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Abstract: This paper introduces a self-organizing traffic signal system for an urban road 

network. The key elements of this system are agents that control traffic signals at 

intersections. Each agent uses an interval microscopic traffic model to predict effects of its 

possible control actions in a short time horizon. The executed control action is selected on the 

basis of predicted delay intervals. Since the prediction results are represented by intervals, the 

agents can recognize and suspend those control actions, whose positive effect on the 

performance of traffic control is uncertain. Evaluation of the proposed traffic control system 

was performed in a simulation environment. The simulation experiments have shown that the 

proposed approach results in an improved performance, particularly for non-uniform traffic 

streams. 
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1. INTRODUCTION 

 

Self-organizing systems solve different control problems by simple local interactions 

among a large number of components (agents). These systems are not controlled in a top-

down manner by some central unit such as an intelligent operator. Instead, they are based on 

internal, bottom-up processes (Gershenson and Heylighen, 2003). Artificial self-organizing 

systems were inspired by natural systems that are regulated by their own internal processes, 

e.g. swarm behaviour of social insects, fishes, and birds (Floreano and Mattiussi, 2008). From 

an engineering point of view, the advantages of self-organization are robustness, scalability, 

flexibility, adaptivity, simplicity of the components and reduced cost of deployment. 

Applications of the self-organization paradigm are especially effective in case of inherently 

decentralized control problems, such as traffic control in a road network (Khamis and Gomaa, 

2014; Vasirani and Ossowski, 2011). 

The task of urban traffic control is to increase capacity of a road network and decrease 

congestion by using traffic signals (Abdoos et al., 2013; McKenney and White, 2013). To 

achieve this objective effectively, traffic control algorithms take into account measured and 

predicted traffic data as input variables. State-of-the-art traffic control algorithms were 

designed to optimize traffic signals for all intersections in a road network by using a 

centralized adaptive approach. Global optimization of traffic signals in a road network is a 

NP-hard problem and the solution cannot be found in real-time due to the high computational 

complexity. For that reason, the centralized traffic control methods are based on adaptation of 

some pre-calculated signalization schedules, i.e., an optimization of signalization cycle, offset 

and split. (Hamilton et al., 2013). Limited performance of the adaptive methods has motivated 

the interest in self-organizing traffic control.  

The self-organizing traffic signals use a decentralized optimization scheme, which enables 

global coordination of the traffic streams in a road network. In this approach, traffic signals at 

each intersection are controlled by an agent, which makes its own decisions independently on 

the basis of real-time traffic data from local measurements. It means that the agent takes into 

account traffic conditions that exist at road segments connected to an intersection. The 

decentralized, local optimization of traffic signals for particular intersections can provide 

efficient coordination of the traffic flows at the network level, which results in so-called green 

waves (Cools et al., 2013). In comparison with adaptive traffic control algorithms, the self-
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organizing strategy is more flexible with respect to local demands and more robust to 

variations in the traffic flows. The self-organizing traffic control system can respond to actual 

real-time traffic conditions without using any pre-determined signalization schedules that are 

based on average traffic characteristics, e.g., average velocity (Lämmer and Helbing, 2008). 

This paper introduces a method, which improves performance of the self-organized traffic 

control system. The considered system is composed of agents that control traffic signals at 

intersections. Each agent detects incoming traffic, takes decisions, and executes control 

actions autonomously for its intersection. The control decision determines traffic streams that 

will get a green signal. According to the proposed method, a novel interval microscopic traffic 

model is used by the agents to predict effects of their control actions in a short time horizon. It 

allows delays of individual vehicles to be evaluated in terms of intervals. The higher control 

performance is obtained by taking into account uncertainty of the control decisions. 

Consecutive decisions are made by the agents in constant time steps on the basis of the 

predicted delay intervals. Since the prediction results are represented by intervals, the agents 

can recognize and suspend those control actions, whose positive effect on the performance of 

traffic control is uncertain. Sources of this uncertainty are associated with various driver 

behaviours and vehicle parameters that correspond to a range of possible free flow velocities 

observed in real-world (non-uniform) traffic.  

The paper is organized as follows. Section 2 includes review of related research and 

describes main contribution of this paper. Section 3 presents a decision algorithm for traffic 

control agents. Details of the proposed self-organized traffic control approach are discussed in 

Section 4. Section 5 describes experimental setting and presents results of the simulation 

experiments that were conducted in order to evaluate the performance of the self-organizing 

traffic control. In this study, the performance of the proposed method was compared against 

results obtained for state-of-the-art algorithms. Finally, conclusions are given and future 

research directions are outlined in Section 6. 

 

2. RELATED WORKS AND CONTRIBUTION 

 

In the literature several self-organizing traffic control methods have been proposed. Some 

of the earliest methods were based on neural networks (Nakatsuji and Kaku, 1991) and fuzzy 

logic (Chiu and Chand, 1993). In (Sekiyama et al., 2001) a model of nonlinear oscillators with 
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the nearest neighbourhood coupling was used to formulate the self-organizing traffic control 

strategy. Another early work along these lines (Wei et al., 2005) employs macroscopic two-

dimensional cellular automata model of an urban traffic control system, in which each 

intersection is regarded as a cell and the flow pressure is treated as a state of the cell. 

Main advantages of the self-organizing traffic control were discussed in (Gershenson, 

2005). It was demonstrated that traffic signals are able to self-organize and adapt to changing 

traffic conditions by using simple rules without direct communication among intersections. 

The simple self-organizing traffic lights algorithm (SOTL) proposed in (Gershenson, 2005) 

gives preference to vehicles that have been waiting longer, and to larger groups of vehicles 

(platoons). According to that approach, platoons affect the behaviour of traffic lights, 

prompting them to turn green. A self-organized coordination of the traffic lights is achieved 

by probabilistic formation of the vehicle platoons. The SOTL algorithm was further applied to 

to control traffic signals in a model of hexagonal road network with complex intersections 

(Gershenson and Rosenblueth, 2012) as well as in a simulated real-world arterial road (Cools 

et al., 2013). In order to enable cooperation of the SOTL algorithm with the existing low-cost 

vehicle detection technology, a history-based self-organizing traffic control was proposed in 

(Burguillo-Rial et al., 2009) as an extension of the above works. de Gier et al. (2011) have 

generalized the SOTL algorithm to handle intersections with multiple signal phases and to 

take into acconut the situation when vehicles cannot exit the intersection due to congestion in 

downstream links. In (Zhang et al., 2013) SOTL was compared against SCATS (Sydney 

Coordinated Adaptive Traffic System), i.e., a traffic signal system, which at present controls 

the traffic signals in numerous cities around the world. Results of those studies show that the 

self-organizing traffic control method considerably improves the performance of the 

conventional methods and increases the network capacity.  

Self-organizing oscillatory changes of passing direction observed in pedestrian 

counterflows at bottlenecks were an inspiration for the control strategy reported in (Helbing et 

al., 2005). This method assumes a control of traffic lights based on priorities that correspond 

to “pressures” induced by vehicles waiting to be served at an intercection. For the purpose of 

this strategy, a macroscopic fluid-dynamic model was used to make short-term traffic flow 

predictions. Performance of this self-organizing traffic control was compared to that of the 

existing state-of-the-art adaptive control in a real-world road network (Lämmer and Helbing, 
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2008). Results of these experiments revealed the higher performance of the self-organizing 

approach. Szklarski (2010) has shown that this approach always gives better results than any 

solution based on fixed cycles with green waves. 

In recent years there has been considerable interest in the developement of self-organizing 

traffic control systems. Main reason of this interest is that the improved self-organized 

coordination of traffic signals can have a noticeable effect on the quality of life in cities 

(Gershenson, 2013). Among the latest studies, Wang and Liu (2013) have proposed a self-

organized control strategy in which each intersection optimizes the traffic signals by taking 

into acount not only its own benefit, but also the interactions between neighbouring 

intersections. Cesme and Furth (2013) have introduced rules that can be added to the self-

organizing control logic for managing queues in arterial traffic during periods of 

oversaturation. In (Suzuki et al., 2013) it was suggested that the self-organizing traffic control 

system exhibits chaotic behaviour and therefore it can be analysed by using the Ising model of 

ferromagnetism in statistical mechanics. According to that appraoch, the states of traffic 

signals at intersections are represented by atomic spins on a two-dimensional lattice. 

Main limitations of the above self-organizing traffic control methods result from the use of 

macroscopic or mesoscopic traffic models for prediction and decision-making purposes. Such 

models evaluate the total effect of traffic signals on delay for all or a group of vehicles in a 

given road section. They assume uniform traffic streams and ignore individual vehicle 

parameters. It means that the same (average) parameters are used to describe motion of each 

vehicle. For real-world traffic, the motion parameters differ significantly depending on 

vehicle type and driver behaviour. Such non-uniform traffic scenarios cannot be taken into 

account while using the existing methods. 

By contrast, the new approach introduced in this paper is based on a microscopic traffic 

model, which uses intervals to describe possible range of vehicle parameters for the non-

uniform (heterogeneous) traffic streams. Thus, the traffic model takes into account different 

vehicle types and driver behaviours. The proposed method enables prediction of the effect of 

signal control actions on delays for individual vehicles. It allows the traffic control agents to 

utilize microscopic data (e.g., vehicle positions, velocities, classes, etc.) that are available in 

video-detection systems (Płaczek and Staniek, 2007; Pamuła, 2012), vehicular sensor 

networks (Bernaś, 2012; Płaczek, 2012) and other modern traffic monitoring platforms. Since 
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the results of prediction are represented by intervals, the uncertainty of control decisions can 

be analysed before execution of a control action. Therefore the agents can recognize and 

suspend those control actions, whose positive effect on the performance of traffic control is 

uncertain. 

 

3. DECISION ALGORITM FOR TRAFFIC CONTROL AGENTS 

 

This section presents the main features and assumptions of the decision algorithm for 

control agents in a self-organizing traffic signal system. The objective of the considered 

system is to minimise delay times in a road network by controlling traffic signals at 

intersections. Components of the system are agents that detect incoming traffic, take 

decisions, and execute control actions independently for each intersection in the network.  

Pseudo-code of a decision algorithm for the traffic control agents is presented in 

Algorithm 1. Input data of the algorithm consist of parameters that describe incoming traffic 

streams. These data are collected from vehicle detectors at road segments that enter the 

intersection. Output of the algorithm is a control decision that determines which traffic stream 

should get a green signal. The consecutive control decisions are made in constant time steps.  

In order to make control decision the agent uses a traffic model for approximation of the 

current traffic state as well as for prediction of its future evolution. On the basis of the 

prediction results a cost function C() is evaluated for all possible control actions 

 = 1, …, m. The term “control action” refers to the operation of providing green signal for a 

selected traffic stream (or streams). Thus, the maximum number of possible control actions is 

equal to the number of incoming traffic streams. Actual number of possible control actions m 

can be lower than the maximum if some of the traffic streams are not in conflict and thus can 

get a green signal at the same time. Since the control objective is to minimize delay time, the 

cost function is usually defined as total delay of vehicles.  

Control decision indicates the control action that will be executed by the agent at current 

time step. If this action changes the traffic stream receiving green signal then a setup time 

(intergreen period) τ has to be introduced due to safety requirements. During setup time the 

decision making procedure is skipped because the service cannot be switched to another 

traffic stream. 
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In general, according to the discussed algorithm each agent executes an optimal control 

action, which is associated with the lowest cost C(). However, the decision algorithm has 

also to assure that all traffic streams will be served in a critical time window Tcrit. Therefore 

the costs are taken into account after checking the time window constraint for all possible 

control actions. If the time window T(), predicted for control action , is equal to or longer 

than the critical time Tcrit, then the control action  is executed immediately and the costs are 

ignored. 

 

Algorithm 1. A general decision algorithm for traffic control agents 

1 for each time step do 

2 begin 

3      estimate current traffic state 

4      if not setup time then 

5           for each control action α = 1 … m do 

6           begin 

7                predict C(α) and T(α) 

8                if T(α) >= Tcrit then 

9                begin 

10                     execute control action α 

11                     go to 16 

12                end 

13           end 

14           select optimal control action α* 

15           execute control action α* 

16 end 

 

Detailed definitions of the above discussed operations depend mainly on the traffic model 

used by the control agents for prediction purposes. The strategy developed by Lämmer and 

Helbing (2008), discussed in Sect. 5.1.2, as well as the proposed approach, which is 

introduced in the next section, can be considered as special cases of the general decision 

algorithm presented here. 

 

4. PROPOSED APPROACH 

 

In this section details are provided regarding the proposed self-organizing traffic signal 

control for an urban road network. The main novelty of the introduced method is that the 

control decisions are based on predictions obtained from interval microscopic traffic model. It 
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allows the delays with their uncertainties to be analysed for individual vehicles in 

heterogeneous traffic streams. 

 

4.1. Interval microscopic model 

 

The interval microscopic model of traffic stream combines cellular automata approach 

(Maerivoet and De Moor, 2005) with interval-based representation of vehicle parameters. Due 

to the microscopic level of details, the model can directly map parameters of individual 

vehicles. It means that the results of vehicle detection can be directly taken into account in 

making control decisions. Cellular automata are used to simulate future evolution of traffic 

streams. The interval-based representation allows the model to take into account the 

uncertainty associated with vehicle parameters and drivers behaviour. 

According to this method, traffic streams are modelled in discrete time and space. A traffic 

lane is divided into segments of equal length that are represented by cells in the cellular 

automaton. Traffic streams at an intersection correspond to ordered sets of vehicles. Each 

vehicle (i) in a traffic lane is described by its current position Xi(t) (occupied cell) and velocity 

Vi(t) (in cells per time step). The maximum velocity of vehicles is defined by parameter Vmax. 

Velocities and positions of all vehicles are computed simultaneously in discrete time steps of 

one second using a transition rule of the cellular automata.  

A characteristic feature of this model is the application of intervals for describing vehicle 

position. The following notation will be used to express the position of vehicle i at time step t: 

Xi(t) = [xi
–
(t), xi

+
(t)]. Velocity of a vehicle is defined as an ordered pair Vi(t) = (vi

–
(t), vi

+
(t)), 

where the first entry corresponds to position xi
–
(t) and the second entry to position xi

+
(t). Note 

that the relation vi
–
(t) ≤ vi

+
(t) does not need to be satisfied. The above position interval and 

velocity pair are updated at each time step t according to the cellular automata rule. In case of 

lower endpoint of the position interval, the update operation is defined by formulas:     

 }),(,1)1(min{)( max

  vtgtvtv iii , (1) 

 )()()1( tvtxtx iii

  , (2) 

where gi
–
(t) denotes the number of empty cells in front of vehicle i at time step t. Note that in 

Eq. 2 it is implicitly assumed that the velocity vi
–
(t) is expressed in cells per one time step 

(1 second). Upper endpoint of the position interval xi
+
(t) and the related velocity vi

+
(t) are 

calculated in a similar way. The maximum velocity interval Vmax = [v
–

max, v
+

max] should be 
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interpreted as an enclosure of possible free flow velocities of vehicles in a heterogeneous 

traffic stream. 

In this study a single rule of cellular automata is applied with different values of the vmax 

parameter to calculate the endpoints of position intervals. However, this approach can be 

extended by using two different rules of cellular automata representing two extreme cases of 

vehicle movement in a traffic stream. In such a model, one cellular automata rule would be 

used to calculate velocity vi
–
(t) and position xi

–
(t), while another rule would apply to the 

computation of vi
+
(t) and xi

+
(t). The method may be easily adapted to the specific needs since 

the appropriate rules can be selected among those available in the rich literature on cellular 

automata traffic models (Maerivoet and De Moor, 2005). Details of the possible model 

extensions are discussed in the previous work of the author (Płaczek, 2013). 

 

4.2. Simulation-based prediction 

 

In the proposed traffic control system, the traffic model is applied to a simulation-based 

prediction of vehicle delays. According to the concept of simulation-based prediction, the 

traffic model has to be synchronised with real time and adjusted to traffic data collected from 

vehicle detectors. To maintain consistency between simulated and real traffic, at each time 

step, the model is appropriately adjusted by taking into account the current traffic situation 

(real time simulation). After adjustment, the traffic model determines initial conditions for 

faster than real time simulation. During this simulation the vehicle delays are predicted. The 

simulation-based prediction technique enables rapid evaluation of alternate courses of action 

in order to aid the control agents in decision making processes. 

Due to low computational complexity, the interval microscopic model enables high speed 

traffic simulation. Thus, it can be used to estimate current traffic state (real time simulation) 

and to predict delay of vehicles at an intersection for all available control actions (faster than 

real time simulation). The predicted delays are taken into account by agents for evaluation of 

the cost function C() during making control decisions. 

Estimation of current traffic state is based on both the real traffic data acquired from vehicle 

detectors and the results of real time simulation. During the real time simulation traffic model 

is used to estimate current positions and velocities of vehicles that cannot be measured by the 

detectors. In order to facilitate real time simulation, the detector data are mapped into the 
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traffic model. This operation includes generation and removal of vehicles, updating their 

positions, and adjusting the maximum velocity parameters. The real time simulation has to 

take into account also actual status of traffic signals. 

Results of the real time simulation (i.e., data on individual vehicles approaching an 

intersection) are further used to determine initial configurations for faster than real time 

simulation. The task of the faster than real time simulation is to predict values of the cost 

function for all possible control actions. For traffic stream, which currently receives green 

signal, the prediction horizon is equal to the minimum green time. In case of a traffic stream 

having red signal the prediction horizon is extended by the duration of intergreen period. 

Using the interval microscopic model, the cost associated with control action  is calculated 

as an interval of delay C() = [c
–
(), c

+
()]. The following formulas apply for determining 

the endpoints of this interval:  

 








  

t i

i

t i

i twtwc )(,)(min)( , (3) 

 








  

t i

i

t i

i twtwc )(,)(max)( , (4) 

 


 






else.,0

,0)(,1
)(

tv
tw i

i
 (5) 

 


 






else.,0

,0)(,1
)(

tv
tw i

i
 (6) 

 

Simulation examples for two different initial configurations of the interval microscopic 

model are illustrated in Fig. 1. It was assumed that the analysed road section consists of 12 

cells. Stop line is located in cell 11 and red signal is displayed for the vehicles during all 

simulation period. The prediction horizon is 6 time steps long. It was assumed that initial 

positions of three approaching vehicles at time step 0 are known (determined on the basis of 

detection results). In example a) the vehicles at time step 0 are detected in cells 1, 3, and 10. 

For example b) the three vehicles occupy cells 0, 4, and 8. Maximum velocity is given by 

interval Vmax = [1, 2] (in cells per time step). Shaded regions in the charts (Fig. 1 a, b) 

correspond to predicted position intervals. Fig 1 c) presents the delay intervals calculated for 

simulation presented in Fig. 1 a). Result of the delay prediction in this example is the interval 

C() = [8, 14]. For the example in Fig. 1 b) the result is C() = [7, 13], as shown in Fig 1 d).  
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   a)           b) 

   

    c)             d) 

   

Fig. 1. Traffic stream simulation in interval microscopic model: a, b) vehicle position 

intervals, c, d) delay intervals. 

 

4.3. Selection of control action 

 

Control decision, i.e., the selection of the most preferable (optimal) control action * is 

made on the basis of the predicted delay (cost). Intuitively, the agent should seek for a 

minimum element in {C()},  = 1, …, m. However, this operation requires a definition of an 

order relation for intervals. In the presented approach two different definitions of such relation 

are used. 
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The first definition of the order relation between two intervals A and B was taken from the 

Moore’s work (Moore, 1979). This basic definition is formulated as follows: 

 
  baBA iff . (7) 

Moore also defined the equality of two intervals as 

 
  babaBA andiff . (8) 

Above definition of the order relation “<” is applicable only for non-overlapping intervals. 

Therefore, the second definition of relation “ ” has been adopted for the case of overlapping 

intervals (Ishibuchi and Tanaka, 1990): 

 BABABA  andiff  , (9) 

 


  babaBA andiff . (10) 

It should be also noted here that the relations “<” and “ ” satisfy the following property, 

which was used to develop a procedure for selection of an optimal control action: 

 BCACBA  and . (11) 

If the comparison is made for intervals representing costs of control actions, then the 

relation C(1) < C(2) indicates that the control action 1 is certainly better than the control 

action 2. On the other hand, the relation C(1)   C(2) tells that the first control action is 

probably more cost effective than the second one, thus the order relation “  ” involves some 

level of uncertainty. 

Each change of the currently executed control action α
C
 requires an additional setup time 

before switching the green signal. During this time, the approaching vehicles have to wait at 

the intersection. Therefore, the proposed procedure (Algorithm 2), selects a new control 

action   only if its cost is certainly lower than the cost predicted for the current control 

action, i.e., C() < C(C
). If there is more than one control action, which satisfies the above 

condition then the final selection is made using the uncertain order relation “  ”. 

According to the proposed procedure, the decision about changing the current control action 

C
 is made only if it is certain. In case of uncertainty, the decision is to continue the execution 

of the control action C
. Symbol * was used in the pseudo-code to denote the selected 

control action, which will be executed by the agent at an intersection. Illustrative examples of 

selecting a control action are shown in Fig. 2. In the left example, the execution of current 

control action (1) is continued because it is uncertain if the costs of control actions 2 or 3 will 
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be lower than the cost of 1. For the two remaining examples, the control action 3 is selected 

since its predicted cost C(3) is certainly lower than C(1) and possibly lower than C(2). 

 

Algorithm 2. Procedure for selection of control action. 

1 α* := α
C
 

2 α := 0 

3 while α < m and α* = α
C
 do 

4 begin 

5      α:= α + 1 

6      if C(α) < C(α
C
) then α*:= α 

7 end 

8 while α < m do 

9 begin 

10      α:= α + 1 

11      if C(α)   C(α*) then α*:= α 

12 end 

 

 

Fig. 2. Selecting control action on the basis of cost intervals. 

 

5. EXPERIMENTS 

 

The main goal of the experimental evaluation is to compare performance of the proposed 

approach with that of the existing self-organizing traffic control methods. The comparison 

was made for the non-uniform urban traffic, where the vehicles have different free-flow 

velocities. Average delay per vehicle was used in this study as the performance measure. The 

experiments were conducted in a simulation environment that utilizes a model of urban road 

network based on stochastic cellular automata. 

In order to demonstrate the benefits of the proposed approach, a comparative analysis was 

performed taking into account previous self-organizing traffic control methods that were 

introduced by Helbing et al. (2005) and Gershenson (2005). Different versions of the agent 

decision algorithm were examined to verify the effect of using the simulation-based 

prediction technique and the interval microscopic model.  
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Moreover, the influence was investigated of detailed (microscopic) input data on the 

performance of self-organizing traffic control. To this end, an application of two different 

vehicle detection systems was considered, i.e., road-side vehicle detectors and a vehicular 

sensor network. For the road-side detectors it was assumed that vehicles can be detected (i.e., 

their positions can be determined) only when passing intersections or entering the road 

network. In the case of vehicular sensor network the complete information on vehicles 

positions is available at each time step of the simulation. 

 

5.1. Compared algorithms 

 

Hereinafter the acronyms SOTL, SOC, SOC_2, SOC_M, and SOC_2M will be used to refer 

the considered agent decision algorithms for the self-organizing traffic control system. 

Table 1 shows which elements of the new approach (introduced in Sect. 4) are combined with 

the state-of-the-art methods for the examined algorithms. Details of these algorithms are 

discussed in the following subsections. 

 

Tab. 1. Compared agent decision algorithms. 

Algorithm Traffic model Cost prediction 
Selection of control 

action 

SOTL State-of-the-art None State-of-the-art 

SOC State-of-the-art State-of-the-art State-of-the-art 

SOC_2 
Interval microscopic 

model 
Simulation-based State-of-the-art 

SOC_M 
Interval microscopic 

model 
State-of-the-art Interval ordering 

SOC_2M 
Interval microscopic 

model 
Simulation-based Interval ordering 
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5.1.1. SOTL 

 

The SOTL algorithm (originally named SOTL-platoon in (Gershenson, 2005)) uses a very 

simple traffic model which takes into account current counts of vehicles approaching 

particular traffic signals at an intersection. Each traffic signal (i) has a counter i which is set 

to zero when the signal turns red and then it is incremented at each time step by the number of 

vehicles approaching this red signal. The vehicles are counted at a distance of 80 m from the 

red signal. When i reaches a threshold   = 50, the control action at the intersection is 

changed, i.e., a setup time is introduced and after that the signal i turns green. 

In order to prevent the traffic signals from switching too frequently, the following minimum 

green time constraint is used: a green signal i will not be changed to red if i < min, where 

i is the time since the signal i turned green, min = 5 s. 

Another constraint in the SOTL algorithm was defined to regulate the size of platoons. 

According to this constraint, a green signal cannot be changed to red if the number of vehicles 

approaching this signal is between 1 and µ = 3. The vehicles are counted at a distance of 25 m 

from the green signal. On the one hand, this condition keeps the crossing platoons together, 

but on the other hand, it allows for dividing the large platoons that would excessively block 

the traffic flow of intersecting streets. Pseudo-code of the SOTL algorithm can be found in 

(Cools et al., 2013). 

 

5.1.2. SOC 

 

The second considered algorithm for the self-organising traffic control system (SOC) was 

proposed in (Helbing et al., 2005). In this algorithm, the cost associated with a control action 

α is calculated (predicted) as a total increase of the expected delay, using the following 

formula: 

   wGNC  )()( , (12) 

where: Nα denotes the number of vehicles that are expected to wait at the intersection during 

execution of the control action α, α + Gα  is the time period necessary to finish the execution 

of control action α, which consists of the remaining setup time α and the green time Gα 

required for vehicles to leave the intersection, wα reflects the extra delay associated with the 

setup for switching back later to the current control action α
C
 (note that wα = 0 if α = α

C
). 
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The extra delay wα can be interpreted as the additional cost of terminating the current control 

action α
C
 and switching to α. 

According to the general decision algorithm for traffic control agents (Algorithm 1), to 

make a control decision, the traffic control agents have to predict also the time windows T(α). 

This prediction have to be done for all available control actions, excluding the current control 

action (T(α
C
) = 0). Using the approach proposed in (Helbing et al., 2005)., the time window is 

defined as the time interval between two successive executions of the same control action α. 

Thus, the time window is calculated as follows: 

   GrT )( , (13) 

where rα denotes the preciding red time in which the control action α was not executed. 

In order to predict the green time Gα, which allows detected vehicles to exit the intersection, 

the queuing process at the intersection is modelled as a hybrid dynamical system (Lämmer et 

al., 2008). This method assumes a constant velocity of vehicles in the free-flow traffic as well 

as a constant saturation flow. Thus, numeric (average) values of the free-flow velocity and the 

saturation flow have to be estimated to make the prediction. More detailed information about 

this algorithm can be found in (Helbing et al., 2005; Lämmer and Helbing, 2008). 

 

5.1.3. SOC_2 

 

SOC_2 algorithm uses the interval microscopic traffic model to predict the costs of 

particular control actions. This algorithm applies the simulation-based prediction method, 

which was introduced in Sect. 4.2. The predicted costs correspond to delays of vehicles at an 

intersection and are represented by intervals. In order to select the control action which will 

be executed, the SOC_2 algorithm finds a minimum element in a set of values that correspond 

to the centers of the cost intervals. Thus according to this algorithm, a control agent converts 

the cost intervals into numeric values before making the decision. 

 

5.1.4. SOC_M 

 

In SOC_M algorithm, the interval microscopic model is used to predict the green time 

required for vehicles to leave the intersection Gα and the number of waiting vehicles Nα (both 

are intervals in this case). The cost of control action, i.e., the delay, is calculated according to 
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Eq. (12). However, these calculations are performed with application of the interval arithmetic 

because the simulation results (Gα, Nα) are processed in the form of intervals. Finally, the 

evaluated cost intervals are analyzed to make the control decision. This decision is made 

using the procedure introduced in Sect. 4.3.  

 

5.1.5. SOC_2M 

 

The last algorithm taken into consideration (SOC_2M) includes all the new elements of the 

proposed approach that were discussed in Sect. 4. According to this algorithm, the delays 

(costs of control actions) are evaluated directly during traffic simulation in the interval 

microscopic model. The cost intervals are not converted into numeric values, thus selection of 

the control action is performed using the interval ordering approach. 

 

5.2. Road network model 

 

The simulation experiments were conducted using an extended version of the urban traffic 

model based on stochastic cellular automata (BBSS), which was originally presented in 

(Brockfeld et al., 2001). Topology of the simulated network is a square lattice of 8 two-

directional roads with 16 signalised intersections. Links between intersections consists of 40 

cells that correspond to the distance of 300 m. At each intersection there are two alternative 

control actions: the green signal can be given to vehicles coming from north and south or to 

those that are coming from west and east. A snapshot of the simulation scenario is shown in 

Fig. 3. 

The urban road network in BBSS model has square lattice geometry. All streets are 

unidirectional. The dynamics of vehicles on the streets is simulated by using stochastic 

cellular automaton with two parameters: maximum velocity vmax and randomization parameter 

p. At each discrete time step the state of cellular automaton is updated according to a rule 

which includes four steps (acceleration, braking due to other vehicles or traffic light, 

randomization of vehicle velocity, and vehicle movement). Detailed definitions of these steps 

can be found in (Brockfeld et al., 2001). 

A modification of the original BBSS model was introduced to take into account 

bidirectional streets and two classes of vehicles that differ in their free-flow velocities. 
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Maximal velocity vmax in the BBSS model was set to 2 cells per time step. Values of the 

probabilistic randomization parameter p (so-called braking probability) are: 0.2 for fast 

vehicles and 0.8 for slow vehicles. Figure 4 shows the obtained free-flow velocity 

distributions. The average values of these distributions are: 1.2 cells per time step (32.4 km/h) 

for slow vehicles and 1.8 cells per time step (48.6 km/h) for fast vehicles (the simulation time 

step is one second).  

 

 

Fig. 3. Snapshot of the simulation scenario. 

 

 

Fig. 4. Distribution of free-flow velocity for slow and fast vehicles. 
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Input parameters q andf are used in the network model to determine volume of the traffic 

flow and percentage of the slow vehicles respectively. The flow volume q is expressed in 

vehicles per hour (vehs/h). This parameter refers to all traffic streams entering the road 

network - the vehicles are generated at each network entry point with the same intensity, 

according to the parameter q. The output of the model is the computed average delay per 

vehicle. 

The self-organizing traffic control was simulated assuming that the setup times τα are equal 

to 5 s and the critical time window Tcrit is 120 s. The control decisions are made by agents in 

time steps of 1 s. Depending on the decision algorithm, the control agents use different 

models for the purpose of current traffic state estimation and costs prediction (see Tab. 1). In 

case of the algorithms SOC_2, SOC_M, and SOC_2M the traffic streams were mapped using 

the interval microscopic model. In this model, the interval of maximal velocity Vmax was set 

to [1, 2] (in cells per time step). It allows us to take into consideration both the slow and the 

fast vehicles. For the state-of-the-art algorithm (SOC) the traffic model takes into account a 

constant free-flow velocity, which was estimated as an average over the two vehicle classes 

(V = 1.5 cells/s). 

 

5.3. Experimental results 

 

The simulation experiments were performed to evaluate performance of the agent decision 

algorithms in self-organizing traffic control. During experiments, both the traffic flow volume 

and the percentage of slow vehicles were changed in a wide range. The collected results 

include average delays of vehicles for various traffic conditions. 

As it was already mentioned, two different simulation scenarios were based on different 

vehicle detection systems. In the first scenario road-side vehicle detectors (RVD) are 

simulated that provide information on vehicle position only for the network entrances and for 

the intersections. The second scenario assumes that the road traffic is monitored by a 

vehicular sensor network (VSN), thus the information on vehicle position is available for all 

road sections. For each analyzed case (given scenario, flow volume, and percentage of slow 

vehicles) 100 simulation runs were executed. The time period of each simulation run was 3 

hours. 
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  a) 

 

  b) 

 

Fig. 5. Average delay vs. traffic flow volume (RVD scenario, f = 20%): a) low and medium 

flow volumes, b) high flow volumes.  

 

Results of the simulation for RVD scenario are presented in Figs. 5 and 6. The average 

delays in Fig. 5 were obtained assuming the 20% fraction of slow vehicles. These results 

show that the proposed approach outperforms the state-of-the art algorithms (SOTL and 

SOC). In case of high flow volumes (q ≥ 432 vehs/h), the lowest vehicle delay was obtained 

by the SOC_2M algorithm. The most significant decrease in average delay (over 50%) was 

observed for the highest flow volume. It means that the introduced method increases capacity 

of the road network.  
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For the flow volumes below 400 vehs/h the highest performance of the self-organizing 

traffic control was achieved by the SOC_2 algorithm. However, this algorithm improves the 

control performance only for low traffic volumes. The better results of SOC_2 in comparison 

with SOC_M and SOC_2M for low flow volumes can be explained by the fact that SOC_2 

does not take into account the decision uncertainty, it executes each decision even if the 

decision is uncertain. Therefore, SOC_2 can react faster to the dynamic changes of the traffic 

situation at low flow volumes by switching the traffic signals immediately. In case of higher 

traffic volumes, the frequent switching of traffic signals results in significantly increased 

delays, since each change of the signals at an intersection requires additional setup time to be 

introduced. As it can be observed in Fig. 5 for medium and high traffic volumes, the 

algorithms SOC_M and SOC_2M (that eliminate the uncertain decisions by using the 

proposed interval ordering method) allow the vehicle delays to be significantly reduced.  

According to the presented results, the performance of the state-of-the-art methods (SOTL 

and SOC) can be improved by using one of the proposed algorithms for each of the analysed 

traffic conditions. It should be noted that SOTL is the simplest algorithm, which does not 

involve prediction and selects the control actions by taking into account only the current 

counts of vehicles approaching an intersection. The other considered algorithms perform a 

proactive optimization, i.e., take the control decisions based on the predicted effects of 

particular control actions. For the SOC algorithm, the prediction is less accurate than for the 

proposed methods, as it is obtained by using the macroscopic model, which ignores the non-

uniform character of traffic streams.  

Figure 6 compares the average delay registered for different percentages of the slow 

vehicles, with constant flow volume q = 540 vehs/h. It is evident from these results that the 

proposed algorithms improve the performance of the self-organizing traffic control for all 

analyzed conditions. The improvement in performance increases with the percentage of slow 

vehicles. The best results were obtained for SOC_2M. Interestingly, this algorithm provides 

stable and low average delay, which only slightly varies with respect to the changes in the 

percentage of slow vehicles. Similarly, in case of SOC_M algorithm the average delay does 

not increase significantly with the percentage of slow vehicles. This effect is a consequence of 

using the interval microscopic model together with the interval ordering method for selection 

of control action. It allows the control agents to take into account the possible range of the 
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free-flow vehicle velocities when making control decisions. Therefore, the control agents can 

select the control actions that are effective for both the slow and the fast vehicles. 

 

 

Fig. 6. Average delay vs. percentage of slow vehicles (RVD scenario, q = 540 vehs/h). 

 

The charts in Figs. 7 and 8 show the experimental results obtained for the VSN-based 

vehicle detection scenario. In this scenario, the proposed algorithms also allow the self-

organizing traffic control to reach higher performance. When analyzing the average delays for 

various flow volumes (Fig. 6), it can be observed that, as in the RVD scenario, the SOC_2 

algorithm provides the lowest delay for low-traffic conditions. However, in case of high 

traffic volumes the best results were obtained when using SOC_M algorithm for making 

control decisions. It should be also noted that the SOC_2M algorithm allows the vehicle 

delays to be at the low level for all analysed traffic conditions. The percentage of slow 

vehicles in this experiment was 20%. The SOTL algorithm was not considered in the VSN-

based detection scenario as it cannot utilize the additional detailed information on vehicles 

positions. 

Dependency between average delay and the percentage of slow vehicles for the VSN 

scenario is shown in Fig. 7. These results were registered with the simulated traffic flow 

volume of 540 vehs/h. For all analysed percentages, the proposed algorithms improve the 

performance of the self-organizing traffic control. The observed average delays are very 

similar for all introduced algorithms and do not change significantly with the percentage of 
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the slow vehicles. A distinct increase in the average delay was encountered between f = 0% 

and f = 20%. For higher percentages of slow vehicles, the delay remains at almost constant 

level. The reason underlying these results arises from the fact that a low fraction of slow 

vehicles can significantly influence the flow of a large number of fast vehicles. For instance, 

one slow vehicle may reduce velocity of a large platoon of fast vehicles and the situation will 

become similar to that for the platoon of slow vehicles. 

 

 

Fig. 7. Average delay vs. flow volume (VSN scenario, f = 20%). 

 

 

 

Fig. 8. Average delay vs. percentage of slow vehicles (VSN scenario, q = 540 vehs/h). 
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When comparing the results for both simulated scenarios (RVD and VSN) it is evident that 

the availability of detailed information on vehicle positions in VSN enables better 

performance of the self-organizing traffic control. It should be noted that for high traffic 

volumes, the proposed solution (SOC_2M algorithm) used with standard road-side detectors 

enables better performance than the state-of-the-art SOC algorithm supported by the complex 

data from VSN. These results are due to the fact that the proposed approach allows the 

algorithms SOC_2, SOC_M, and SOC_2M to utilize the available traffic information in a 

more effective way. The interval microscopic model can directly map the positions of 

vehicles delivered by VSN. In comparison with the macroscopic model used in SOC 

algorithm, the microscopic model more accurately describes the interactions between 

individual vehicles and thus better evaluates the influence of the vehicles distribution along a 

traffic lane on the predicted travel times and delays. As a consequence, the decisions of 

control agents are more effective. 

 

6. CONCLUSION 

 

New algorithms were introduced for decision making by control agents in the self-

organizing traffic control system. According to the proposed approach, control decisions are 

made on the basis of the predicted cost of control actions. The prediction is obtained as a 

result of traffic simulation in the interval microscopic model, which was developed for this 

purpose by combining cellular automata and interval arithmetic. This approach allows the 

traffic control agents to recognize and manage uncertain decisions that can lead to sub-

optimal system performance. 

Predictions in the proposed system are made on the basis of input data that describe traffic 

streams at the level of individual vehicles (so-called microscopic level of details). The interval 

microscopic model enables computationally effective on-line processing of the large input 

data sets for fast estimation of future vehicle delays. Due to the application of the interval 

arithmetic, the model is suitable for mapping real-world non-uniform traffic streams, where 

the parameters of particular vehicles may vary in a given range. 

Evaluation of the proposed traffic control strategies was performed in a simulation 

environment. The traffic simulations were conducted using a model of urban road network 

based on stochastic cellular automata. The experiments aimed at investigating the 
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performance of the proposed agent decision algorithms in self-organizing traffic control. To 

this end, average delay was evaluated for various traffic flow volumes and percentages of 

slow vehicles. Results of the simulations were compared against those obtained by recent 

algorithms from the literature. This comparison shows that the proposed approach 

outperforms the state-of-the-art algorithms.  

There are two main elements of the proposed approach that have enabled the improvement 

in performance of the self-organized traffic control. First is the novel interval microscopic 

traffic model, which allows both the input vehicle parameters and the output predicted delays 

to be represented by intervals. Thus, instead of average values the control agents can take into 

account intervals of possible vehicle velocities and queue lengths at intersections. Second 

element is the procedure proposed for selecting the most effective control action. This 

procedure selects the control action on the basis of the predicted delay intervals and 

eliminates uncertain control decisions that may cause increased delays of vehicles due to 

avoidable signal switching at intersections and the related additional setup time. 

The obtained results provide a strong motivation for further research on applications of both 

the self-organization paradigm and the microscopic models in urban traffic control. The 

results are encouraging to test the proposed approach in more realistic scenarios, based on 

examples of real-world road networks. An important issue for future studies is the 

development of learning methods that would allow the traffic control agents to adapt to 

changing traffic characteristics. To this end a method will be proposed for tuning the 

parameters of the interval microscopic model on the basis of the available traffic data in real 

time. Another interesting direction for further research is to apply the self-organizing traffic 

control agents in a vehicular ad-hoc network environment. Such agents will work at vehicle 

nodes to provide dedicated on-board traffic signals for individual vehicles in the road 

network. 
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