Execution Infrastructure for Normative Virtual
Environments

Tomas Trescak?®, Inmaculada Rodriguez®, Maite Lopez Sanchez”, Pablo
Almajano®

@ Artificial Intelligence Research Institute, Spanish Council for Scientific Research,
Barcelona, Spain
b Applied Mathematics Department, University of Barcelona, Barcelona, Spain

Abstract

Virtual Institutions (VIs) have proven to be adequate to engineer appli-
cations where participants can be humans and software agents. VIs combine
Electronic Institutions (EIs) and 3D Virtual Worlds (VW). In this context,
Electronic Institutions are used to establish the regulations that structure
interactions and support software agent participation while Virtual Worlds
facilitate human participation. In this paper we propose Virtual Institution
eXEcution Environment (VIXEE) as an innovative communication infras-
tructure for VIs. Using VIXEE to connect Virtual Worlds and EI opens EI
to humans, providing a fully operational and comprehensive environment.
The main features of the infrastructure are i) the causal connection between
Virtual Worlds and Electronic Institutions, ii) the automatic generation and
update of the VIs’ 3D visualization and iii) the simultaneous participation
of users from different virtual world platforms. We illustrate the execution
of VIXEE system in a simple eAuction house example and use this example
to evaluate the performance of our solution!'.

Keywords: Virtual Institutions, 3D virtual worlds, Virtual Environments
2010 MSC: 97R40

Email addresses: ttrescak@iiia.csic.es (Tomas Trescak), inma@maia.ub.es
(Inmaculada Rodriguez), maite@maia.ub.es (Maite Lopez Sanchez),
palmajano@iiia.csic.es (Pablo Almajano)

In memoriam, we acknowledge Dr. Marc Esteva for his valuable work in this research.

'We acknowledge ITMAS 2011 as the forum in which the main ideas behind this paper
were preliminary discussed

Preprint submitted to Engineering Applications of Artificial IntelligenceSeptember 7, 2012



1. Introduction and Motivation

Nowadays there is an increasing demand for e-* applications (where *
stands for learning, commerce, government, etc.). These applications support
the participation of humans that engage in different activities, to achieve
their goals. Whenever some tasks can be delegated and automated, these
applications can be enriched with software agents. As a consequence, human
and agent interaction must be handled. The internet based and distributed
software technologies, such as Virtual Worlds (VW) and Multiagent Systems
(MAS), may support the engineering of this type of applications.

Specifically, we advocate to take a MAS approach for designing these sys-
tems and to use 3D Virtual Worlds [1] [2] to get humans-in-the-loop by facil-
itating their participation in the system. First, a 3D real-time representation
of the system facilitates a better understanding of what is happening at both
agent and the entire system levels. Second, thanks to the regulation imposed
by the MAS, the 3D environment becomes a normative Virtual World, where
norms are enforced at runtime. This automatic regulation contrasts with the
way it is done in current virtual worlds where norms are restricted to the
user’s acceptance of the terms of service. Third, system participants can
be both humans and software agents. In other words, it is an effective way
to facilitate direct participation of humans in MAS, instead of just allowing
them to customize agent templates with their preferences. This approach
is taken in Virtual Institutions [3], which have proven [4] [5] [6] [7] to be
an adequate platform to support this type of hybrid multi-agent systems, by
combining Electronic Institutions (EI) [8], which is an Organization-Centered
MAS (OCMAS), and 3D Virtual Worlds. In this context, Electronic Insti-
tutions are used to establish the regulations that structure interactions and
support software agent participation while virtual worlds facilitate human
participation. The former focuses on the definition of the institutional rules
that structure participants interactions. The later is related to the 3D vir-
tual world and supports immersive human participation on the system by
controlling an avatar in a 3D representation of the institution.

The formal specification of an Electronic Institution establishes a com-
mon ontology and the roles participants may play. The performative struc-
ture defines the activities participants can engage on and the relationships
among them. This is specified as a graph, where nodes are scenes and transi-



tions, and arcs connecting them are labelled with the roles that can progress
through them. While scenes define interaction protocols (i.e. scene proto-
cols) among participants by specifying the illocutions that can be uttered,
transitions are used to model synchronization, parallelization, and choice
points. Finally, norms define the consequences of agents’ actions expressed
as obligations.

A performative structure of an EI, is used by our Virtual World Grammar
(VWG) [9] to automatically generate the virtual world design. Activities
of performative structure are displayed as virtual spaces, while illocutions
from the scene protocols are transformed to specific world interactions and
gestures. Also, Virtual World Grammar mechanism allows to generate virtual
world model for several different virtual worlds (e.g. Open Wonderland,
Second Life).

Nevertheless, the generated design is only a 3D model of a virtual world,
a visual layer, separated from the EI runtime infrastructure (called AMELI),
the normative control layer. This separation does not allow normative control
of world interactions at run-time. Thus, layers have to be connected, and in
a way that would assure their consistent state according to the other layer.
Therefore, the desired connection has tokeep their causal dependence, when
related actions in virtual worlds are processed by EI and related EI events
are visualized in a virtual world, by manipulating the virtual world design
(e.g. opening doors).

However, with the existence of such a large number of virtual worlds, it is
often practical to let participate users from several different virtual worlds.
This increases the possible user base or allows to perform experiments with
different user groups (e.g. kids, teens or adults). In some cases, as in the
case of the presented e-auction house, it is even desired to join the execution
of the virtual world application with the non virtual environment, such as
the web application or even the real world (see Section 5).

Combining several different environments and their simultaneous execu-
tion raises several inter-operability issues, such as:

1. Parallel presence, movement and interactions of avatars in different
virtual worlds.

2. Virtual world participants that speak different languages try to partic-
ipate in the same “single language” application.

3. Heterogeneous architectures of virtual worlds make it difficult to mon-
itor and react to virtual world events and interactions, and to causally



update the virtual world model according to the EI state.

Considering point (1) solving parallel avatar presence and movement is
out of scope of this research. However, we demand only a basic level of vir-
tual worlds’ interoperability. This means that participants from other virtual
worlds are visualized as limited avatars, which only perform institutional ac-
tions (e.g. joining a scene). Thus, for instance, it is not shown how they
walk around the room. An example application using multiple virtual envi-
ronments is an auction where users from Second Life, Active Worlds or PS3
Network participate in the same auction room with a fixed amount of chairs.
Hence, as soon as a participant takes one of the chairs, his avatar appears
sitting in a chair, in all other universes (i.e. Virtual Worlds).

The popular solution to solve the problem of multilanguage environments,
mentioned in point (2), is to define a common ontology, that each of the
participating virtual worlds adopts for controlling and executing world’s in-
teractions. In our approach, we rely on Electronic Institutions, which define
such common ontology for all institutional interactions.

Considering heterogeneous architectures in point (3), we need a mecha-
nism that creates a mapping between virtual world dependent actions and
institutional messages. In reverse, it has to define mappings between insti-
tutional events and target virtual environments, where such an event should
be visualized. Concerning the content manipulation, the virtual world model
is generated prior to the execution of the Virtual Institution, and then it is
dynamically updated during the execution of the institution (e.g. launching
of a scene in the normative layer can add a new room to an institutional
building in the visual interaction layer). In our approach, we use Virtual
World Grammar, which can dynamically manipulate 3D content of multiple
virtual worlds.

Bogdanovych et al. presented the architecture of a causal connection
server, which was able to create a causal connection between different en-
vironments (e.g. virtual world and mobile application) [10]. The drawback
of this solution is a simple action-message table which makes it difficult to
route events between different environments and an Electronic Institution.
Therefore, we propose VIXEE as an innovative Virtual Institution eXEcution
Environment which adds important extensions to previous Virtual Institu-
tion infrastructures. These extensions address generic and dynamic features.
That is, VIXEE allocates at run-time participants from different VW worlds,
and it modifies on the fly the content of a virtual world (e.g a new virtual



room can be added during the execution of the infrastructure). An important
factor of any middleware is its agility that is its ability to respond quickly and
safely to both layers event during heavy loads. Therefore, we have evaluated
our solution by measuring response time with a large number of agents (up
to 500 agents).

VIXEE has already been successfully deployed in an e-learning scenario,
the social historical simulation of the City of Uruk 3000 BC [7] [11] and an
e-government scenario, a virtual market of water rights called vimWater [12]
[13] [14]. We are working in another application deployed using VIXEE, it
is a serious game for SmartGrid (electric grid) training [15].

The rest of the paper is organized as follows. Section 2 provides back-
ground information on concepts related to this research. Section 3 discusses
related work. Then, in Section 4, we present VIXEE and explain in detail
its implementation. In Section 5 we present a case study of an e-auction
house application, using which we evaluate our system in Section 6. Finally,
in Section 7, we give conclusions and state our future work.

2. Background

The concept of combining Electronic Institutions with 3D virtual worlds
was introduced in [3] as Normative Virtual Worlds and named Virtual In-
stitutions. In this context, Electronic Institutions are used to specify the
rules that govern participants’ behaviors, while 3D virtual worlds are used
to facilitate human participation in the institution. Therefore, participants
of Virtual Institutions can be both human and software agents. A Virtual
Institution is separated into a Normative Control Layer and a Visual Inter-
action Layer. This provides support to the conceptual separation between
the normative control of interactions and the design of the virtual world,
i.e., the design of the 3D graphical user interface. The Normative Control
Layer is responsible for the institutional control of interactions among partic-
ipants, while the Visual Interaction Layer focuses on the 3D representation
of the institution. Regarding participants, humans participate in the system
by controlling an avatar on the Visual Interaction Layer. Software agents
are directly connected to the Normative Control Layer, visualized as “spe-
cial” avatars in the Visual Interaction Layer and participate by exchanging
messages.

Both layers are causally connected, whenever one of them changes, the
other one changes in order to maintain a consistent state [16]. In the case



Visual Interaction
Layer

[=
2
3
E8 MIDDLEWARE
o3
B
] —
o H
§ Electronic
25 Institution
o !
z

Figure 1: Overview of VI architecture.

of our Virtual Institution, a Causal Connection Layer keeps a consistent
state between the model, represented by the Normative Control Layer, and
its view, represented by the Visual Interaction Layer. Figure 1 shows an
overview of the three layered architecture of Virtual Institutions.

There is an important conceptual difference between Electronic Institu-
tions (EI) and Virtual Institutions (VI). In Els everything is regulated in
the sense that it is defined what is permitted, and everything else is pro-
hibited. In VIs the situation is opposite: there are some actions provided
by the virtual world platform that have institutional meaning, and hence,
they are regulated (e.g. participants are obliged to pay for obtained goods
before leaving the auction room), while the rest of actions are permitted (e.g.
there is no regulation for walking around a room). This is similar to tradi-
tional organizations or institutions, where participants are able to perform
many actions, but only some of them are regulated and have organizational
or institutional meaning.



3. Related Work

In this research work, we advocate the use of Virtual Institutions as Nor-
mative Virtual Worlds for the deployment of e-* applications and social sim-
ulations. For the purposes of such applications, we found that current archi-
tectures of the middleware (Casual Connection Layer) lack features, therefore
we proposed a new one. This section presents the state-of-the-art in causal
connection architectures, as well as in works related to Normative Virtual
Worlds.

First attempt to establish a causal connection between Electronic Insti-
tutions and 3D virtual worlds (in this case Adobe Atmosphere) led to the
creation of Causal Connection Server (CCS) [5]. CCS implemented two basic
causal actions: (i) creation of an external agent connected to AMELI when a
new human user logs in the institution and (ii) visualization of a new avatar
in a virtual world when a software agent connects to AMELI. Additionally,
CCS used an action/message table mapping each virtual world action to
an institutional message. Later, the same author presented an architecture
that allowed causal connection between multiple environments (e.g. mobile
devices, virtual worlds and the real world) and AMELI [10].

Subsequently, the implementation of the causal connection between a 3D
virtual world and an Electronic-Institution was further extended during the
development of the Itchy Feet prototype [4] which used Virtual Institutions
in a virtual tourism environment. For this purpose, authors implemented the
Connection Server, bound to the Itchy-Feet implementation. Authors later
removed the binding to their solution and presented a Generic Connection
Server (GCS). The architecture of this system is depicted in Figure 2. GCS is
a robust extension of CCS, that uses its own communication protocol between
the virtual world and AMELI. Messages using this protocol are specified in
XML format and validated against XSD schema. We have used the ideas
from both GCS and CCS to design our new architecture.

Previous approaches to causal connection have some limitations: (i) they
can only use a single virtual world (GCS) or the execution with multiple
virtual worlds is difficult to control and maintain (CCS); (ii) they cannot
manipulate the virtual world content at runtime; (iii) there is no mechanism
for a fail-safe communication.

We have removed these limitations and created Virtual Institution eX-
Ecution Environment (VIXEE). VIXEE is a generic solution, which han-
dles the causal communication with multiple environments using the Movie



Torque Virtual World

Client Layer

Torque Server Client n

MIDDLEWARE B
‘¢ Agent Manager

5 Generic Connection Server b\ Y 4

o!

3

=

=

E; Remote Server

s (Dummy Server)

1

O:

t=H

Q:

m:

@& -TCPPort

Figure 2: Architecture of the Itchy Feet solution

Script mechanism (see Section 4.2). Moreover, VIXEE dynamically reacts on
changes in the institution and changes the virtual world content accordingly.

Cranefield et al. also aimed to structure social interactions in virtual
worlds adapting techniques used for agents in MAS [17]. They monitored
social expectations in Second Life virtual world. As a main difference, they
used temporal logic rules and we use an Electronic Institution to define a set
of rules that structure participants interactions.

Afterwards, in the same research line, authors addressed issues of collec-
tion, filtering and processing of sensor data [18]. This research led into the
development of a tool that connects Second Life with Jason, a well known
agent programming language and platform [19]. In this work, authors demon-
strate a new framework in conjunction with an extension of the Jason BDI
interpreter that allows agents to specify their expectations of future outcomes
in the system and to respond to fulfillment and violations of these expecta-
tions. Meanwhile they take an agent-centered perspective connecting BDI



agents to Second Life virtual world, we adopt an organizational approach
proposing a generic infrastructure which casually connects a domain inde-
pendent OCMAS (Organization Based MAS) with several virtual worlds.

The use of Normative Virtual Worlds has been explored in the context of
computer games as well. In a previous research, we used Virtual Institutions
in the definition of Quests for Massive Multi-player Online Games (MMOG)
[20]. The infrastructure presented in this paper can be used to enforce the
rules defined for a particular quest. In another work, Salceda et al. also mod-
elled gaming scenarios using social structures [21]. In this context, agents (i.e
Non-Player Characters) take into account high-level definitions that would
allow for reasoning why to make a particular decision on a specific context.
In comparison to this work, we use organizations to enforce agents’ inter-
action rules at run-time, rather than extending individual agents’ reasoning
cycle with organizational awareness.

4. Virtual Institution Execution Infrastructure

In this section, we propose a Virtual Institution eXEcution Environment
(VIXEE), which defines a new architecture of a middleware of a Virtual
Institution, connecting users in the Visual Interaction Layer to the Normative
Control Layer. Normative layer is in charge of regulating participant actions
by means of AMELI, the EI execution infrastructure. VIXEE supports the
participation of software agents by visualizing them as bots in connected
Virtual Worlds; thus, human-software agent interaction is enhanced.

4.1. Solution Architecture

We design VIXEE respecting the 3-layered architecture of Virtual Insti-
tutions, depicted in Figure 3. The top layer consists of several 3D Virtual
Worlds. The bottom layer is represented by the Electronic Institution ex-
ecution environment (AMELI). Both layers are causally connected by our
middleware, which consists of the Extended Connection Server (ECS) and
the Virtual Worlds Manager (VWM).

4.1.1. Visual Interaction Layer

The Visual Interaction Layer consists of several 3D virtual worlds. Hu-
man users and selected software agents are represented by their avatars (i.e.
3D virtual characters). Each of the virtual worlds can be implemented in



Virtual World 1 Virtual World 2 Virtual World n
(e.g SecondLife) (e.g OpenSim)

.

..Visual Interaction
Layer

Extended n " .
Connection Server AMELI Dispatcher VW Dispatcher Builder

(ECS) [ Movie Script—) Movie Script | | |[ Build Script ]

T

Virtual World
\

Grammar
Manager

Causal Connection Layer

Remote Server ‘ Electronic

(Dummy Server) Institution
Specification

Normative Control
Layer

@ -TCPPort
Figure 3: Architecture of the Virtual Institution Execution Environment

a different programming language and using different visualization technolo-
gies. The virtual world communicates with the middleware using a standard
network protocol (e.g. TCP, HTTP).

The case study introduced in Section 5 uses OpenSim as the virtual world
platform for the e-auction house Virtual Institution. The Visual Interaction
Layer may be composed of different types of interfaces allowing users to
participate from a 3D Virtual World as well as from a web page.

10



4.1.2. Normative Control Layer

The Normative Control Layer is represented by an Electronic Institution
running in AMELI, which mediates agents’ interactions while enforcing in-
stitutional rules. AMELI is a general-purpose MAS infrastructure, as it can
interpret any institution specification generated by ISLANDER [22], the Els
specification editor. Therefore, it can be regarded as domain-independent.
The combination of ISLANDER and AMELI provides full support for the
design and development of Electronic Institutions [23]. For each participant
within an institution, AMELI creates a governor, which mediates its partic-
ipation in the institution, and coordinates with the rest of other agents in
AMELI to guarantee the correct execution of the institution. Autonomous
software agents (A. Agent in Figure 3) participating in the institution are
directly connected to AMELI. AMELI uses two TCP ports to communicate
with the middleware. The first one is used to announce changes in the insti-
tutional state (event) to the causal connection layer (e.g. started institution,
agent entering or exiting a scene). The second one is used to receive messages,
corresponding to VW actions, from the middleware.

4.1.3. Causal Connection Layer

The Causal Connection Layer (CCL) (hereafter we may refer to it as mid-
dleware) provides the causal connection between different 3D virtual worlds
and an executing Electronic Institution. As Figure 3 shows, it is split into
two main components: (i) Extended Connection Server (ECS), responsible
for communication with AMELI; and (ii) Virtual Worlds Manager (VWM),
responsible for communication with 3D virtual worlds. The rest of this sec-
tion describes them.

Extended Connection Server (ECS)

ECS mediates all communications between AMELI and Virtual Worlds
Manager. This layer introduces new features and improvements that were
not available in previous designs of the Causal Connection Layer [5] [10] [4].
The most notable features are: support for multiple environments, reaction
on early EI events, and connection fail-safe mechanisms. Current design
allows us to connect one running instance of an Electronic Institution to
multiple 3D virtual worlds, thus allowing joint participation of users from
different virtual worlds in the same Virtual Institution. Reaction to early
ET events allows to catch events like institutionStarted, which can trigger the
construction of the virtual world design. The connection fail-safe mechanisms

11



deal with connection errors from both virtual worlds and EI to the Casual
Connection Layer.

An important part of ECS is the Agent Manager. For each human partic-
ipating in a 3D virtual world, the Agent Manager creates an external agent
(E. Agent in Figure 3) in the middleware representing him within the insti-
tution. Thus, when the avatar tries to perform an action that requires insti-
tutional verification, this agent is used to send the corresponding message to
AMELI. Hence, AMELI perceives all participants as software agents. There
are two different classes of external agents, one for human participants and
another one for software agents. Currently, VIXEE contains our own model
of external agents, programmed in .NET framework. External agents have
the possibility to detect and react to events they receive from both virtual
world and an Electronic Institution. Also, they connect to AMELI, where so
called governor is created, which is responsible for monitoring and control of
agents’ actions.

Moreover, ECS includes the Builder component, which communicates
with the Virtual World Grammar Manager, and it is responsible for manip-
ulating the virtual world content. Specifically, the Builder uses the Virtual
World Grammar to perform its tasks. Notice though, that whilst the Builder
is responsible for creating a new geometry for a virtual world scene (e.g.,
virtual rooms), the Virtual World Manager is the component in charge of
updating the virtual world visualization.

ECS uses the VW Dispatcher to mediate virtual world actions and the
AMELI Dispatcher to mediate AMELI events. Both dispatchers use our pro-
posed Movie Script mechanism to select which action to perform depending
on the context of an action/event (see Section 4.2). As Section 4.3 details,
when the VW Dispatcher receives an action from a virtual world, it sends
the corresponding message to AMELI, and if necessary, waits for AMELI
response (synchronous messages wait for a response, while asynchronous do
not). The response to the event is communicated back to the virtual world
(see Figure 5). 3D worlds are able to use either HT'TP or TCP protocol
to communicate its events. On the other hand, as described in Section 4.4,
AMELI Dispatcher handles AMELI events. Such events provoke a causal
change in the state of 3D virtual worlds, so AMELI Dispatcher triggers an
action execution to each of the connected virtual worlds (see Figure 6).

ECS uses three TCP ports. First one is used to communicate between
the Builder and Virtual World Grammar Manager. The second one is used
to listen for AMELI events. The third one is used by the Agent Manager to

12



send messages to AMELI (all external agents share the same port).
Virtual Worlds Manager (VWM)

Virtual Worlds Manager is used to mediate all communications between
3D virtual worlds and ECS and to dynamically manipulate the 3D represen-
tation of all connected virtual worlds. It consists of a set of virtual world
Proxies, one for each connected virtual world (see Figure 3). These proxies
allow to use a language specific for a given virtual world to communicate with
VIXEE. Thus, for example, in Second Life we use OpenMetaverse® library
to update the state of the virtual world. The content is manipulated after
receiving a selected AMELI event (e.g. SceneStarted), when as a result a
new room is created in the 3D virtual world. Next section details how this is
done based on our Movie Script mechanism, which can map any event /action
from a specific context (AMELI event or virtual world action) to a Movie
Script action.

4.2. Message Handling: Mowvie Script Mechanism

Virtual World interactivity is accomplished through virtual world actions
that human users and software agents perform within a virtual world. Such
actions are either institutional or-mon institutional. An institutional action
has to be validated by the Electronic Institution running in AMELI (e.g.
entering some scene). On the contrary, execution of non institutional actions
does not have to be validated by the institution (e.g. walking).

When an institutional action is performed in a virtual world, an Elec-
tronic Institution needs to be causally updated by receiving the correspond-
ing AMELI message (e.g. agentEnterScene). In reverse, when the Electronic
Institution produces an event (we refer to such an event as AMELI event),
all virtual worlds need to be causally updated. The original mechanism that
handles this mechanism, proposed by [5], is an Action/Message table. This
table holds mappings between virtual world actions and an institutional mes-
sage. An example from the e-auction house example is the mapping of the
gesture raising hand to the institutional message “bid”. The problem arises
when we need to assign two different meanings for the same gesture, or the
same action. That is, actions or gestures can have different meaning in a
different context (e.g. police man raises hand to stop traffic). Another is-

Shttp://openmetaverse.org/, (last accessed 05/2012)

13


http://openmetaverse.org/

N
Extended Connection Server

VW Action Movie Script Mechanism

- name

- agent Virtual World Movie Script

- role -

- location | ACIt_IfDn 1 |~.\~ AMELI Message

| Action n |

AMELI Movie Script

- AMELI Event
Action 1 | L& | - name
- agent
Action n | - role
- context

4

Figure 4: Movie Script Mechanism Conceptualization

sue of the original approach is that it is not possible to route events to and
from multiple environments, meaning, that we cannot decide which events
to process in which environment and in what manner.

Thus, we propose our Mowvie Script mechanism to process the transfor-
mation of virtual world actions to AMELI messages and in reverse transfor-
mation of AMELI events to virtual world updates. Figure 4 describes how
the Movie Script mechanism uses Mowvie Script actions to handle such trans-
formations. This mechanism supports the virtual world independence and
facilitates a simple and consistent definition of the expected behavior of a
3D virtual world. A virtual world Movie Script is defined for all virtual envi-
ronments and a AMELI Movie Script for an Electronic Institution. Both are
processed by the VIXEE environment. A Movie Script contains a number of
lines. Each virtual world Movie Script line specifically defines the context for
which this Movie Script line applies (e.g. participant role, virtual world loca-
tion, action name). Each AMELI Movie Script line defines for which AMELI
event this line applies (e.g. event name, institution name, sender role) and
which virtual worlds should be notified about this event using what Movie
Script action.

Virtual World Actions
VIXEE differentiates between three types of institutional actions: illocu-

tionary (illocutions that agents try to utter within scenes), motion (move-

14



Action Type Action Description

enterInstitution |Request to enter the institution

Motion |moveToTransition|Request to move from a scene to a transition

moveToScenes |Request to move from a transition to several
scenes

Illocutionary | saySceneMessage |Request to say a message in a scene

accesScenes | Ask for the scenes the agent can join from a tran-

sition
Inf ti — — —
ptormation accesTransitions |Ask for the transitions the agent can join from a
Request
scene
agentObligations | Ask for pending agent’s obligations
sceneState Ask for a scene’s current state

scenePlayers |Ask for agents in a scene

Table 1: Institutional Actions

ments between scenes and transitions), and information request (scenes reach-
able from a transition, transitions reachable from a scene, agent’s obligations,
scenes’ states, and scenes’ participants).

Institutional actions are initiated in a specific virtual world and validated
by sending the corresponding message to its Proxy and observing the re-
sponse. Table 1 shows examples of institutional actions. The Movie-script
mechanism maps the institutional action to the defined Movie Script action,
which depending on the action context received from the Proxy, creates the
AMELI message and sends it to AMELI. For each received message, AMELI
replies with one of the following messages: agree (acknowledge message),
refuse (incorrect message), or unknown (message not understood).

We seek inspiration in a movie production, where depending on a current
scene and its state, an actor performs an action. Like a regular Movie Script,
it contains script lines. Each line holds the definition of the context, upon
which a defined action is executed. Formally:

Definition 1. Virtual World Movie Script is a function:

vwf : AX Rx L x VIWA — MSA which maps a virtual world action
vwa € VW A to a corresponding Movie Script action msa € M S A depending
on its context, where:

1. Ais a set of Virtual Institution participants

15



2. R is a set of roles that participants can take while participating in the
Virtual Institution

3. L is a set of locations, that is either transitions or scenes

4. VW A is a set of virtual world actions being sent from the virtual world

5. MSA is a set of Movie Script actions

An example of a script line from the eAuctions institution (see Section 5)
is: vwfi(agentld, buyer, auctionRoom, saySceneMessage(“Bid”, Agentld,
amount)) = makeBid(Agentld, buyer, auctionRoom, saySceneMessage(“Bid”,
Agentld, amount)). This lets a user with role buyer bid a specific amount of
money and sends the bid request to AMELI.

AMELI events

The causal connection of AMELI with all connected virtual worlds is
maintained by the AMELI Dispatcher, which reacts to received AMELI
events by executing a corresponding Movie Script action. Then, for each
of the connected virtual worlds, and for each of the relevant AMELI events,
we have to implement a Movie Script action, executed by the correspond-
ing Proxy, which updates the virtual world visualization. Table 2 contains
examples of typical AMELI events: Formally:

Definition 2. AMELI Movie Script is a function:

amf: E— {VW x MSA}* which depending on received AMELI event e €
E, for each of the connected virtual worlds vw € VW returns a corresponding
Movie Script action msa € MSA where:

1. E is a set of AMELI events, where each event contains the name of
the event, the event context (identifying the origin of the event) and
message specific content.

2. VIV is a set of identifiers of all connected virtual worlds.

3. MSA is a set of Movie Script actions. Specifically msa € MSA is a
Movie Script action which updates the given virtual world vw € VW
depending on the content of the message e € E. In particular, msa
can be empty, if no Movie Script action is defined for a specific virtual
world.

16



An example of an AMELI Movie Script line from the e-auction house insti-
tution (see Section 5) for AMELI event ae; = (agent EnteredScenelagent =
buyery, scene = Auction]) is: amfi(ae;) = {SecondLife, openDoor(ae;)},
{OpenSim, openDoor(ae;)}. This opens the door of the auction scene in
Second Life as well as Open Simulator.

4.8. VW Actions Implementation

There are different activities that participants perform in 3D virtual
worlds. For example, they interact with objects and communicate with other
participants. It is similar in Virtual Institutions where agents represented by
avatars must be able to perform institutional actions. In this section, we
present how our system handles 3D virtual world actions, maintaining the
causal dependence with an Electronic Institution using a bidirectional con-
nection.

N
Extended

(O

>

3 Agent Manager Connection Server

2

o - 4
512 ow |

\"J \| Dispatcher ,1

N

5 () Movie
I Script L’
cle >
s|la[fl| CE.Agent ) ||| - 5
Szl ~———— ||| e
2|2
g —/ )

Figure 5: Message flow for VW generated action. Dashed lines represent the
message passing, solid lines represent the use relationship.

Figure 5 depicts the message flow of a virtual world action. In this Fig-
ure, the dashed line represents a message, while solid line represents the use*
relationship. When an action happens in a virtual world, it is sent to the
Connection Server using a corresponding VW proxy (1). Next, the received
message is passed to the external agent representing the user who has per-
formed the action (2). The external agent uses the VW Dispatcher to send
the message to AMELI. Specifically, VW Dispatcher uses the Movie Script
mechanism (function vw f) to find the action (3). The Movie Script action is
executed, and VW Dispatcher sends the corresponding message to AMELI

4We consider the UML 2.0 notation



(4). Then, agent actions are evaluated by AMELI. As a result, an AMELI
event may be generated (see Section 4.4), and all connected virtual worlds
are notified about agents’ actions. For an asynchronous message, the process
ends here.

For synchronous messages, the ECS waits for the response, which is ei-
ther the confirmation of the action execution or an error message (5). The
response is sent to the Agent Manager (6). Finally, The Agent Manager
contacts all the connected VW proxies (7) and each one of them informs its
related 3D virtual world about the result of the action (8). If the result is
positive, the action is visualized in the 3D virtual world. Actions produce
human readable or visual output so the participant can perceive the output
of his action either by a change in a 3D world (opening door) or by receiving
a message.

4.4. AMELI Events Implementation

AMELI keeps the execution state of an EI, which evolves as consequence
of participant actions. In such a case AMELI informs participants about
those changes by using a set of institutional events (i.e. AMELI events).
Examples of such events are: institution started, scene started, agent entering
or leaving a room or a transition.. VIXEE provides support for all AMELI
events.

Extended Connection Server\
vw PI‘OXy AMELI

| __| Method 1 ) Dispatcher ;
Metr.{od n \. Movie i
> Script AMELI
VW Proxy | Y| e
1 Method 1 / ...........

. ¢ 1
Method n ﬂ

Figure 6: Message flow from AMELI to 3D virtual world

Figure 6 depicts how VIXEE processes an AMELI event. When AMELI
triggers an event (1) it is communicated to ECS using TCP in the predefined
AMELI format. AMELI has a fixed, predefined set of events. When ECS
receives an event, it calls the AMELI Dispatcher that uses the Movie Script
function amf to look for an action msa to execute (2). Then, for each of the
connected VW Proxies, it dispatches the related action (3). If requested, ECS

18



Event Description

InstitutionStarted An instance of new Electronic Institution was cre-
ated

SceneStarted An instance of new scene was created in AMELI

SceneFinished An instance scene was destroyed

Entered AgentEI An agent has entered an institution

Exited AgentEI An agent has exited the institution

MovedToScene An agent has moved to a scene

ExitedScene An agent has been exited of the scene

SaidMessage A message has been said in a scene

Table 2: Examples of AMELI events

can use the Builder to dynamically create and update the 3D representation
of the related virtual world.

Table 2 contains the list of typical AMELI events. Notice that some
events require the use of Builder component to manipulate the virtual world
content. These events and their corresponding VW updates are:

o [InstitutionStarted - The system generates a 3D representation of an
institution from scratch or resets the institution to the default state.

e SceneStarted - The system generates a 3D representation of the scene
and sets the virtual world parameters so that it is possible to enter the
generated scene.

o SceneFinished - The system removes a 3D representation of the scene
and teleports all avatars out of the scene.

4.5. VIXEFE Interface

While previous systems (CCS [5], GCS [4]) needed to run several com-
ponents and programs in order to connect a Virtual Institution to a vir-
tual world, VIXEE runs as a stand-alone tool with its own user graphical
user interface. Figure 7 shows VIXEE interface demonstrating its parts.
The project explorer (1) contains all parts of VIXEE infrastructure, includ-
ing Electronic Institutions, agents and Movie Scripts. Simulator is used to
launch agents within the virtual world. Project item editor (2) allows to

19



modify selected project part using a custom visual interface. Figure 7 shows
the AMELI movie script editor. (3) Log component describes application log
messages. It is also used to monitor the incoming and outgoing communica-
tion.

File View
‘ &d» B HBS
Project Explorer X Movie Ameli * Simulator | s X
[ Uruk - Pearl of Mezopotamia —
I [g Run Configurations (3 New
! ﬁ: Institutions ) Modify Script Line =
I [#} Agents
B Ameli Movie Script Blatform: [~ ~ | Federation: [~ REEE - -
;I: Ww Movie Script Agent: Particle:
% Simulator
Name: [ v] Action:
~) Script Line Parameters |
1 ~ ) Script Lines
] . -
Platform Federation Ei  Particle Agent MName Action
- " Uruk ~ = StartedElnstitutionEvent  Vwbt.Uruk.StartKing
Lag L -nx
Level: ~ Source: * Reset
Source Message Exception B
AmeliRecei Accepting connections at localhost:2435 4o &
‘ AmeliRecei Starting at localhost:2435 PR Vi =
Ether Arg "Validate - Validate 2" in "Validation”: Current implementation supports only 1 illocution per ScenaArc! 3
Ether Arc "Validate - Validate 1' in "Validation": Current implementation’supports only 1 illocution per SceneArc! u
Ether Arc "Main - Main' in 'EtherScene’; Current implementation supparts anly 1 illocution per Scenedrc!
o e — Y SECRE VIR T S, T I S . SO -
Errors | Log
‘ Ready ..

Figure 7: VIXEE interface

5. Case Study: eAuction House

Our case study concerns an auction system which allows both in-house
users (bidders present in a real auction room) and internet users to participate
in real auctions happening all around the world. This proved to be useful
for specific types of auctions, like fish market auctions [24], happening over
a short time period, in the exact hour on the exact place. These types of
auctions use extensive visual information for auctioneers, e.g., fish quality,
that decide the final price of the auctioned item. However, how to accomplish
the presence in all these places and achieve an effective and comfortable
communication between in-house and internet users? Our answer is a hybrid

20



environment which combines 3D virtual worlds, augmented reality and multi-
agent system technologies. We generate an auction as a virtual space, either
as a room in a big auction building or a separate building in the virtual world.
All auction participants are displayed as avatars. Internet users move around
the building and visit different auctions by entering auction rooms. In-house
users are tracked either by cameras or some communication device, and their
actions are constantly updated in the 3D representation. The auction system
displays auction progress to every type of participant in the following format:

e FEach in-house user sees an announcement board with the auction progress,
or this information is displayed in custom glasses that he wears, allow-
ing to augment reality.

e Web user sees a dynamic page control displaying the auction progress.

e Virtual world user observes the actual environment and the behavior
of avatars to see the auction progress.

First, to define the Virtual Institution supporting the e-auction house
execution, we specify the normative control layer of the Virtual Institution,
which is an Electronic Institution specification. Figure 8 depicts a performa-
tive structure (set of connected scenes) of the e-auction house institution. As
this figure depicts, institution supports roles of seller, buyer, staff and auc-
tioneer. Staff agent is a software agent responsible for automatic processes,
such as the creation of an auction room and controlling the auction execution
protocol. To start the auction, staff agent changes role to auctioneer. Scenes
in this institution are: I[temlInfo, ItemRegister and Auction. Initial and Final
scenes are specific scenes through which participants can enter or leave the
institution.

In this specification, sellers first register items in an ItemRegister scene.
If no auction is running, staff agent creates a new auction scene and waits for
participants to start the auction. Buyers join the ItemInfo scene to check the
list of items to be auctioned and the auction starting time. When a required
number of buyers enters the auction scene, the auction starts. Buyers can
bid either by raising their hand, or by typing the bid command. When the
auction finishes a winner cannot leave the auction room until he pays for the
items he won. When no more items are to be auctioned, the auction room
is destroyed (removed from virtual space).

21



s:auctiopeer

1o ||| 1
] ]

[ 1
L

Figure 9: Initially generated floor plan (left) and the floor plan generated
with the addition of the auction room (right)

Second, using the Virtual World Builder Toolkit, we define a Virtual
World Grammar that allows us to generate the 3D representation of the

22



Figure 10: Initially generated 3D model (left) and the 3D model generated
with the addition of the auction room (right)

Virtual Institution from the performative structure. In this tool, we can test
the generated output. An example of the generated floor plan is displayed
in Figure 9. To generate this floor plan, we map ItemRegister scene to the
registration room, ItemInfo scene to the item information room and Auction
scene to the auction room. In this Figure ’a’ is the registration room, b’ is
the item information room, and ’c’, on the right side of the figure, represents
the subsequently generated auction room.

Finally, once the Electronic Institution and Virtual World Grammar are
specified, we map virtual world actions and AMELI events to the correspond-
ing Movie Script actions. An example of virtual world action is an avatar
raising his hand in the auction room that triggers a bidding Movie Script
action. The bidding action is an example of the synchronous event, where its
success or failure is visually announced to the other participants in the virtual
world. We also map an AMELI event of a StaffAgent creating a new Auction
scene to the Movie Script action where the system adds a new auction room
to the visualization of the virtual world, where avatars will participate in the
auction.

Once previous steps are defined, we can run VIXEE. Figure 9 depicts
floor plans generated by the Virtual World Grammar, while the left part of
Figure 10 depicts a visualization of the eAuction House in Second Life after
launching the institution and with ltemRegister and ItemiInfo scenes. The
right part of Figure 10 depicts the aerial view of the institution after the
auction room has been generated. Figure 11 shows the AMELI interface:
a top set of highlighted lines indicate that a seller agent registered a new

23



item for the auction; a single highlighted line shows an event describing that
staff agent entered (and thus created) a new Auction scene. Additionally,
Figure 12 shows avatars participating in the running auction, from the point
of view of the auction manager.

AMELI (Monitoring Mode)

File Monitoring Yiew Help
(o] mm]|e]m
#| efuctions-Platform :

¢ eAuctions—Federation "
¢ fit efuctions ( ]

T é§ -l:efuctionsP

o @ Initial
o @ Final
o B createModes:|: il
o- @ temRegister || =P The agen P e scene "{(..
o @B itemninfo B The transition '{{1/createfuction: 0RQ@{-1/eAuctionsPS:efuctions. .,
i< sellerEntry:.Or The 'Staffigent' has been entered in the transition '[{l/createfuc...
o= & createfuctio
o @ Auction The agent 'StaffAgent’ would move from that transition '{{1/create...
o fift Ether |2q The agent 'staffagent’ has synchronized the movements from the ...
&0 The oo amii = RRRLELLCT
,, The 'Staffagent:staff' has been entered in the scene '[{0/Auction
g o i Borenlc
The transition '{{1/createfuction: Ori@{-l/efuctionsP S efuctions.,
federation: efuctions-Federation T
|| elnstitution: efuctions —
1] M D performativeStructureRef: (-1/efuctionsPSieAuctionsPs)
agent: . Staffagent |
Scene i source: {{l/createfuction:Or¥l@(-l/efuctionsPS:efuctionsP5iT hd

Figure 11: AMELI interface

6. Evaluation

In this section, we evaluate the performance of VIXEE using the e-auction
house Virtual Institution example. Participants of this institution are hu-
mans and software agents. Humans participate playing the roles of buyers
and sellers. Software agents play either as staff, or as buyers or sellers. Dur-
ing the test we simulate virtual world actions of humans and software agents
and measure VIXEE’s response time to such actions (e.g. VIXEE’s response
time to validating the entrance to a particular scene or response time to a
bidding action). The simulation of actions is done by feeding VIXEE’s proxy
with VW event calls (step 1 in Figure 13) and measuring time of receiving
a response (step 8 in Figure 13). This test was repeated ten times recording
obtained values. We have measured this response time in three intervals:

24



8o Second Life

Ls0 [EOYES

Figure 12: Avatars participating in an ongoing auction

T1

T2
> 4—>

Figure 13: Measured response time intervals

e T1 is the time interval between receiving the message from virtual
world and sending it to AMELI server (that is time of step 1, step 2
and step 3 in Figure 13). In this interval VIXEE parses the message
from text format into the form understood by VIXEE, finds appropriate
Movie Script action and executes it and depending on the result of the

action it then sends this message to AMELI.

e T2 is the time interval between sending and receiving the message from

AMELI (that is time of step 4 and step 5 in Figure 13).

25



e T3 is the time interval VIXEE needs to process the received AMELI
response and to send it back to the virtual world (that is time of
steps 6, 7 and 8 in Figure 13).

To simulate actions of humans and software agents, we have created two
different sets of actions (i.e. plans) that VI users typically perform within
the eAuction institution. First plan is performed by the simulated human
user with the buyer role. In this plan, the human user enters the institution,
obtains the list of items registered for an auction, and then enters the auction.
In order to get the list of auctioned items, the human avatar communicates
with the staff agent. Second plan is executed by a simulated software agent
with the role of seller. We assume that a human user programmed the
software agent to register the items for him. In this plan, agent enters the
institution, registers the item and then leaves the institution.

s:auctiopeer

Figure 14: Two different plans that VI participants follow during the test
(dashed lines are for SW agents and solid lines for human users).

Figure 14 shows the actions that follow both simulated humans and soft-
ware agents. In the plan for simulated human users (marked with solid lines),
humans enter the institution and move to the Initial scene (1). Then, they
exit the Initial scene (2) and move to the ItemInfo scene (3) where they re-
quest the information about currently auctioned items (4). Then, they exit
the ItemInfo scene (5) and move to the Auction scene (6). After moving to
the Auction scene, agents decide not to participate, so they exit the scene

26



(2) and move back to ItemInfo scene (3). This creates an infinite loop of
actions. In step (4) we simulate the execution of a complex Movie Script
action (e.g. finding specific auctioned items, considering a huge amount of
registered items). We set the execution time of this action to 1500 ms. We
use this simulated action to prove that scalability of VIXEE depends only
on the implementation of the specific VI that is, its Movie Script actions.

The plan for software agents in Figure 14 is marked with dashed lines.
In this plan agents enter the institution and move to the Initial scene (1).
Then, they exit the Initial scene (2) and move to the ItemRegister scene (3),
where they register some items (4). Then, agents leave this scene (5) and
exit the institution (6). When their plan is completed, agents restart it.

We ran the test in multiple threads where each thread ran a predefined
number of agents. The test randomly decides how many human users and
how many software agents will simulate. Threads run in parallel, where
each thread executes actions in the following manner: (i) randomly select an
agent; (ii) execute one step from agent’s plan; (iii) wait; then thread waits a
random time from an interval of [0, 3] seconds. Executions of random agents
in random time simulates real-world behavior where different actions from
different agents are executed simultaneously.

To evaluate the system scalability we ran two different tests with different
amounts of threads and agents and compared the results. We tested the
system response time from two different aspects:

e Testing the average response time separated the presented three inter-
vals (T1-T3) of each of the steps of the plan (1-6), for 100 and 500
agents.

e Testing the total average response time while incrementally increasing
the number of active agents

| | T1 | T2 | T3 | Total |
With step 4 87,79 ms|2,92 ms|0,03 ms|90,75 ms
Without step 4| 2,22 ms |3,18 ms|0,04 ms| 5,45 ms

Table 3: Average response times for 100 agents (in milliseconds)

First test ran with 10 threads, each running 10 agents (100 agents in
total). First row of the Table 3 shows the average response time of each

27



1500 L

— 16
[%]
E
g 12
E
5
= 8
[&]
Q
i
4 I I I I
0 - | B ™ -I [ M |
1 2 3 4 5 6
Plan Step Number
T P T3 B Total

Figure 15: Average step execution time for all steps for 100 agents

interval T1, T2 and T3, along with an average total response time. Second
row of the Table 3 shows the average response times without the step 4
(i.e. complex Movie Script action). Then, we see that the average response
time drops to 5 ms. This shows that the limits of VIXEE are bound to the
complexity of the Movie Script actions, which is domain dependent, since
it corresponds to the implementation of the specific Virtual Institution. To
further illustrate this, Figure 15 shows the average execution times for each
of the six actions for 100 agents, clearly showing that action 4 takes the
longest execution time.

| | T1 | T2 | T3 | Total |
With step 4 91,54 ms|6,83 ms|0,05 ms|98,44 ms
Without step 4| 8,81 ms |6,86 ms|0,05 ms|{15,73 ms

Table 4: Average response times for 500 agents (in milliseconds)

In the second test, we ran 25 parallel threads, each running 20 different
agents, that is 500 agents in the same virtual environment. Agents were
joining VIXEE in zero to three seconds interval. First row of the Table 4
shows the average time of each interval T1, T2 and T3, along with the average
total response time with all six actions included. Second row of the Table 4
shows the average response time without step 4 (that is the step where we
perform a Movie Script action taking 1500 ms). By comparing both tables,
we can see, that even that we have increased the number of agent five times,

28



1512 I

Execution Time (ms)
w I
=) o

-
&)}

1
o la III.‘IIIII
2 3 4 5 6

1
Plan Step Number

[ BN | T2 T3 B Total

Figure 16: Average step execution time for all steps for 500 agents

VIXEE’s average response time increased from 5 ms to 15 ms (making the
relation sublinear). Figure 16 shows the average execution times for each of
the steps. We can note that in comparison with the times from Figure 15,
the sublinear relation is kept for all actions.

Total Response Time by Number of Connected Agents

70 -
y =0,0015x + 17,87

)]
)]

I
N

Response Time (ms)

N
[oc]

-
~

IR H
0

2 37 72 107 142 177 212 247 282 317 352 387 422 457 492
Number of Active Agents

Figure 17: Average response time with different number of connected agents

Another aspect that we have evaluated was the total response time (7'1 +
T2 + T3) during the incremental load. We have been adding agents one by
one till we were running 500 agents. We let all agents execute some actions
in parallel, and we measured the VIXEE’s response time. Figure 17 shows

29



the graph of average response times depending on the number of connected
agents. We can observe that even with the very high number of connected
agents VIXEE was slowing down steadily with the average response time
around 20 ms. We have approximated the performance decrease by a linear
function y = 0,0095x + 15, 34, that just corresponds to 0.9% performance
decrease by each connected agent. The computed coefficient of determination
is R? = 0.0003°.

7. Conclusions

In this paper we have presented VIXEE, the Virtual Institution Execu-
tion Environment, which is an innovative communication infrastructure for
Virtual Institutions where participants are human and software agents. Vir-
tual Institutions are normative 3D virtual worlds where participants interact
to achieve their common or individual goals. The main contributions of our
research are:

e Our design of a middleware layer, which provides causal connection
of several virtual worlds with an Electronic Institution which uses
our Movie Script mechanism, improving previous version of an Ac-
tion/Message approach. This allows users from different virtual worlds
to participate in the same institution.

e Combination of our middleware with Virtual World Grammar allows
dynamic manipulation of an environment content in different environ-
ments.

This paper describes the architecture and communication processes of
VIXEE and explains what changes were made in comparison to previous ap-
proaches [5] [10] [4]. VIXEE provides an architecturally neutral, domain in-
dependent, and scalable solution for causal connection in Virtual Institutions.
Architectural-neutrality from the agent point of view is given by AMELI, al-
lowing to execute heterogeneous agents with any architecture. From the Vir-
tual World point of view, a Virtual World Manager allows to connect different
Virtual Worlds with any architecture. Domain independence is supported by

5The y function and R? function were computed by the standard functionality of the
Numbers program for Mac

30



Virtual Institutions concept and the Movie Script mechanism, where VIXEE
uses movie script to handle communication in Virtual Institutions from many
domains. We have presented the e-auction house institution example to con-
template the dynamic update of the 3D model of this institution.

We evaluated the performance of VIXEE in a high load scenario, with
500 agents executed in 25 threads. We have measured average VIXEE re-
sponse time, while increasing the number of connected and communicating
agents. We conclude that VIXEE does not introduce any limitations on the
scalability of the system, and it is only limited by the complexity of the im-
plementation of the movie script actions and by scalability limits of selected
virtual worlds.

As future work we plan to evaluate our VIXEE in different scenarios from
e-* (e-commerce, e-government) applications. We also plan to evaluate the
usability of the system with human users using different virtual worlds.

References
[1] R. Bartle, Designing Virtual Worlds, New Riders Games, 2003.

[2] P. R. Messinger, E. Stroulia, K. Lyons, M. Bone, R. H. Niu, K. Smirnov,
S. Perelgut, Virtual worlds- past, present, and future: New directions
in social computing, Decision Support Systems 47 (3) (2009) 204-228.

[3] A. Bogdanovych, H. Berger, C. Sierra, S. Simoff, Humans and agents
in 3D electronic institutions, in: F. Dignum, V. Dignum, S. Koenig,
S. Kraus, M. P. Singh, M. Wooldridge (Eds.), 4rd International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2005), July 25-29, 2005, Utrecht, The Netherlands, ACM, ACM, 2005.

[4] 1. Seidel, Engineering 3D virtual world applications design, realization
and evaluation of a 3D e-tourism environment, Ph.D. thesis, Technischen
Universitat Wien Fakultat fur Informatik (2010).

[5] A. Bogdanovych, Virtual institutions, Ph.D. thesis, University of Tech-
nology, Sydney, Australia (2007).

[6] A. Bogdanovych, S. Simoff, M. Esteva, Virtual institutions prototype,
in: Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems - Volume 2, AAMAS ’09, International

31



[11]

[12]

Foundation for Autonomous Agents and Multiagent Systems, Richland,
SC, 2009, pp. 1373-1374.

A. Bogdanovych, J. A. Rodriguez, S. Simoff, A. Cohen, C. Sierra, Devel-
oping virtual heritage applications as normative multiagent systems, in:
Proceedings of the 10th international conference on Agent-oriented soft-
ware engineering, AOSE’10, Springer-Verlag, Berlin, Heidelberg, 2011,
pp. 140-154.

M. Esteva, Electronic institutions: From specification to development,
Ph.D. thesis, Artificial Intelligence Research Institute (IIIA-CSIC),
Spain (2003).

T. Trescak, M. Esteva, I. Rodriguez, A virtual world grammar for au-
tomatic generation of virtual worlds, The Visual Computer 26 (2010)
521-531.

A. Bogdanovych, S. Simoff, M. Esteva, Normative virtual environments:
Integrating physical and virtual under the one umbrella, in: Third Inter-
national Conference on Software and Data Technologies (IC-Soft 2008),
INSTICC, 2008, pp. 233-236.

T. Trescak, Intelligent generation and control of interactive virtual
worlds, Ph.D. thesis, Autonomous University of Barcelona, Barcelona,
Spain (2012).

P. Almajano, T. Trescak, M. Lopez-Sanchez, M. Esteva, I. Rodriguez,
v-mwater: an e-government application forwater rights agreements, in:
Agreement Technologies Handbook, Agreement Technologies, to appear
in 2012.

P. Almajano, T. Trescak, M. Lopez-Sanchez, M. Esteva, 1. Rodriguez,
An infrastructure for human inclusion in mas, in: ECAI 12, 2012.

P. Almajano, T. Trescak, M. Esteva, I. Rodriguez, M. Lopez-Sanchez,
v-mwater: a 3d virtual market for water rights (demonstration), in:

AAMAS 12, 2012.

A. Bourazeri, J. Pitt, P. Almajano, 1. Rodrguez, M. Lopez-Sanchez,
"meet the meter: Visualising smartgrids using self-organising electronic

32



[16]

[17]

[18]

[22]

institutions and serious games”, in: SASO 2012, to appear in AWARE-
NESS workshop at SASO 2012.

P. Maes, D. Nardi (Eds.), Meta-Level Architectures and Reflection, El-
sevier Science Inc., New York, NY, USA, 1988.

S. Cranefield, G. Li, Monitoring social expectations in second life, in:
Proceedings of the 5th international conference on Coordination, orga-
nizations, institutions, and norms in agent systems, COIN’09, Springer-
Verlag, Berlin, Heidelberg, 2010, pp. 133-146.

S. Ranathunga, S. Cranefield, M. Purvis, Interfacing a cognitive agent
platform with a virtual world: a case study using second life surangika
ranathunga (extended abstract), in: Proceedings of the 10th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, In-
ternational Foundation for Autonomous Agents and Multiagent Sys-
tems, 2010, pp. 1181-1182.

R. H. Bordini, M. Wooldridge, J. F. Hubner, Programming Multi-Agent
Systems in AgentSpeak using Jason (Wiley Series in Agent Technology),
John Wiley & Sons, 2007.

G. B. Aranda, T. Trescak, M. Esteva, C. Carrascosa, Building quests
for online games with virtual institutions., in: F. Dignum (Ed.), AGS,

Vol. 6525 of Lecture Notes in Computer Science, Springer, 2010, pp.
192-206.

I. G.-S. Sergio Alvarez-Napagao, Fernando Koch, J. Vazquez-Salceda,
Making games alive: an organisational approach, in: Proceedings of
AAMAS 2010 Workshop on Agents for Games and Simulations, 2010,
pp. 112-124.

M. Esteva, D. de la Cruz, C. Sierra, Islander: an electronic institu-
tions editor, in: AAMAS '02: Proceedings of the first international joint
conference on Autonomous agents and multiagent systems, ACM, New
York, NY, USA, 2002, pp. 1045-1052.

M. Esteva, B. Rosell, J. A. Rodriguez-Aguilar, J. L. Arcos, Ameli: An
agent-based middleware for electronic institutions, in: N. e. a. Jen-
nings (Ed.), AAMAS 2004, Third international joint conference on au-

33



tonomous agents and multiagent systems, Vol. I, ACM, ACM, 2004, pp.
236-243.

[24] P. Noriega, Agent Mediated Auctions: The Fishmarket Metaphor,
Monografies de I'Institut d’Investigacié en Intel.ligencia Artificial, In-
stitut d’Investigacié en Intel.ligencia Artificial, 1999.

34


https://www.researchgate.net/publication/233785151

	Introduction and Motivation
	Background
	Related Work
	Virtual Institution Execution Infrastructure
	Solution Architecture
	Visual Interaction Layer
	Normative Control Layer
	Causal Connection Layer

	Message Handling: Movie Script Mechanism
	VW Actions Implementation
	AMELI Events Implementation
	VIXEE Interface

	Case Study: eAuction House
	Evaluation
	Conclusions



