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Abstract

This paper presents an approach that brings together garogyttvith grammatical inference and
discrete abstractions in order to synthesize controlegias for hybrid dynamical systems performing
tasks in partially unknown but rule-governed adversarialirenments. The combined formulation
guarantees that a system specification is met if (a) the trndehof the environment is in the class of
models inferable from a positive presentation, (b) a cliaratic sample is observed, and (c) the task

specification is satisfiable given the capabilities of thstey (agent) and the environment.
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A. Overview

This paper demonstrates how a particular method of mackaraihg can be incorporated into

hybrid system planning and control, to enable systems toraptish complex tasks innknown

Jie Fu, Herbert G. Tanner and Konstantinos Karydis are vhighMechanical Engineering Department at the University of
Delaware, Newark DE 19716.jiefu, kkaryd, btanner}Qudel.edu.

Jeffrey Heinz, Jane Chandlee and Cesar Koirala are with #paiment of Linguistics and Cognitive Science at the Usite
of Delaware, Newark DE 1971@heinz, janemc, koirala}Qudel.edu.

This work is supported by NSF award #1035577. The authorsktkalin Belta and his group for joint technical discussions

through which the case study game example was conceivedk3laae also extended to Jim Rogers for his insightful comsnen

November 16, 2018 DRAFT


http://arxiv.org/abs/1210.1630v1

andadversarialenvironments. This is achieved by bringing together foratatraction methods
for hybrid systems, grammatical inference and (infinite)ngaheory.

Many, particularly commercially available, automatiorsms come with control user inter-
faces that involve continuous low-to-mid level contradlewhich are either specialized for the
particular application, or are designed with certain eafsese, safety, or performance specifica-
tions in mind. This paper proposes a control synthesis ndethat works with—rather than in
lieu of—existing control loops. The focus here is on how tstedict the given low-level control
loops [1] and the environment they operate it],[and combine simple closed loop behaviors in
an orchestrated temporal sequence. The goal is to do so ity ghaaguarantees the satisfaction
of a task specification and is provably implementable at ¢vellof these low-level control and
actuation loops.

As a field of study, grammatical inference is primarily camegl with developing algorithms
that are guaranteed to learn how to identify any member ofllaatimn of formal objects (such
as languages or graphs) from a presentation of examplesramoi-examples of that object,
provided certain conditions are mef|[ The conditions are typical in learning research: the data
presentation must be adequate, the objects in the classbmustichable by the generalizations
the algorithms make, and there is often a trade-off betwkertwo.

Here, grammatical inference is integrated into plannind aantrol synthesis using game
theory. Game theory is a natural framework for reactive milag of a system in a dynamic
environment §]. A task specification becomes a winning condition, and thetroller takes the
form of a strategy that indicates which actions the systelaygr 1) needs to take so that the
specification is met regardless of what happens in its emmenmt (player 2) 4], [6]. It turns
out that interesting motion planning and control probleras be formulated at a discrete level
as a variant of reachability gameg,[in which amemorylessvinning strategy can be computed
for one of the players, given the initial setting of the game.

In the formulation we consider, the rules of the game arerasduto be initially unknown
to the system; the latter is supposed to operate in a pollgrdéidversarial environment with
unknown dynamics. The application of grammatical infeeeaégorithms to the observations
collected by the system during the course of the game endlile€onstruct and incrementally
update a model of this environment. Once the system haselédhe true nature of the game,

and if it is possible for it to win in this game, thenwill indeed find a winning strategy, no
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matter how effectively the adversarial environment migtto prevent it from doing so. In
other words, the proposed framework guarantees the sditsfeof the task specification in the
face of uncertainty, provided certain conditions are miethdse conditions are not met, then

the system is no worse off than when not using grammaticakémice algorithms.

B. Related work

So far, symbolic planning and control methods address prnoblwhere the environment is
either static and presumably known, or satisfies given agsans B]-[10].

In cases where the environment is static and known, we sdeagns of formal methods
like model checking 9], [11]. In other variants of this formulations, reactive contsghthesis is
used to tackle cases where system behavior needs to beweegdlaased on information obtained
from the environment in real time3]. In [10] a control strategy is synthesized for maximizing
the probability of completing the goal given actuation esrand noisy measurements from the
environment. Methods for ensuring that the system exhdatsect behavior even when there is
the mismatch between the actual environment and its assumodél are proposed inLp).

Linear Temporal Logic (LTL) plays an important role in exigt approaches to symbolic
planning and control. It is being used to captsedety livenessand reachability specifications
[13]. A formulation of LTL games on graphs is used in4] to synthesize control strategies
for non-deterministic transition systems. Assuming aneutaén system model,1P] combines
temporal logic control synthesis with receding horizon tecoinconcepts. Centralized control
designs for groups of robots tasked with satisfying a LTtrfala specification are found in
[15], under the assumption that the environment in which thet®bperate in adheres to certain
conditions. These methods are extended [fo enable the plan to be revised during execution.

Outside of the hybrid system’s area, adjusting unknownesggparameters has traditionally
been done by employing adaptive control or machine learmieghods. Established adaptive
control techniques operate in a purely continuous statamesgand most impose stringent
conditions (e.g., linearity) on the system dynamics; faesth reasons they are not covered in
the context of this limited scope review—the interestedlegas referred to17], [18. On the
other hand, machine learning is arguably a broader field gAifstant portion of existing work
is based orreinforcement learningwhich has been applied to a variety of problems such as

multi-agent control 19], humanoid robots40], varying-terrain wheeled robot navigatiof1],
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and unmanned aerial vehicle contrGl’]. The use of grammatical inference as a sub-field of
machine learning in the context of robotics and control it ertirely new; an example is the
application of a grammatical inference machine (GIM) inatb self-assembly43].

In the aforementioned formulations there is no considendir dynamic adversarial environ-
ments. A notable exception is the work ¢i4], which is developed in parallel to, and in part
independently from, the one in this paper. The idea of compitearning with hybrid system
control synthesis is a natural common theme since both rdstbdginate from the same joint
sponsored research project. Yet, the two approaches dnectli;m how they highlight different
aspects of the problem of synthesis in the presence of dynangertainty. In 24], the learning
module generates a model for a stochastic environment ifotheof a Markov Decision Process
and control synthesis is performed using model checkintstdo this paper, the environment is
deterministic, but intelligently adversarial and withlfdhowledge of the system’s capabilities.

In addition, the control synthesis here utilizes tools frtbra theory of games on infinite words.

C. Approach and contributions

This paper introduces a symbolic control synthesis methasket on the architecture of
Fig. 1(a), where a GIM is incorporated into planning and control alipons of a hybrid system
(a robot, in Fig.1(a)) to identify the dynamics of an evolving but rule-governegieonment. The
system—its boundaries outlined with a thick line—intesaetth its environment through sensors
and actuators. Both the system as well as its environmeimlyar@mical systems (shown as ovals),
assumed to admit discrete abstractions in the form of tianssystems (dashed rectangles). The
system is required to meet a certain specification. Givelsptcification {,), an abstraction
of itself (4;), and its hypothesis of the dynamics of its environmety)( the system devises
a plan and implements it utilizing a finite set of low-levelncoete control loops involving
sensory feedback. Using this sensory information, theegystfines its discrete environment
model based on a GIM, which is guaranteed to identify therenment dynamics asymptotically.
Figure1(b) gives a general description of the implementation of leayr@ind symbolic planning
at the high-level of the architecture in Fifiia) The hypothesis on the environment dynamics is
at the center of the system’s planning algorithm. Throudéractions with the environment, the
system observes the discrete evolutigm) of the environment dynamics, and uses the GIM to

construct and update a hypothesized environment mégﬂelBased on the environment model,
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Fig. 1: The architecture of hybrid agentic planning and controhvétmodule for grammatical inference.

the system constructs a hypothesis (modél) capturing how the “game” between itself and the
environment is played, and uses this model to devise a winsiirategy (control lawyVSj. As
the environment model converges asymptotically to the tlyramicsA,, the winning strategy
becomes increasingly more effective. In the limit, the egsis guaranteed to win the game.

Definitions 7, 8 and Theorenb establish how a game can be constructed from the system
abstractions of the (hybrid) system dynamigs), the environmental dynamicsl{), and the task
specification (,). Theorem4 proves that the hybrid agent can determine whether a winning
strategy exists, and if it does, what it is. Grammatical refee methods yield increasingly
accurate models of environmental dynamics (assuming atieglata presentations and reachable
targets), and permit the system to converge to an accuratkelnod its environment. Discrete
backward reachability calculations can be executed inagsttforward manner and can allow
the determination of winning strategies (symbolic contass), whenever the latter exist.

The contribution of this paper is two-fold: (i) it integrat&IMs into hybrid systems for the
purpose of identifying the discrete dynamics of the enviment that evolve and possibly interact
with the system, and (ii) it uses the theory of games on iimvbrds for symbolic control
synthesis, and discrete abstractions which ensure implitien of the symbolic plans on the
concrete hybrid system. In the paper, both elements are ioechbbut each element has merit

even in isolation. A hybrid system equipped with GIM is stiimpatible with existing symbolic
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control synthesis methods (including model checking). @a other hand, the abstractions
methods we utilize here—although requiring strong proggron the continuous components
dynamics of the hybrid system—offer discrete abstract rsoadich are weakly simulated by

the concrete systems, irrespectively of whether the latidude a GIM or not.

D. Organization

The rest of this paper is organized as follows. Sectiontroduces the technical background,
the notation, and the models used. The type of hybrid syswmonsidered and their discrete
abstractions are presented there. In Sectibn we show how the control problem can be
formulated as a game and employ the concept of the attratctgaines for control synthesis.
SectionlV describes first how a GIM can be used to identify asymptdyicae dynamics of the
system’s unknown and adversarial environment, and thenthmaknowledge can be utilized in
planning and control synthesis. In Sectignhwe establish the properties of the relation between
the hybrid system and its discrete abstraction, which enthat the strategy devised based on
the discrete model is implementable on the concrete sysSattionVI illustrates the whole
approach through an example robotic application. In Sedfid we discuss possible extensions

of the proposed methodology and compare our grammaticaiente to other learning methods.

Il. TECHNICAL PRELIMINARIES
A. Languages and Grammatical Inference

Let X denote a fixed, finite alphabet, abrt, X=", ¥*, ¥ be sequences over this alphabet of
lengthn, of length less than or equal tq of any finite length, and of infinite length, respectively.
The empty stringis denoted), and thelength of stringw is denoted|w|. A languageL is a
subset of¥*. A string u is a prefix (suffix) of a stringw if and only if there exists a string
v such thatw = uv (w = vu). A prefix (suffix) of lengthk of a stringw is denotedPr=" (w)
(respectively,Sf:’“(w)) and a set of prefixes (suffixes) of a stringof length < k is denoted
asPr=*(w) (respectivelySf=*(w)). Forw = o105 - - - 0, € £*, the shuffle idealof w is defined
asSl(w) := ¥*o1X%0y - - - X0, 2%, A string u is afactor of string w iff Jz,y € ¥* such that
w = zuy. If in addition |u| = k, thenu is a k-factor of w. If F is a set,2” denotes the set

of all subsets an@¥

fin

the set of all finite subsets df. A string extension function (SEF) is a

total function,f : ©* — 2Z . The k-factor function f, : ©* — 2>-" maps a word to the set of

fin*
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k-factors within it. If |w| < k, fx(w) := {w}, otherwisef,(w) := {u | u is a k-factor of w}.
This function is extended to languagesfal) := |, fr(w).

A semiautomaton (SA) is a tuplé = (@), >, T) where( is the set of states; is the set of
alphabet and the transition functionls: Q x X — @). The elements ok are referred to as
actionsand are thought to initiate transitions at a given state raeg to 7. If T'(q1,0) = ¢2
(also written asy; = ¢») with o € X, then we say thatl takes actions on ¢; and moves to
¢2- The transition function is expanded recursively in thealsuway. Note by definition, these
SAs are deterministic in transition. For a (semi)automatonve define the set-valued function
[:Q — 2% asl(q) :={o0€X|T(q,o0) is defined. A finite state automaton (FSA) is a tuple
A= (A1 F) whereA = (Q,%,T) is a semiautomaton and F' C () are the initial and final
states, respectively. The language of a FSAL{A) := {w | T'(I,w) N F # 0}. For a regular
languageL, deterministic FSAs recognizing with the fewest states are callednonical

For concreteness, let grammars of languages be constrastélde set of possible Turing
machines®. (Other kinds of grammars are used later, but they are &taige into Turing
machines.) The language of a particular grammars L(®). A positive presentatiorp of a
languageL is a total functiong : N — L U {#} (# is a ‘pause’) such that for every € L,
there exists: € N such thatp(n) = w. With a small abuse of notation, a presentatipgan
also be understood as an infinite sequeptB$(2) - - - containing every element df.

Let ¢[i{] denote the initial finite sequenc&1)¢(2)...¢(i). Let Geq denote the set of all
finitely long initial portions of all possible presentat®nf all possible languages (i.e., a@ll:]
for all - € N and for all L). The contentof ¢[:], written content(¢[i]), is the set of the elements
of the sequence, less the pausededrner (learning algorithm, or GIN) is a program that takes
the firsti elements of a presentation and returns a grammar as owput: Geq — &. The
grammar returned bgim is the learnerqiypothesi®of the language. A learn&im identifies in
the limit from positive presentatiortd a collection of languages if and only if for all L € L,
for all presentations) of L, there exists a € N such that for allm > n, im(¢,,) = & and
L(®) = L [25]. A characteristic sample for a languagd. and a learnesim is a finite set of
strings belonging td. such that for anyp|:] such thatcontent(¢[i]) = S, it is the case that for
all j >4, &im(s[j]) = & and L(8) = L.

!Pause# can be understood as “non data.”
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Definition 1 (String extension grammar and languages]): Let f be a SEF, andt' be a
set. A string extension gramma® is a finite subset off. The string extension language of
grammar & is Lij(®) = {w € ¥* : f(w) C &}. The class of string extension languages
L; = {Li(®): & € 2F 1.

Definition 2 (String Extension LearneP{]): Let f be a SEF. For all positive presentations
¢, define®im; as: Gimy(¢[i]) =0 if i =0, and

&ims(g[i — 1)) if o(i) = #

Gim;(g[i]) = 1)
Gim;(g[i — 1)) Uf(o[z]) otherwise.

According to pP5], the class of regular languages is not identifiable in thetlfrom positive
presentation, but string extension languages—which avelasses of regular languages—are.
Theorem 1 (P6]): Learner®im; identifiesZ; in the limit.
Many attractive properties of string extension learnees established inZ/]. A languageL
is Strictly k-Local (SL) [2€], [29] iff there exists a finite sef C f,(xX*x), such thatL =
{w € ¥ : fy(xwx) C S}, where x, x are the symbols indicating the beginning and end of
a string, respectively. Obviously, StricthtLocal languages are string extension languages. The
following theorem follows immediately.
Theorem 2 (B0]): For everyk, Strictly k-Local languages are identifiable in the limit from
positive presentations.
Theorem 3 (SL-Hierarchy2[l]): SL;, ¢ SL, ... C SL; € SL;; C ... SL.
The implication of Theoren8 is that any Strictlyk-Local language can be described using a

SL; grammar, wherg > k. SectionlV illustrates this argument with the help of an example.

B. Hybrid Systems and Abstractions

A hybrid systemH is defined as a tuple of objects (for a precise definition, §&P fhat
includes the domains of continuous and discrete varialiessubsets of initial states in those
domains, the description of the family of continuous dyrasmparametrized by the discrete
states, and rules for resetting continuous and discretiesséad switching between the members
of the family of continuous dynamics.

In this paper, we restrict our attention to a specific clags/bfid systems where the continuous

dynamics have specific (set) attractals [The shape and location of these attractors are assumed
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dependent on a finite set of continuous parameters that lretex as part of closing the outer

control loop. Judicious selection of the parameters a&s/a specific sequence of continuous

and discrete transitions, which in turn steers the hybrgtesy # from a given initial state to a

final desired state. This class admits purely discrete (passtbased) abstractions. We call these

particular types of hybrid automatey/brid agentsto distinguish them from general cases.

Definition 3 (Hybrid Agent):The hybrid agent is a tuple:
Ha = <Zv Zav Ly Pv T, APv f07 PRE7 POST? S, Ta>'

Z = X x L is a set ofcomposite(continuous and Boolean) states, whé&feC R" is a
compact set, and, C {0,1}" wherer is the number of Boolean states.

Y, is a set of finite discrete statesofitrol modek

v: 3, = {1,...,k} is a function, indexing the set of symbols ii).

P C R™ is a (column) vector of continuous parameters.

m : R™ — R™ fori =1,...,k is a finite set of canonical projections, such that
(m ()T, ()

AP is a set of (logical) atomic propositions ovér x P, denoted{ah(z,p)}léf‘. A set
of well-formed formulaeWFF [373] is defined inductively as follows: (a) it € AP, then
a € WFF; (b) if a; anda,y are inWFF, then so are-a; anda; A as.

for 2 xP — TX is a finite set of families of vector fields parametrizedby P, ¢ € L
ando € ¥, with respect to whichY’ is positively invariant. These vector fields have limit
set$ parametrized by and o, denotedL* (p, o).

PRE: ¥, — WFF maps a discrete state to a formula that needs to be satisfiedewrH,
switches to discrete state from any other state. When composite statand parameter
vector p satisfy this formula we writéz, p) = PRE(0).

PosT: ¥, — WFF maps a discrete location to a formula that is satisfied whetr#jectories
of f, reach ane-neighborhood of their limit set. When composite stateand parameter
vector p satisfy this formula we writéz, p) = POST(0).

s: Z x P — 27 is the reset map for the parameters. It assigns to each paivroposite

state and parameter a subsetfoiwhich contains all values to which the current value of

2The compactness and invariancedfguarantee the existence of attractive, compact and imtdlirait sets [34).

Swritten LT (p, o) @ Be, where® denotes the Minkovski (set) sum aid is the open ball of radius.
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p € P can be reassigned to.
e T,: ZxPxX, —» ZxP x3,Iis the discrete state transition map, according to which
(z,p,0) = (2,p/,0') iff (z,p) E POST(0) and (z,p’) = PRE(¢’) with p’ € s(z,p).

The configurationof H, is denotedh := [z, p, o], and for each discrete state, we define the
following subsets ofZ x P: & = {(z,p) : (z,p) = PRE(0)} and & := {(z.p) : (z,p) E
PosT(o)}. A transition fromo; to o, (if any) is forced and occurs at the time instance when
the trajectory off,, (z,¢,p) hits a nonempty intersection of @aneighborhood of its limit set
and the region of attraction af,,; parametrized by’ (p’ not necessarily equals) After a
transition(z, p, o) — (z,p’,0’) occurs, the composite stateevolvesinto composite state’ for
which (2/,p") = PosT(¢’). The (non-instantaneous) evolution is denoted’ -,

We will use a form of predicate abstraction to obtain a cqadgsrete representation éf,.
Our abstraction map is denotéd; : Z x P — {0, 1}7I and referred to as thealuation map

Definition 4 (Valuation map):The valuation mapy/y;: Z2 x P — V C {1, 0}'AP‘ is a function
that maps pairs of composite states and parameters, to iy bieetorv € V of dimension| AP|.
The element at positiohin v, denotedv[i], is 1 or 0 if «; € AP is true or false, respectively,
for a particular pair(z, p). We write «;(z, p) = v[i], for v € V.

The purely discrete model that we use as an abstractiod ofreferred to as thénduced
transition systems defined in terms of the valuation map as follows.

Definition 5 (Induced transition system} hybrid agentH, induces a semiautomatot{ H,) =
(@,%,T) in which (i) Q = Vi (Z x P) is a finite set of states; (i = X, U {m,..., 7.},
m < |Q x Q] is a finite set of labels; (i)’ C @ x ¥ x @ is a transition relation with
the following semanticsy % ¢' € T iff either(1) o € ¥, and (3p) (Vz € {z | Vir(2,p) = ¢})
(V2 e {' | (¢,p) E PosT(0)}) [(z,p) E PRE(0), Vi (2/,p) = (], or (2) o € ¥\ ¥, and (Ip)
(V2 € {z | Viu(z,p) = q}) (3P’ € s(z,p),0" € X4) [Var(z,0) = ¢, (2,0) = PRE(0")].

It will be shown in SectiorV that H, and A(H,) are linked through an equivalence relation
— observable (weakly) simulatiarlation. Broadly speaking, the sequences (stringsif) of
discrete states whicli/, visits starting from[z, p, o] can be matched by a word such that
T (Vam(z,p), w) is defined inA(H,), and vice versa, modulo symbolsih\ X, that are thought
of assilent When a SA moves from stateto stateg’ through a series of consecutive transitions
among which only one is labeled withe ¥, and all others i\ ¥, then we say that the SA

takes acompositetransition fromg to ¢/, labeled withe, and denoted ~ ¢'.
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Definition 6 (Weak (observable) simulatiofs]): Consider two (labeled) semiautomata over
the same input alphabét, A; = (Q1,%,~1) and Ay = (@2, X,~), and let¥, C ¥ be a set
of labels associated with silent transitions. An orderathby relation)i on Q; x @, is aweak
(observable) simulationf: (i) 2R is total, i.e., for anyg; € @, there existsy, € ()2 such that
(¢1,q2) € R, and (ii) for every ordered paifq;, g;) € PR for which there exists;; such that
g1 ~>1 ¢,, then3 (¢, ¢b) € R : g2 ~>5 ¢h. Then A, weakly simulatesd; and we writed, > A;.

Task specifications for hybrid systems (and transitionesyst by extension) may be translated
to a Kripke structure 6] (see P] for examples), which is basically a SA with marked initial
states, equipped with a labeling function that maps a stdted set of logic propositions that
are true at that state. In this paper we also specify finaéstand allow the labeling function
to follow naturally from the semantics of the valuation ma&jge thus obtain a FSA4, =
(Qs, 25, Ty, I, Fy), where I, and F, denote the subsets of initial and final states, respectively
Given the dynamic environment, a syste{tﬁa or A(Ha)) satisfiesthe specificationA, if the

interacting behavior of the system and the environment $oanword that is accepted iA..

C. Games on Semiautomata

Here, we follow for the most part the notation and terminglay [37, Chapter 4]. Let
Ay = (Qq, X1, Th) represents the dynamics of player 1, atd= (Q,, ¥, T3) those of player 2.
We define the sef; C @; as the set ofegitimate initial statesof A;, for i = 1, 2 respectively,
but we do not specify final states in these two SA. The langwatpissiblein A, is L£(4;) =
Ugoer, Ugeo, {0 | Ti(qo, w) = ¢}, which essentially includes all possible sequences obasti
that can be taken inl;. Let A = ¥, U X5. Define an (infinite)game[37] G(®) on A as a set
® C A¥ of infinite strings consisted of symbols from the two alphabe, and >, taken in
turns. Aplay is an infinite stringw = 0,0, --- € A¥. Players take turns with player 1 playing
o, first by default. In this paper we assume that players can gpveheir turn and “play” a
generic (silent) symbot, i.e. e € 3; andT(q,¢) = ¢, Vq € Q;. A pair of symbolsoy;_109;
for i = 1,... denotes a round, with any one of the two symbols being pgssitpial toe. We
say that player 1 wins the game«f € ®; if not, then player 2 wins. Astrategyfor player
i in gameG(®) is a functionS; : A* — X,. Player 1 (2)follows strategyS; (respectively,
Sy) inaplayw = oy09--- if for all n > 1, 09,1 = Sy(0109- - 09,_2) (respectively,@n =

So(o109 - - -02n_1)). A strategy for player 1 is winning strategyVVs; if all stringsw = o105 - - -
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that satisfyos, 1 = WSy (0109 - - 02,_2), ¥Yn > 1, belong in®. Winning strategies for player 2

are defined similarly. If one of the players has a winningteggg, then the game determined

[Il. GAME THEORETIC APPROACH TOPLANNING
A. Constructing the game

Consider a hybrid agent having to satisfy a task specificagocoded in a FSA4,. Assume
that this agent is operating in an unknown environment. b worst case, this environment
is controlled by an intelligent adversary who has full knedde of the agent’s capabilities.
The adversary is trying to prevent the agent from achieviagbjective. The behavior of the
environment is still rule-based, i.e. subject to some giglgnamics, although this dynamics is
initially unknown to the agent.

Assume that the agent has been abstracted to alSgplayer 1) and the dynamics of the
environment is similarly expressed in another dA (player 2). Without loss of generality, we
assume the alphabets dfi and A, are disjoint, i.e.X; # X,. In this game, the agent is not
allowed to give up turnse(¢ %) but the adversary that controls the environment can do so
(e € X5). For two-player turn-based games, the actions of one plagy influence the options
of the other by forbidding the latter to initiate certainrs#tions. To capture this interaction
mechanism we define thiateraction functiond’; : Q; x Q; — 2%, (i,5) € {(1,2),(2,1)}. An
interaction functior/; maps a given pair of stat¢g;, ¢;) of playersi andj, to the set of actions
player j is not allowed to initiate at statg.

We now define a SA that abstractly captures the dynamics efaotion between the two
players, by means of a new operation on SA which we calkdine-based productAn intersec-
tion of the turn-based product with the task specificaticgldg the representation of the game
and further allows us to compute the strategy for the agent.

Definition 7 (Turn-based product)Given two SAs for playersd; = (@, %,7;) and A, =
(@2, 29, Ty) with the sets of legitimate initial statds, I, and interacting function&,, U,, their
turn-based producP = (Q),, ¥ U Xy, T,) is a SA denotedd, o A,, and is defined as follows:

. QQ, = Q1 xQ2x{0,1}, where the last component is a Boolean variabfe{0, 1} denoting

who’s turn it is to play:c = 1 for player 1,c = 0 for player 2.

. Tp((QbQ%C),U) =(q1,3,0)ifc =1, ¢t = Ty (q1,0), witho & Us(q2, q1) andTp((Q17Q2>C>>U)

=(q1,¢5,1) if c=0, ¢y =Ts(q2,0), With o & Uy (q1, q2)-
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Assuming player 1 is the first one to make a move, the set dinegfie initial states iP is I; x
I, {1} and the languagadmissiblen P is £(P) = U, c/,«rx 1y Ugeo, 10 | Tp(g0,w) = g},
the set of all possible plays between two players. Note thate includes the silent actianin
Y, for i = 1,2, the players may not necessarily play in turns—as in theip@ase of agent-
environment interaction considered here. The productatjoer is still applicable as defined.

The turn-based produd@?® gives snapshots of different stages in a game. It does ndotreap
any of the game history that resulted in this stage. Oftesk tpecifications encoded A,
involve a history of actions, and thus the winning condisidar player 1 cannot be encoded in
P by simply marking some states as final. We overcome the lackarhory in P by taking its
product with A,. Taking the product is suggested by the fact that player lvaanthe game
(i.e. agent can satisfy the specification) onlyLifA,) N L(P) # (. The technical complication
is that the two terms in this product are heterogeneous: ®aeSA and the other is a FSA. We
resolve this by transforming the SA into a FSA and applying $tandard product operation;
and the result is what we call thgame automatan

Definition 8 (Game automaton)lhe game automaton is a FSA defineddas- P x A, =
(Q,%,T,Qo, F), where A, = (Qs, 2, T, I, i) is a FSA encoding the winning conditions for
player 1, andP is a FSA obtained from the turn-based prodict A; o A, by defining the set of
initial states ofP as the legitimate initial statds x I x {1}, and marking all other states as final.
The set of initial states fog is defined a€)y = {(q1,92,1,q0s) | ¢1 € 11,42 € L2, qos € I}
The set of final states fay is given by F' = {(q1, ¢2,0,qs) | ¢s € Fs}.

It follows (from the fact that the language ¢f is regular) that the game defined Byis a
reachability gamedgd], and therefore it is determined. Note that the final stafeG are exactly
those in which player 1 wins the game. On F&A we define theattractor of F', denoted
Attr(F'), which is the largest set of statél§ O F' in G from where player 1 can force the play
into F. It is defined recursively as follows. Lét, = F' and set

Wi+1 = VI/Z U {q € Q | q = (Q17€I2> 17qs>7 anddo S F<q) : T(q,O') € WZ}
U{ge®|q=(q1,¢,0,q5), andVo € T'(q) : T(q,0) € W;} . (2)

The functionp : Q — N; p(q) — min{i > 0 | ¢ € W,} is called therank functionof the game.
Sinceg is finite, there exists the smallest € N such thatV,,,; = W,,. ThenAttr(F') = W,,.
Moreover, becausé is determined, the complement aftr(F') in () forms atrap for player 1;
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it contains all the states at which player 2 can prevent playfeom winning the gameAttr(F)

can be computed in tim&(n; + ny) wheren,; = |Q| andn, is the number of transitions ig.

B. Computing a winning strategy

The following statement is straightforward.
Theorem 4:Player 1 has a winning strategy #ttr(F) N Qo # (.

Proof: If Attr(F) N Qo # 0, the winning strategy of player 1 can be defined as a map
WS, : Q — 2*1, so that forg = (q1, ¢2, 1, ¢,), the image of this map i#/S,(q) = {c | T(q,0) €
Attr(F')}. If the game starts aj, € Attr(F') N Qoy, by exercisingWs,, player 1 ensures that
subsequent states are within its attractor. [ |

We refer toAttr(F') N Qo as the set ofvinning initial statesof G. Notice that strategyVs,
keeps player 1 in its attractor, ensuring that it can win tame, but does not necessarily guide
it into winning. To compute armptimal winning strategy—one that wins the game for player
1 in the least number of turns—we partitid#i,,, into a set of subsety;, i = 0,...,m in the
following way: letV, = W, = F and setV; := W; \ W;_4, for all i € {1,...,m}. The setsV;s
partition the attractor into layers, according to the rafkhe states that are included. That is,
Vg € V;, p(q) =i and thus thg[V;}, partition is the one induced by the ranking function. We
can then prove the following sequence of statements.

Once the game is iAttr(F'), all the actions of player 2, and some of player 1 strictlyrdase
the rank function:

Lemma 1:For eachq € V;11,i=10,....,m—1,if ¢ =1, thend o € ¥; NT'(¢q) such that
T(q,0) € Attr(F), itis p(T(g,0)) =i. If ¢ = 0, thenVo € X, NI(g), such thap(T'(¢,0)) = i.

Proof: Let ¢ € V1. According to @), either (a)c = 1 and soT'(q,0) € W; for some
o €TI(q),or(b)c=0andT(q,0) € W;, Vo € I'(q) . We show the argument for case (a)
whenc = 1 by contradiction: suppose there exiéts: ¢, so that7'(¢, o) € V,—by construction
(2) we already have: < i. Then according to2), ¢ belongs toV}.;. But since the set¥;
partition Attr(F'), V.1 andV;,, are disjoint. Thereforg cannot be inV;; as assumed in the
statement of the Lemma. Thus, when-= 1, all actions that enable the player to remain in its
attractor in fact move it only one (rank function value) stépser to the winning set. A similar

contradiction argument applies to case (b) wlker 0: Assume that alb € ¥, N T'(¢q) yield
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T(q,0) € V; for somej < i. Let k = maxyerqo) p(¢'). Theni > k > j, which means that
k+1 < i+ 1. In the same way we arrive gt¢ V;,; which is a contradiction. [ |
Informally, actions of player 1 fron¥;,; cannot take the game any closerAathanV;. This
implies that the rank of a state expresses the total numbarr$ in which player 1 can win
the game from that state.
Proposition 1: For eachqg € V;, there exists at least one wotd e L(G), with |w| =i such
that7'(¢, w) € F.

Proof: We use induction, and we first prove the statementifor 1. For eachq =
(q1,92,1,qs) € Vi, Lemmal suggests that at least one action of player 1 which keeps it in
the attractor, actually sends it g, = F. So fori = 1 the plays in which player 1 wins
have length one. Now suppose the statement holds for; we will show that also holds for
i = n + 1. According to Lemmal, for eachq € V,,.1, V 0 € 3, NT'(q) (player 2 taking its
best action) or for at least one € ¥; NT'(¢q) (player 1 taking its best action) we will have
T(q,0) € V,. In other words, if both players play their best, the rankref subsequent state in
the game automaton will be. Inductively, we conclude the existence of a path of lengtin
G starting atg € V,, and ending iny’ € V, = F. [ |

Proposition 2: Supposey, = (q1, ¢2, 1, g50) and thatp(qo) = £ < m. Then player 1 can win

the game in at most rounds following the strategWS7, defined as
WSi(q) ={o | T(q,0) € Vie1, € Vi i = 1} 3)

Proof: Given a stateg = (¢1,¢2,1,q95) € V;, WS} allows player 1 to force the game
automaton to reach a state iy ; by picking actions* such thatl'(¢,o*) = ¢’ whereq' € V;_4
(Lemmal). At ¢/, ¢ = 0. Any action of player 2 takes the game automaton to a state V;
for j < ¢ — 2. In fact, the best player 2 can do is to delay its defeat byctialg an actions
such thatj =i — 2 (Lemmal). An inductive argument can now be used to complete the proof

V. LEARNING THROUGH GRAMMATICAL INFERENCE

In Sectionlll it was shown that the agent can accomplish its task iff (aa# tull knowledge
of the environment, and (b) the game starts at the winnintigirstate inAttr(F) N Qy. The
problem to be answered in this section is if the environmen(partially) unknown but rule-

governed, how the agent plans its actions to accomplistads. By assuming the language of
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the environment isearnableby some GIM, we employ a module of grammatical inference to

solve this problem.

A. Overview

The theory of mindof an agent refers to the ability of the agent to infer the badeof its
adversary and further its own perception of model of the g@mg [40]. In the context of
this paper, the agent initially has no prior knowledge of tapabilities of its adversary and
plans a strategy based on its own hypothesis for the adyerBaerefore, although the agent
makes moves which keep it inside thgpothesizedttractor, in reality these moves might take
it outside thetrue attractor. Once the agent has departed its true attrabtan, it is bound to fail
since the adversary knows the true nature of the game andlwagsaprevent the agent from
fulfilling its task.

An agent equipped with a GIM is able to construct an increggimore accurate model of
the behavior of its adversary through consequent games 1Hij). The expected result is that
as the agent refines the model it has for its environment addtap its “theory of mind,” its
planning efficacy increases. We expect that after a sufticiember of games, the agent should
be able to devise strategies that enable it to fulfill its taséspective of how the adversary

proceeds. This section presents the algorithms for cartstguand updating this model.

B. Assumptions and Scope

In the agent-environment game, the behavior of the unknowit@ament becomes a positive
presentation for the learner. The hypothesis obtained bylg¢arner is used for the agent to
recompute the game automaton and the attractor as desdnib8dctionlll. It is therefore
guaranteed that the agent’s hypothesis of the unknownamwient will eventually converge to
the true abstract model of the environment, provided thahé true model lies within the class of
models inferable by the learner from a positive presentatind (ii) the unknown environment’s
behavior suffices for a correct inference to be made (for gkanfi a characteristic sample for
the target language is observed).

We make the following assumption on the structure of the omkndiscrete dynamics of the

adversarial environment:
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Assumption 1:The language admissible in the SA of the adversarial environment (player
2) is identifiable in the limit from positive presentation.

Although the results we present extend to general class®stédms generating string extension
languages, for clarity of presentation we will focus the agmng discussion on a particular
subclass of string extension languages, narstictly £-Local languages (S [29], which has
been defined in Sectiol-A .

C. ldentifying the Class of the Adversary’s Behavior

As suggested by Theore in order to identify the behavior of the adversary, which is
expressed in form of a language, the agent must know whdtiefanguage is SL and if it is,
for which k in SL hierarchy. We assume the information is provided toapent before the game
starts. We employ the algorithm id]] adapted for SA to check whether a given SA admits a
SL languagé. In what follows we provide a method for determining the nakutumberk:

For somek > 0, consider a (non)-canonical FSA that acceptsD, = (Qp, >, Tp, {\}, Fb),
where () Qp = PrF"1(2*); (i) Tp(u,a) = SF="(ua) iff |ua| > k — 1 and ua otherwise;
(i) X is the initial state, and (iv¥p = @p is the set of final states (all states are final).
We refer toD,, as the SL-FSA for ¥*. It is shown [iZ] that for a given a S}. language
with grammar®, a (non)-canonical FSA accepting &) can be obtained by removing some
transitions and the finality of some of the statas D,. We call the FSA of a Sj.language
L(®) obtained in this way, the SEFSA of L(®). Figure 2(a) shows a Sk-FSA for X*, with
¥ = {a, b}. Figure2(b) shows another Sl grammar that generates the language given by the
string extension grammab = {xaa, xab, aab, aaa,aba,bax }. For exampleaaba € L(®)
becausef;(xaabax) = {xaa, aab,aba,bax} C &. Yet aababa ¢ L(®) as f3(xaababax) =
{xaa, aab, aba,bab,bax } ¢ &, in fact the3-factor bab ¢ &.

“This algorithm works with the graph representation of a FBA therefore it is not necessary to designate the initiaésta

*Removing finality of a statg in FSA .4 means to remove from the set of final states inl.
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(a) The (non)-canonicéads (b) SLa-FSA for L(®)

Fig. 2: The (non)-canonical FS®5 accepting:* for ¥ = {a, b} (left) and the Sk-FSA obtained for (&), where

& = {xaa, Xab, aab, aaa, aba, bax }, after removing transitions and the finality of some stateghf).
In a FSA, we say; € Q is at leveli iff i = min{|w| | w € ¥*, T'(q0, w) = ¢}, whereg, is an

initial state. The functiony : ) — N maps a state to its level. Now we can state the following.

Lemma 2:If a canonical FSAC = (Q., >, T., qu, F.) accepts a SL language for somek

wherek is the smallest number such tha(C) € SLy, thenk < max,cr. v(¢) + 1.
Proof: Let & be a SL, grammar that generatds Then we can generate a (non)-canonical

FSA B = (Qy, X, T}, {\}, F,) by removing transitions and finality of nodes frai.. Let ¢* =
arg max,cp, 7(¢) be a state irC furthest from the initial state, let = v(¢*) be its level, and
w = wywy -+ -w, be a word that bring€ to stateq* = T'(qo., w). FSAs B andC accept the
same languages, so € L(C) iff w € L(B). In B, however, we can compute /3 because
Ty(\,w) = SF=*"(w) € B, with k —1 <n, i.e.k <n+ 1. m

Though we can only obtain an upper boung, = max,cr, 7(¢)+1 on the smallesk (in the

worst case this bound |€).

), the hierarchy of SL language class given by TheoBsgnarantees
that this upper bound,,.. is sufficient for us to obtain a correct L., grammar that generates
the exact language presented to the learner, irrespgctividllis language can also be generated
by a SL, grammar for som& < k... For example, for the language accepted by the FSA in
Fig. 2(b), we can also obtain a Slgrammar®’ = {xaaa, xaba, Xaab, aaba, aaab, abax } and

it can be verified thal.(®’) = L(®).

D. Learning the Adversary’'s Dynamics

Before the game starts, player 1 is informed that the behadidts adversary is a SL
language for some knowh and the adversary can always give up a turn,d.€.X,. With this

knowledge, player 1 builds a $tFSA for {3, \ {¢}}". Then, by unmarking initial and final
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states and adding a self-loop labeledt each state, it obtains an initial model of its adversary
AY = (Qy, 50, Th).

In the course of game, player 1 (agent) records the contsgequence of actions of player 2
(the environment). This amounts to a presentatiaf the form:¢(0) = A, ¢(i+1) = ¢(i)o, i >
1,7 € N, for someo € I'(T(go, w)) Ny # 0 whereqy € Qo andw |, = ¢(i).° The learning
algorithm is applied by player 1 to generate and refine theotigsized model of its adversary
from the presentatiom.

Since a FSA for any SLgrammar can be generated by removing edges and finality adshod
in the SL,-FSA for ¥*, then the SA for player 2 can be obtained by just removing gdge
A, Due to this special property, we can use an instrument witichvthe agent encodes
new knowledge into the hypothesized model for the adversanyely, aswitching functiorsw,
which operates on a SA (or FSA) and either blocks or allowsagetransitions to take place:
sw : Qo X ¥y — {0, 1}, so that forq € @2, 0 € ['(¢q) only if sw(q,0) = 1. Consequently, at
roundi + 1, the incorporation of new knowledge fot, obtained at round redefinessw. We
assume a naive agent that starts its interaction with thea@maent believing that the latter is
static (has no dynamics). That hypothesis correspondsvindiaw®) (¢, o) = 0, Vo € 5 \ {¢}
andsw(® (g, ¢) = 1,Vq € Q..

Note that¢(i) denotes the presentation up to round he initialization of the game can be
considered as a single round played blindly by both playeithé¢ut any strategy). Hence, if the
game starts with{(q1, g2, 1), qos), it is equivalent to have(1) = o, for which T5(\, o) = ¢». Let
sw(® denote the refinement efv made at round, suppose that at round+ 1, the adversary
playso’. This suggest®(i + 1) = ¢(i)o’. Supposep = T»(A, ¢(i)), then for allg € @, and

o € Yy, switD) is defined by

w(q, o) i o 9,0’
(o) =3 (¢,0) if (¢,0) # (g2,0") @

1 if (¢,0)=(q,0")
meaning that the transition fromp on inputo’ in A, is now enabled. With a small abuse of

SW(

notation, we denote the pa(rAgo),sw(")) = Al read as the SAMY with switching function
sw. Pictorially, Ag) is the SA obtained fromﬁlgo) by trimming the set of transitions which are
switched off gw(-) = 0).

®This is a map|s,: ©* — 3. The imagew |x, is the string after removing all symbols in which are not inXs.
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Correspondingly, the game automaton in the initial thedrgnmd of the agent is constructed
asG© = (PO x A,) whereP© is the FSA obtained by© = A;0A after settingl; x I x {1}
as the set of legitimate initial states, wheke= {q | T5(\,0) = ¢,0 € ¥\ {€}}, and all other
states inP") as final. By the construction of game, the switching functesociated witmgi)
can be extended naturally 9" = (G, sw®) by:

Vg = (q1,¢2,0,q),0 € o, W (q,0) =1 (or 0) in @ iff sw®(gy, ) =1 (or 0) in AY.
5)

With the extension of switching function, one is able to upddhe game automaton without
computingany product during runtime. This is because the structure ofyjirae has essentially
been pre-compiled. This results in significant computai@avings during runtime, depending
on the size ofA{ .

This switching mechanism along with the extension frﬂg‘? to G® can be applied to other
classes of string extension languages, in particular aagsabf languages describable with FSAs

obtainable by removing edges and finality of states from sdeterministic FSA accepting*.

E. Symbolic Planning and Control

With the theory of mind as developed in roundand with the game automaton at state
the agent computes an optimal winning stratdy$; based on J), by settingiVy = Vy = F
and iteratively evaluating2j, wheresw® defined inG"”) has to be taken account of: for all
(g,0) € Q x %, if swi(q,0) = 0, theno ¢ I'(q). The computation terminates when the

following condition is satisfied:
dm eN : qge W, Vv q & Wy =Wt - (6)

Wheng € W,,,, WS] can be computed at Then based on Propositiéh the strategy ensures
victory in at mostm turns. The agent implements this strategy as long as itsythafomind
for the adversary remains valid, in other words, no new ttemshas been switched on. In the
absence of new information, the plan computed is optimalthece is no need for adjustment. If
in the course of the game an action of the adversary, whicleuhrent model cannot predict, is
observed, then that model is refined as described in Selgtibn Once the new game automaton

is available, 2)-(3) are recomputed, and) is satisfied.
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If insteadq ¢ W,,, = W,,.1, then the agent thinks thate Attr(F)°: the agent is in the trap
of its adversary. If the adversary plays its best, the ganless It should be noted that this
attractor is computed on the hypothesized game and may rtbelieue attractor. Assuming that
the adversary will indeed play optimally, the agent losesdnfidence in winning and resigns. In
our implementation, when the agent resigns the game igtediat a random initial statg € @,
but with the agentetaining the knowledge it has previously obtained about its advegrddre
guaranteed asymptotic convergence of a string extensasnde ensures that in each subsequent
game, the agent increases its chances of winning whenliébat configurations from which
winning strategies exist. The adversary can always chanpeevvent the agent from learning by
not providing new information, but by doing so it compronsises own strategy.

The following section illustrates how the methodology mét can be implemented on a
simple case study, and demonstrates the effectiveness abthbination of planning with string
extension learning. As it turns out, the identification ¢ #dversary’s dynamics is quite efficient

in relation to the size ofd,.

V. REFINEMENT ONHYBRID DYNAMICS

SectionlV established a methodology based on which the agent can rcenty learn and
(re)plan an optimal strategy for achieving its objective,a partially known and adversarial
environment. This section addresses the problem of impiénge the optimal strategy on the
concrete dynamics of the hybrid ageft as given in Definition3.

Proposition 3: Every transition labeled withr € ¥\ 3, must be followed by a transition
labeled with somesr € 3, i.e., every silent transition iMA(H,) must be followed by an
observable one.

Proof: Assume, without loss of generality that thdransition appears somewhere between
two observable transitions,, 0, € ¥,. We will show thatr is the only silent transition that
can “fit" betweens; and o, in other words we can only hawe > ¢ = ¢ 5 ¢ for some
4, ¢1, q2, and ¢’ € Q. For that, note that by definition; must be such that for al(z, p)
giving Vis(z,p) = ¢, (2,p) | PRE(oy); similarly ¢; must be such that for allz’,p) giving
Vi (2',p) = ¢1 we should havgz’,p) = PosT(o;). Now suppose that there is another silent

transition 7/, in addition tor betweenc; and o, and for the sake of argument assume that

,7_/

it comes right afterr: ¢ & ¢ = ¢" 5 ¢" - ¢ 3 ¢. With the 7 transition following o,
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we have by definition that there existspasuch that once the transition is completed it is
(2,p') = PRE(0”) for someo’ € ¥,. Since(2’,p) = PosT(oy) and (', p’) = PRE(0’), we have
by Definition 3 that H, makes a transition fron’, p’, 0y) to (2, p/, ¢’), and then the continuous
component dynamicg, is activated yielding:’ Uipﬂ 2" for some (", p') = PosT(d’). This
time, with (2',p’) E PRE(0’) and (2", p’) | PosT(¢’), it follows that there is &’ transition
in A(H,) taking ¢” LA ¢, ando’ = o0, because there cannot be more than two observable
transitions between and ¢’ by assumption. Therefore, is the only silent transition that must
have occurred whiled(H,) moved fromgq to ¢'. u
Due to Propositior8, without loss of generality we will assume that a compogigéagition
consists of a silent transition followed by an observabdmsition,q > ¢ <= ¢ = ¢" > ¢/.
Theorem 5:Let Y. = ¥\ X, the hybrid agent/, weakly simulates its induced semiautomaton
A(H,) (H, 2 A(H,)) in the sense that there exists an ordered total binaryioel&t such that
whenever(q, z) € ;R andq ~ ¢ for someq’ € Q, then3z' € Z : » ﬂ;} 2’ such that(¢, 2’) € fR.
Proof: If (¢,z) € 2R, then there existg’ € P such thatVy,(z,p°) = ¢. In general p® # p.
Using the convention adopted above for the composite tiansiwe write ¢ % ¢ <= ¢ >
¢" % ¢ with o € ¥, and7 € ¥\ ,. The transitiong = ¢”, by definition, implies that for
all z such thatVy,(z,p°) = ¢, there existy € s(z,p°) ando’ € 3, such thatVy,(z,p) = ¢”
with (z,p) = PRE(c’). With ¢ % ¢ assumed, we have by definition that for allsuch that
Vi (z,p) = ¢" it should beVy, (2, p) = ¢ for all 2’ satisfying(z’, p) = POST(c). (Note that this
is the samep € s(z,p") that appeared before, because there can only be one s#esition
before an observable one and only silent transitions chémg@arameters.) From Definitidh
we then have that ﬂ;} 2/, and(2/,q’) € R becausd/y (2, p) = ¢. [
We have thus shown that whatever sequence of labels is @usénva run of A(H,), a
succession of continuous component dynamics with this ssgeence of subscript indices can
be activated in{,,. Thus, whatever strategy is devised4(H,), has a guaranteed implementation
in the concrete dynamics of the hybrid agent. The issue efcialj the parameters so that the
implementation is realized is not treated here. This suligeaddressed, using slightly different

discrete models, in4[3].
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VI. CASE STuDY
A. Experimental Setup

To demonstrate the efficacy of our methodology, we considgrae, played between a robot
and an intelligent adversary. The purpose of the robot {dydgent) is to visit all four rooms in
the triangular “apartment” configuration of Fig. The four rooms in this triangular apartment
are connected through six doors, which an intelligent aghrgrcan close almost at will, trying
to prevent the robot from achieving its goal. Tablshows three possible rule regimes that the
adversary could use. Initially the robot is capable of dtiishing closed from open doors, but
it does not know which doors can be closed simultaneouslyadty it assumes that only the

initially closed doors are ones that can be closed.

Rules Description

Opposite Only one pair of doors opposite to each other can be closedyatime:
{a.d}, {a,e}, {a, [}, {b, [}, {c,e}, {e. [}
Adjacent Only one pair of doors adjacent to each other can be closedyatirae:

{a, 0}, {a,c}, {b,c}, {b,d}, {be}, {c,d}, {c, [}, {d, e}, {d, [}

General  Any pair of doors can be closed at any time.

TABLE |: Some possible rules for the adversary (controlling the sloat each round, the environment either
keeps static or opens exactly one door in the closed pair ofsdand closes exactly one, which results in another

pair of closed doors.
The Khepera II, manufactured by K-Team Inc., is a differential-drive mehiobot, with

two actuated wheels and kinematics that are accuratelyesepted by the equations of a
unicycle. Motion control is achieved througtD loops that independently control either angular
displacement or speed of the two wheels. These loops can support the development of
mid-level motion planning controllers. For example, inputput feedback linearization of the
unicycle dynamics44] leads to a fully actuated reduced system of the fgre u, where the
sequential composition flow-through approach 43i][can be applied to produce controllers that
steer the robot from roomto a neighboring roonj. This same approach has been usediiij |
to generate discrete abstractions for the purpose of findialglo; details on how the sequential

composition approach can give rise to finite state automag&actions are found int[].
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(a) The triangle room game representation. (b) A physical implementation of the game.

Fig. 3: The non-cooperative game used in this case study. Fig(akis a graphical depiction of the triangular
apartment game, while Fig3(b) shows a physical realization of the scenario, wittkleepera II miniature
mobile robot in the role of the hybrid agent. The robot lapadi itself and observes which doors are closed (door
closure implemented manually using the yellow caution eprierough avicoNn™ motion capture system. The
grammatical inference module and the strategy computatigarithm have been implemented in python, which

communicates with the control for the robot (through MatM)over a serial link.

For the case at hand, we can use the flow-through strateggsnterate potential field-based
velocity controllers to realize transitions from rooirto room j in a way compatible to the
requirements on the continuous dynamics of the hybrid agebefinition 3, that is, ensure that
PRE(0) is positively invariant forf,, and that trajectories converge fo (p,o) @ B. in finite
time (see {7]). The latter set is in fact the formula foro®1(c): = € L (p,0) @ B..

In the context of the flow-through navigation strategy 4f][ a transition from, say, room 1
to room 2 (see Fig3) would involve aflow-through vector field45] by which the robot exits
the polygon outlining room 1 from the edge correspondingdord (slightly more sophisticated
behavior can be produced by concatenating the flow-throwdjbypwith a convergent45] one
that “centers” the robot in room 2.)

The hybrid agent that is obtained by equipping the robot withse flow-through policies can
be defined as a tuple, = (Z,%,, ¢, P, m, AP, f,, PRE, POST, s, T,) where

« Z is the triangular sector at* consisted of the union of the areas of the four rooms.

« X = {(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)},

with each element associated with a single flow-througkcgoli, j) denotes a flow-through

policy from room: to roomj.
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et X, — {1, 2,3, 4} where we slightly abuse notation and defin@ot as a bijection
but rather a surjection, where we abstract away the room igihoand we maintain the
destination, for simplicity.

. m; = m = I (the identity),? = Z, ands(z,p) = P, VY(z,p) € Z x P; in this case we do
not have to use parameters explicitty—they are hard-wirethé flow-through policies.

o« AP = {o; : robot in roomi}, i = 1,23, 4.

. fo = K(X,—¢q), K >0, asimple proportional controller on velocity intended tiga the
system'’s vector field with the flow-through field, .

o PRE((i,+)) = oy, i € {1,...,4} and POST((-, 7)) = o, j € {1,...,4}.

. T, following Definition 3, once all other components are defined.

One can verify by inspection when constructidgH,,), that the first element of = (i, j)
is encoded in the label for the discrete statg,from which the transitiony; (ﬁ) a;. Thus, to
simplify notation, we change the label of a state frapto i, and the label of the transition from
(1,7) to just j—the destination state. We writ‘ei}j instead. Figurel (left) gives a graphical
representation ofd(H,) after the state/transition relabeling, basically exgresshe fact that
with all doors open, the robot can move from any room to anyemotioom by initiating the

appropriate flow-through policy.

B. Results

Suppose the adversarial environment adheres toph®site rule in Tablel. The SAA; for
the agent (player 1) and a fragment of 34 modeling the environment (player 2) are shown in
Fig. 4. By assigningl;, = Q; and I, = Q-, the game can start with any state@n x Q, x {1}.

The goal of the agent in this example is to visit all four roofims any order). Therefore,
the specification can be described by the union of shufflelsdefathe permutations o0f234.

In this special case, since the robot occupies one room whemegstarts, A, = (Qs, X
YU, Ty, Ig ={1,2,3,4}, F, = {1234}). A fragment of A, is shown in Fig.5.

The interaction functions follow from obvious physical straints: when the environment ad-

versary closes a door, the agent cannot then move throughetinteraction functiof/s(d;ds, )

gives the set of rooms the agent cannot access from robetause doorg, andd, are closed.

’SAs A; and A, happen to be Myhill graphs, but the analysis presented eppti general SAs.
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Fig. 4: Semiautomata for the agent (left) and for a fragment of thérenment (right). InA;, the states are the
rooms and the transitions are labeled with the rooms thaadieat is to enter. Fad,, the states represent the pairs

of doors that are currently closed and a transitignindicates the pair of doors, y are to be closed.

x,1,2,3,4

Fig. 5: Fragment ofA, = (Qs, X5 = X1 U X0, Tk, I, = {1,2,3,4}, F, = {1234}), wherez = 3.

In Fig. 3(b), for instance,Us(ab,1) = {2,3}. In this example, the agent cannot enforce any
constraints on the adversary’s behavior{§dq) = 0, Vq € Q1 x Q». Figure6 shows a fragment

of A; o Ay, while a fragment of the game automat@nis shown in Fig.7.

Fig. 6: Fragment of turn-based produBt= A; o0 Ay = (Qp, X1 U X, T),). State(r, d1d2, ¢) means the agent is in

roomr, doors{d,,ds>} are closed and the Boolean variable keeping track of whaseitis set toc.

Let us show how PropositioB applies to this case study. The winning set of statekg is
{((ql,qg,O), 1234) € Q| (q1,9,0) € Q,}; Attr(F) is obtained by computing the fixed-point
of (2). Due to space limitations, we only give a winning path foe lobot according to the

winning strategyWS; with the initial setting of the game if),.
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Fig. 7: Fragment of the game automatoh= (Q,%; U X9, T, Qo, F') for the door-robot game, wher@, =

{(Q1aq27 laqs) | q1 € Ilan S IQvQS =q € {1727374}} and F' = {(q15q2707 1234) | (qlquaO) S Qp}: note that
upon initialization of a game, the state 4f (the room occupied by the robot) determines the choice talrstate

in A (the room visited by the robot.)

If the agent were to have complete knowledge of the game attomit could compute the

set of initial states from which it has a winning strategy:
Qo NAttr(F) = {(1,ad,1,1),(1,ce,1,1),(2,ad, 1,2), (2,bf,1,2), (4, ce, 1,4), (4,bf,1,4) }.

Hence, with complete game information, the robot can win dhene starting from initial

conditions inQ N Attr(F); note that/2ccAt @]

|Qol

makes up a mere5% of all possible initial
configurations. For instance, the agent has no winningeglyaif it starts in rooms.?

For the sake of argument, takg = (1,ad,1,1) € Attr(F) N Q. Since the rank ofy is
p(qo) = 7, following WS7 of (3) the robot’s fastest winning play is

(1,ad,1,1) = (4,ad,0,14) %5 (4, ae, 1,14) 2 (2, ae, 0,124) <5
(2,ce,1,124) = (1, ce, 0,124) <5 (1, ef,1,124) 2 (3,ef,0,1234) .
The adversary’s movesie, ce and ef, are selected such that it can slow down the process
of winning of the robot as much as possible; there is no moeeettvironment can make to
prevent the agent from winning since the initial state isha agent’s attractor and the agent

has full knowledge of the game. Note that in the cases wheregdme rules are described by

Adjacent andGeneral regimes (see TablB, the robot cannot win no matter which initial

8Although the construction assumes the first move of the rishtd select a room to occupy (because it begins in state 0),

we assume the game begins after the robot has been placetieantbsed doors have been selected.
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state is in because in both casksr(F) N @y = (. In these game automata, the agent, even
with perfect knowledge of the behavior of the environmeat) oever win.

Let us show how a robot, which has no prior knowledge of the ganfes but is equipped
with a GIM, can start winning the game after a point when it blaserved enough to construct a
correct model of its environment. As the first game stares dfjent realizes that the environment
is not static, but is rather expressed by some (discreteardigal system, a SAl,. It assumes
(rightfully so in this case) that the language admissibledinis strictly 2-local. With these
knowledge, the robot's initial hypothesis of the envirommel!” = ((Q2, 22, T3), sW) is
formulated in two steps: (i) obtain the $ESA for {2, \ {e}}" and assign sW(q,0) = 1,Vo €
Yo\ {e€}; (i) add self-loopsTi(q, €) = g and letsw@(q,¢) =1, Vq € Q.

In every round, the agent does the best it can: it takes thenastiggested by the strategy
WS constructed based on its its current theory of mind. Eacle finobserves a new action on
the part of its adversary, it updates its theory of mind ugi)grecomputedVS] using @), and
applies the new strategy in the following round. The ageny mnealize that it has lost the game
if it finds its current state out of the attractor computededolsn its most recent theory of mind.
In this case, the agent resigns and starts a new game fromdamamitial condition, keeping
the model for the environment it has built so far and imprgviinas it goes. We set an upper
limit to the number of games by restricting the total numbietuons played to be less than

The following simplified algorithm illustrates the procedu

1) Leti =0, the game hypothesis §. The game starts with a randagm € Q.

2) At the current state = (¢4, ¢2, 1, ¢5), if the number of turns exceeds the upper limjtthe
sequence of repeated games is terminated. Otherwise, lloé computesAttr(F') based
on G (note that it is not necessary to computerr(F) and WS;(q) as long as there is
no update inG® from the previous round.) Then, accordingAttr(F) and @), the robot
either makes a move € WSj(q) or resigns. If a move is made aftiq, o) € I, the robot
wins. In the case of either winning or resigning the game,rtimt restarts the game at
someq, € @y with a theory of mindAgi) and a hypothesized game automag#fi; then
its control goes to Stef. Otherwise, it goes to Step

3) The adversary takes some action. The robot observes dtisand determines whether
to switch on a blocked transition. If a new transition,ﬁéi) is observed, it updateﬁg)
to AS™. ThenG® is updated tog(+!) according to §). Otherwise,4A5™ = A and
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G+ = GW. The robot sets = i + 1 and goes to Stef.

We can measure the efficiency of the learning algorithm by pting the ratio between
transitions that are switched on during the game sequenseisv¢he total number of enabled
transitions in the true game automaton. The convergenasaafing is shown in Fig3(a) and the
results show that after 125 turns including both robot’s andironment’s turns (approximately

42 games), the robot’'s model of the environment convergeésdaactual one.

9% transitions switched on

Num of games Num of wins

e “ ; No learning 300 0

(a) The convergence of learning algorithm. The figuré’vIth learning 300 9
shows the ratio of adversary transitions that have bedtull knowledge 300 82

identified by the agent versus the number of turns @eComparison results with three types of the robot.
two players have played. In just 125 turns the hylfar the case of “no learning,” the robot eventually
agent has full knowledge of its adversary’s dynamicaoves out of its attractor and gets trapped.

Table8(b) gives outcomes of repeated games in three different scenfar the robot: (a) Full-
Knowledge: the robot knows exactly the model of the envirentm(b) No Learning: the robot
has no knowledge of, and no way of identifying the environtagmamics, and (c) Learning: the
robot starts without prior knowledge of environment dynesnbut utilizes a GIM. The initial
conditions for the game are chosen randomly. In the absehgeiar information about the
environment dynamics, and without any process for ideimifyt, the robot cannot win: in 300
games, it scores no victories. If it had full knowledge ofstltiynamics, it would have been
able to win 82 out of the 300 times it played the game, a peagenbf27%, which is close
to the theoretical value 025%. A robot starting with no prior knowledge but uses its GIM
performs just as well (reaching a win ratio 26%) as one with full knowledge. In fact, as
Fig. 8(a) suggests, the robot has recovered the performance of akr@ling” agent in less
than 15% %) of the number of games played repetitively used in Taijl®. We demonstrate
the planning and control of the robot using KiKS simulatiowieonment in MatlabV.°

°A simulation video is available dittp://research.me.udel.edintanner/Projecfigs/newgame.mp4

November 16, 2018 DRAFT


http://research.me.udel.edu/~btanner/Project_figs/newgame.mp4

30

VIlI. DISCUSSION ANDCONCLUSIONS

This paper shows how the use of grammatical inference intiopanning and control allows
an agent to perform a task in an unknown and adversarial@mwient. Within a game-theoretic
framework, it is shown that an agent can start from an incetepimodel of its environment
and iteratively update that model via a string extensionnieaapplied to the language of
its adversary’s turns in the game, to ultimately convergethan correct model. Its success is
guaranteed provided that the language being learned iseircldss of languages that can be
inferred from a positive presentation and the charactersstimple can be observed. This method
leads to more effective planning, since the agent will wia ¢fame if it is possible for it to do
so. Our primary contribution is thus a demonstration of hoangmatical inference and game
theory can be incorporated in symbolic planning and cordfa class of hybrid systems with
convergent closed loop continuous dynamics.

The architecture (framework) we propose is universal anmd lma seen as being composed
of two distinct blocks: Control synthesis and Learning. Tdomtents of these blocks can vary
according to the task in consideration and the target madélet learned. The current task is
a reachability problem, and hence we utilize algorithmsdomputing a winning strategy in
reachability games to synthesize symbolic controllersweir, there is nothing inherent in
the architecture that prevents synthesis of the controlgugiinning strategies of other types of
games, such as Buchi gamés]| [49]. Similarly, as in this paper the rules of the environmest ar
encoded in strictlyc-local grammar, the learning module operates on stringsxte languages.
However, any language that is identifiable from positivesprgation can be considered. The
main difference compared to our learning module and othahima learning methods—such as
reinforcement learning and Bayesian inference—is that ake aadvantage of prior knowledge
about the structure of the hypothesis space. This assumetiables the development of faster

and more efficient learning algorithms.
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