
Prognostic Normative Reasoning

Jean Oha, Felipe Meneguzzib, Katia Sycaraa, Timothy J. Normanc

aRobotics Institute
Carnegie Mellon University

Pittsburgh, PA, USA
{jeanoh,katia}@cs.cmu.edu
bSchool of Computer Science

Pontif́ıcia Universidade Católica do Rio Grande do Sul
Porto Alegre, RS, Brazil

felipe.meneguzzi@pucrs.br
cDept. of Computing Science

University of Aberdeen
Aberdeen, UK

t.j.norman@abdn.ac.uk

Abstract

Human users planning for multiple objectives in complex environments are subjected to high levels of cognitive
workload, which can severely impair the quality of the plans created. This article describes a software agent
that can proactively assist cognitively overloaded users by providing normative reasoning about prohibitions
and obligations so that the user can focus on her primary objectives. In order to provide proactive assistance,
we develop the notion of prognostic normative reasoning (PNR) that consists of the following steps: 1)
recognizing the user’s planned activities, 2) reasoning about norms to evaluate those predicted activities,
and 3) providing necessary assistance so that the user’s activities are consistent with norms. The idea of
PNR integrates various AI techniques–namely, user intention recognition, normative reasoning over a user’s
intention, and planning, execution and replanning for assistive actions. In this article, we describe an agent
architecture for PNR and discuss practical applications.

Keywords:

1. Introduction

Human users planning for multiple objectives in
highly-complex environments are subjected to high
levels of cognitive workload, which can severely im-
pair the quality of the plans created. The cognitive
workload is significantly increased when a user must
not only cope with a complex environment, but also
with a set of complex rules (or norms) that prescribe
how the planning process must be carried out. For
example, military planners during peacekeeping oper-
ations have to plan to achieve their own unit’s objec-
tives while following standing operating procedures
that regulate how interaction and collaboration with
Non-Governmental Organizations (NGOs) must take
place. These procedures generally prescribe condi-
tions upon which the military should perform escort
missions, for example, to ensure that humanitarian

NGO personnel are kept safe in conflict areas. To as-
sist cognitively overloaded human users, we develop a
software assistant agent that can proactively provide
timely reasoning support.

In this article, we specifically aim to assist the
user’s normative reasoning. Norms generally define a
set of rules that is enforced among the members of
a society. In this article, normative reasoning refers
to the reasoning about prohibitions and obligations
specified in those rules of a society. A recent study
shows that dynamically changing normative stipula-
tions hinder human ability to plan to both accom-
plish goals and abide by the norms [1]. This result
is not surprising, and the difficulty is intensified in
a multi-national or multi-cultural team context that
is common in various operations today. To help the
users cope with cognitive overload, there have been
growing interests in automated normative reasoning.

We acknowledge ITMAS 2011 as the forum in which the main ideas behind this paper were preliminary discussed.

Existing work on automated norm management re-
lies on a deterministic view of the planning model [2],
where norms are specified in terms of classical logic;
in this approach, violations are detected only after
they have occurred, consequently assistance can only
be provided after the user has already committed ac-
tions that caused the violation [1]. By contrast, our
approach aims to predict potential future violations
and proactively take actions to help prevent the user
from violating the norms.

In order to provide a user with a timely support,
it is crucial that the agent recognizes the user’s needs
in advance so that the agent can work in parallel with
the user to ensure that the assistance is ready by the
time the user actually needs it. This desideratum
imposes several technical challenges for the assistant
agent to: 1) recognize the user’s planned activities, 2)
reason about potential needs of assistance for those
predicted activities to comply with norms as much
as possible, and 3) plan to provide appropriate assis-
tance suitable for newly identified user needs.

Our approach to tackle these challenges is realized
in a proactive planning agent framework. As opposed
to planning for a given task, the key challenge we ad-
dress here is to identify a new set of tasks for the
agent–i.e., the agent needs to figure out when and
what it can do for the user. Specifically, we employ a
probabilistic plan recognition technique to predict a
user’s plan for her future activities. The agent then
evaluates the predicted user plan to detect any poten-
tial norm violations, generating a set of new tasks for
the agent to prevent the occurrence of such norm vio-
lations. After identifying new tasks, the agent plans,
executes, and replans a series of actions to perform
the tasks. As the user’s environment changes the
agent continuously updates its predictions. Subse-
quently, the agent must frequently revise its plans
during execution. To enable a full cycle of autonomy,
we present an agent architecture that seamlessly in-
tegrates techniques for plan recognition; normative
reasoning over a user’s plan; and planning, execution
and replanning for assistive actions.

We have published abstract descriptions of our
approach in [3, 4]. Several readers of our previous
publications expressed interests in the parts that were
omitted due to space limitation. This article pro-
vides the detail of our approach that has not been
fully published earlier. The main contributions of
this article are the following. We present a principled
agent architecture for prognostic reasoning assistance

by integrating probabilistic plan recognition with rea-
soning about norm compliance. We develop the no-
tion of prognostic normative reasoning to predict the
user’s likely normative violations, allowing the agent
to plan and take remedial actions before the viola-
tions actually occur. To the best of our knowledge,
our approach is the first that manages norms in a
proactive and autonomous manner. Our framework
supports interleaved planning and execution for the
assistant agent to adaptively revise its plans during
execution, taking time constraints into consideration
to ensure timely support to prevent violations. In or-
der to avoid the agent’s interference with the user’s
actions, although the agent can observe the variables
representing the user’s state, we assume that the user
and the agent can act upon a disjoint set of variables.
Thus, although the assistant does not directly enforce
the norms, it tries to steer the user towards compli-
ance through communication. For a proof of concept
experiment, our approach has been fully implemented
in the context of a military peacekeeping scenario.

The rest of this paper is organized as follows. Af-
ter reviewing related work in Section 2, we describe
a high-level architecture of the agent system in Sec-
tion 3. The three main components are described in
detail in the following sections: Section 4 describes
the agent’s plan recognition algorithm for predicting
the user’s future plan; Section 5 describes how the
agent evaluates the norms to maintain a normative
state and to detect potential violations; and Section
6 presents how the agent plans and executes actions
to accomplish identified goals. We present a fully im-
plemented system in a peacekeeping problem domain,
followed by other potential applications in Section 8,
and conclude the paper in Section 9.

2. Related Work

We develop the notion of prognostic normative
reasoning by bridging two significant branches of AI
research: plan recognition and normative reasoning.
Here, we discuss only the work closely related to ours
and point the readers to survey articles for broader
background.

2.1. Plan Recognition

Plan recognition refers to the task of identifying
the user’s high-level goals (or intentions) by observ-
ing the user’s current activities. In order to recognize
a user plan, the agent should have some model of

2

how the user typically performs certain tasks; for in-
stance, given two locations the user may have a set
of preferred routes to drive between the two loca-
tions. Such a model is referred to as a plan library,
and it represents a set of alternative ways to solve
a domain-specific problem. The majority of existing
work in plan recognition relies on plan libraries; that
is, plan recognition algorithms aim to find a plan in
the library that best explains the observed behavior.
For specific techniques, we refer the readers to survey
articles such as [5].

Constructing a plan library is, however, an elab-
orate process. In order to facilitate the cumbersome
step of building a plan library, recent work proposed
the idea of formulating plan recognition as a plan-
ning problem. Notably, one approach uses classical
planners [6] whereas the other approach uses decision-
theoretic planners [7]. Following the plan recogni-
tion as planning principle, our approach utilizes a
decision-theoretic planner, specifically a Markov De-
cision Process (MDP) [8]. The decision-theoretic plan-
ners aim to find an optimal plan with respect to the
objective of maximizing a discounted long-term re-
ward (or minimizing a cost). The work presented in
[7] uses an MDP to represent how people recognize
the plans of others. During their experiments, human
subjects watch an agent moving in a 2-dimensional
space and are asked to predict the agent’s goal posi-
tions. Their results show that decision-theoretic pre-
dictions match well with those of the human subjects.
In this respect, our approach is to design a software
assistant to make predictions in a similar manner to
a human assistant.

2.2. Normative Reasoning

In order to ensure that certain global properties
of a society or organization are maintained, rules (or
norms) that express permissions, prohibitions and obli-
gations have been developed [9]. These concepts rep-
resent, respectively, situations that must, must not
and can be the case in the world for it to comply
with the societal rules. Mathematical study of norms
has been carried out in the context of deontic logic
[10], while computational treatment of these stipula-
tions has been studied recently by the agents commu-
nity as normative systems. These efforts led to the
development of various formal models of norms [11],
as well as practical approaches to reasoning about
norms within individual agents [12] and in a society
[13]. The formalisms that allow modeling of norms

for agent systems can also be used for the specifica-
tion of the rules that humans must follow. Since this
work is concerned with assisting a user to mitigate
the cognitive load of planning under normative con-
straints, we leverage the formalisms to create an in-
ternal representation of the norms that the assistant
must consider when providing assistance.

In order for norms to be enforced in a norm-
regulated system, various mechanisms were devised
to monitor norm compliance within a system. The
state of compliance of a set of norms within a system
is known as the normative state [14] and describes
which agents are complying (or violating) which norms.
Although various approaches to norm monitoring have
been proposed [14, 2, 15], they all rely on a deter-
ministic logic view of the normative state. Without
a probabilistic model of agent behavior, a norm mon-
itoring mechanism can only assert whether a norm
is definitely violated or not, lacking a gradual notion
of how likely an agent is to violate a norm or when
an agent is about to violate a norm. Thus, an assis-
tant aiming to warn a user of potential violations can
either constantly remind the user of all the norms
in the system (which can potentially be violated), or
inform the user after a violation has occurred that
some remedial action should be taken. In this re-
gard, deterministic norm representations fail to ad-
dress an important need of preventions. By contrast,
we take a probabilistic approach to be able to specify
the agent’s belief about potential norm violations so
that the agent can proactively take preventive actions
for the norms with high probabilities of violation.

3. Agent Architecture

In this section we describe a system architecture
for a proactive yet unobtrusive assistant agent. Fig-
ure 1 illustrates the agent architecture that is com-
posed of the following main modules: observer; plan
recognizer; norm reasoner; planner; executor and pre-
senter. We describe each module and how the compo-
nents interact, followed by a set of design assumptions
and a scenario example.

3.1. Modules

Observer: The agent monitors the user’s cur-
rent activities to identify anything that might indi-
cate changes in the user’s current and future plan.
Such indicators are referred to as observations. The
observer is responsible for receiving user input and

3

Observer Plan
Recognizer

Norm
Reasoner

Presenter Agent
Planner

Agent Plan
ExecutorAgent Plan

ExecutorAgent Plan
Executor

Observations:
Keyboard Activities

Predicted
User Plan

Goals:
User Needs

PlansAssistance

Figure 1: Overview of the proactive assistant.

translating it into observations that the plan recog-
nizer module can utilize. The types of observations
are domain specific, and thus must be well defined
through a domain engineering process. When a new
observation is made it is passed to the plan recog-
nizer.

Plan Recognizer: The agent interprets new ob-
servations to make (or update) its predictions on what
the user plans to do. When the agent receives a new
observation from the observer, the plan recognizer up-
dates the probability distribution over a set of states,
known as a belief state, that represents the agent’s be-
lief about the user’s true state. Given a belief state,
the plan recognizer identifies most likely plans from
the current belief state and constructs a predicted
user plan referred to as a plan-tree. Nodes in the re-
sulting plan-tree include the expected state induced
by the action in the user’s plan and a probability es-
timation that the user will actually visit the state.
This plan-tree is fed to the norm reasoner.

Norm Reasoner: The agent evaluates the pre-
dicted user plan to detect any potential norm vio-
lations ahead of time. Norms specify desirable and
undesirable values for state variables under specific
circumstances, so violations occur when these state
variables are in particular configurations. Thus, once
the plan recognizer has computed the set of possible
future states the user is likely to reach, given its pre-
dicted actions, the norm reasoner evaluates the state
variables in each of these states for norm violations.
When violations are detected, the norm reasoner tries
to find the nearest non-violating states, which are
then sent to the planner as the agent’s next goals.

Planner: For each predicted plan step where
norms would be violated, the agent plans–that is, de-
cides which actions to take–to prevent potential norm
violations. Once the norm reasoner detects poten-

tial norm violations in the predicted states for the
user and finds the nearest compliant states, the agent
planner uses a planner to find actions to steer the user
away from violating states. These individual plans
are then sent to the plan executor for execution.

Plan Executor: The agent executes a preven-
tion plan to avoid the predicted violation from hap-
pening. Once plans to avert violations have been
generated by the planner, the plan executor is re-
sponsible for carrying them out. When the agent’s
prediction changes because of newly developed ob-
servations, e.g., the predicted violation is no longer
eminent, the executor marks the correponding plans
as inconsistent, aborting their executions.

Presenter: The agent reports to the user by pre-
senting which preventive actions the agent has taken
to resolve a certain violation. In many situations,
even if the user is under risk of violating a norm,
it might be undesirable to allow the agent to au-
tonomously carry out actions to prevent a violation
(e.g. when agent actions are costly). In these cases,
the agent will be limited to advising the user of the
imminence of a violation, and let the user decide on
whether to take corrective action or not. Thus, the
presenter is responsible for informing the user about
imminent norm violations as well as corrective steps
that the user may choose to take.

3.2. Design Assumptions

The agent models a user’s planning space in terms
of a set of task-specific variables and their domains
of valid values, where a variable describes an envi-
ronment and the progress status of certain activi-
ties. A set of norms specifies which states must be
visited (or avoided) in the user plan using a set of
variables and their relationships. In general, such
norms introduce additional variables to consider in
addition to task-specific ones, adding extra dimen-
sions into the reasoning process. As seen in a recent
study [1], when planning involves complex reason-
ing as in military environments, human users tend
to lose track of norms, resulting in plans with sig-
nificant norm violations. By developing an assistant
agent that manages norm-related variables, our ap-
proach aims to relieve the user from having to deal
with both task-specific variables and norm-related
variables. We make a specific assumption that task-
specific user variables and norm-specific agent vari-
ables are independent and thus changing an agent
variable does not affect the values of user variables.

4

We assume independence of variables on the agent
side as a means of preventing the agent from act-
ing concurrently and possibly competitively with the
user. In the agent architecture, whereas the state
space of the (user) plan recognizer is defined in terms
of user variables that of the (agent) planner is in
terms of agent variables. The norm reasoner aligns
the two components since the norms are defined in
terms of both user and agent variables.

3.3. Example Scenario

We use a simple example of peacekeeping scenario
to illustrate the approach throughout the paper. We
develop an assistant agent for a humanitarian NGO
teamed with a military coalition partner. Consider
a norm stating that an NGO must have an armed
escort when operating in conflict areas. An escort
can be arranged through a well-defined communica-
tion protocol, e.g., sending an escort request to and
receiving a confirmation from a military party. Here,
a state space can be defined in terms of two variables:
area specifying the user’s geographic coordinates and
escort indicating the status of an armed escort in each
region. In our approach, a user can focus on reason-
ing about variable area only since the agent manages
variable escort to ensure that the user plan complies
with norms. Note that variable escort is a simpli-
fied representation as it is defined for each value of
variable area, i.e., it is a function escort(area) to be
precise.

The foci of this article are on three main com-
ponents within the agent, namely: plan recognizer,
norm reasoner, and agent planner and executor. We
plan to study the observer and presenter modules in
our future work.

4. PROBABILISTIC PLAN RECOGNIZER

This section describes our plan prediction algorithm
that enables the assistant agent to predict the user’s
future plans. The basic idea is to develop a computa-
tional model that resembles a human user’s decision-
making process so that an assistant agent can use this
model to predict the human user’s future decisions.
We use a Markov Decision Process (MDP) [8] to rep-
resent a user’s decision-making model. The use of an
MDP is justified as follows. In the problem domain of
our interest, e.g., military operations, the users have
a strong objective of accomplishing a set of goals that
are clearly defined. Thus, we can assume that a user

is executing a sequence of planned actions; that is, the
user must have planned the observed actions. In or-
der to model the user’s planning process we consider
an AI planner. Instead of constructing a plan library
(a typically cumbersome process), we can generate a
set of alternative plans by solving a user’s planning
problem. At the same time, we need a model that
can capture the nondeterministic nature of real-life
applications. Since an MDP is a stochastic planner
it suits both of our purposes.

An MDP is formally defined as:

Definition 1 (MDP). A Markov Decision Process
(MDP) is represented as a tuple 〈S,A, r, T, γ〉, where
S denotes a set of states; A, a set of actions; r : S ×
A → R, a function specifying a reward of taking an
action in a state; T : S×A×S → R, a state transition
function; and γ, a discount factor indicating that a
reward received in the future is not worth as much as
an immediate reward.

Solving an MDP generally refers to a search for a
policy that maps each state to an optimal action with
respect to a discounted long-term expected reward.

Without loss of generality we add a simplifying
assumption that the reward function depends only
on the states, such that given state s reward r(s) =
r(s, a) for all actions a in A. Although the MDP
literature sometimes refers to a goal state as being
an absorbing or terminal state, that is, state s with
T (s, a, s′) = 0 for all a and for all s′, that is a state
with no possibility of leaving it, we mean a goal state
to be a state with a positive reward, that is any state
s with r(s) > 0.

Example 1. Consider a user who is navigating a
maze to reach a destination. In this example, we can
design an MDP representing the user’s decision mak-
ing problem as follows: the state space can be defined
in terms of location coordinates; the user can take ac-
tions to move to a new location while the new location
after taking an action is nondeterministic (e.g., the
user may unsuccessfully attempt to move to the left);
and the user is awarded rewards when she arrives at
the destination. Solving this MDP finds a policy that
prescribes which move the user should make at each
location.

Let Φ = 〈S,A, r, T, γ〉 denote an MDP represent-
ing the user’s planning problem. The plan recognition

5

algorithm is a two-step process. The agent first es-
timates which goals the user is trying to accomplish
and then predict a sequence of possible plan steps
that the user is most likely to take to achieve those
goals. We first describe the algorithm assuming that
the user’s current state is fully observable and that
the user does not change goals. These assumptions
will later be relaxed as described in Section 4.3 and
Section 4.4, respectively.

4.1. Goal prediction

In the first step, the algorithm estimates a proba-
bility distribution over a set of possible goals. We use
a Bayesian approach that assigns a probability mass
to each goal according to how well a series of observed
user actions is matched with the optimal plan toward
the goal.

Start G1

G2

X

Figure 2: An example of goal prediction

Example 2. The basic idea can be illustrated using
a simple example shown in Figure 2 where the user
in a 3 × 3 grid has moved from the top left corner
to the current state denoted by X that is adjacent to
two goal states G1 and G2. If only the current state
is considered, the user may move up or down with
equal probability because both actions are optimal in
the current state. However, the observed trajectory is
closer to the optimal behavior for aiming at G2 rather
than G1 (since there is a shorter path to G1 from
the starting position). In other words, the conditional
probability of the user pursuing goal G2 is higher than
that of G1 given the observed path. Our algorithm is
thus to update the conditional probability of each goal
given a sequence of observations.

We define set G of possible goal states as all states
with positive rewards such that G ⊆ S and r(g) >
0, ∀g ∈ G. The algorithm initializes the probability
distribution over the set G of possible goals, denoted
by p(g) for each goal g in G, proportionally to the re-
ward r(g): such that

∑
g∈G p(g) = 1 and p(g) ∝ r(g).

Algorithm 1 An algorithm for plan recognition

1: function predictFutureSteps(goals G, ob-
servations O)

2: plan-tree t← createNewTree()
3: root-node n← getRootNode(t)
4: current-state s← getCurrentState(O)
5: for all goal g ∈ G do
6: wg ← p(g|Ot) /* Equation (1) */
7: bldPlanTree(t, n, πg, s, wg, 0)
8: end for
9: return t /* predicted plan-tree */

10: end function

The algorithm then computes an optimal policy πg
for every goal g in G, considering the positive reward
only from the specified goal state g and zero rewards
from any other states s ∈ S ∧ s 6= g.

We use a variation of the value iteration algorithm
[8] to compute an optimal policy [8]. For each po-
tential goal g ∈ G, the algorithm computes a goal-
specific policy πg to achieve goal g. Following the
assumption that the user acts more or less rationally,
this policy can be computed by solving the MDP to
maximize the long-term expected rewards. Instead of
a deterministic policy that specifies only the best ac-
tion that results in the maximum reward, we compute
a stochastic policy such that probability p(a|s, g) of
taking action a given state a when pursuing goal g is
proportional to its long-term expected value v(s, a, g):

p(a|s, g) ∝ β v(s, a, g),

where β is a normalizing constant. Note that this step
of computing optimal policies is performed only once
and can be done off-line, and the resulting policies are
also used in the second step that will be described in
Section 4.2.

Let Ot = s1, a1, s2, a2, ..., st denote a sequence of
observed states and actions from time steps 1 through
t where st′ ∈ S, at′ ∈ A, ∀t′ ∈ {1, ..., t}. Here, the
assistant agent needs to estimate the user’s targeted
goals.

After observing a sequence of user states and ac-
tions, the assistant agent updates the conditional prob-
ability p(g|Ot) that the user is pursuing goal g given
the sequence of observations Ot. The conditional
probability p(g|Ot) can be rewritten using the Bayes
rule as:

6

p(g|Ot) =
p(s1, a1, ..., st|g)p(g)∑

g′∈G p(s1, a1, ..., st|g′)p(g′)
. (1)

By applying the chain rule, we can write the con-
ditional probability of observing the sequence of states
and actions given goal g as:

p(s1, a1, ..., st|g) = p(s1|g)p(a1|s1, g)p(s2|s1, a1, g)

... p(st|st−1, at−1, ..., s1, g).

By the MDP problem definition, the state transi-
tion probability is independent of the goals. By the
Markov assumption, the state transition probability
is also independent of any past states except the cur-
rent state, and the user’s action selection depends
only on the current state and the specific goal. By us-
ing these conditional independence relationships, we
get:

p(s1, a1, ..., st|g) = p(s1)p(a1|s1, g)p(s2|s1, a1)
... p(st|st−1, at−1), (2)

where the probability p(a|s, g) represents the user’s
stochastic policy πg(s, a) for selecting action a from
state s given goal g that has been computed at the
initialization step.

By combining Equation 1 and 2, the conditional
probability of a goal given a series of observations can
be obtained. We use this conditional probability to
assign weights when constructing a predicted plan-
tree in the next step.

The algorithmic complexity of solving an MDP
using value iteration is quadratic in the number of
states and linear in the number of actions. Here, the
optimal policies for candidate goals can be precom-
puted off-line. Thus, the actual runtime complex-
ity of our goal recognition algorithm is linear in the
number of candidate goals and the number of obser-
vations.

4.2. Plan-step prediction

Based on the predicted goals from the first step,
we now generate a set of possible scenarios that the
user will follow. Recall that we solved the user’s MDP
Φ to get stochastic policies for each potential goal.
The intuition for using a stochastic policy is to al-
low the agent to explore multiple likely plan paths in

Algorithm 2 Recursive building of a plan tree

1: function bldPlanTree(plan-tree t, node n,
policy π, state s, weight w, deadline d)

2: for all action a ∈ A do
3: w′ ← π(s, a)w
4: if w′ > threshold θ then
5: s′ ← sampleNextState(state s, action a)
6: node n′ ← createNewNode(s′, w′, d)
7: addChild(parent n, child n′)
8: bldPlanTree(t, n′, π, s′, w′, d+ 1)
9: end if

10: end for
11: end function

parallel, relaxing the assumption that the user always
acts to maximize her expected reward.

Using the MDP model and the set of stochastic
policies, we sample a tree of most likely sequences
of user actions and resulting states from the user’s
current state, known here as a plan-tree. In a pre-
dicted plan-tree, a node contains the resulting state
from taking a predicted user action, associated with
the following two features: priority and deadline. We
compute the priority of a node from the probability
representing the agent’s belief that the user will se-
lect the action in the future; that is, the agent assigns
higher priorities to assist those actions that are more
likely to be taken by the user. On the other hand,
the deadline indicates the predicted time step when
the user will execute the action; that is, the agent
must prepare assistance before a certain time point
by which the user will need help.

The algorithm builds a plan-tree by traversing the
most likely actions (to be selected by the user) from
the current user state according to the policy gener-
ated from the MDP user model. First, the algorithm
creates a root node with probability 1 with no ac-
tion attached. Then, according to the MDP policy,
likely actions are sampled such that the algorithm as-
signs higher priorities to those actions that lead to a
better state with respect to the user’s planning ob-
jective. Note that the algorithm adds a new node for
an action only if the agent’s belief about the user’s
selecting the action is higher than some threshold θ;
actions are pruned otherwise. The recursive process
of predicting and constructing a plan tree from a state
is described in Algorithm 2. The algorithmic com-
plexity of plan generation is linear in the number of
actions. The resulting plan-tree represents a horizon

7

of sampled actions and their resulting states for which
the agent can prepare appropriate assistance.

Henceforth, we represent a plan-tree node in a
tuple 〈t, s, l〉 denoting the depth of node (i.e., the
number of time steps away from the current state),
a predicted user state, and an estimated probability
of the state visited by the user, respectively. A user
action is omitted in the representation for simplicity
because normative reasoning is performed based on
the resulting states regardless of causing actions. In
general, other types of assistance can be performed
based on user actions, e.g., an action may be associ-
ated with information needs.

Example 3 shows a segment of plan-tree for the
scenario in Section 3.3 indicating that the user is
likely to be in area 16 with probability .8 or in area
15 with probability .17 at time step t1.

Example 3.
〈〈t1, (area = 16), .8〉,
〈t1, (area = 15), .17〉〉

4.3. Handling partial observability

Hitherto we have described algorithms based on the
agent’s full observability on user states. We extend
our approach to handle a partially observable model
for the case when the assistant agent cannot directly
observe the user states and actions. Instead of observ-
ing the user’s states and actions directly, the agent
first infers the user’s current state from indirect ob-
servations about the user’s environment. The agent
maintains a probability distribution over the set of
user states, known as a belief state, that represents the
agent’s belief regarding the user’s current state. The
agent updates its belief state as it receives indirect
observations from the user or the environment, e.g.,
keyboard and mouse inputs from the user’s comput-
ing environment or sensory inputs from various de-
vices. For instance, if no prior knowledge is available
the initial belief state can be a uniform distribution
indicating that the agent believes that the user can
be in any state. The fully observable case can also be
represented as a special case of belief state where the
whole probability mass is concentrated in one state.

To update a belief state, we use a variation of
the forward algorithm [16], which we briefly sketch
here. Let st denote the user’s state at time t; b =
[b1, ..., b|S|], a belief state where b(s) = p(st = s) is
the belief probability of that the user is in state s at
current time t; and z1, ..., zt, a series of observations

from time step 1 through time step t. We assume
that an initial probability O(z|s) of the agent sensing
observation z in state s is known (or it can be learned
off-line). For each state s ∈ S, the algorithm updates
the probability of being in state s given a sequence of
observations z1, ..., zt, denoted by p(st = s|z1, ..., zt).

In order to compute this value efficiently, the al-
gorithm utilizes the joint probability that the user
reaches state s at time t after collecting observations
z1, ..., zt, denoted by αs(t) = p(z1, ..., zt∧st = s). The
algorithm operates as follows. Given the first obser-
vation z1 and initial belief state b, the initial α values
at time step 1 can be computed for all states s ∈ S
as: αs(1) = O(z1|s1 = s)b(s). As the agent receives
a new observation z, the α values are updated by re-
cursively combining the previous alpha values of all
incoming states with the probabilities of sensing the
new observation in each state:

αs(t+ 1) = O(z|s)
∑
s′∈S

T ′(s′, s)αs′(t),

where we estimate the state transition probability
T ′(s′|s) by combining state transition function T (s′|s, a)
of the MDP user model and the optimal policy π pre-
computed off-line. By summing up transition proba-
bilities T (s′|s, a) for all the actions dictated by policy
π we get:

T ′(s′|s) =
∑
a∈A

πs(a)T (s′|s, a). (3)

Finally, the belief state can be updated by normaliz-
ing the current α values using the following equation:

b(s) =
αs(t)∑

s′∈S
αs′(t)

.

The belief state is updated whenever the agent re-
ceives a new observation.

Finally, Algorithm 1 for predicting the future plan
can be modified as follows. Line 4 for getting the
user’s current state from the last observation is re-
placed with updating a belief state using the obser-
vations. Line 7 for constructing a plan tree for each
goal is substituted by constructing a plan tree for each
goal and for each state; here, the weight parameter
is also adjusted by multiplying the weight of the goal
by the belief probability of state. Thus, the possible
future steps are predicted from those states that the
agent strongly believes where the user currently is.

8

4.4. Handling changing goals

The user may change a goal during execution, or
the user may interleave plans for multiple goals at
the same time. Our algorithm for handling changing
goals is to discount the values of old observations as
follows. The likelihood of a sequence of observations
given a goal is expressed in a product form such that
p(Ot|g) = p(ot|Ot−1, g) × ... × p(o2|O1, g) × p(o1|g).
In order to discount the mass from each observation
p(ot|Ot−1, g) separately, we first take the logarithm
to transform the equation to a sum of products, and
then discount each term as follows:

log[p(Ot|g)] = γ0log[p(ot|Ot−1, g)] +

... +γt−1log[p(o1|g)],

where γ is a discount factor in range (0, 1) such
that the most recent observation is not discounted
and the older observations are discounted exponen-
tially. Since we are only interested in relative like-
lihood of observing the given sequence of states and
actions given a goal, such a monotonic transforma-
tion is valid (although this value no longer represents
a probability).

The basic idea is to discount old observations,
so naturally the algorithm considers newer observa-
tions, which must be consistent with newer goals,
with higher weights. This approach can handle grad-
ually changing goals but does not perform well when
the user is switching goals frequently or interleaving
multiple goals.

5. Norm Reasoner

In this section we specify the component respon-
sible for using normative reasoning to generate new
goals for the agent. Norms generally define constraints
that should be followed by the members in a society
at particular points in time to ensure certain system-
wide properties. The user’s state space is defined in
terms of a set of variables describing the user’s en-
vironment and the progression of her activities, for-
mally defined as follows:

Definition 2 (State Variables). Let S be the set
of states used in the user planning model described
in Section 4. Each state s ∈ S represents a com-
plete assignment to the set of random variables ~ϕ =
{ϕ1 . . . ϕn} describing the properties of the environ-
ment at any given time.

We specify our norm representation format, followed
by two algorithms for 1) predicting violations and 2)
finding the nearest complying state–i.e. the agent’s
new goal state–towards which we can steer the user.

5.1. Norm Representation

Inspired by the representation in [13], we define a
norm in terms of its deontic modality, a formula spec-
ifying when the norm is relevant to a state (which we
call the context condition), and a formula specifying
the constraints imposed on an agent when the norm
is relevant (which we call the normative condition).
We restrict the deontic modalities to those of obliga-
tions (denoted O) and prohibitions (denoted F); and
use these modalities to specify, respectively, whether
the normative condition must be true or false in a
relevant state. The conditions used in a norm are
specified in terms of state variables and their rela-
tionships such as an equality constraint. Formally,

Definition 3 (Norm). A norm is a tuple 〈ν, α, µ〉
where ν is the deontic modality; α, the context con-
dition; and µ, the normative condition.

The conditions used in a norm are specified in terms
of a set of domains for the random variables that com-
pose a state analogously to the specification of con-
straint domains in constraint programming. Thus,
the norms considered by our assistant refer to states
rather than to actions, as alternatively used by recent
work on normative reasoning.

Definition 4 (Satisfaction). Let ϕ be the set of state
variables; α, a context (or normative) condition con-
taining m variables ϕα ⊆ ϕ and their valid domain D
of m-tuples. We say that condition α is satisfied in
state s (written s |= α) if there exists a tuple in the
valid domain that is consistent with the variable as-
signment in state s; such that
∃d ∈ D ∧ ∀v ∈ ϕα, d(v) = s(v) where d(v) and
s(v) denote the value assignments for variable v in
tuple d and state s, respectively.

Example 4. Coming back to the peacekeeping oper-
ations scenario introduced earlier, consider that there
is an obligation that requires the NGO to have an es-
cort to operate at certain high-risk areas designated
by grid coordinates. Further, consider that the states
over which the NGO plans are defined in terms of two
variables: area indicating the location of the user,

9

and escort indicating the status of an escort arrange-
ment in the specified area. Therefore, a state can be
written as a pair (area, escort). The norm that an
NGO is obliged to have an armed escort when enter-
ing unsafe regions, denoted by ιescort, can be expressed
as:

ιescort = 〈O, area ∈ {16, 21}, escort ∈ {granted}〉.

Thus, the example above denotes that regions 16 and
21 should not be entered without an escort (as they are
unsafe). Then, the context condition is satisfied when
variable area (indicating the user’s location) has the
value of 16 or 21.

5.2. Detecting Violations

Given the norm representation of Definition 3, we
define a norm violation as consisting of an agent be-
ing in a state that is relevant to a norm and that is
also violating a normative condition. We say a state
is relevant to a norm if this state supports the con-
text condition α specified in the norm. Violation of
a normative condition depends on the type of norm
being evaluated, which in this paper is either an obli-
gation or a prohibition. Obligations are norms that
require certain properties of the world to have partic-
ular values, thus an agent is violating an obligation
if it is in a norm-relevant state and if the normative
condition is not supported by this state. Specifically,
an obligation is violated if the normative condition µ
is not satisfied in state s; i.e., s 6|= µ. Conversely,
prohibitions are norms that specify properties that
should not be the case, consequently, an agent is vi-
olating a prohibition if it is in a norm-relevant state
and if the normative condition is supported by that
state. Thus, a prohibition is violated if the norma-
tive condition is satisfied in state s such that s |= µ.
Formally, a violating state is defined below.

Definition 5 (Violating State). Let si ∈ S be a
state and ι, a norm 〈ν, α, µ〉 with normative stipula-
tion ν, context condition α and normative condition
µ. We say that norm ι is relevant in state s if and
only if the condition in α is satisfied by the assign-
ment of variables in s, so that s |= α. Furthermore,
we say that a state s is violating norm ι (represented
as violating(s, ι)), if and only if the activation condi-
tion is valid and if the normative condition is either
true for prohibitions and false for obligations. We

can represent this condition as a function as follows:

violating(s, ι) =


1 if (s |= α) ∧ (s 6|= µ) ∧ (ν = O)

1 if (s |= α) ∧ (s |= µ) ∧ (ν = F)

0 otherwise.

For instance, considering norm ιescort in Example 4,
given state s = {(area = 16), (escort = init)} the
violation detection function violation(s, ιescort) would
return 1, denoting that norm ιescort is violated in state
s.

Given a predicted user plan in a plan-tree, the
norm reasoner traverses each node in the plan-tree
and evaluates the associated user state for any norm
violations. Recall from Section 4 that each node in
a predicted plan-tree is associated with a user state
and an estimated probability of the user visiting the
node in the future. Using the estimated probabil-
ity, the agent selects a set of high-risk norm viola-
tions. In terms of complexity, the calculation of
the algorithmic complexity of the reasoning as put
forth in this article depends on two elements. First,
the state space searched by the norm reasoner will be
exactly the size of the predicted plan tree described
in Section 4.2. Thus, the space complexity of the
predicted plan is similar to that of iterative deepen-
ing search where the number of nodes in the tree is
O(bd), where b is the maximum branching factor in
the domain, and d is the depth of the deepest node in
the tree. We know d is bounded, since at each sub-
sequent tree level, the probability of an action choice
monotonically decreases, as it is always multiplied by
the probability of an action choice in the previous tree
level. Second, the verification of compliance for a sin-
gle norm can be carried out in constant time, using a
canonical representation for the formulas describing
state (e.g. using a hash of the valid state attributes
or a OBDD representation [17]). Thus, the complex-
ity of norm reasoning will be O(bdn), with n being
the number of norms being considered.

5.3. Finding the Nearest Compliant State

Our assistant agent aims at not only alerting the
user of active violations but also proactively steering
the user away from those violations that are likely to
happen in the future. In order to accomplish this, for
each state that violates a norm the agent needs to find
a state that is compliant with all norms. That is, for
each state s where violating(s, ·) = 1, the agent is to
find the nearest state g that satisfies violating(g, ∗) =

10

0, where · and ∗ are regular expressions denoting any
and all, respectively. Here, the distance between two
states is measured by the number of variables whose
values are different.

Norm violations occur as the result of certain vari-
ables in the state space being in particular configu-
rations. Thus, finding compliant states can be in-
tuitively described as a search for alternative value
assignments for the variables in the normative con-
dition such that norms are no longer violated. This
is analogous to search in constraint satisfaction prob-
lems.

When a norm-violating state is detected, the norm
reasoner searches the nearby state space by trying
out different value assignment combinations for the
agent-variables. For each such state, the norm rea-
soner evaluates the state for norm compliance. The
current algorithm is not exhaustive, and only contin-
ues the search until a certain number of compliant
states are found.

When compliant state g is found for violating
state s, state g becomes a new goal state for the agent,
generating a planning problem for the agent such that
the agent needs to find a series of actions to move
from initial state s to goal state g. The goals that
fully comply with norms are assigned with compli-
ance level 1. When a search for compliant states fails,
the agent must proactively decide on remedial actions
aimed at either preventing the user from going to a
violating state, or mitigating the effects of a viola-
tion. In the norm literature these are called contrary-
to-duty obligations [18], obligations that come into
force when a norm violation has occurred (e.g., you
must pay a fine if you park in a forbidden area, etc.).
For instance in the escort scenario, a contrary-to-
duty obligation can be defined such that if a user is
about to enter a conflict area without an escort, the
agent must alert the user of the escort requirement.
In this case, the user has initially violated a norm
(prohibition to enter an area without escort), but the
agent has complied with the contrary-to-duty obliga-
tion to alert the user of this requirement. Thus, in
cases where the user has violated a norm while agent
has complied with its contrary-to-duty norms, we say
that the system is in partial compliance, for which we
assign compliance level 2.

A planning problem can be expressed as a pair
of an initial state s and a set of goal states gi an-
notated with their compliance levels ci, such that
〈s, {(g1, c1)..., (gm, cm)}〉.

Example 5 (Norm Reasoning). Given a predict-
ed plan-tree in Example 3, if variable escort for area
16 has value init indicating an escort has not been ar-
ranged, the agent detects a norm violation and thus
searches for a compliant state as follows. Let us de-
fine the domain of agent-variable escort to be: {init ,
requested , granted , denied , alerted}. By alternating val-
ues, we get the following two compliant states:

{(granted , 1), (alerted , 2)},

where state “granted” is fully compliant while state
“alerted” is partially compliant from the agent’s per-
spective, as it complies with the contrary-to-duty obli-
gation to warn the user. As a result, a newly gener-
ated planning problem is passed to the planner module
as follows:

〈init , {(granted , 1), (alerted , 2)}〉.

6. Planner and Executor

We propose a scalable model where the assistant
agent dynamically plans and executes a series of ac-
tions to solve smaller problems as they arise. Note
that the issues regarding adjustable autonomy are
outside the scope of this paper. Instead, we use a
cost-based autonomy model where the agent is al-
lowed to execute those actions that do not incur any
cost, but is required to get the user’s permission to
execute costly (or critical) actions.

6.1. Planning

The agent has a set of executable actions. For
instance, in the peacekeeping scenario the set of agent
actions are the following:

• send-request

• receive-reply

• alert-user

Given a planning problem–i.e., an initial and a goal
states–from the norm reasoner, the planner module
is responsible for finding a series of actions to accom-
plish these goals. In Example 5, two goal (or absorb-
ing) states have been assigned by the norm reasoner:
an escort is granted or the user is alerted of the need
for an escort. Thus, the agent must plan to change
the value of escort variable from init to either granted
or alerted .

11

Since our representation of planning problems is
generic, one may use classical planners in the imple-
mentation. Instead, we use an MDP to develop a
planner in order to respect uncertainty involved in
agent actions, e.g., sending a request may fail due to
a communication network failure.

Recall that a predicted user plan from the plan
recognizer imposes deadline constraints (specified as
the depth of node) to the agent’s planning. Specif-
ically, if the user is likely to commit a violation at
a certain time step ahead, the agent must take ac-
tions to resolve the violation before the time step.
In the planner, a deadline constraint is utilized to
determine the horizon for an MDP plan solver, such
that the agent planner needs to find an optimal policy
given the time that the agent has until the predicted
violation time.

In Example 5, when the violation is predicted far
in advance, an optimal policy prescribes the agent
to always request an escort from the other party, ex-
cept if an escort request has been denied by the other
party then the agent should alert the user of the de-
nied request. Note that an optimal policy can change
as time elapses, e.g., the user is better off by being
warned when there is not enough time left for the
agent to arrange an escort. We compare the num-
ber of sequential actions in a plan with the depth of
node (or the goal’s deadline) to determine the plan’s
feasibility.

The planning problem formulated by the reasoner
may not always be solvable; that is, a compliant state
can only be accomplished by modifying those vari-
ables that the agent does not have access to, or none
of the agent’s actions has effects that result in the
specified goal state. In this case, the agent notifies
the user immediately so that the user can take ap-
propriate actions on her own. Otherwise, the agent
starts executing its actions according to the optimal
policy until it reaches a goal state.

6.2. Execution

Execution of an agent action may change one or
more variables. For each newly generated plan (or a
policy) from the planner module, an executor is cre-
ated as a new thread. An executor waits on a signal
from the variable observer that monitors the changes
in the environment variables to determine the agent’s
current state. When a new state is observed the vari-
able observer notifies the plan executor to wake up.
The plan executor then selects an optimal action in

the current state according to the policy and executes
the action. After taking an action, the plan executor
is resumed to wait on a new signal from the variable
observer. If the observed state is an absorbing state,
then the plan execution is terminated, otherwise an
optimal action is executed from the new state.

The agent’s plan can be updated during execution
as more recent assessments of rewards arrive from the
norm reasoner, forcing the agent to replan. For in-
stance, after the agent requested an escort from the
other party, the other party may not reply immedi-
ately causing the agent to wait on the request. In
the meantime, the user can proceed to make steps
towards the unsafe region, imposing a tighter dead-
line constraint. When the new deadline constraint is
propagated to the planner, an optimal policy is up-
dated for the executor, triggering a new action, e.g.,
to alert the user of the potential violation (instead of
trying to arrange an escort).

7. Theoretical performance analysis

In this section, we evaluate the theoretic prop-
erties of our approach and discuss expected perfor-
mance.

The assistant agent’s goal is to reduce the penalty
incurred to a human user due to norm violations.
Without loss of generality, let us assume that a penalty
for violating any norm is a constant, denoted by c,
and that the penalty is accumulative such that if
a user violates n norms, the total penalty incurred
would be nc. Since the agent acts based on uncertain
predictions over user behavior, the agent is also sub-
ject to a second type of penalty, denoted by c′, due
to wrong actions, e.g., there may be a cancelation fee
if the agent has requested an escort unnecessarily.

Let tp refer to the number of true-positive in-
stances that an (human or software) agent correctly
identify forthcoming norm violations, and fp, the
number of false-positive cases where the agent incor-
rectly predicts norm violations. Similarly, let tn and
fn denote true-negative and false-negative cases, re-
spectively. The recall rate r is defined as the ratio
of true-positives to the total true counts, such that
tp

tp+fn . Conversely, the precision rate p is defined as
the ratio of true-positives to the total positive counts,
such that tp

tp+fp .
Assuming that a human user’s errors are mostly

due to false-negatives (i.e., by forgetting to call for
escort), we can say that cognitively overloaded hu-

12

man users have extremely low recall rates. Given
this assumption, we can simplify our evaluation by
dropping the second type of errors in the human’s
case (i.e., humans request for an escort only when
needed). Then, the expected penalty of a human user
per decision is c(1−rh) where rh is the human’s recall
rate. On the other hand, the agent’s penalty reflects
the tradeoffs between precision and recall rates as fol-
lows: c(1− ra) + c′(1− pa). Generally, when recall is
increased precision is decreased, and vice versa. Be-
cause penalties of the second type due to norm viola-
tion are significantly smaller than the first type such
that c′ < c, improving the recall rate is expected to
result in a cut in penalty. Although the agent’s actual
performance depends on specific problem domains,
we can state that the agent’s assistance can reduce
the penalty incurred as long as the agent’s recall rate
is higher than that of a human user and the second
type of penalty (e.g., cancelation fee) is significantly
lower than the norm violation penalty. In the prob-
lem domains of our interest, both conditions can be
reasonably met as tested in our simplified examples
in 8. Empirical study for supporting this claim is in
our future work.

8. Applications

Through this research, we aim to make not only
scientific contributions but also practical impact on
real-life applications. The autonomous assistant agent
framework that has been presented can be applied to
various problem domains. Here, we include some ex-
amples of potential applications.

8.1. Military escort planning in peacekeeping

We have implemented our approach as a proof
of concept prototype in the context of planning for
peacekeeping operations, in a scenario adapted from
[1], where two coalition partners (a humanitarian par-
ty – Alpha – and a military party – Bravo) plan to
operate in the same region according to each party’s
individual objectives and regulations.

In this scenario, a user interacts with a user in-
terface simulating the decisions made by the head of
a humanitarian mission in the field, including issue
movement orders and requests for military escort in
the area of operations. The Observer component (c.f.
Section 3.1) collects all movement orders and commu-
nication generated by the human operator, forward-
ing this information to the Plan Recognizer, which

• Time step T1
•User at area 6.
• Norm violation at area 16 in predicted plan.
• Agent arranges an escort: Escort Granted.

User’s real plan
Predicted user plan

Escort Granted

• Time step T2
• User at area 16.
• Norm violation at area 21 still active;

Party Bravo has not responded.
• Agent alerts the user: Escort Required!

Escort Required!

6

16

21

Figure 3: An annotated (and cropped) screenshot of a human-
itarian party’s planning interface

generates a tree of predicted user actions. This pre-
dicted plan tree is sent to the Norm Reasoner to de-
termine which future states are norm-compliant and
which ones result in violations. If the predicted plan
tree includes violating states, these states and their
likelihood are sent to the Agent Planner to allow the
agent to deal with the contrary to duty obligations
resulting from the user’s violations by planning re-
medial actions. In the case of our scenario, whenever
the user’s predicted plans involve movements to areas
for which the user has not yet requested an escort,
the agent takes on the obligation to warn the user
of this violation. These warning actions are queued
by the Agent Plan Executor and are executed when-
ever the user’s likelihood of entering an area that re-
quires an escort goes above a certain threshold. When
the Agent Plan Executor determines that a warning
should be issued, the warnings are forwarded to the
Presenter, which cause the User Interface to highlight
areas for which escorts are needed.

Figure 3 shows the planning interface of a human-
itarian party (Alpha), annotated with labels for illus-
tration (This figure is best viewed in color). Annota-
tions are drawn in the light green dialogue boxes, and
everything else is part of the actual implemented in-
terface. At time step T1, the agent identifies a norm
violation at area 16 in the predicted user plan, for
which the agent sends an escort request to Bravo.
When the agent receives a reply from Bravo granting
a permission the escort status is displayed in the in-

13

terface. Similarly, the agent sends an escort request
for area 21 for another norm violation, but Bravo does
not respond. At time step T2, an updated policy pre-
scribes the agent to alert the user, and a warning is
displayed in the interface.

We have used a simplified military escort plan-
ning scenario throughout this paper to illustrate our
approach. In practice, the planning and scheduling
of escort services in military peacekeeping operations
involve complex norm reasoning due to diverse stake-
holders. By meeting with the US military and various
NGO representatives, we have identified a significant
amount of interest in developing a software assistant
for this problem domain, and we are currently work-
ing on scaling up the system to deal with more real-
istic settings.

8.2. Potential applications

It is important to note that the goal of this re-
search is not to guide the user in finding optimal plan-
ning solutions, but instead, to provide support to the
user’s planning by identifying and making amends for
weaknesses in current plans. As opposed to directing
the user to make optimal decisions with respect to a
certain objective (as in decision-support systems), we
aim to design an agent that can maximize the sup-
port to help the user in making decisions based on
her own criteria and judgement. Critically, the re-
search presented in this paper is intended to help un-
burden a user from having to deal with a large num-
ber of dynamically changing norms. For instance,
in military-civilian collaboration planning, each plan-
ner is expected to remember and take into account a
large number of directives that change dynamically
as the security situation evolves in a war zone. From
the user’s perspective, independent decision making
is crucial, as many rules guiding this kind of collabo-
ration might not necessarily be formalized, so a fully
automated planning system would not be suitable.
One experimental deployment of our intention recog-
nition approach has been done in the context of dis-
aster response management, with preliminary results
showing that even a relatively minor level of assis-
tance can lead to improved reaction times [19].

Furthermore, our research can be applied in many
other problem domains such as assistive living tech-
nologies for the disabled and the elderly. In this do-
main, the norms can be defined to specify a set of
prohibitions for unsafe activities. When the agent
predicts any potential dangers, the agent’s new goal

becomes restoring a safe state. For instance, if the
safe state can be accomplished by taking the agent’s
available actions, e.g., moving certain objects on the
floor, the agent can resolve the issue. When the agent
cannot accomplish the goal using its own capabilities,
the agent can instead alert the human assistant be-
fore an accident happens.

9. Discussion and Future Work

In this paper, we presented an assistant agent ap-
proach to provide prognostic reasoning support for
cognitively overloaded human users. We designed
the proactive agent architecture by seamlessly inte-
grating several intelligent agent technologies: prob-
abilistic plan recognition, prognostic normative rea-
soning, and planning and execution techniques. Our
approach presents a generic assistant agent frame-
work with which various applications can be built as
discussed in Section 8. As a proof of concept applica-
tion, we implemented a coalition planning assistant
agent in a peacekeeping problem domain.

Our approach has several advantages over exist-
ing assistant agent approaches. As a basis of compar-
ison, the work of Fagundes et al.[20] proposes reason-
ing about norm violations using MDPs by taking the
original MDP representing the world dynamics and
creating new MDPs, one for each norm, that include
a modified reward function to account for the penal-
ties and rewards resulting from violating and fulfilling
each norm, as well as a modified transition function
to account for potential restrictions imposed to an
agent that violates a norm. This necessitates solv-
ing a new MDP every time the set of norms in effect
changes. Although in its most recent iteration, Fa-
gundes et al.[21] mitigates the problem of having to
solve multiple MDPs, changing norms still require the
entire MDP to be solved again. When compared to
other decision-theoretic models such as [20, 21], our
approach is significantly more scalable because of the
exponential state space reduction due to the isolation
of agent variables from user variables. The technique
presented in this paper offers the advantage that the
MDP needs to be solved only when the user’s deci-
sion model changes, and not when the set of effective
norms changes. As opposed to assistant agent models
where an agent takes turns with the user, our agent
has more flexibility in its decision making because
the agent can execute multiple plans asynchronously.
More importantly, our agent is proactive in that the

14

agent plans ahead of time to satisfy the user’s forth-
coming needs without a delay. Such proactive assis-
tance is an especially important requirement in time-
constrained real-life environments.

We made a specific assumption that agent vari-
ables are independent from user variables. For ex-
ample, in the use case of Section 8, if escort is a
user variable then the agent does not have the abil-
ity to make a request for escort on behalf of the
user, in which case, the agent can only provide warn-
ings to the user (thus affecting agent-only variables).
Dropping this assumption would entail research in
another very complex research area, adjustable au-
tonomy [22], and has been left as future work.

Possible future work involves investigating ways
to relax this assumption, refine the algorithm for de-
termining a plan’s feasibility in Section 6.1 by esti-
mating expected time required for each action. Fur-
thermore, our approach could be extended in mul-
tiple ways. First it could be extended to work in
a multi-user, multi-agent setting where resolving a
norm violation may involve multi-party negotiations.
In addition, when there are more than one assistant
agents, newly generated goals can be shared or traded
among the agents. Second, the norm representation
could be extended to consider actions, as is done in
[2, 21].

Acknowledgments

Research was sponsored by the Army Research
Laboratory and was accomplished under Cooperative
Agreement Number W911NF-09-2-0053. The views
and conclusions contained in this document are those
of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or im-
plied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here-
on.

References

[1] K. Sycara, T. Norman, J. Giampapa, M. Kollingbaum,
C. Burnett, D. Masato, M. McCallum, M. Strub, Agent
support for policy-driven collaborative mission planning,
The Computer Journal 53 (5) (2010) 528–540.

[2] S. Modgil, N. Faci, F. Meneguzzi, N. Oren, S. Miles,
M. Luck, A framework for monitoring agent-based norma-
tive systems, in: Proceedings of the Eighth International

Conference on Autonomous Agents and Multiagent Sys-
tems, 2009, pp. 153–160.

[3] J. Oh, F. Meneguzzi, K. Sycara, Probabilistic plan recog-
nition for intelligent information assistants, in: ICAART,
2011.

[4] J. Oh, F. Meneguzzi, K. Sycara, T. Norman, An agent
architecture for prognostic reasoning assistance, in: Proc.
IJCAI, 2011.

[5] M. G. Armentano, A. Amandi, Plan recognition for inter-
face agents, Artif. Intell. Rev. 28 (2) (2007) 131–162.

[6] M. Ramı́rez, H. Geffner, Plan recognition as planning, in:
Proc. IJCAI, 2009, pp. 1778–1783.

[7] C. Baker, R. Saxe, J. Tenenbaum, Action understanding
as inverse planning, Cognition 31 (2009) 329–349.

[8] R. Bellman, A markov decision process, Journal of Math-
ematical Mechanics 6 (1957) 679–684.

[9] A. J. I. Jones, Deontic logic and legal knowledge represen-
tation, Ratio Juris 3 (2) (1990) 237–244.

[10] G. H. von Wright, An Essay in Deontic Logic and the Gen-
eral Theory of Action, North-Holland Publishing Com-
pany, 1968.

[11] J. Vázquez-Salceda, H. Aldewereld, F. Dignum, Norms
in multiagent systems: from theory to practice, Interna-
tional Journal of Computer Systems Science & Engineer-
ing 20 (4) (2005) 225–236.

[12] F. Lopez y Lopez, M. Luck, Modelling norms for au-
tonomous agents, in: Proceedings of the Fourth Mexican
International Conference on Computer Science, 2003, pp.
238–245.

[13] A. Garćıa-Camino, J.-A. Rodŕıguez-Aguilar, C. Sierra,
W. W. Vasconcelos, Constraint Rule-Based Program-
ming of Norms for Electronic Institutions, Journal of Au-
tonomous Agents & Multiagent Systems 18 (1) (2009)
186–217.

[14] A. D. H. Farrell, M. J. Sergot, M. Sallé, C. Bartolini, Us-
ing the event calculus for tracking the normative state of
contracts, Int. J. Cooperative Inf. Syst. 14 (2-3) (2005)
99–129.

[15] J. Hübner, O. Boissier, R. Kitio, A. Ricci, Instrument-
ing multi-agent organisations with organisational artifacts
and agents, Autonomous Agents and Multi-Agent Systems
20 (3) (2010) 369–400.

[16] L. Rabiner, A tutorial on HMM and selected applications
in speech recognition, Proc. of IEEE 77 (2) (1989) 257–
286.

[17] R. E. Bryant, Symbolic boolean manipulation with or-
dered binary-decision diagrams, ACM Computing Surveys
24 (3) (1992) 293–318.

[18] H. Prakken, M. J. Sergot, Contrary-to-duty obligations,
Studia Logica 57 (1) (1996) 91–115.

[19] F. Meneguzzi, S. Mehrotra, J. Tittle, J. Oh,
N. Chakraborty, K. Sycara, M. Lewis, A cognitive
architecture for emergency response, in: Proceedings of
the Eleventh International Conference on Autonomous
Agents and Multiagent Systems, 2012, pp. 1161–1162.

[20] M. S. Fagundes, H. Billhardt, S. Ossowski, Reason-
ing about norm compliance with rational agents, in:
H. Coelho, R. Studer, M. Wooldridge (Eds.), ECAI, Vol.
215 of Frontiers in Artificial Intelligence and Applications,
IOS Press, 2010, pp. 1027–1028.

[21] M. S. Fagundes, S. Ossowski, M. Luck, S. Miles, Using
normative markov decision processes for evaluating elec-

15

tronic contracts, AI Communications 25 (1) (2012) 1–17.
[22] M. Tambe, P. Scerri, D. Pynadath, Adjustable autonomy

for the real world, Journal of Artificial Intelligence Re-
search 17 (2002) 171–228.

16

	Introduction
	Related Work
	Plan Recognition
	Normative Reasoning

	Agent Architecture
	Modules
	Design Assumptions
	Example Scenario

	Probabilistic plan recognizer
	Goal prediction
	Plan-step prediction
	Handling partial observability
	Handling changing goals

	Norm Reasoner
	Norm Representation
	Detecting Violations
	Finding the Nearest Compliant State

	Planner and Executor
	Planning
	Execution

	Theoretical performance analysis
	Applications
	Military escort planning in peacekeeping
	Potential applications

	Discussion and Future Work

