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This paper considers the Dynamic Berth Allocation Problem, in which vessels are assigned to discrete

positions in berths. This problem, whose goal is to minimize the total time the vessels stay at the port,

constitutes one of the most important processes at any containers terminal. We propose a hybrid

metaheuristic that combines Tabu Search with Path Relinking, T2Sn
þPR. The results reached by this

hybrid algorithm are compared with the optimal values given by the best mathematical model that

appears in the literature for this problem, GSPP, and with a tabu search algorithm from the literature,

T2S. For small instances, the algorithm T2Sn
þPR is able to obtain most of the optimal solutions in an

amount of computational time that is lower than the time required to solve the GSPP model. For

medium and large size instances, GSPP cannot be solved to optimality, whereas the proposed hybrid

algorithm outperforms T2S. Moreover, the computational experiments carried out in this paper confirm

the robustness of the proposed algorithm with respect to both the parameters governing the procedure

and the problem size.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

According to the data provided by the Eno Transportation
Foundation, more than 60% of the products that travel over the
sea are stored in containers. This percentage rise up to almost
100% over some routes connecting economically strong stable
countries. The total amount of cargo reaches several millions of
TEUs (measure unit equivalent to the dimensions of a standard
container). Ports compete to become interchange points (hubs) or
origin–destination points of the transportation routes. Regional
and national governments consider a strategic objective to have
ports where to locate container terminals since they are sources
of economic growth. The competitiveness in this area is huge. The
main criteria used by the operators to choose a port as operations
base are the geographic location, politic and social stability, as
well as operational costs.

Broadly speaking, the loading and unloading processes in a
container terminal consist of several phases as indicated in
Stahlbock and Voß (2008), Steenken et al. (2004), Vis and de
Koster (2003). Once a vessel reaches the port, it is allocated to a
berth. Then, its containers are unloaded and driven to the yard,
where they are temporally stored. Finally, they are moved to
ll rights reserved.
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trucks, trains or ships to proceed with the delivery phase.
Complex planning and management problems, which are very
important for the transport operators and port authorities, arise
in each of the previous phases. Their effective resolution drives to
important savings, being the berthing one of the tasks with the
highest impact in the final costs.

Given a set of vessels, the goal of a berth allocation problem is
to determine how to allocate them to the berths in order to
optimize some cost function. The features of the vessels and the
port or its resources determine the constraints that have to be
satisfied to obtain feasible solutions. One of the most used cost
functions to measure the efficiency of a port terminal is the sum
of the waiting and working times of each vessel. Other cost
functions are the workload of terminal resources (Lim, 1998)
and the number of vessels which cannot be attended in it (Imai
et al., 2008).

Bierwirth and Meisel (2010) describe different integration
schemes. In a functional integration by a feedback loop, the
output solution of one problem is given as input to the other
problem in a loop that is executed until a solution satisfying the
decision maker expectations is reached. Therefore, it is quite
relevant to design and develop procedures that provide high
quality solutions (no necessarily optimal) with a low computa-
tional cost. An example of these designs can be seen in
Giallombardo et al. (2010), where a two levels heuristic is
proposed to solve the joint problem of allocating vessels and
assigning quay cranes to them. In the first level, a quay crane
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profile is assigned to each vessel and in the second level, the
corresponding berth allocation problem is solved. These steps are
then repeated until a stopping condition is met.

In this work, we propose a hybrid heuristic that combines the
Tabu Search metaheuristic with Path Relinking (T2SnþPR) (arti-
ficial intelligence methods) to solve the Dynamic Berth Allocation
Problem. This procedure incorporates to a Tabu Search algorithm
based on T2S, proposed by Cordeau et al. (2005), a set of elite
solutions which consists of a subset of all the local optima found
along the tabu search process. This set is then used to build new
starting solutions for the tabu search by executing a path relink-
ing algorithm. Moreover, we include an additional neighborhood
structure that allows swaps of vessels both among berths and in
the same berth. Therefore, we obtain a tabu search procedure that
uses two neighborhood structures to guide the search, T2Sn. The
results obtained by the proposed hybrid algorithm are then
compared with the results given by the exact resolution of the
mathematical model GSPP (Generalized Set Partitioning Problem)
presented by Buhrkal et al. (2011) and with the results reached by
the T2S proposed by Cordeau et al. (2005). The computational
experience corroborates that T2SnþPR outperforms T2S. It
obtains optimal or near-optimal solutions in most cases in a
smaller amount of time than GSPP. Moreover, for medium and
large size instances, for which GSPP cannot be solved to optim-
ality, T2SnþPR significantly outperforms T2S.

Note that the tabu search algorithm used in this paper is based
on the tabu search T2S, proposed by Cordeau et al. (2005) to solve
the Discrete Dynamic Berth Allocation Problem (DBAP), but that it
is not exactly the one proposed by these authors. The main
difference between both tabu search algorithms is the fact that
our algorithm uses two different neighborhood structures, instead
of the single one used by Cordeau et al. Since several neighbor-
hood structures are considered, it is also required to define the
pattern that has to be followed to perform the different moves.
This constitutes one of the contributions of our paper and is
explained in Section 4. Moreover, our method combines tabu
search with path relinking. It is also important to notice the fact
that it is not guaranteed that a hybrid method combining several
heuristics will reach better solutions than its single parts. In this
work we obtain a hybrid algorithm that outperforms T2S con-
sidering both the solution quality and the computational times.

In the following, we present the outline of the paper and
highlight its contributions. The literature review of the dynamic
berth allocation problem as well as its description are provided in
Section 2. The paper contribution relies upon the solution algorithm
introduced in Section 2 that combines a tabu search algorithm,
which makes use of two different neighborhood structures, with
path relinking, so providing a hybrid algorithm. The computational
experience carried out in this paper is summarized in Section 4. This
experience confirms that the proposed method is effective since it
reaches the optimal solution for most of the solved instances.
Furthermore, the algorithm is significantly more efficient than the
resolution of the mathematical model GSPP studied in Buhrkal et al.
(2011). Therefore, it can be used as an efficient method for solving
the berth allocation problem in integrated designs as the one
proposed by Giallombardo et al. (2010). Finally, we draw our
conclusions in Section 5.
2. Berth allocation problem

In many multi-users container terminals, the quay is divided
into a finite set of berths to which the vessels can be assigned for
loading and unloading purposes. The problem associated to this
assignment scheme is referred to as Discrete Berth Allocation
Problem. The goal of this problem is to minimize the total time
that vessels stay at the port.

In the static version of the problem, all vessels arrive at the
terminal before the starting planning time, while the dynamic version
takes into account the vessels that arrive at any time of the planning
horizon. The static problem has been studied in Imai et al. (1997,
2001, 2008) and Lee and Chen (2009). The dynamic problem has been
studied in Imai et al. (2001, 2003, 2007, 2008), Cordeau et al. (2005),
Monaco and Sammarra (2007), Hansen et al. (2008), Silva et al.
(2008), Liang et al. (2009) and Giallombardo et al. (2010).

Imai et al. (2001) propose a heuristic based on the Lagrangian
relaxation of the proposed model and develop an extensive
computational experience that corroborates the effectiveness of
the proposed heuristic in real applications. Imai et al. (2003)
consider a variant of the problem that includes service priority
associated to the vessels. These priorities let distinguishing the
vessels according to their size, work volume, etc. The resulting
model is then solved using a Genetic Algorithm. Cordeau et al.
(2005) propose a new formulation that includes the weighted
sum of the service times and time windows of the berths. They
also develop a Tabu Search to solve the problem. Imai et al. (2007)
tackle the berth allocation problem in which the vessels can be
loaded and unloaded from both sides of the berth. The problem is
solved by using a Genetic Algorithm. Monaco and Sammarra
(2007) propose a more compact mathematical formulation of
the problem, which is then solved using a Lagrangian heuristic.
The joint problem of berth allocation and quay cranes assignment
is introduced by Imai et al. (2008), who solve it by means of a
Genetic Algorithm. Liang et al. (2009) also consider the previous
joint problem. In their model, the position and time for berthing
and the number of quay cranes must be determined in order to
minimize the amount of working time, waiting time and delay of
each vessel. Hansen et al. (2008) propose a Variable Neighbor-
hood Search for a variant of this problem in which each vessel has
both a reward and a penalty for finishing earlier or later the
preestablished time, respectively. Silva et al. (2008) propose a
heuristic algorithm based on Genetic Algorithm to solve a
particular real case in a Brazilian port. Giallombardo et al.
(2010) propose a heuristic that combines Tabu Search and
Mathematical Programming to solve a new model of berth
allocation and quay cranes assignment.

The Discrete Dynamic Berth Allocation Problem was first
formulated as a mixed integer programme by Imai et al. (2001)
as an extension of the formulation proposed by Imai et al. (1997)
for the discrete static berth allocation problem. Alternative for-
mulations for the dynamic problem have been proposed and
studied by Monaco and Sammarra (2007), Cordeau et al. (2005)
and Buhrkal et al. (2011). These models are described and
compared in Buhrkal et al. (2011). The main conclusion is that
the model by Christensen and Holst is superior to the other
models, since it is able to reach the optimal solutions for the set of
instances used by all these authors.

We report an example of the berth allocation problem. Fig. 1
shows feasible solutions for the static and dynamic berth alloca-
tion problems, for which the working times (Cij), berths avail-
ability (Si) and arrival times (Aj) of the vessels are summarized in
Table 1. Note that in the dynamic version of the problem, which is
the version considered in this paper, idle times may appear in the
berths planning. Note that in both cases, static and dynamic,
berths 1 and 2 are opened in times 4 and 3, respectively. In the
static case, all the vessels arrive at the port before the opening
time of the berths, while in the dynamic case, the vessels can
arrive at any time along the planning horizon.

Let us focus on the dynamic part of this example, since the
problem tackled in this paper is the dynamic one. In this case,
vessels v4, v1 and v2 are assigned to berth 1, while vessels v3 and



Static Problem

Berth 1 v4 v2

Berth 2 v3 v1 v5

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Dynamic Problem

Berth 1 v4 v1 v2

Berth 2 v3 v5

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 1. Berth allocation problems.

Table 1
Vessels arrival times, berths availability and working times.

Vessels arrival times Berths availability Working times

Static problem

j 1 2 3 4 5 i 1 2 Cij j 1 2 3 4 5

Aj 1 2 2 1 1 Si 4 3 i 1 6 4 4 6

2 5 4 3 5

Dynamic problem

j 1 2 3 4 5 i 1 2 Cij j 1 2 3 4 5

Aj 10 6 3 4 11 Si 4 3 i 1 6 4 4 6

2 5 4 3 5
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v5 are assigned to berth 2. Vessel v4, which arrives at time 4, is
assigned to berth 1 at this time and it stays for 4 time units as
indicated in Table 1. The next vessel assigned to berth 1 is v1, that
arrives at time 10 and stays 1 time unit. Vessel v2 is then assigned
to berth 1 after vessel v1 has finished. Note that, since vessel v2

arrives at time 6 and is assigned to berth 1 at time 11, it has to
wait for 5 time units. Then, it requires six more time units to
perform the loading and unloading operations. Therefore, the
total time vessel v2 stays at the port is equal to 11 time units,
which are counted in the objective function value. The same
analysis can be considered to determine the stays of vessels v3

and v5 at the port. Therefore, in this example, vessels v1 to v5 stay
at the port for 1, 11, 4, 4 and 5 time units, respectively and the
objective function value is equal to 25 time units.

Finally, in order to make this paper self-contained, we describe
the mathematical formulation presented in Buhrkal et al. (2011).
According to these authors, the dynamic berth allocation problem
can be modeled as a Generalized Set Partitioning Problem GSPP. In
the constraint matrix, a column represents a feasible assignment of
a ship to a berth at a time. The set of columns is denoted by 9O9.
Two matrices A and B, both containing 9O9 columns are defined.
Matrix A¼ ðAioÞ contains a row for each ship, and Aio ¼ 1, if and
only if column o represents an assignment of ship iAN. Each
column of A contains exactly one non-zero element. Matrix
B¼ ðBpoÞ contains a row per (berth,time) position. The rows of B

are indexed by the set P, with 9P9¼
P

kAMðe
k�skÞ. The entry Bpo is

equal to 1, if and only if, position pAP is contained in the assign-
ment that column o represents. The cost co of any column oAO is
the service time of the respective position assignment and can be
multiplied by the priority factor vi if necessary. A binary variable xo
is equal to 1, if column o is used in the solution, and 0 otherwise.
With these definitions the GSPP formulation of the BAP presented in
Buhrkal et al. (2011) is stated as follows:

min
X

wAO

cwxw ð1Þ
subject to
X

wAO

Aiwxw ¼ 1, 8iAN ð2Þ

X

wAO

Bpwxwr1, 8pAP ð3Þ

xwAf0;1g, 8wAO ð4Þ

The objective function (1) minimizes the service time of the
vessels. The set of constraints (2) ensures that all vessels are
served. Finally, the constraints (3) guarantee that at a time
interval, in a berth, only one vessel can be served.
3. Tabu search with path relinking

Tabu Search (TS) (Glover and Laguna, 1993) is a metaheuristic
procedure whose philosophy is to derive and exploit a collection
of intelligent problem solving strategies, based on implicit and
explicit learning procedures to exploit an adaptive memory
framework, which is an important feature of the artificial intelli-
gence. From the standpoint of tabu search, adaptive memory
embodies the dual functions of creating and exploiting memory
structures, H, for taking advantage of the history of the problem-
solving process. The memory structures of tabu search operate by
reference to four principal dimensions, consisting of recency,
frequency, quality, and influence.

TS may be conveniently characterized by reference to neigh-
borhood search, though neighborhood search has a broader
meaning in TS than in some other parts of the metaheuristic
literature. Tabu search employs a different philosophy for going
beyond the criterion of terminating at a local optimum. Rando-
mization is deemphasized, and generally is employed only in a
highly constrained way, on the assumption that intelligent search
should be based on more systematic forms of guidance. The
notion of exploiting certain forms of adaptive memory to control
the search process is the central theme underlying tabu search.
The effect of such memory may be envisioned by stipulating that
TS maintains a selective history H of the states encountered
during the search, and replaces the neighborhood of solution s,
N(s), by a modified neighborhood which may be denoted by
NðH,sÞ. History therefore determines which solutions may be
reached by a move from the current solution, selecting s0 from
NðH,sÞ.

In TS strategies based on short-term considerations, NðH,sÞ
characteristically is a subset of N(s), and the tabu classification
serves to identify elements of N(s) that will be excluded. In the
intermediate and longer term strategies, NðH,sÞ may contain
solutions not in N(s), generally consisting of selected elite
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solutions reached during the search process. Such elite solutions
typically are identified as elements of a regional cluster in
intermediate term intensification strategies, and as elements of
different clusters in longer term diversification strategies. In
addition, elite solution components, in contrast to the solutions
themselves, are included among the elements that can be
retained and integrated to provide inputs to the search process.

Path Relinking (PR) (Glover et al., 2000) provides a funda-
mental means for pursuing the goals of intensification and
diversification when its steps are implemented to exploit strate-
gic choice rule variations. It is initiated by selecting two solutions
s and s0 from a collection of elite solutions produced during
previous search phases. A path is then generated from s to s0,
producing a solutions sequence s¼ sð1Þ,sð2Þ, . . . ,sðrÞ ¼ s0, where
sðiþ1Þ is created from s(i) at each step by choosing a move that
leaves the fewest number of moves remaining to reach s0. Finally,
once the path is completed, one or more of the solutions s(i) is
selected as a solution to start a new search phase, which can be
based on tabu search as proposed in this paper. A number of
alternative moves can be used to produce a next solution from s(i)
by the ‘‘fewest remaining moves’’ criterion, consequently obtain-
ing a set of possible paths from s to s0. Selecting unattractive
moves relative to the objective function value at each step will
tend to produce a final series of strongly improving moves, while
selecting attractive moves will tend to produce lower quality
moves at the end.

3.1. Tabu search proposed by Cordeau et al. (2005)

Cordeau et al. (2005) propose a tabu search approach (T2S) for
solving the discrete dynamic berth allocation problem, in which a
solution s is described by means of a set of attributes, Attributes,
as indicated below:

AttributesðsÞ ¼ fði,jÞ : ship j is assigned to berth ig:

The neighborhood N(s) of a solution s consists of all the solutions s

which are obtained from s by substituting an attribute
ði,jÞAAttributesðsÞ by another one ði0,jÞ, with ia i0. This move
corresponds to the reallocation of vessel j from its current berth
i to a new berth i0. When vessel j is removed from berth i, the
sequence of vessels in that berth is reconnected by linking the
predecessor and successor of j. Moreover, vessel j is allocated to
berth i0 in the position that minimizes the objective function
value. This move is then forbidden for y iterations, assigning a
tabu-active status to attribute (i,j).

T2S employs an aspiration criterium by global objective. This
criterium revokes the tabu-active status of an attribute if includ-
ing it into the solution let us obtain a solution that improves the
best solution found along the search process.

With the purpose of diversifying the search and drive it to less
explored regions, Cordeau et al. propose the use of frequencies.
Let sANðsÞ be the neighbor solution of s obtained by eliminating
the attribute (i,j) from s. Let rij be the number of times that
attribute (i,j) has been part of the solutions visited during the
process, x the current iteration, and l a parameter to control the
intensity of the diversification. Let us consider the following
modified objective function cðH,sÞ, which is defined as f ðsÞ, if
f ðsÞo f ðsÞ, and as stated below, otherwise:

cðH,sÞ ¼ f ðsÞþlf ðsÞrij=x

where f(s) is the objective function value of solution s.
The set of neighbors of solution s, NðH,sÞ, consists of all the

solutions in N(s) that are non-tabu or that satisfy the aspiration
criterium.

In order to generate the initial solution in T2S, Cordeau et al.
propose two procedures: R-G (Random Greeedy) and FCFS-G (First
Come, First Served - Greedy). In R-G, given a random vessels permuta-
tion, they are assigned one at a time to the best possible berth
following the given order. In FCFS-G, the vessels are ordered accord-
ing to their arriving times and assigned as in R-G.

T2S consists of the consecutive application of the tabu search
starting from both solutions. In both cases, the search stops after
10,000 iterations. The remaining parameters used by T2S were set
to the following values: y¼ b7;5 log nc and l¼ 0;015. A more
detailed explanation of this procedure can be found in Cordeau
et al. (2005).

3.2. Tabu search with path relinking for the DBAP

In order to improve the effectiveness and efficiency of the tabu
search described above, several alternatives can be considered. One
of them consists of incorporating advanced memory structures that
keep high quality solutions to be then used to intensify the search
over promising regions of the search space. Another alternative is to
use several neighborhood structures during the search process.

In this work, we propose to create an elite set of solutions, ES,
which consists of a subset of the local optima encountered during
the process. Moreover, in combination with the local search
proposed by Cordeau et al. that uses the reallocation move, we
implement a swap move, according to which vessels allocated to
either the same or different berths can be exchanged. The new
proposed tabu search, which makes use of two different neigh-
borhood structures to guide the search, will be referred to as T2Sn.
The method proposed in this paper, that combines T2Sn with path
relinking, will be called T2SnþPR.

In a swap move, given a solution s represented by the set
attributes(s), the attributes ði1,j1Þ and ði2,j2Þ are changed by ði2,j1Þ

and ði1,j2Þ. This move corresponds to the reallocation of vessels j1,
j2 from their berths, i1 and i2, to the berths i2 and i1, respectively.

Let N1ðsÞ and N2ðsÞ be the neighborhoods of the solution s

obtained by applying the reallocation and swap moves, respec-
tively. Moreover, let N1ðH,sÞ and N2ðH,sÞ be the modified neigh-
borhoods of s obtained from N1ðsÞ and N2ðsÞ. A solution s belongs
to N1ðH,sÞ if sAN1ðsÞ, none of its attributes is tabu-active or satisfy
the aspiration criterium. The modified neighborhood N2ðH,sÞ is
defined in the same way.

In the algorithm proposed in this paper, T2Sn, the move from a
solution s to a solution snext is carried out as follows. Let s0 be the
best non-tabu neighbor solution of s that can be reached by using
the reallocation move, as indicated below:

s0 ¼ arg min
s AN1ðH,sÞ

cðH,sÞ:

If f ðs0Þr f ðsÞ, the search for the best non-tabu neighbor solution s00

of s0 is performed using the swap movement, as indicated below:

s00 ¼ arg min
s AN2ðH,s0 Þ

cðH,sÞ:

If f ðs00Þr f ðs0Þ, then snext ¼ s00; snext ¼ s0, otherwise.
The set of elite solutions is then used by the path relinking

algorithm to create new starting points for the tabu search. The
combination of tabu search with path relinking has been used in
other papers from the literature Nguyen et al. (2012). Taking an
elite solution selite as guiding solution, and as initial one, sinitial, a
solution generated by R-G, a procedure based on path relinking,
that iteratively brings sinitial closer to selite, is applied. From the
midpoint of this path, a new tabu search T2Sn is then run. The
new reached local optima are used to update the elite set. These
steps are repeated until the stopping condition is met.

Let s(i) be the current solution in the path and BðsðiÞÞ the set of
vessels with different allocation in s(i) and selite, which is the
guiding solution. In order to get the next solution in the path
sðiþ1Þ, a vessel jABðsðiÞÞ is selected and is then allocated to the



procedure T2S + PR;
begin

sR G = R-G();
sFCFS G = FCFS-G();
ES = T2Smin(sR G);
ES ES T2Smin(sFCFS G);
repeat

sinitial = R-G();
selite S elect(ES );
s = PR(sinitial selite);
ES ES T2Smin(s);

until (stopping condition);
end.

Fig. 2. Tabu search with path relinking.
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same berth and position as it is in the guiding solution, selite. These
steps are iteratively repeated until reaching selite. Fig. 3 shows an
example of this process for the dynamic berth allocation problem
with five vessels and two berths, in which the arriving times of
the vessels, the availability of the berths and the processing times
are reported in Table 1.

In the example shown in Fig. 3, in order to move from solution
s0ð1Þ to solution s0ð2Þ, the first difference between s0ð1Þ and the
guiding solution is detected. In this case, vessel 5 is allocated to
the third position of berth 1 in the guiding solution, while in s0ð1Þ
it is allocated to berth 2. Therefore, in order to get closer to the
guiding solution, vessel 5 is allocated accordingly, reaching the
solution s0ð2Þ shown in Fig. 3. This process is iterated until
reaching the guiding solution, selite.

Let sR�G and sFCFS�G be the solutions obtained from the methods R-
G and FCFS-G described above, respectively. Let T2Sn

minðsR�GÞ and
T2Sn

minðsFCFS�GÞ be the sets of local optima obtained after executing
the tabu search from sR�G and sFCFS�G, respectively. Fig. 2 shows the
pseudo-code of T2SnþPR. First of all, the elite set, ES, is initialized
with the sets of local optima T2Sn

minðsR�GÞ and T2Sn

minðsFCFS�GÞ. Then, a
random solution, sinitial, is generated by running the Random Greedy
approach, R-G, and solution seliteAES is randomly selected. A path
relinking connecting sinitial with selite is performed. Finally, the mid-
point solution of this path, s, is selected as starting point to run the
tabu search T2Sn. The local optima reached along this search are also
used to update the elite set of solutions. These steps are repeated
until the stopping condition is met. In the initialization phase of the
elite set, T2Sn is run until reaching either a maximum number of
iterations n1 or a maximum number of iterations without improve-
ments n2. Similarly, in the improvement phase, T2Sn is executed until
either a maximum number of iterations n3 is met or a maximum
number of iterations without improvements is met. T2SnþPR stops
when a maximum number of path relinkings n5 is performed.
4. Computational experiments

The computational experience has been carried out following
two phases. In the first one, the values for the parameters used by
the proposed algorithm T2SnþPR are set. In the second one, the
method T2SnþPR is compared with T2S, T2Sn and the exact
resolution of the mathematical model GSPP described in Section
2. In order to carry out this experience, we have considered
problems of different sizes that range from 25 up to 60 vessels
and from 5 up to 13 berths. We have used the 50 problems of the
set I2 and the 30 problems of the set I3 of Cordeau et al. (2005).
Moreover, in order to reach performance conclusions regarding
the instances, we have generated a new set of realistic test
instances1. Table 2 describes the characteristics of these new
1 These instances are available in https://sites.google.com/site/gciports/

berth-allocation-problem
instances, which were generated according to Cordeau et al.
(2005) with longer time horizon, higher traffic, and less number
of available berths. Under the headings Vessels and Berths, the
number of vessels and available berths are respectively repre-
sented. Last column shows the time horizon corresponding to the
berths availability. All programs have been coded in Ansi C and
the experiments have been performed in a PC with a T4300
processor at 2.10 GHz. The computational times reported in this
section are given in seconds.

4.1. Parameters setting

The behavior of T2SnþPR depends on several parameters: the
elite set size (9ES9), maximum number of iterations executed by
T2Sn to construct the elite set at the initialization phase (n1),
number of iterations without improvements of T2Sn in the
initialization phase (n2), number of iterations run by T2Sn when
it is used as an improvement method after relinking two solutions
(n3), number of iterations without improvements of T2Sn in the
relinking phase (n4) and maximum number of relinkings (n5).

The size of the elite set is set to 10 solutions. In order to
measure the influence of the remaining parameters over the
effectiveness and efficiency of T2SnþPR, different combinations
of values are fixed. Table 3 summarizes these combinations.

With the purpose of carrying out the parameters setting phase,
one third of the problems in classes I2 and I3 are randomly chosen
(1/6 of each class; 7 problems of class I2 and 5 problems of class
I3). Each problem is solved 10 times. The mean objective value
and mean CPU time are considered as response variables. The
analysis has been performed following two steps, in which the
effect of the parameters setting over both the mean objective
value and the mean CPU time are taken into account, respectively.
Table 4 summarizes the obtained results. For each parameters
combination Ci, we report the mean objective value and mean
CPU time.

In order to determine the differences among the combinations
of parameters, we use the Friedman nonparametric statistical test
(see, for instance, Daniel, 1990). In the cases in which the null
hypothesis of equality of treatments is rejected, we use the
multiple comparisons test of Friedman to determine the differ-
ences among the combinations.

Table 5 summarizes the results obtained when applying the
Friedman test for the comparison of equality in the objective
function values and CPU times. The results corroborate that there
are not significant differences in the mean objective function
values when the parameters change. However, significant differ-
ences are detected in the mean CPU times. Table 6 shows the
results obtained when applying the multiple comparisons test of
Friedman at a¼ 0:05 significance level for the CPU times. The first
row reports the ranks of the different parameters combinations.
Then, for each combination Ci, the combinations that have the
same behavior of the given row are shown; i.e. those combina-
tions Cj whose ranks are not higher than the critical difference CD

(9Ri�Rj9�CD).
From the obtained results, we conclude that there are not

statistically significant differences between the combinations of
parameters C1, C3 and C5, regarding the computational time. For
the computational experience that follows in this section, we
have chosen the combination of parameters C1. The rationale
behind this election is the fact that its rank is the lowest, although
there are not significant differences between C1, C3 and C5.

In contrast with other path relinking procedures, the algorithm
proposed in this paper does not consider as initial and guiding
solutions elements from the elite set. The rationale behind this
fact is that we have experimentally seen that this strategy does
not provide good solutions for the considered problem. This may

https://sites.google.com/site/gciports/berth-allocation-problem
https://sites.google.com/site/gciports/berth-allocation-problem


Initial solution s , f (s ) = 12 + 12 = 24

Berth 1 v4 v2

Berth 2 v3 v1 v5

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Guiding solution selite, f (selite) = 11 + 10 = 21

Berth 1 v4 v1 v5

Berth 2 v3 v2

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Solution s (1), f (s (1)) = 16 + 9 = 25

Berth 1 v4 v1 v2

Berth 2 v3 v5

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Solution s (2), f (s (2)) = 29 + 4 = 33

Berth 1 v4 v1 v5 v2

Berth 2 v3

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Solution s (3), f (s (3)) = 11 + 10 = 21

Berth 1 v4 v1 v5

Berth 2 v3 v2

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 3. Example of execution of path relinking.

Table 2
Characteristics of the generated instances.

Set Vessels Berths H

A1 30 3 600

A2 30 5 600

B1 40 5 600

B2 40 7 600

C1 55 5 600

C2 55 7 600

C3 55 10 600

D1 60 5 600

D2 60 7 600

D3 60 10 600

Table 3
Values of the parameters n1 ,n2 ,n3 ,n4 ,n5.

Combination n1 n2 n3 n4 n5

C1 50 10 20 5 5

C2 50 10 20 5 10

C3 100 20 10 5 5

C4 100 20 10 5 10

C5 100 20 20 5 5

C6 100 20 20 5 10
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be due to the fact that the solutions in the elite set belong to the
same subregion of the search space.

Table 7 shows the results obtained when solving with
T2SnþPR three instances randomly selected from the classes I2
and I3 of Cordeau et al. (2005) using both path relinking strategies
(Strategy 1: selects the initial and guiding solutions from the elite
set at random; Strategy 2: uses a solution generated with the R-G
method as initial solution and one solution from the elite set as
guiding one). For each path relinking strategy, several combina-
tions of parameters are used. The first eight columns of Table 7
indicate the number of vessels (9V9), number of berths (9B9),
problem (inst:), and the values to which the parameters n1, n2, n3,
n4 and n5 are set. The four next columns summarize the mean
objective function values and the CPU times required for each
strategy. Last column reports the percentage differences between
strategies 1 and 2. These results corroborate that in all cases the
second strategy provides better objective values than the
first one.

4.2. Comparative analysis

The goal of the computational experiments reported in this
section is to determine the performance of the proposed heuristic
procedure T2SnþPR when compared to the tabu search proce-
dures T2S and T2Sn, and to the resolution of the exact model
GSPP. For this purpose, the problem instances of the classes I2



Table 4
Parameters setting results.

9V9 9B9 inst. C1 C2 C3 C4 C5 C6

25 5 4 693.60 691.50 692.90 690.70 691.60 694.00

0.192 0.259 0.234 0.320 0.236 0.324

6 1129.00 1129.00 1129.00 1129.00 1129.00 1129.00

0.192 0.261 0.242 0.308 0.235 0.298

9 752.60 752.30 752.50 752.60 752.60 752.60

0.214 0.286 0.258 0.337 0.259 0.336

7 10 825.00 825.00 825.00 825.00 825.00 825.00

0.249 0.322 0.334 0.397 0.333 0.389

10 3 764.60 764.10 764.70 763.50 763.90 764.70

0.306 0.391 0.320 0.486 0.384 0.484

8 855.00 855.00 855.00 855.00 855.00 855.00

0.283 0.402 0.392 0.502 0.452 0.528

35 10 1 1125.10 1124.90 1125.00 1125.00 1125.10 1124.90

0.908 1.156 1.509 1.625 1.436 1.705

60 13 10 1213.60 1213.20 1213.30 1213.20 1213.50 1213.00

5.786 8.770 6.847 9.861 7.159 9.913

16 1367.50 1370.30 1367.10 1365.90 1368.60 1366.40

5.962 8.931 7.566 11.178 7.713 10.864

18 1345.00 1345.00 1345.00 1345.00 1345.00 1345.00

5.363 8.108 8.241 10.636 8.641 10.606

25 1383.40 1380.20 1379.40 1379.40 1379.90 1379.80

6.952 9.463 9.238 12.864 8.495 12.220

29 1281.80 1281.50 1281.70 1281.40 1281.20 1281.60

5.908 8.569 7.203 10.660 7.674 10.845

Table 5
p-values associated to the statistic test of Friedman.

Variable Statistic test value Theoretical value p-value

Objective value 4.7083 9.24 Z0:1

CPU time 52.6190 9.24 r0:005

Table 6
Multiple comparisons of Friedman for the CPU time. a¼ 0:05, CD¼27.1284.

Rank 12 31 36 41 66 66

C1 C3 C5 C2 C4 C6

C1 C1 C3 C5

C3 C3 C5 C2

C5 C5 C2

C2 C2 C4 C6
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and I3 of Cordeau et al. (2005) as well as the new instances
generated in this paper are solved with all the procedures. The
heuristic procedures are executed 30 times for each problem
instance.

Tables 8–10 illustrate the results obtained for small, medium
and large instances, respectively. In these tables, under the
headings CPLEX-GSPP, T2S, T2Sn and T2Sn

þPR, the results provided
by the mathematical model, the tabu search from the literature,
the tabu search proposed in this paper as well as the combination
of our tabu search with path relinking are reported, respectively.
Moreover, Opt Val indicates the optimal value for a given instance,
while Obj Val gives the objective function value obtained by the
corresponding method.

In Table 8, the gaps corresponding to T2S and T2Sn are
calculated with respect to the optimum values provided by the
mathematical model GSPP. On the other hand, the gaps corre-
sponding to T2Sn

þPR, Gap1 and Gap2 are calculated with respect
to the optimum values and to the T2Sn objective values, respec-
tively. In Tables 9 and 10, the gaps corresponding to T2Sn are
calculated with respect to T2S objective values obtained with the
procedure by Cordeau et al. (2005), while the gaps corresponding
to T2Sn

þPR, Gap1 and Gap2 are calculated with respect to the T2S
and T2Sn objective values, respectively. In each case, CPLEX was
run until optimality was proven or it run out of memory.

For small size instances, CPLEX was able to solve the instances
to optimality in all cases. However, for medium and large size
instances CPLEX terminated with a memory fault and no solution
was found. The disability of the mathematical model GSPP to
solve more realistic instances had already been noticed in Buhrkal
et al. (2011).

Table 8 shows that T2S obtains 4 out of 30 optimal solutions,
whereas T2Sn and T2Sn

þPR reach 20 and 27, respectively. In
addition, T2Sn

þPR improves the results given by T2Sn in the
remaining three instances. Furthermore, T2Sn and T2Sn

þPR are
significantly more efficient than both GSPP and T2S. Note that the
time reductions of T2Sn with respect to GSPP and T2S are 98.67%
and 87.60%, respectively. Finally, the time reductions of T2Sn

þPR

with respect to GSPP and T2S are 98.30% and 84.15%, respectively.
Note that T2Sn

þPR improves in 10 out of 30 instances the results
reached by T2Sn with a light increment in the computational time.

Table 9 shows that for medium size instances, T2Sn
þPR

obtains the best objective function value in all cases, while T2Sn

and T2S obtain 15 and 0 out of 40, respectively. The time
reductions of T2Sn and T2Sn

þPR with respect to T2S are 82.77%
and 78.37%, respectively. For large size instances, whose results
are summarized in Table 10, T2Sn

þPR also obtains the best
objective function value in all cases, while T2Sn and T2S obtain
10 and 0 out of 30, respectively. The time reductions of T2Sn and
T2Sn
þPR with respect to T2S are 79.48% and 77.37%, respectively.

The Wilcoxon signed-rank non-parametric statistical test is
then used to statistically corroborate the above-mentioned con-
clusions. The performance of the different heuristics implemented
in this paper for solving the DBAP has been compared. The results
are reported in Table 11. The first column corresponds to the
experiment, the second column to the p-value and the third
column corresponds to the error-value a. The comparison
between T2Sn and T2Sn

þPR with T2S resulted in a extremely
small p-value, so that we can reject the null hypothesis of
performance equality and conclude that both T2Sn and T2Sn

þPR

perform significantly better than T2S, that is the tabu search from
the literature. Furthermore, the test also revealed that T2Sn

þPR

presents significant differences with respect to T2Sn at a



Table 8
Small size experimental results.

Size Inst. CPLEX-GSPP T2S T2Sn T2Sn
þPR

Opt Val Time Obj Val Gap Time Obj Val Gap Time Obj Val Gap1 Gap2 Time

30�03 1 1763 11,25 1763 0,00 1,90 1763 0.00 0.25 1763 0.00 0.00 0.25

2 2090 22.59 2090 0.00 1.91 2090 0.00 0.14 2090 0.00 0.00 0.26

3 2186 13.68 2188 0.09 2.15 2186 0.00 0.23 2186 0.00 0.00 0.26

4 1538 12.98 1544 0.39 1.83 1538 0.00 0.23 1538 0.00 0.00 0.28

5 2114 16.12 2114 0.00 1.82 2114 0.00 0.18 2114 0.00 0.00 0.22

6 2185 36.97 2187 0.09 1.83 2187 0.09 0.25 2185 0.00 �0.09 0.34

7 1845 23.29 1849 0.22 1.85 1847 0.11 0.25 1845 0.00 �0.11 0.34

8 1271 9.77 1278 0.55 1.84 1271 0.00 0.17 1271 0.00 0.00 0.31

9 1595 28.25 1595 0.00 1.84 1595 0.00 0.26 1595 0.00 0.00 0.25

10 2195 9.64 2197 0.09 1.82 2195 0.00 0.25 2195 0.00 0.00 0.29

30�05 1 1149 17.93 1153 0.35 2.68 1149 0.00 0.28 1149 0.00 0.00 0.47

2 1475 30.59 1480 0.34 2.61 1476 0.07 0.26 1475 0.00 �0.07 0.47

3 1542 26.43 1547 0.32 2.62 1542 0.00 0.28 1542 0.00 0.00 0.50

4 1075 15.72 1077 0.19 2.74 1075 0.00 0.30 1075 0.00 0.00 0.48

5 1463 23.60 1475 0.82 2.65 1463 0.00 0.31 1463 0.00 0.00 0.40

6 1580 30.84 1587 0.44 2.54 1581 0.06 0.39 1580 0.00 �0.06 0.48

7 1276 19.39 1279 0.24 2.66 1276 0.00 0.23 1276 0.00 0.00 0.46

8 870 22.06 877 0.80 2.64 870 0.00 0.31 870 0.00 0.00 0.42

9 1134 22.31 1156 1.94 2.64 1153 1.68 0.34 1134 0.00 �1.65 0.50

10 1527 18.80 1536 0.59 2.69 1527 0.00 0.29 1527 0.00 0.00 0.46

40�05 1 2301 41.51 2317 0.70 5.82 2307 0.26 0.84 2303 0.09 �0.17 0.90

2 2829 59.89 2839 0.35 5.76 2835 0.21 0.94 2834 0.18 �0.04 1.09

3 2880 99.20 2886 0.21 5.79 2880 0.00 0.58 2880 0.00 0.00 0.50

4 2001 39.78 2033 1.60 5.80 2001 0.00 0.64 2001 0.00 0.00 0.84

5 2815 74.14 2834 0.67 5.90 2815 0.00 0.72 2815 0.00 0.00 0.76

6 2934 66.46 2945 0.37 5.91 2934 0.00 0.84 2934 0.00 0.00 0.87

7 2632 40.97 2656 0.91 5.86 2632 0.00 0.79 2632 0.00 0.00 0.79

8 1835 40.11 1852 0.93 6.01 1836 0.05 0.96 1835 0.00 �0.05 1.28

9 2086 47.70 2119 1.58 5.99 2095 0.43 0.89 2089 0.14 �0.29 1.07

10 2962 52.28 2976 0.47 5.97 2964 0.07 0.63 2962 0.00 �0.07 1.06

1904.93 32.48 1914.30 3.47 1906.57 0.43 1905.27 0.55

Bold numbers indicate that the optimal solution is reached.

Table 7
Strategy 1 (two solutions randomly chosen from the elite set) vs. strategy 2 (the guiding solution randomly chosen from the elite set and the initial solution generated with

R-G).

9V9 9B9 inst. n1 n2 n3 n4 n5 Strategy 1 Strategy 2 Strategy 1 vs.

Strategy 2

Obj. CPU Obj. CPU Gap (obj.1,obj.2)

25 5 4 50 10 20 5 5 709.80 0.075 693.60 0.192 �2.28

10 711.00 0.078 691.50 0.259 �2.74

100 20 10 5 5 717.50 0.109 692.90 0.234 �3.42

10 710.70 0.113 690.70 0.320 �2.81

20 5 5 714.60 0.119 691.60 0.235 �3.21

10 717.90 0.120 694.00 0.323 �3.32

35 10 1 50 10 20 5 5 1127.30 0.451 1125.10 0.907 �0.19

10 1127.00 0.464 1124.90 1.156 �0.18

100 20 10 5 5 1130.80 0.591 1125.00 1.509 �0.44

10 1137.30 0.611 1125.00 1.624 �1.05

20 5 5 1134.80 0.589 1125.10 1.435 �0.85

10 1135.70 0.648 1124.90 1.704 �0.95

60 13 16 50 10 20 5 5 1386.00 1.908 1367.50 5.962 �1.33

10 1386.00 1.903 1370.30 8.931 �1.13

100 20 10 5 5 1386.00 3.113 1367.10 7.565 �1.36

10 1386.00 3.113 1365.90 11.178 �1.45

20 5 5 1386.00 3.170 1368.60 7.712 �1.25

10 1386.00 3.183 1366.40 10.864 �1.41
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confidence level of a¼ 0:05. Therefore, we conclude that T2Sn
þPR

outperforms both T2S and T2Sn.
To sum up this section, we indicate that the computational

experience carried out in this paper corroborates the effectiveness
and efficiency of the proposed procedure, T2SnþPR, since it
reaches the optimal solution for most of the instances that Cplex
is able to solve being more efficient than the resolution of the
mathematical model GSPP. Moreover, it outperforms the tabu
search proposed in the literature. This fact let us state that the
algorithm can be used as an efficient method for solving the berth



Table 9
Medium size experimental results.

Size Instance T2S T2Sn T2Sn
þPR

Obj Val Time Obj Val Gap Time Obj Val Gap1 Gap2 Time

40 1 1489 8.16 1467 �1.48 1.20 1460 �1.95 �0.48 1.11
2 1423 8.26 1381 �2.95 1.01 1375 �3.37 �0.43 1.32
3 2149 8.13 2119 �1.40 0.84 2119 �1.40 0.00 1.17
4 1618 7.99 1600 �1.11 1.18 1597 �1.30 �0.19 1.78
5 1885 8.37 1849 �1.91 1.11 1847 �2.02 �0.11 1.45
6 2104 8.11 2080 �1.14 0.86 2080 �1.14 0.00 1.37
7 1863 7.91 1845 �0.97 1.25 1841 �1.18 �0.22 1.56
8 2040 8.16 2026 �0.69 1.18 2026 �0.69 0.00 1.70
9 1901 8.01 1888 �0.68 1.06 1880 �1.10 �0.42 1.48
10 1922 7.89 1905 �0.88 0.71 1892 �1.56 �0.68 1.59

55�05 1 4701 14.33 4693 �0.17 1.65 4689 �0.26 �0.09 2.82
2 5496 14.25 5483 �0.24 1.37 5467 �0.53 �0.29 2.81
3 5523 14.20 5499 �0.43 1.92 5499 �0.43 0.00 2.67
4 4249 14.27 4189 �1.41 1.76 4179 �1.65 �0.24 3.65
5 5590 14.39 5484 �1.90 1.39 5478 �2.00 �0.11 2.73
6 5609 14.25 5599 �0.18 1.45 5595 �0.25 �0.07 2.56
7 4914 14.44 4902 �0.24 1.90 4882 �0.65 �0.41 3.82
8 3585 14.00 3565 �0.56 1.54 3552 �0.92 �0.36 2.79
9 4301 14.06 4277 �0.56 1.67 4275 �0.60 �0.05 2.75
10 5831 14.14 5739 �1.58 1.85 5739 �1.58 0.00 2.65

55�07 1 2871 19.22 2846 �0.87 3.60 2846 �0.87 0.00 4.78
2 2941 19.13 2887 �1.84 3.03 2883 �1.97 �0.14 4.94
3 3853 19.44 3840 �0.34 4.31 3833 �0.52 �0.18 5.57
4 3022 19.88 2977 �1.49 2.51 2971 �1.69 �0.20 4.31
5 3845 19.01 3803 �1.09 3.75 3801 �1.14 �0.05 3.56
6 3833 19.36 3783 �1.30 2.59 3783 �1.30 0.00 3.70
7 3844 19.36 3774 �1.82 2.43 3774 �1.82 0.00 3.84
8 3893 19.34 3864 �0.74 2.09 3863 �0.77 �0.03 3.95
9 3627 18.91 3597 �0.83 3.03 3591 �0.99 �0.17 5.26
10 3699 19.44 3658 �1.11 2.61 3635 �1.73 �0.63 4.73

55�10 1 2777 26.66 2745 �1.15 8.09 2745 �1.15 0.00 7.31
2 2577 29.89 2549 �1.09 8.23 2534 �1.67 �0.59 6.10
3 2570 29.66 2545 �0.97 6.20 2545 �0.97 0.00 6.53
4 3351 28.25 3315 �1.07 7.00 3315 �1.07 0.00 5.59
5 3157 30.19 3147 �0.32 7.66 3123 �1.08 �0.76 6.12
6 2293 29.42 2283 �0.44 6.48 2283 �0.44 0.00 6.54
7 2172 28.78 2146 �1.20 5.04 2146 �1.20 0.00 9.17
8 2783 30.56 2743 �1.44 4.98 2726 �2.05 �0.62 5.18
9 2212 29.69 2162 �2.26 6.50 2162 �2.26 0.00 6.50
10 2894 30.97 2815 �2.73 5.45 2815 �2.73 0.00 6.05

3260.18 17.76 3226.73 3.06 3221.15 3.84

Bold numbers indicate the best known solutions.

Table 10
Large size experimental results.

Size Instance T2S T2Sn T2Sn
þPR

Obj Val Time Obj Val Gap Time Obj Val Gap1 Gap2 Time

60�05 1 5763 18.35 5761 �0.03 1.99 5753 �0.17 �0.14 3.12
2 6932 18.03 6884 �0.69 2.67 6884 �0.69 0.00 3.20
3 6795 18.09 6782 �0.19 2.17 6780 �0.22 �0.03 4.25
4 5172 18.52 5105 �1.30 2.30 5105 �1.30 0.00 2.30
5 6747 17.93 6715 �0.47 2.47 6715 �0.47 0.00 3.18
6 6637 18.01 6618 �0.29 2.45 6616 �0.32 �0.03 3.53
7 6073 18.43 6011 �1.02 2.66 6011 �1.02 0.00 4.75
8 4415 18.08 4406 �0.20 2.64 4385 �0.68 �0.48 3.77
9 5263 17.95 5235 �0.53 2.17 5235 �0.53 0.00 3.99
10 7350 18.14 7281 �0.94 2.22 7281 �0.94 0.00 3.62

60�07 1 3735 24.30 3724 �0.29 4.40 3715 �0.54 �0.24 9.26
2 4279 24.99 4191 �2.06 6.39 4172 �2.50 �0.45 6.70
3 4291 24.36 4290 �0.02 6.78 4281 �0.23 �0.21 5.90
4 3926 24.44 3916 �0.25 5.32 3916 �0.25 0.00 7.15
5 4294 24.64 4264 �0.70 3.99 4261 �0.77 �0.07 6.23
6 5741 24.17 5731 �0.17 6.56 5729 �0.21 �0.03 4.39
7 3825 24.32 3749 �1.99 6.61 3743 �2.14 �0.16 8.28
8 4735 25.47 4600 �2.85 6.96 4586 �3.15 �0.30 6.96
9 4049 25.73 4011 �0.94 5.39 4004 �1.11 �0.17 5.39
10 4222 24.91 4125 �2.30 5.66 4115 �2.53 �0.24 7.37

60�10 1 2204 23.06 2190 �0.64 5.37 2190 �0.64 0.00 5.37
2 2395 24.09 2359 �1.50 4.69 2358 �1.54 �0.04 3.84
3 1592 23.84 1577 �0.94 4.72 1575 �1.07 �0.13 5.42
4 2632 22.80 2597 �1.33 6.13 2578 �2.05 �0.73 3.78
5 2975 23.72 2961 �0.47 6.10 2954 �0.71 �0.24 4.53
6 2258 23.88 2180 �3.45 6.31 2180 �3.45 0.00 5.20
7 2235 23.73 2177 �2.60 4.62 2177 �2.60 0.00 4.62
8 2216 24.14 2151 �2.93 6.06 2148 �3.07 �0.14 4.34
9 2681 23.74 2661 �0.75 4.92 2660 �0.78 �0.04 5.21
10 2089 23.68 2048 �1.96 5.88 2034 �2.63 �0.68 4.90

4250.70 22.18 4210 4.55 4204.70 5.02

Bold numbers indicate the best known solutions.
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Table 11
Wilcoxon signed ranks test.

Experiment p-value a(%)

T2S�T2Sn o0:001 0.05

T2S�T2Sn
þPR o0:001 0.05

T2Sn - T2Sn
þPR o0:001 0.05
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allocation problem in integrated designs as the one proposed by
Giallombardo et al. (2010).
5. Conclusions

In this paper we propose a hybrid metaheuristic that combines
Tabu Search with Path Relinking to solve the Dynamic Berth
Allocation Problem. An elite set of solutions, which consists of
local optima found along the tabu search process, is used to build,
by path relinking, new initial solutions for the Tabu Search.
Moreover, the proposed tabu search makes use of two different
neighborhood structures to guide the search. This fact implies
that defining the pattern that has to be followed to perform the
different moves is then required. The computational experience
carried out in this paper corroborates the effectiveness and
efficiency of the proposed strategy since they are both increased
when compared with other methods from the literature. This fact
justifies the use of T2SnþPR as a procedure to solve the dynamic
berth allocation problem; particularly in those integrated designs
in which this problem appears as a subproblem. In these cases it
is preferable to use an efficient procedure that provides near-
optimal solutions.

As future work we propose the use of other adaptive memory
structures that let improve the performance of the proposed
method, which already outperforms other heuristic algorithm
proposed in the literature. Moreover, we intend to explore other
alternatives for the construction of the elite set of solutions (eg.,
using a mechanism for diversification as it is than in the Scatter
Search metaheuristic). Finally, we plan to apply the proposed
algorithm over integrated models in which the berth allocation
problem is combined with the quay crane assignment problem.
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