N

N

Terrain traversability analysis methods for unmanned
ground vehicles: A survey
Panagiotis Papadakis

» To cite this version:

Panagiotis Papadakis. Terrain traversability analysis methods for unmanned ground vehicles:
A survey. Engineering Applications of Artificial Intelligence, 2013, 26 (4), pp.1373 - 1385.
10.1016/j.engappai.2013.01.006 . hal-00801220

HAL Id: hal-00801220
https://inria.hal.science/hal-00801220
Submitted on 15 Mar 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/hal-00801220
https://hal.archives-ouvertes.fr

Terrain traversability analysis methods for unmanned ground vehicles:

A survey

Panagiotis Papadakis *

Aute Agent Laboratory for Cognitive Robotics, Department of Computer, Control. and Management Engineering. University of Rome “La Sapienza’ Italy

Keywords:

Terrain traversability
Mobile robots

Unmanned ground vehicles

Survey

ABSTRACT

Motion planning for unmanned ground vehicles {UGV) constitutes a domain of research where several
disciplines meet, ranging from artificial intelligence and machine learning to robot perception and
computer vision. In view of the plurality of related applications such as planetary exploration, search
and rescue, agriculture, mining and off-road exploration, the aim of the present survey is to review the
field of 3D terrain traversability analysis that is employed at a preceding stage as a means to effectively
and efficiently guide the task of motion planning. We identify that in the epicenter of all related
methodologies, 3D terrain information is used which is acquired from LIDAR, stereo range data, color or
other sensory data and occasionally combined with static or dynamic vehicle models expressing
the interaction of the vehicle with the terrain. By taxonomizing the various directions that have been
explored in terrain perception and analysis, this review takes a step toward agglomerating the
dispersed contributions from individual domains by elaborating on a number of key similarities as
well as differences, in order to stimulate research in addressing the open challenges and inspire future

developments.

1. Introduction

In parallel to common robotic applications where robots are
designed to operate in indoor-structured environments, there is
an increasing interest in advancing robot technology, both in
hardware and software, to allow robots to be deployed in outdoor,
off-road, natural, as well as unnatural environments. Robotic
applications such as planetary exploration, search and rescue,
forestry and mining are made feasible by designing robots with
reconfigurable components that passively, or actively, adapt to
the underlying terrain.

Mobile robots are now at the forefront of applications that
range from terrestrial environments of severely hazardous
human life conditions (Guizzo et al., 2011) to pure research
oriented applications as for example Mars exploration (Carsten
et al., 2009). Within such cluttered and diverse environments,
the operation of robots can be made feasible by addressing a
number of common problems, namely (i) assessment of the
terrain traversability, (ii) planning optimal motion paths with
respect to the given criteria and (iii) suitably adapting the
kinematic configuration of articulated robots as a function of
terrain traversability. In addressing these issues, their high
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interdependence should be taken into consideration together
with the fact that solutions should be tailored to the constitu-
ents of the application which, in turn, imposes constraints in
the design of a robot and its perceptual capabilities.

In view of the complexity and plurality of challenges that are
encountered in addressing each sub-problem, most research
efforts have been dedicated into addressing these issues distinc-
tively and occasionally, by imposing several oversimplifications
in formulating the entire problem. In this survey, we review
the state-of-the-art in 3D terrain traversability analysis for UGVs
while in parallel elaborating on the relation of the various
approaches to path-motion planning, in order to provide a
spherical view of the problem while in parallel directing the
attention towards more specific elements that are of key impor-
tance. We gather and organize previous work into a taxonomy
wherein the problem of terrain traversability analysis may be
addressed through either external-distant (exteroceptive) sen-
sing of the environment, namely, LIDAR and vision sensors, or by
proprioceptive sensory data processing during the traversal of the
terrain.

By reviewing the various directions that have been explored,
the goal of this survey resides mainly into three objectives. In
particular, to shed light on the advantages and disadvantages of
the previously proposed methodologies, to serve as a valuable
reference for the community in gathering the most influential
works within the field, and finally, inspire research in addressing



the open challenges. Under these perspectives, the present work
constitutes the first large-scale effort in reviewing the field of
terrain traversability analysis methodologies for motion planning
of UGVs.

To facilitate the reading and comprehension of the material that
is included in the survey, the remainder of the paper has been
organized as follows. First, in Section 2, we identify the major
components of terrain traversability analysis methods and provide a
generic top-down view of the domain through a high-level taxon-
omy. Our description continues in Sections 3-6, where we gather
and categorize the previous approaches according to this taxonomy
that is further refined to account for the key elements that
characterize the individual domains. Finally, in Section 7, we discuss
and elaborate on the findings from the collected literature and in
Section 8 we conclude with a view toward the open challenges and
future trends.

2. Terrain traversability analysis for UGVs

Terrain traversability analysis has been used as a means for
navigating a robotic ground vehicle within environments of varying
complexity, on the one hand ensuring safety in terms of collisions or
reaching unrecoverable states and on the other hand achieving goals
in an optimal mode of operation. Occasionally, this generic capability
of a UGV has been termed using keywords such as:

drivability,
trafficability,
navigability,
coverability,
terrainability,
maneuverability,
mobility and
traversability.

Although the problem has been viewed from various perspectives,
a formal and widely accepted definition has not yet been settled
within the robotics community. In the recent work of Ugur and Sahin
(2010), robotic traversability was formalized in the context of
the theory of affordances set by Gibson (1979). Several experiments
within Ugur and Sahin (2010) evaluate the prominent aspects of
traversability when viewed as an affordance, namely, the extent to
which it is a relative attribute, provides perceptual economy and
allows for generalization when novel examples are encountered.
Despite the largely constrained experiments, it is evident that the
notion of affordance fits adequately as a means to model traversa-
bility in the robotics domain.

Though suitable, that formalization nevertheless is highly
generic and in turn incomplete as it lacks a formalization for
quantifying traversability and deriving a continuous measure
rather than a discrete, binary assessment (i.e. traversable or
non-traversable). Apparently, such a formalization is still an open
problem as it decomposes to a plurality of constituents.

In this study, the term traversability has been identified as the
most established within the community. More formally, and looking
at the direction of quantifying traversability, we will appoint to the
term traversability the following semantics.

Definition. The capability of a ground vehicle to reside over a
terrain region under an admissible state wherein it is capable of
entering given its current state, this capability being quantified by
taking into account a terrain model, the robotic vehicle model, the
kinematic constraints of the vehicle and a set of criteria based on
which the optimality of an admissible state can be assessed.

This formulation should not be viewed as a strict definition,
however, it should suffice to capture the main components of the
problem. The terrain model amounts to the perception of the
material that in turn prescribes its generic terramechanic proper-
ties and its interaction with a traversing vehicle. Geometric
characteristics are also appointed into the terrain model to
account for the different forms that a material may be distributed.
The robot model minimally captures the basic physical properties
of the vehicle such as inertia, mass, dimensions and 3D shape
and the kinematic constraints describe the permissible states of
motion of the vehicle under consideration.

Historically, terrain analysis through traversability estimation
was initially addressed as a binary classification problem, i.e.
distinguishing traversable from non-traversable terrain. Later on,
the need for finer cassification was recognized that either
assigned a continuous traversability score or classified the terrain
into the various classes that were commonly encountered within
a particular application.

Despite the trend in deploying robots into environments of
increasing complexity, binary terrain classification should not
be viewed as redundant or trivial. The main reason is that the
computational complexity of analysis increases together with
terrain complexity, hence, binary cassification can assist in
performing a more elaborative analysis to those portions of the
terrain that are of more interest.

2.1. Main streams of research

The predominant approach for measuring traversability concemed
the analysis of 2D digital elevation maps (DEM) {Kweon and Kanade,
1992) (alternatively known as Cartesian elevation maps (Daily et al.,
1988; Olin and Tseng, 1991), originating from occupancy grid maps
(Moravec and Elfes, 1985; Elfes, 1989), a representation of terrain
whose establishment is accredited to Moravec. Grid-based terrain
analysis enables the application of efficient graph search algorithms
for the purpose of planning, that are currently still very popular and
extensively used (see Kavraki et al, 1996; Pivtoraiko and Kelly, 2005;
Melchior and Simmons, 2007 ; Howard et al.,, 2008; Jaillet et al., 2010).
This is the preferred choice especially when dense 3D point clouds
can be acquired from LIDAR data. Altematively, or in parallel,
appearance-based (spectroscopic) traversability evaluation was per-
formed within the images acquired from passive vision sensors and
finally back-projected into the 3D world. From another perspective,
methods that rely on training andjor classification during the
traversal of a particular region from the UGV have also been
considered through proprioception, by using sensors such as inertia
measurement units (IMU), wheel slip sensors, collision bumpers or
other domain-specific sensors.

On the basis of the type of sensory data processing that is
employed, we may project the previously explored methodologies
into a space that is characterized as follows:

e Proprioceptive sensory data processing.
« Exteroceptive sensory data processing:

o Geometry-based.
< Appearance-based.

This distinction is sketched in Fig. 1.

Although the majority of methods project to either one of these
categories, there is a number of hybrid approaches that may further
imply the use of additional sensor modalities other than LIDAR,
cameras, or proprioceptive sensors (as detailed in Section 6).

In the following sections, we review the field of 3D terrain
traversability analysis for the purpose of UGV motion planning, in



Proprioceptive

Fig. 1. Space decomposition of terrain traversability analysis methodologies into
the major constituents, namely, proprioceptive, appearance-based and geometry-
based approaches, the latter two comprising the domain of exteroceptive
approaches.

further detail. A sufficiently extended review is provided that
includes the seminal and most representative papers and covers
the prominent directions that have been explored within the field.
In this effort, a number of relevant works were omitted from the
current review in order to give emphasis to those parts of the
previous work that have been deemed as maximally orthogonal
to one another, and in turn, minimize the redundancy in the
referenced material at the benefit of the reader.

3. Proprioceptive traversability analysis

Proprioceptive-based analysis methodologies are useful in learn-
ing the best model that captures the difficulty encountered when a
vehicle traverses a given terrain. The following compose a represen-
tative set of previous approaches of this category (lagnemma et al.,
2002; Wellington and Stentz, 2004; Ojeda et al., 2006; Angelova et al.,
2007a; Coyle and Collins, 2008; Leppanen et al., 2008; Bajracharya
et al., 2009; Bermudez et al., 2012) wherein the vehicle leams the
difficulty in traversing different types of terrain by analyzing various
sensory inputs such as vibrations, wheel slips, bumper hits, etc.

Whenever on-board, proprioceptive sensing is further com-
bined with long range perceptual modalities, then, traversability
assessments can be further propagated to distant regions cap-
tured by the exteroceptive sensory data after having previously
determined their correlation to the proprioceptive features, as is
characteristically performed by Howard et al. (2006) and Shneier
et al. (2008).

This approach, however, requires an underlying highly tolerant
or dispensable vehicle platform in order to deal with failures that
may occur, such as tipping over or crashes. Therefore, proprio-
ceptive sensing has not generally been favored compared to
exteroceptive sensing that serves as the basis in the obstacle
negotiation process and allows for worst case traversability
assessments that could later on be refined during the actual
traversal.

As the content delivered within the survey will reveal, the
attention had most often been focused on methodologies that
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Fig. 2. Classification of geometry-based approaches according to the crteria
emploved for estimating traversability.

assess the traversability characteristics before actually driving
over the respective region.

4. Geometry-based traversability analysis

Objectively, the direction followed by the majority of terrain
traversability analysis methodologies is based on geometric
processing. In Table 1, an overview of the previous work belong-
ing to this category is provided where the various approaches are
further grouped according to the targeted application scenario. In
parallel, a set of common features that characterize traversability
analysis methods are instantiated, namely, whether terrain prop-
erties are taken into account (Ter), robotic attributes { Rob), robot
stability constraints (5tab) and robot kinematic constraints (Kin),
in corrobation to the definition of traversability given in the
previous section.

In Fig. 2 we illustrate how the previous approaches are
clustered on the basis of the criteria that are employed using a
Venn diagram representation. Through a bottom-up view of the
previous work it is straightforward to identify that the basis of all
methodologies resides into building a terrain model and deriving
a set of features from a given terrain according to this model. On
top of such a model, more complex and higher level processing
could be pursued by further taking into account a robot model as
well as stability and kinematic constraints.

In building a terrain model and deriving a set of corresponding
features, we can identify a set of common approaches that have
been mostly explored, namely (i) signal processing on the terrain
signal (Section 4.1), {ii) convolution of the terrain signal with a
kernel simulating the underlying vehicle (Section 4.2) and (iii)
statistical processing and extraction of moment-based features
and certainty assessments (Section 4.3). It should be noted that
these prevalent directions are not mutually orthogonal and most
previous works concerned mixtures of these approaches. We
discuss methodologies that build and extend these directions by
introducing vehicle-dependent variables in Section 4.4.

4.1. Signal processing

Signal processing techniques have not been as popular as other
approaches, nevertheless, a comprehensive summary can be



Table 1

Overview of geometry-based traversability analysis methodologies.

References Application Criteria
(Ter/Rob/Stab/Kin)

Hoffman and Krotkov {1989) Planetary of—f—)—
Simeon {(1991), Simeon and Wright {1993) and Wright and Simeon (1993) Planetary o/nn/—

Gennery {1999) Planetary o/—f—f—
Singh et al. (2000), Stentz (1995) and Kelly (1995) Planetary o/ —f—/—
Kubota et al. (2001} Planetary LI
Wettergreen et al. (2005) Planetary o ===
Helmick et al. (2009), Goldberg et al. (2002) and Huntsberger et al. (2008) Planetary oin/—/n

Ishigami et al. (2011) Planetary o/n/njn

Langer et al. {1994 Matural Y L ey -
Pai and Reissell (1998) Matural o)/
Bonnafous et al. (2001) Matural o/n/nn

Vandapel et al. (2008) Matural oln/—/—
Thrun et al. {(2006a) Desert o/ —f—/—
Lalonde et al. (2006) Matural o/ —)—f—
Heckman et al. { 2007) Matural Y L ey -
Dubbelmanand et al. (2007) Matural o/ —)—f—
Larson et al. (2011) and Larson and Tnvedi (2011) Matural o —)—f—
Kuthirummal et al. (2011) Matural and structured o/ —)—f—
Montemerlo and Thrun {2004) and Ferguson et al. (2003) Structured o —)—f—
Andersen et al. { 2008) Structured o/ —)—f—
Ye (2007) Structured /== =
Joho et al. {2007) Structured o/—)—/)—
Murarka et al. (2008) Structured o/ —f—/—
Maolino et al. (2007) Search and rescue oln/—/—
Papadakis and Pirri (2012) Search and rescue o/n/nn

Morouzi et al. (2012) Search and rescue o/n/nn

decomposed into two major branches in signal processing, namely,
single-scale space and multi-scale space analysis.

In the first domain, one of the earliest approaches in terrain
traversability analysis, in general, concerns the work of Hoffman
and Krotkov (1989) where a set of terrain roughness parameters
was extracted by employing Fourier analysis. By treating the
elevation map as the input signal, it was first filtered in order to
obtain a subset of samples and localize the terrain roughness and
then for each localized point, a plane was fit by least squares
regression, discarding the inherent rotation and translation by
normalization. Finally, roughness parameters were computed
through Fourier analysis on the transformed signal, by computing
the expected range of heights and slopes and the repeatability
tendency of the signal.

In the domain of multi-scale space analysis, Pai and Reissell
(1998) followed an approach based on wavelet decomposition
that modeled terrain traversability in multiple resolution levels.
The core idea relied in assessing the terrain roughness by the rate
of error decrease in approximating the original terrain map by
coarser levels of the wavelet decomposition. On this basis, a local
terrain roughness measure is computed for each grid cell that was
used to derive optimal paths, where optimality was established
by lexicographic comparison of the paths after sorting the
respective cells in non-increasing order.

Multi-scale space terrain traversability analysis has also been
explored in other works (described in the following subsections),
but from another perspective, namely, by taking into account the
sparsity in the sensed terrain surface as a result of distance,

4.2, Convolution with kemel

A trend that has drawn significant attention in terrain traversa-
bility analysis corresponds to the simulation of the vehicle as a fixed-
size 2D kemel and convolving this kernel with the 2D terrain map.
The term convolution here should not be taken equivalently to its
formal definition in the context of signal processing. The motivation
in using this term is based on the idea that the terrain map is
iteratively processed by superimposition of a window (radial or
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Fig. 3. Convolution of terrain map with a vehicle kemel. A 2D grid accumulates

the information within the acquired 3D point cloud of the terrain while the vehicle
15 simulated as a rectangle-shaped kernel.

rectangular) centred at the total set of discretized positions and
potentially at different orientations, in that way simulating the
overlay of the wvehicle on top of the terrain and computing the
features that characterize the terrain at these positions. The under-
lying idea is illustrated in Fig. 3.

At any given position, the features that are extracted take into
account either the 3D positions of the corresponding grid cells, or
make direct use of the 3D points that reside within these cells
that have been acquired either from LIDAR sensors or passive
vision sensors. Regardless of the underlying data set that is used,
a statistical processing stage is followed in the sequel where
various features can be extracted among which the most notable
can be denoted using the terms certainty, terrain orientation and
roughness.

The previous constitute the main statistical features that have
been employed, next to which extensions or more dedicated
features have further been proposed.

4.3. Statistic processing

Statistic processing of the inherent 3D information of a terrain
surface has been the most popular and extensively explored approach
in building the terrain model and extracting traversability features.



It would not be exaggerating to say that the core ideas for
geometry-based traversability analysis methods based on statistic
processing had been mainly unfolded in the works of Langer et al.
(1994) and Gennery (1999). In detail, Langer et al. constructed 2D
traversability grid maps by computing elevation statistics from the
set of 3D points residing within each grid cell, namely, the maximum,
minimum, variance of height and slope. These features were then
checked by hard thresholds according to the vehicle capabilities. In
the seminal work of Gennery, terrain traversability was captured by a
cost function that aggregated the elevation, slope, roughness and data
point accuracy, integrated with a path planning algorithm that
took into account the distance traveled as well as the probability of
traversability. The geometric features were computed for every grid
cell by an iterative plane-fitting process that adaptively weighed the
fitted points according to their accuracy, terrain roughness and
distance from the center of the cell. Finally, the probability of
traversability was derived as the probability product of having a
permissible slope and roughness.

Other research efforts either augmented these basic ideas or
introduced new features. In Joho et al. (2007) traversability was
quantified into a global value that was derived as the product of pre-
normalized measures of slope, roughness and obstacle presence. The
cost was first assigned within each grid cell by local least-square
plane fitting and finally propagated to the entire map through
convolution with a Gaussian kernel. An approach more tightly
connected to path planning was presented in Ye (2007), where the
slope of robot-sized terrain patches was computed by plane fitting
through eigen-analysis and measuring the comresponding roughness
through the residual of the fit, that gave a final traversability index
(TI) as a linear combination of the two measures. Tl was used to
derive a vector field for each cell and a final traversability field
histogram (TFH) was derived by accumulating the cell traversal costs
in the foreground of the robot that was discretized into sectors.
Instead of using LIDAR, Dubbelmanand et al. (2007) detected obsta-
cles in the direction of image columns by using dense 3D terrain data
reconstructed from stereo disparities. First, a disparity validity mea-
sure was employed together with an image pyramid to produce
reliable disparity estimates and in the sequel, the traversability was
computed for each pixel of the disparity image by estimating the
maximum vertical slope and using hysteresis thresholding that was
driven by morphological opening and region filling. Traversability
classification of road-type terrain was addressed in Andersen et al.
(2006), by using single 2D laser scans that were obtained by a laser
tilted towards the ground. The features extracted corresponded to the
height, roughness, step size, curvature, slope, width and data validity
which were then fused into a global classifier. A notable characteristic
in that approach was the grouping of consecutive traversable
segments by clustering measurements into groups of locally homo-
geneous geometrical descriptions. Finally, in Kuthirummal et al
(2011), terrain traversability could be grounded by building a grid
map wherein the cells accumulated elevation histograms from the
acquired 3D point cloud. By individual inspection of the histograms,
overhanging structures were detected, while by pairwise comparison
between adjacent cells, the respective traversability was assessed.

4.3.1. Modeling uncertainty and error

Systems that worked deterministically often proved to be
impractical due to the increased complexity and uncertainty that
characterized the environment and the error induced in various
measurements. To alleviate this problem, a number of approaches
focused on modeling uncertainty in terrain perception mainly
through probabilistic modeling. Landmarking perspectives as
those described by Kavraki et al. (1996) for constrained environ-
ments and Gennery (1999) for planetary rovers, set the founda-
tions in this field.

A methodology that concretely modeled error and uncertainty is
reflected in Singh et al. (2000) through the notions of terrain certainty
and goodness that were combined in order to derive terrain traver-
sability (stereomap) To determine the goodness of a cell, the
minimum of the roll, pitch and roughness of planar rover-sized
patches centered at each cell was taken, by fitting planes onto the
stereo range data points and computing the residual of the planes.
The certainty attributed to a grid cell depended on the number of
points within the corresponding patch, their variance and its distance
from the current position of the UGV. This essentially favored cells in
the local neighborhood of the UGV when local path planning was
employed (using Morphin Kelly, 1995) and aged cells that lied further
away, hence, also biasing the global path planned using the Dynamic
A* method (Stentz, 1995). A correlated approach was proposed by
Wettergreen et al. (2005), where certainty in terrain perception was
modeled as a function of the number of points and the uniformity of
their distribution, that was eventually combined with the least
favorable among the slope, roughness and point discontinuity within
rover sized-patches around the robot. The problem of uncertainty in
the detection of obstacles that was induced due to the non-uniform
laser scan readings in 3D space was explicitly discussed in
Montemerlo and Thrun (2004), by modeling terrain navigability as
a distance adaptive attribute. A pyramid consisting of several layers of
terrain maps of varying resolution was constructed and updated
using the Bayes rule wherein navigability was first locally assessed
through the difference between the maximum and minimum eleva-
tion. Finally, the terrain map was convolved with a radial kermel that
modeled the robot in order to account for the distance from obstacles
(Ferguson et al., 2003).

A special reference should be made to the work of Thrun et al.
(2006a), where we find the description of the terrain analysis module
of the vehicle Stanley Thrun et al. (2006b) that won the DARPA Grand
challenge for autonomous driving in desert terrain. In that approach,
traversability was formulated as a probabilistic feature wherein
locally spaced elevation differences in the acquired 3D point cloud
were verified or discarded, through an error probability estimate that
designated whether a position corresponded to an obstacle, drivable
space, o unknown. The probabilistic terrain analysis took into
account errors occurning in the robot's state estimation and the noise
induced from the laser sensors and accumulated over time.

4.3.2. Extraction of shape features

Another approach for deriving the traversability of the terrain
concemed the detection of basic shape features, such as edges,
planar patches or clusters of scattered3D points (see Fig. 4).

The main concept is to employ 3D scene understanding
algorithms and map the difficulty of a vehicle in traversing
a terrain into distinct levels. In such a hierarchy, planar surfaces
could correspond to traversable regions depending on their
orientation, lines or edges signifying the transition between
planar surfaces and finally surfaces that spread in all 3D direc-
tions could be judged as the regions that are less likely to allow
traversal.

On this line of thought, in the work of Lalonde et al. (2006) 3D
LIDAR data were classified based on their scatterness, surfaceness
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Fig. 4. 3D shape primitives used for assessing termain traversability. (a) Line,
(b) planar patch and (c) cluster of scattered 3D points.
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and linearness for natural terrain analysis. Through the use of ground
truth data, Gaussian mixture models of these classes were leamed
by employing Expectation Maximization on a set of statistic features
that were computed from the principal component analysis [PCA)
decomposition of sets of neighboring points across the 3D scene.
Subsequent filtering on the classification results was performed to
account for outliers, discard edges and discriminate the ground from
other surfaces, while as a last step, region growing was employed
for grouping classified points. Similarly in Heckman et al. {2007),
detection of potential negative obstacles was performed by initially
performing ray-tracing for occlusion labeling and finally context-
based labeling. Given a 3D voxel grid where cells were classified into
linear, surface and scatter, ray-tracing was used to propagate the
class of occupied voxels to the corresponding occluded voxels while
context-based labeling was used to distinguish among four cases
that could be the cause of data absence and eventually infer the
presence of negative obstacles.

By building upon fine terrain descriptions extracted from the
GESTALT system { Goldberg et al., 2002), step, roughness, pitch and
border hazards were perceived as described in Helmick et al.
(2009), by using the statistics within a goodness map that
quantified traversability by locally fitting planar patches across
the map. Terrain was classified into definitely traversable, definitely
not traversable or unknown by thresholding the goodness value of
each cell while traversability of the unknown terrain was pre-
dicted by employing forward simulation of path following within
the ROAMS environment { Huntsberger et al., 2008) and calculat-
ing the energy consumption along a path together with the
amount of wheel slippage.

Perception of negative obstacle shapes: Perception of negative
obstacles, such as gaps, downward inclined planes or descending
steps which are characteristic examples of shapes that belong to
this category (see Fig. 5), has occasionally been at the focus of
scene understanding approaches. Perception of such shapes con-
stitutes a big challenge when relying solely on sensors on-board a
UGV, since they are either occluded by positive obstacles or
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the ground plane and therefore their presence can be inferred
through the absence of data.

This problem was addressed in the work of Larson et al. (2011),
wherein terrain traversability was determined by the presence of
positive and negative obstacles, step edge obstacles, slope steepness
and terrain roughness. Positive obstacles were detected when the
surface elevation variance exceeded a chosen threshold while step
edges by measuring elevation differences among neighboring
cells. Patches of missing range data that exceeded some size were
considered as potential negative obstacles and a consecutive filtering
process determined whether they could be the result of shadowing
from positive obstacles. The slope steepness and terrain roughness
were computed through PCA analysis. In subsequent work (Larson
and Trivedi, 2011), the authors explored a long and short-range
negative obstacle detection framework. Initially, potential negative
obstacles were detected at a distance using the NODR classification
approach and then further refined and filtered using support vector
machines (SVM) when the UGV has sufficiently approached the
surrounding area. NODR comprised a multi-pass detection process
that first looked for steps and next for gaps whose characteristics
could either be directly measured from the available range data, or
inferred by using contextual cues, such as sudden negative or positive
elevation drops. Eventually, using an 5VM model trained on ground
truth data, true and false positives of negative obstacles were
distinguished once the UGV had sufficiently approached. Using
stereo-based scene reconstruction and motion cues Murarka et al.
(2008) distinguished five possible urban terrain classes, namely,
ground plane, above or below ground plane, drop-off edge and
unknown. Drop-off (occluding) edges were detected by boundary
extraction and matching in pairs of images of different frames and
comparing the motion of features above and below the edges. If the
ratio was above a threshold, then an occluding edge was detected.
The remaining four classes of terrain were assessed by measuring the
total elevation of cells of the grid map.

To date, no previous work has gone further from binary traversa-
bility assessments which implies that whenever a gap is detected it

Fig. 5. Example of a cluttered 3D scene wherein negative obstacles (illustrated as purple polygons) may pose a danger to the integnty of the robot. Detection of negative
obstacles can only be inferred through the lack of data, that may be due to varnous reasons.



has always been considered as lethal, although it could be passable
under certain conditions depending on the mobility capabilities of
the UGV.

4.4. Incorporating robot dependent variables

Traversability analysis that is performed solely using character-
istics of the terrain provides the basis for the development of more
dedicated and detailed models that take as input vehicle dependent
variables. Such schema allow for more accurate traversability assess-
ments at the cost of increased computational complexity that may
occasionally be less prioritized.

Among the first elaborative attempt to quantify terrain traversa-
bility, at least implicitly, by taking into account the 3D terrain
structure and its relation to a 3D vehicle model was presented by
Simeon (1991). By modeling a vehicle using an arbitrary polyhedron
with contact points corresponding to the supporting wheels and the
terrain as a polygonal surface, a one-to-one mapping was established
between the terrain and a given robot placement by geometric
computations that designated a particular robot configuration as
admissible, if it satisfied the collision-free and stability conditions.
Collisions arose in the event of negative ground clearance while
stability was a function of the position of the robot's gravitational
center when projected onto its support polygon. In the same context,
more complex wvehicle models and suitable configuration space
representations were considered in subsequent work (Simeon and
Wright, 1993; Wright and Simeon, 1993).

Despite the fact that such approaches started to be explored
quite early, probably the limited computing capabilities available
at that time prevented this direction to foster since employing
such complicated models was prohibitively time consuming.
In recent years however the interest was renewed due to the
proliferation of dedicated software for running such models, such
as simulation environments and physics engines together with
the availability of efficient and affordable hardware.

While the field is still in its infancy yet progress can be attested by
looking at a number of works where at least one step is taken beyond
just simulating the vehicle as a symmetric kernel and convolving that
kernel with the terrain. A distinguishable framework was presented
by Bonnafous et al. (2001) where the traversability properties of the
terrain are collected into a danger attribute taking into account the
robot configuration and stability constraints related to the pitch and
roll angles of the articulated components and an uncertainty con-
straint that accounted for the sparseness of information in the DEM as
the proportion of unperceived cells in the vicinity of the robot surface
contact point. The aggregated cost of a particular trajectory within the
costmap was then computed by considering the individual danger
within the cells as well as the cost induced by the changes in the
robot configuration along the path execution. An altermative para-
digm is presented in Kubota et al. (2001) where the traversability
probability was formulated by estimating the roll, pitch and height
criteria of a rectangular shaped robot superimposed on a DEM. In
detail, the inclination in each pair of wheels was modeled at the
respective perpendicular direction and the height of all grid cells
occupied by the robot model as a Gaussian mixture model, that was
parameterized by the prescribed position of the robot at a given cell
and yaw direction. In Vandapel et al. (2006), two kinds of terrain
traversability maps were constructed by processing aerial LIDAR data.
The first map quantified the presence of vegetation which encoded
the confidence of terrain reconstruction that could be used to plan
paths below canopy while the second map was derived by super-
position of a robot model across different directions on the elevation
map and estimating its roll, pitch and ground clearance. These
estimates were then smoothly mapped into a fixed interval and the
overall cost was taken as the least favorable of the three critena.
Recently, Ishigami et al. (2011) formulated the dynamic mobility index,

a measure that combined static factors such as stability and dynamic
factors such as wheel slippage, time duration and energy consump-
tion. The model assessed terrain roughness as the standard deviation
of elevation across the robot footprint when projected onto the 2D
grip map at varying yaw angle and wheel slippage by measuring the
terrain inclination. Finally, the length of a path was considered in
order to favor the shortest paths while energy consumption and time
duration were evaluated by simulating the traversal using paths
extracted with varying weightings of the involved factors that finally
produced a single path with minimal energy consumption.

In the domain of USAR, a pure geometric-processing approach
that quantified the static 3D traversability of articulated, tracked
UGVs was proposed in Papadakis and Pirri (2012), wherein 3D
reconstructed terrain from collapsed sites (Kruijff et al., 2012) was
used in order to learn and regress the mobility of the robot. By
means of physics-based optimization, the robotic vehicle could
assess its stable pose on top of a given terrain and in the sequel
quantify the optimality of that pose through the computation of
refined traversability costs, that accounted for the complete 3D
model of the vehicle and the shape of the terrain surface. In a
similar setting, Norouzi et al. {2012) employed physics-based
prediction of contact support points of a given reconfigurable
robot on top of a terrain and in the sequel quantified the
traversability by further considering a criterion about the visibi-
lity range of an arm-mounted camera.

5. Appearance-based traversability analysis

Terrain traversability analysis methods of this kind project the
problem into the image-processing and classification realm (Fig. 6).
In this perspective, robotic systems that employ appearance-based
traversability analysis usually assess a discrete set of terrain classes,
rather than regressing traversability. An overview of previous work
concerning appearance-based traversability analysis is provided in
Table 2.

Gravel

Vegetation

Fig. 6. Appearance-based terrain traversability analysis through image classification.

Table 2
Overview of appearance-based traversability analysis methodologies.

Refere nces Application Criteria
{Ter/Rob/StabfKin)

Howard et al. (2001) and Flanetary of—/—)—

Howard and Seraji (2001)

Angelova et al. (2007) Matural o/—)—/—

Dongshin et al. (2007) Matural o/—)—/—-

Guo et al. (2011) Matural ofof— -

Matural and structured
Matural and structured

Khan et al. (2011)
Filitchkin and Byl (2012)
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Fig. 7. Examples of heterogeneous sensor modalities for hybrid traversability analysis schemes. (a) Geometric, (b) thermal imaging, (c¢) 2D images and (d) wheel vibrations.

Regressing terrain traversability based on vision features
rather than performing terrain classification was recently pro-
posed by Guo et al. (2011). To achieve this, an 5VM model was
trained for distinguishing different degrees—classes of traversa-
hility by learning the standard deviation of the robot angular
acceleration when traversing terrains of given type, mainly
characterized by moments-based image features. For the applica-
tion of robotic-based planetary exploration, Howard et al. {2001)
and Howard and Seraji (2001) regressed the terrain traversability
by measuring terrain roughness, slope, discontinuity and hard-
ness. They measured roughness by computing the size, concen-
tration and average separation distance of rocky regions within
the observed area that were identified by comparing their visual
signature against that of the ground. The slope of the terrain was
predicted by using a neural network that had been trained to
learn the relationship between slope and correlated pixels along
the horizon while terrain discontinuity was used to model
features such as cliffs and ravines by measuring the distance
between roughly detected lines. Hardness was used to classify
between different terrain materials (sand, gravel, etc), as a
measure of potential wheel slippage, by performing texture
analysis.

Appearance-based terrain traversability analysis could be
further refined from the point of view of the structure of the
underlying raw feature space. From this perspective, through a
hierarchy of classifiers that were designed to distinguish terrain
classes of varying complexity, Angelova et al. (2007) performed
appearance-based terrain classification on feature spaces of vary-
ing resolution. Classification was performed in a top-down fash-
ion, starting by fast and simple classifiers and advancing into finer
and more complex classification by applying the minimume-cut
algorithm in order to determine non-overlapping classification
sub-spaces. By employing standard features based on color
statistics and textons, terrain was classified into soil, sand, grave,
asphalt, grass and woodchips. As a better alternative to the use of
regularly spaced fixed-size image patches for visual primitives,
Dongshin et al. (2007 ) performed natural terrain classification by
using super-pixels extracted by over-segmentation of an image.
These produced regions of homogeneous visual content are
superior to rectangular image patches that are generally sensitive
to the tessellation resolution and occlusions. As a proof of
the superiority of super-pixels, standard image features were
employed and Bayesian classification showing improved perfor-
mance on a number of examples. Alternatively, Filitchkin and Byl
(2012) proposed an adaptive sliding window technique within a
2D image in order to obtain terrain signatures of constant feature
density. This was achieved by a simple gradient-descent
based approach that iteratively increased the range radius of
computed features at each consecutive pixel and finally extract-
ing the corresponding visual word histogram. By employing SURF
features Bay et al. (2008) and an SVM classifier, they distin-
guished a predefined set of natural terrain classes that were
subsequently coupled with appropriate gait behaviors for a
quadruped robot.

Table 3
Overview of hybrid approaches for terrain traversability analysis.

References Application Criteria
(Ter/Rob/Stab/Kin)
Rosenblum and Gothard (2000) Matural Y
Bellutta et al. (2000) and Matural of—f—/—
Manduchi et al. (2005)
Stentz et al. (2003) Matural of—f—/—
Matthies and Rankin {2003) Matural Y
Dima et al. {(2004) and Matural of—f—/—
Lalonde et al. (2006)
Crane Ill et al. (2008) Matural of—f—/—
Happold et al. {2006) Matural of—)— /-
Silver et al. (2006) Matural ofe/—/—
Kelly et al. (2006) Matural Y
Lu et al {2009) and Lu et al. (2011) Matural o —J— -
Halatci et al. (2007) Planetary o —f— /=

6. Hybrid approaches

A mindful study of the previous work and the respective results
would not favor an individual approach or particular sensor as being
overall superior. An evident complementarity however exists
between LIDAR and vision sensors which has been exploited within
several works in order to extend the range of operating conditions
and increase the overall robustness. We may generally refer to such
approaches as hybrid to denote the cases where traversability
analysis is being performed by fusion of the two main categories
of sensory data and occasionally from other heterogeneous sources
of data (see Fig. 7). Table 3 summarizes and groups previous work
that concems hybrid terrain traversability analysis methodologies
through the fusion of various sensor modalities.

6.1. Fusion of geometry-based and appearance-based features

The main stream of research in hybrid traversability analysis
methodologies concerns the fusion of geometry-based and
appearance-based features, where visual features are computed
on the human visible range of spectra. Previous work may have
relied either on passive vision sensors where pixel data are
registered to range estimates or through the additional use of
LIDAR sensors wherein data from one source are registered to
data from the second source.

Instead of using a single representation of fused features, most
often distinct roles are assigned to each sensory data type for
assessing different kinds of terrain traversability. In Bellutta et al.
(2000) for example, terrain perception was based on the combi-
nation of geometric and visual features through a rule-base
system. Terrain was geometrically classified into negative or
positive obstacles by inspection of the height profile of elevation
data while the terrain support was statistically learned through
Expectation Maximization within the color space. In Manduchi
et al. (2005), a hybrid classification scheme was proposed that



acted upon the output of a positive obstacle detection process.
First, points in the stereo-disparity range image that cormre-
sponded to obstacles were detected in pairs by hard thresholding
on the extracted slope and height and then grouped together by
finding maximally connected sub-graphs within a point graph,
that connected neighboring surface points. In the sequel, color-
based terrain classification was performed by using the surface
reflectivity spectra and learning a Gaussian mixture model for
classes of rock/solid, green and dry vegetation. LIDAR data were
also used to distinguish smooth against rough surfaces by
analyzing the changes in the laser range histogram. A system of
pervasive use of LIDAR sensors operating jointly with a single
camera is presented in Crane Il et al. (2006 ) where they describe
the traversability grid data structure. A collection of smart sensors
complied with a fixed underlying traversability assessment pro-
tocol assigned traversability scores to each grid cell. Three LIDAR
sensors were employed to distinctively assess terrain smoothness
and the presence of positive and negative obstacles while a
camera was used to segment the drivable area from the remain-
ing scene by simple Bayes classification in color space.

A merging perspective of the LIDAR-based and visual-based
terrain analysis approaches was explored in the work of Lu et al.
(2009, 2011) where a laser stripe-based structured light sensor was
employed that comprised of a laser and camera. The hybrid sensor
was used to perform terrain classification through texture features
(contrast, correlation, energy and homogeneity) extracted from
gray-scale image data, together with Fourier spectral analysis of
1D elevation profiles. Classification was performed by training a
probabilistic neural network that was able to discriminate among
asphalt, grass, gravel and sand, suitably aligning the vehicle control
parameters for the terrain to be traversed.

The fusion of diverse, remote sensor modalities is explored in
Stentz et al. (2003), where the terrain perception of a UGV was
complemented by a UAV that registered terrain data acquired from
high elevation into the environment as perceived from the sensors
of the UGV. The robot team was equipped with co-registered passive
and active sensing that were fused in order to assess the drivability,
compressibility and penetrability of natural terrain. Color cues proved
discriminative for evaluating the drivability over various vegetation
and solid obstacles while the density of the reflected LIDAR rays was
useful for determining space rgidity. The fusion of traversability
costmaps derived from different sensors was addressed by time
averaging over each sensor and considering the maximum cost
overall for each map cell. Fusion of UAV acquired data for UGV
motion planning is also discussed in Vandapel et al. {2006) although
solely concerning LIDAR sensors.

In Happold et al. (2006) a framework of terrain traversability
estimation was developed for prediction into the classes of low,
intermediate, high and lethal traversability. The first stage con-
cerned the acquisition of ground truth with respect to the stereo
range data and extraction of geometric features that captured
statistics on the elevation and the point cloud population accord-
ing to the ground terrain plane. They trained a neural network
that was subsequently fed with predicted geometric features
using maximum likelihood estimation in color space and the final
traversability cost was determined by accounting for a graded
confidence of stereo range estimation in the lateral and forward
direction as well as the elapsed measurement time.

6.2, Heterogeneous sensor fusion

Next to the prominent direction of fusing appearance-based with
geometry-based features, a considerable number of approaches
concerns the fusion of additional heterogeneous sources of data.
Characteristically, a scene understanding system that fused percep-
tion capabilities from several diverse sensors in order to determine

the traversability of the terrain was presented in Rosenblum and
Gothard (2000). Environmental sensing concerning temperature,
precipitation and humidity were registered with depth information
(stereo disparities) and image visual cues such as color and texture
and shape features such as size and orientation, altogether covering
an almost complete range of operating conditions. Using these
features, a terrain classification system was trained that could be
applied per pixel or image patch. An alternative approach in terms of
perception for detection of negative obstacles during night was
proposed in Matthies and Rankin (2003), wherein range data were
combined with thermal features of the terrain that highlighted
cavities as potential negative obstacles. The method was based on
the observation that negative obstacles retain more heat during
night than planar surfaces.

Other notable works, mainly concemed the fusion of geometry-
based and appearance-based features together with (near)-infrared
imagery. In Dima et al. (2004), feature and classifier fusion for
obstacle detection and terrain traversability was presented. The
basis features that were computed on incoming sensory data from
various perceptual modalities, namely, LIDAR, color images and
infrared, corresponded to the mean and variance of pixel values
along a set of image patches spanning the image space. By combin-
ing features that incorporate domain knowledge (Lalonde et al.,
2006), the authors evaluated classifier fusion strategies (experts,
stacked generalization and AdaBoost) and showed improved classi-
fication scores for road, human and negative obstacle detection, in
comparison to single feature-based classifiers. The work of Silver
et al. (2006) emphasized on fusing heterogeneous overhead data for
terrain classification and mobility prediction. In detail, image-based
features were extracted from the HSV space and Near-Infrared
Imagery { NIR), together with elevation-based features and 3D point
cloud features that described the density of the ground support
region in combination to PCA-based features. A neural network was
built on the aforementioned features, giving a traversal cost that
was added to a vehicle mobility cost which was computed by
assessing the roll, pitch and ground clearance of the robot at various
locations, through convolution with a vehicle model. Kelly et al.
(2006) described the design and operation of a human-robot team
for off-road navigation, wherein terrain classification was based on
geometry-based features combined with multi-spectral image-
based features. PCA was applied in different resolutions of a 3D
grid in order to distinguish terrain, vegetation, rocks and bushes.
Vegetation, soil and sky detection in images was further aided by
using NIR data. The robot support surface was detected by ray-
tracing of the laser-beams and training a neural network to assess
the load-bearing surface while traversing over vegetated areas,
whereas obstacles were inferred by the presence-absence of laser
hits in the direction perpendicular to the supporting surface.

6.3. Comparative studies and surveys

To complement our review, a number of previous studies that
are insightful for specific aspects of the general problem are of
relevance.

As far as discrimination ability is concemed between texture
and keypoint descriptors for outdoor applications, a comparative
study was recently presented in Khan et al. (2011). In detail, the
authors tested local binary, temary and adaptive temary patterns
as well as SURF and Daisy descriptors for discriminating asphalt,
gravel, grass and tiled surfaces. Among several classification
approaches, random forests performed best overall, while key-
point descriptors proved to be more discriminative at higher
resolutions than the texture-based methods.

A study on rough terrain traversability metrics in the field of
urban search and rescue {USAR) was presented by Molino et al.
(2007). Two complementary formulations of terrain coverability



were proposed, providing a measure of the total terrain roughness
for the task where the robot has to explore an entire area in order
to detect the maximum number of victims. It is argued, that both
alternative measures are needed and could prove useful depend-
ing on the context, namely, depending on whether a discretized
elevation map is available or not together with the cell connec-
tivity. For the purpose of path planning, terrain crossability was
defined as the accumulated cost of robot movements along a path
within the rough terrain, that accounted for roughness, wheel-
track diameter and path length.

A useful study on fusion methodologies can be found in the work
of Halatci et al. (2007), where an indepth evaluation of features from
different sensing modalities, fusion strategies and classification
methodologies was presented. The application domain concemed
planetary rovers and classification of terrain into rocky, sandy and
mixed. Towards this goal, the authors employed appearance-based
features derived by color intensities and texture wavelet-based
signatures, geometry-based features derived from the surface orien-
tation and step heights by employing least-squares plane fitting and
finally, proprioceptive features by spectral analysis of vibration
signals during the traversal of a particular terrain. Two levels of
classifiers (lower and higher) were combined hierarchically using
Gaussian mixtures or support vector machines at the lower level to
train the classifiers that were fused into a high-level dassification
either through Bayes fusion or meta-classifier fusion.

An extended survey on vision-based approaches for navigation of
mobile robots is provided in DeSouza and Avinash (2002). Although
that survey does not explicitly focus on the concept
of quantifying traversability, it reviews a number of correlated aspects
such as obstacle detection, measurements uncertainty and map
building using vision sensors, that altogether contribute to the goal
of allowing a robot to optimally navigate within an environment.

Finally, Chhaniyara et al. (2012) performed a survey on terrain
trafficability analysis and the terramechanics of planetary soils.
They organize terrain characterization methods into a hierarchy
using as criterion the sensing range of instruments, namely,
spectroscopic, radar and in situ and elaborate on the advantages
as well as limitations of the various types in the context of space
vehicle missions. The results are summarized within an empirical
study that spans the whole range of sensing approaches and
which highlights the effectiveness—efficiency trade-off.

7. Discussion

Following the completion of the description of individual
contributions in traversability analysis methodologies, we now
shift the discussion onto a number of points that collectively help
in deriving several insightful observations.

7.1. Geometry-based versus appearance-based approaches

As has probably been recognized already, the first question that
naturally arises concerns the criteria for preferring either a
geometry-based or appearance-based approach for analyzing the
traversability of a given terrain. The answer to this question points
directly toward the application and the environment that the UGV is
designed and planned to operate. By summarizing the advantages
and disadvantages of the different sensing modalities for particular
environments and conditions, we next present a list of key differ-
ences between the two predominant approaches, namely:

e Geometry-based approaches provide the shape of the surface.
As a result, they are invariant to lighting conditions, smoke,
shadows or poor weather.

e LIDARs are an active sensor that are generally expensive and
consume more energy, in contrast to cameras that are more
affordable and since they are passive sensors they consume
less energy.

e Cameras can focus on areas of interest and provide better
resolution for finer classification tasks.

e Appearance-based (spectroscopic) approaches are occasionally
more suited in estimating the load bearing surface than
geometry-based approaches.

As was already discussed in Section 6, the strong complemen-
tarity between geometric and appearance-based sensor modalities
has often been exploited in order to increase the overall perfor-
mance. However, the degree of complementarity under specific
conditions has only started to be studied in depth within the last
decade and calls for further research.

In the case where the 3D structure of the environment can be
reliably recovered by using camera sensors (Hartley and
Zisserman, 2004) either through structure from motion or use of
stereo-disparities, hybrid traversability analysis schemes can be
developed by registering visual information with the cormrespond-
ing 3D spatial coordinates. Such schema require dense recon-
structions of the surrounding environment in order to obtain
reliable estimates which in turn usually implies the presence of a
sufficiently high amount of characteristic keypoints within the
acquired images.

In the domain of exteroceptive terrain analysis and in parti-
cular remote sensing of the load-bearing surface, the key feature
for estimating the degree to which a surface would bear the
weight of a vehicle or not, relies on the identification of the
type of material of the corresponding surface. In this context, a
spectroscopic approach could be beneficial compared to a pure
geometry-based approach, e.g. when the thermal inertia of the
terrain can be estimated by analyzing multi-spectra of infrared
images. Such sensors allow the measurement of sub-terrain
features that are beyond the sensing capabilities of LIDAR (see
Chhaniyara et al., 2012). If the conditions within the environment
accommaodate such assumptions, then spectroscopic sensors may
be more adept compared to LIDAR.

Within very specific applications and extreme cases, there
exist examples that no sensor modality (spectroscopic or LIDAR)
can address effectively in the assessment of traversability. Char-
acteristically, we may think of a curb filled with liquid whose
surface could be reflective, transparent or light-absorbing (being
deceiving in all cases) and whose shape would be highly smooth
to be considered as traversable by geometric processing. Such
challenging scenarios are rarely addressed and beyond the scope
of most contemporary applications.

7.2. Impact

Through a straightforward comparison of the amount of
previous work between the two predominant approaches, we
may objectively witness a stronger impact of geometry-based
traversability analysis methods versus appearance-based. This
can probably be explained by the fact that the false positive rate
of geometry-based approaches is lower than that of appearance-
based approaches. In other words, it is less likely that the shape of
the surface will be judged as traversable although it is actually
not, in contrast to the appearance of the surface that is usually
more prone to this kind of erroneous assessments.

Undoubtedly, avoiding an unrecoverable state that could be
due to a false positive is more crucial than false negative
assessments that although may result in intimidating planning
behaviors, they do not compromise the operation of the robot.
The trade-off between safety and effectiveness has mostly favored



the former in designing the operation of robots, mainly due to the
fragility and high cost of the hardware that is employed. This
stresses the need for designing robots that are more affordable
and dispensable or alternatively, more robust to collisions and
tipping over. In corroboration to this, some impressive steps
toward this direction are already being made (BostonDynamics;
iRobot), mostly motivated by military applications.

7.3. Application focus

Although research interest was primarily directed toward
planetary missions of UGVs, the major part of research overall
concerns robots operating within natural environments (as can be
extracted from Tables 1-3). The difference within the two
domains as far as traversability analysis is concerned, mainly
relies on the need to guarantee a higher degree of autonomy for
planetary vehicles in view of the remoteness of their operation and
the largely constrained energy resources that limit the speed of
the vehicle. On the other hand, natural environments pose bigger
challenges for traversability analysis methods than planetary
surfaces, since they involve more varying lighting conditions,
the presence of vegetation and dynamic events. Overall, this
results to a larger and more diverse set of terrain categories that
justifies the increased attention in this application.

In contrast, previous work on terrain traversability for struc-
tured environments or search and rescue applications has been
relatively limited. Structured environments concern urban areas,
outdoor and indoor, that are mostly composed of planar surfaces
of varying appearances. On the other hand, search and rescue
environments probably correspond to the most challenging
domain for traversability analysis. The terrain may or may not
have a structure or it may be the result of a mixture of materials
of diverse attributes (Sheh et al., 2007). In this case, the definition
of a terrain class category could be highly ambiguous, therefore
impeding any further inference about traversability.

7.4. Criteria for traversability estimation

Recalling the general problem description at Section 2, we
distinguished a set of criteria based on which traversability
analysis methods are developed, namely, the terrain model, the
robot physical model, robot kinematic constraints and robot
stability constraints.

Through the elaborative description of the previous work as
presented in Sections 3-6, an interesting feature is revealed,
namely, that the core of all methodologies resides in an under-
lying terrain model in combination to which additional criteria
may be considered. Analyzing traversability through the extrac-
tion of a set of terrain features is beneficial in the following
aspects:

e Terrain model-based approaches are more generic extending
their applicability into different robotic platforms.

¢ They are computationally efficient and allow the seamless
application of a plurality of standard computer vision algo-
rithms and statistic modeling mechanisms.

e They translate the traversability analysis problem into a
conventional pattern recognition problem.

On the other hand, purely terrain model-based approaches
usually oversimplify the problem as they do not take into account
the actual physical interaction of the terrain with the UGV, either
static or dynamic. Modeling the interaction between the terrain
and the vehicle relies on complex physical models. Deriving a
traversability cost that further accounts for the robot's physical

model, kinematic and stability constraints is not as straightfor-
ward as different notions of optimality/stability may be applic-
able that occasionally may be conflicting to one another. A
detailed elaboration on the latter issue can be found in Freitas
et al. (2010).

An instructive set of robot optimality/stability measures that
are the result of the interaction between the robotic vehicle and
the terrain are the following:

e Ground clearance: The minimum distance between the center
of the robots coordinate frame to the terrain below.

e Robot orientation: The rollfpitch of the robot frame with
respect to the world frame.

e Zero moment point distance (Vukobratovic and Borovac, 2004):
The point where the resultant of all the reaction forces is
applied, i.e. the point about which the total moment of all the
external forces is zero. The distance between the boundaries of
the stable region and the ZMP is designated as the stability
margin.

e Force-angle stability measure (Papadopoulos and Rey, 1996):
The minimum angle required to tip over the vehicle, between
the gravitational net force and a tip-over axis normal.

e Distance stability margin (McGhee and Frank, 1968): The
minimum distance required to tip over the vehicle, between
a support robot point and its projected center of mass.

e Traction efficiency: Depends on the ratio of tangential to
normal contact forces over all tracks or wheels.

Depending on the desired approximation resolution of the
physical interaction between the terrain and the vehicle as well as
the available sensors, the computation of these measures can be
arbitrarily complex. This is reflected by the limited amount of
previous work where not only generic terrain features are
accounted for but further, an interaction model is constructed.
Mapping optimality/stability assessments onto traversability cost
assessments in order to guide motion planning is, nevertheless, a
growing field. In this direction Roan et al. (2010) performed an
evaluation of three state-of-the-art stability criteria comparing
their effectiveness in accessing robot stability in real-world
experiments wherein tipping over the robotic vehicle was purpo-
sefully evoked.

8. Challenges and future trends

Terrain traversability analysis for robot motion planning is a
field of active research with a broad range of applications. Mobile
robots are slowly but steadily becoming an integral part in a
plurality of domains where the presence of humans may be
unfeasible, perilous or harmful. From eary applications where
the main pursuit was to deploy robotic vehicles on planetary
surfaces, mobile robots were later on introduced to applications
within natural environments and are currently being highly
integrated into environments that involve human presence.

The present up-to-date survey has reported on several major
advancements and breakthroughs that have mainly been
achieved for robots operating in planetary surfaces and natural
environments. Robotic vehicles such as the spirit—opportunity for
Mars exploration (NASA) or Stanley (Thrun et al,, 2006b) that won
the DARPA Grand Challenge on 2006 are characteristic examples
of complete, reliable and highly effective systems that demon-
strate the level of advancement in the field of terrain traversa-
bility analysis for robot motion planning in the respective
environments. This is further in accordance to the research



findings recently reported in the context of Thuer's PhD thesis
(Thuer, 2009).

Interestingly, the research’s focus and in turn the progress in
the field of structured {indoor and outdoor) and unstructured
environments, namely, urban search and rescue, lacks behind in
comparison to the previous fields. This can certainly be attributed
to the difference in the time span that research has been
dedicated to each domain, as applications of mobile robots in
urban environments are only lately becoming popular. Moreover,
urban environments pose bigger challenges as far as traversability
analysis is concerned for robot motion planning, since environ-
ments are synthesized by a wider variety of terrain classes and
often mixtures of materials, while the robot missions often
require more delicate operations. Further research toward this
direction should be provisioned if mobile robots are to be fully
integrated into such environments. A major boost towards this
goal can certainly be attributed to the standardization of data
structures, communication protocols, sensors and robotic plat-
forms in international level, that is mainly fulfilled through the
development of the robot operating system (ROS) (Quigley et al.,
2009).
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