSE is ln
¼ ð6:283,0:300,�2:570,25:04,�38:57,7:433Þ.
Prob 4.
 f ðxÞ ¼ x3 exp�xcosðxÞsinðxÞðsin2
ðxÞcosðxÞ�1Þ, where xA ½0;10�.

Using the given control parameters, PME failed to get the exact solution or the approximate model with MSEr10�8 in all
100 runs.
Prob 5.
 f ðx,y,zÞ ¼ 30xz=ðx�10Þy2, where x,zAð�1;1Þ, and yAð1;2Þ.

C. Luo, S.-L. Zhang / Engineering Applications of Artificial Intelligence 25 (2012) 1182–1193 1191
An example best individual output from PME is

An
¼

2 0 1 1

�1 �2 0 0

2 2 2 �1

2 �1 �3 0

�2 1 �1 1

2 3 �2 0

0
BBBBBBBB@

1
CCCCCCCCA

and its corresponding analytical expression is f ¼ ðx3Þnðl2nððx1Þ=ððl1nðð1Þnðx1ÞÞ�ð1ÞÞnððx2Þnðx2ÞÞÞÞÞ ¼ l2xz=ðl1x�1Þy2, where

l1 ¼ 0:100, l2 ¼ 3:000. The coefficient vector optimized by LDSE is ln
¼ ð0:100,3:000,24:61,�6:975,�8:670,�11:67Þ.

Pn
Prob 6.
 f ðnÞ ¼ i ¼ 1 1=n, where nAf1;2, . . . ,50g.

Using the given control parameters, PME failed to get the exact solution or the approximate model with MSEr10�8 in all

100 runs. Only the approximate models with MSEr10�7 are evolved. An example best individual (with MSE¼ 7:426 � 10�7)
output from PME is

An
¼

2 �3 0 1

1 1 �2 0

�4 �3 1 0

4 �3 1 �1

2 0 0 1

1 �2 �1 0

0
BBBBBBBB@

1
CCCCCCCCA

and its corresponding analytical expression is f ¼ l2nðð1Þnð1ÞÞþ lnðx1þl1nðð1:0Þnð1ÞÞÞ ¼ l2þ lnðxþl1Þ, where l1 ¼ 0:522,

l2 ¼ 0:576. The coefficient vector optimized by LDSE is ln
¼ ð0:522,0:576,30:74,�8:339,�9:744,�30:12Þ.
Prob 7.
 f ðxÞ ¼ ln x, where xA ½1;100�.
An example best individual output from PME is

An
¼

1 �2 �3 1

3 0 �1 1

4 �2 �1 �1

0 �3 1 �1

�4 �2 0 1

�4 1 �2 1

0
BBBBBBBB@

1
CCCCCCCCA

and its corresponding analytical expression is f ¼ lnðx1Þ ¼ ln x.

ffiffiffip

Prob 8.
 f ðxÞ ¼ x, where xAð0;100Þ.

An example best individual output from PME is

An
¼

1 0 1 1

4 �2 1 0

�4 1 �1 1

0 �3 1 0

4 �2 0 �1

2 �3 0 1

0
BBBBBBBB@

1
CCCCCCCCA

and its corresponding analytical expression is f ¼ ðexpðl2nðlnðx1ÞÞÞÞnð1Þ¼expl2n ln x, where l2 ¼ 0:500. The coefficient vector

optimized by LDSE is ln
¼ ð15:28,0:500,�18:62, �45.25, �28.12, 29.97).
Prob 9.
 f ðxÞ ¼ arcsinhðxÞ, where xAð0;100Þ.
An example best individual output from PME is

An
¼

2 1 1 1

1 0 �3 0

�4 �3 1 1

4 �2 1 �1

1 �3 1 �1

�4 �3 �2 0

0
BBBBBBBB@

1
CCCCCCCCA

C. Luo, S.-L. Zhang / Engineering Applications of Artificial Intelligence 25 (2012) 1182–11931192
and its corresponding analytical expression is f ¼ lnðexpðl2nðlnð1þðx1Þnðx1ÞÞÞÞþx1Þ ¼ lnðexpl2nlnð1þx2Þ þxÞ, where l2 ¼ 0:500.

The coefficient vector optimized by LDSE is ln
¼ ð30:27,0:500,33:99,25:88,3:699,�44:93Þ.
Prob 10.
 f ðx,yÞ ¼ xy, where xAð0;1Þ, and yAð0;1Þ.
An example best individual output from PME is

An
¼

�4 1 2 0

�1 �1 1 1

2 1 0 �1

2 �1 2 0

3 0 1 �1

4 �1 1 0

0
BBBBBBBB@

1
CCCCCCCCA

and its corresponding analytical expression is f ¼ expððlnðx1ÞÞnðx2ÞÞ ¼ expy ln x.
Prob 11.
 f ðx,yÞ ¼ xyþsinððx�1Þðy�1ÞÞ, where xA ½�3;3�, and yA ½�3;3�.
An example best individual output from PME is

An
¼

1 2 1 0

�1 0 �3 1

2 1 2 0

1 �2 �3 1

3 �3 1 �1

1 �1 �3 1

0
BBBBBBBB@

1
CCCCCCCCA

and its corresponding analytical expression is f ¼ ðx1Þnðx2Þþsinðl1nð1�ðx2þx1ÞÞþðx1Þnðx2ÞÞ¼xyþsinðl1nð1�ðxþyÞÞþxyÞ,

where l1 ¼ 1:000. The coefficient vector optimized by LDSE is ln
¼ ð1:000,�6:116,35:55,�14:64,27:85,24:43Þ.
Prob 12.
 f ðx,yÞ ¼ x4�x3þy2=2�y, where xA ½�3;3�, and yA ½�3;3�.
An example best individual output from PME is

An
¼

2 2 2 1

2 1 1 0

�1 �1 1 �1

2 �3 �1 0

�1 �2 2 1

1 �3 �1 0

0
BBBBBBBB@

1
CCCCCCCCA

and its corresponding analytical expression is f ¼ l1nððx2Þnðx2ÞÞ�ðx2Þþððx1Þnðx1Þ�ðx1ÞÞnððx1Þnðx1ÞÞ ¼ l1y2�yþx2ðx2�xÞ, where

l2 ¼ 0:500. The coefficient vector optimized by LDSE is ln
¼ ð0:500,41:49,�2:118,39:83,11:00,16:06Þ.
Prob 13.
 f ðx,yÞ ¼ 6 sinðxÞcosðyÞ, where xA ½�3;3�, and yA ½�3;3�.
An example best individual output from PME is

An
¼

�2 1 �2 �1

3 �1 1 0

2 2 1 �1

�3 2 �2 1

3 1 �3 0

2 �1 �2 0

0
BBBBBBBB@

1
CCCCCCCCA

and its corresponding analytical expression is f ¼ ðsinðx1ÞÞnðl1nðcosðx2ÞÞÞ¼l1 sin x cos y, where l1 ¼ 6:000. The coefficient

vector optimized by LDSE is ln
¼ ð6:000,�21:19,�24:50,�13:65,�13:70,39:91Þ.

2 2
Prob 14.
 f ðx,yÞ ¼ 8=ð2�x þy Þ, where xA ½�3;3�, and yA ½�3;3�.
An example best individual output from PME is

An
¼

2 2 2 0

2 1 1 �1

1 �3 �1 1

1 �2 0 1

�2 0 �2 0

0 1 1 1

0
BBBBBBBB@

1
CCCCCCCCA

C. Luo, S.-L. Zhang / Engineering Applications of Artificial Intelligence 25 (2012) 1182–1193 1193
and its corresponding analytical expression is f ¼ ð1Þ=ðl2nðl1nððx1Þnðx1Þþðx2Þnðx2ÞÞþ1ÞÞ¼1=l2 � ð1þl1 � ðx
2þy2ÞÞÞ, where

l1 ¼ 0:500, and l2 ¼ 0:250. The coefficient vector optimized by LDSE is ln
¼ ð0:500,0:250,33:61,�19:24,44:85,�27:30Þ.
Prob 15.
 f ðx,yÞ ¼ x3=5þy3=2�y�x, where xA ½�3;3�, and yA ½�3;3�.
Using the given control parameters, PME failed to get the exact solution or the approximate model with the default accuracy (MSE

r10�8) in all 100 runs. However, if we reset the height of parse matrix m¼7 or greater, PME can get the desired target function.
An example best individual output from PME is

An
¼

2 2 2 1

2 2 �2 0

�1 �2 1 0

2 1 1 1

2 �2 1 �1

�1 �3 2 �1

1 �3 �1 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

and its corresponding analytical expression is f ¼ ðl2nððx1Þnðx1ÞÞÞnðx1Þ�ðx2Þþðx2Þnðl1nððx2Þnðx2ÞÞÞ�ðx1Þ ¼ l2x3�yþl1y3�x, where

l1 ¼ 0:500, and l2 ¼ 0:200. The coefficient vector optimized by LDSE is ln
¼ ð0:500,0:200,42:93,6:291,�10:49,26:44,�33:48Þ.
References

Blickle, T., Thiele, L., 1996. A comparison of selection schemes used in evolutionary
algorithms. Evolut. Comput. 4 (4), 361–394.

Brabazon, A., O’Neill, M., 2006. Credit classification using grammatical evolution.
Informatica 30, 325–335.

Brameier, M., Banzhaf, W., 2007. Linear Genetic Programming. Springer, New York.
Chatterjee, S., Hadi, A.S., 2006. Regression Analysis by Example, 4th edition John

Wiley and Sons.
Fang, K.T., Wang, Y., 1994. Number-Theoretic Methods in Statistics. Chapman &

Hall, London.
Goldberg, B., 1996. Functional programming languages. ACM Comput. Surv. 28 (1),

249–251.
Hartl, D.L., Jones, E.W., 2008. Genetics: Analysis of Genes and Genomes, 7th edition

Jones and Bartlett Publishers.
Keijzer, M., 2003. Improving symbolic regression with interval arithmetic and

linear scaling In: Proceedings of the 6th European Conference on Genetic
Programming. Essex, UK, vol. 2610, pp. 70–82.

Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA.

Luo, C., Yu, B., 2012. Low dimensional simplex evolution: a hybrid heuristic for
global optimization. J. Glob. Optim. 52 (1), 45–55.

Luo, C., Zhang, S.-L., Yu, B., 2012. Some modifications of low-dimensional simplex
evolution and their convergence. Optimization Methods and Software, Online
first. http://dx.doi.org/10.1080/10556788.2011.584876.

Mabu, S., Hirasawa, K., Hu, J., 2007. A graph-based evolutionary algorithm: genetic
network programming (GNP) and its extension using reinforcement learning.
Evol. Comput. 15 (3), 369–398.

Martı́, R., 2003. Multi-start methods. In: Glover, F., Kochenberber, G.A. (Eds.),
Handbook of Meta Heuristics. Kluwer Academic Publishers, pp. 355–368.

McKay, M., Beckman, R., Conover, W., 1979. A comparison of three methods for
selecting values of input variables in the analysis of output from a computer
code. Technometrics 21, 239–246.
McKay, R., Hoai, N., Whigham, P., Shan, Y., O’Neill, M., 2010. Grammar-based

genetic programming: a survey. Genet. Program. Evol. Mach. 11 (3), 365–396.
O’Neill, M., Ryan, C., 2001. Grammatical evolution. IEEE Trans. Evol. Comput. 5,

349–358.
O’Neill, M., Brabazon, A., 2006. Grammatical swarm: the generation of programs

by social programming. Nat. Comput. 5 (4), 443–462.
Patelli, A., Ferariu, L., 2010. Elite based multiobjective genetic programming in

nonlinear systems identification. Adv. Electr. Comput. Eng. 10 (1), 94–99.
Poli, R., 1996. Discovery of Symbolic, Neuro-Symbolic and Neural Networks with

Parallel Distributed Genetic Programming. Technical Report CSRP-96-14,
University of Birmingham, School of Computer Science, pp. 1–14.

Poli, R., Langdon, W., Mcphee, N., 2008. A Field Guide to Genetic Programming.
Lulu Enterprises UK Ltd. (With contributions by J. R. Koza).

Searson, D.P., Leahy, D.E., Willis, M.J., 2010. GPTIPS: an open source genetic

programming toolbox for multigene symbolic regression In: Proceedings of
the International Multiconference Engineers and Computer Scientists 2010,

Hong Kong, vol. 1, pp. 77–80.
Streeter, M., Becker, L.A., 2003. Automated discovery of numerical approximation

formulae via genetic programming. Genet. Program. Evol. Mach. 4 (3),
255–286.

Tsoulos, I.G., Lagaris, I.E., 2006. Solving differential equations with genetic
programming. Genet. Program. Evol. Mach. 7 (1), 33–54.

Vladislavleva, E., Smits, G., den Hertog, D., 2009. Order of nonlinearity as a

complexity measure for models generated by symbolic regression via Pareto
genetic programming. IEEE Trans. Evol. Comput. 13 (2), 333–349.

Vladislavleva, E., Smits, G., den Hertog, D., 2010. On the importance of data
balancing for symbolic regression. IEEE Trans. Evol. Comput. 14 (2), 252–277.

Yang, Y.W., Wang, C., Soh, C.K., 2005. Force identification of dynamic systems
using genetic programming. Int. J. Numer. Methods Eng. 63 (9), 131–1288.

Yao, L., Lin, C.-C., 2009. Identification of nonlinear systems by the genetic
programming-based Volterra filter. IET Signal Process. 3 (2), 93–105.

dx.doi.org/http://dx.doi.org/10.1080/10556788.2011.584876

	Parse-matrix evolution for symbolic regression
	Introduction
	Chromosome of genetic programming
	Tree-based chromosome representation
	String-based chromosome representation
	Parse-matrix chromosome representation

	Parse-matrix evolution
	Encoding of PME
	Decoding of PME
	Biological background
	Evolutionary operators
	Search engine
	Procedure
	Exceptions

	Remarks for engineering applications
	Practical difficulties
	Complexity control
	Premature avoidance
	Cost of symbolic regression is negligible

	Coefficient optimization
	Numerical results
	Exact fitting problems
	Test problems from literature

	Conclusion
	Acknowledgements
	Test results in detail
	References

