
ar
X

iv
:1

21
0.

16
30

v1
 [

cs
.R

O
]

5
O

ct
 2

01
2

1

Symbolic Planning and Control Using Game

Theory and Grammatical Inference

Jie Fu,Student Member, IEEE,Herbert G. Tanner,Senior Member, IEEE,

Jeffrey Heinz, Jane Chandlee, Konstantinos Karydis,Student Member, IEEE, and

Cesar Koirala

Abstract

This paper presents an approach that brings together game theory with grammatical inference and

discrete abstractions in order to synthesize control strategies for hybrid dynamical systems performing

tasks in partially unknown but rule-governed adversarial environments. The combined formulation

guarantees that a system specification is met if (a) the true model of the environment is in the class of

models inferable from a positive presentation, (b) a characteristic sample is observed, and (c) the task

specification is satisfiable given the capabilities of the system (agent) and the environment.

Index Terms

Hybrid systems, automata, language learning, infinite games.

I. INTRODUCTION

A. Overview

This paper demonstrates how a particular method of machine learning can be incorporated into

hybrid system planning and control, to enable systems to accomplish complex tasks inunknown

Jie Fu, Herbert G. Tanner and Konstantinos Karydis are with the Mechanical Engineering Department at the University of

Delaware, Newark DE 19716.{jiefu,kkaryd,btanner}@udel.edu.

Jeffrey Heinz, Jane Chandlee and Cesar Koirala are with the Department of Linguistics and Cognitive Science at the University

of Delaware, Newark DE 19716.{heinz,janemc,koirala}@udel.edu.

This work is supported by NSF award #1035577. The authors thank Calin Belta and his group for joint technical discussions

through which the case study game example was conceived. Thanks are also extended to Jim Rogers for his insightful comments.

November 16, 2018 DRAFT

http://arxiv.org/abs/1210.1630v1

2

andadversarialenvironments. This is achieved by bringing together formalabstraction methods

for hybrid systems, grammatical inference and (infinite) game theory.

Many, particularly commercially available, automation systems come with control user inter-

faces that involve continuous low-to-mid level controllers, which are either specialized for the

particular application, or are designed with certain ease-of-use, safety, or performance specifica-

tions in mind. This paper proposes a control synthesis method that works with—rather than in

lieu of—existing control loops. The focus here is on how to abstract the given low-level control

loops [1] and the environment they operate in [2], and combine simple closed loop behaviors in

an orchestrated temporal sequence. The goal is to do so in a way that guarantees the satisfaction

of a task specification and is provably implementable at the level of these low-level control and

actuation loops.

As a field of study, grammatical inference is primarily concerned with developing algorithms

that are guaranteed to learn how to identify any member of a collection of formal objects (such

as languages or graphs) from a presentation of examples and/or non-examples of that object,

provided certain conditions are met [3]. The conditions are typical in learning research: the data

presentation must be adequate, the objects in the class mustbe reachable by the generalizations

the algorithms make, and there is often a trade-off between the two.

Here, grammatical inference is integrated into planning and control synthesis using game

theory. Game theory is a natural framework for reactive planning of a system in a dynamic

environment [4]. A task specification becomes a winning condition, and the controller takes the

form of a strategy that indicates which actions the system (player 1) needs to take so that the

specification is met regardless of what happens in its environment (player 2) [5], [6]. It turns

out that interesting motion planning and control problems can be formulated at a discrete level

as a variant of reachability games [7], in which amemorylesswinning strategy can be computed

for one of the players, given the initial setting of the game.

In the formulation we consider, the rules of the game are assumed to be initially unknown

to the system; the latter is supposed to operate in a potentially adversarial environment with

unknown dynamics. The application of grammatical inference algorithms to the observations

collected by the system during the course of the game enablesit to construct and incrementally

update a model of this environment. Once the system has learned the true nature of the game,

and if it is possible for it to win in this game, then itwill indeed find a winning strategy, no

November 16, 2018 DRAFT

3

matter how effectively the adversarial environment might try to prevent it from doing so. In

other words, the proposed framework guarantees the satisfaction of the task specification in the

face of uncertainty, provided certain conditions are met. If those conditions are not met, then

the system is no worse off than when not using grammatical inference algorithms.

B. Related work

So far, symbolic planning and control methods address problems where the environment is

either static and presumably known, or satisfies given assumptions [8]–[10].

In cases where the environment is static and known, we see applications of formal methods

like model checking [9], [11]. In other variants of this formulations, reactive controlsynthesis is

used to tackle cases where system behavior needs to be re-planned based on information obtained

from the environment in real time [8]. In [10] a control strategy is synthesized for maximizing

the probability of completing the goal given actuation errors and noisy measurements from the

environment. Methods for ensuring that the system exhibitscorrect behavior even when there is

the mismatch between the actual environment and its assumedmodel are proposed in [12].

Linear Temporal Logic (LTL) plays an important role in existing approaches to symbolic

planning and control. It is being used to capturesafety, livenessand reachabilityspecifications

[13]. A formulation of LTL games on graphs is used in [14] to synthesize control strategies

for non-deterministic transition systems. Assuming an uncertain system model, [12] combines

temporal logic control synthesis with receding horizon control concepts. Centralized control

designs for groups of robots tasked with satisfying a LTL-formula specification are found in

[15], under the assumption that the environment in which the robots operate in adheres to certain

conditions. These methods are extended [16] to enable the plan to be revised during execution.

Outside of the hybrid system’s area, adjusting unknown system parameters has traditionally

been done by employing adaptive control or machine learningmethods. Established adaptive

control techniques operate in a purely continuous state regime, and most impose stringent

conditions (e.g., linearity) on the system dynamics; for these reasons they are not covered in

the context of this limited scope review—the interested reader is referred to [17], [18]. On the

other hand, machine learning is arguably a broader field. A significant portion of existing work

is based onreinforcement learning, which has been applied to a variety of problems such as

multi-agent control [19], humanoid robots [20], varying-terrain wheeled robot navigation [21],

November 16, 2018 DRAFT

4

and unmanned aerial vehicle control [22]. The use of grammatical inference as a sub-field of

machine learning in the context of robotics and control is not entirely new; an example is the

application of a grammatical inference machine (GIM) in robotic self-assembly [23].

In the aforementioned formulations there is no consideration for dynamic adversarial environ-

ments. A notable exception is the work of [24], which is developed in parallel to, and in part

independently from, the one in this paper. The idea of combining learning with hybrid system

control synthesis is a natural common theme since both methods originate from the same joint

sponsored research project. Yet, the two approaches are distinct in how they highlight different

aspects of the problem of synthesis in the presence of dynamic uncertainty. In [24], the learning

module generates a model for a stochastic environment in theform of a Markov Decision Process

and control synthesis is performed using model checking tools. In this paper, the environment is

deterministic, but intelligently adversarial and with full knowledge of the system’s capabilities.

In addition, the control synthesis here utilizes tools fromthe theory of games on infinite words.

C. Approach and contributions

This paper introduces a symbolic control synthesis method based on the architecture of

Fig. 1(a), where a GIM is incorporated into planning and control algorithms of a hybrid system

(a robot, in Fig.1(a)) to identify the dynamics of an evolving but rule-governed environment. The

system—its boundaries outlined with a thick line—interacts with its environment through sensors

and actuators. Both the system as well as its environment aredynamical systems (shown as ovals),

assumed to admit discrete abstractions in the form of transition systems (dashed rectangles). The

system is required to meet a certain specification. Given itsspecification (As), an abstraction

of itself (A1), and its hypothesis of the dynamics of its environment (A2), the system devises

a plan and implements it utilizing a finite set of low-level concrete control loops involving

sensory feedback. Using this sensory information, the system refines its discrete environment

model based on a GIM, which is guaranteed to identify the environment dynamics asymptotically.

Figure1(b) gives a general description of the implementation of learning and symbolic planning

at the high-level of the architecture in Fig.1(a). The hypothesis on the environment dynamics is

at the center of the system’s planning algorithm. Through interactions with the environment, the

system observes the discrete evolutionφ(i) of the environment dynamics, and uses the GIM to

construct and update a hypothesized environment modelA
(i)
2 . Based on the environment model,

November 16, 2018 DRAFT

5

robot(s)environment

abstraction

control

planninglearning

transition
system

transition

system environment

actuators

sensors

specification× ×

abstraction

identification

?
As

A1A2

GIM G(i)

σ
Ha

A
(i)
2

(a) An overview of the architecture

Update WS
∗

1

Hypothesis for the game G(0) G(1) G(2) · · · G(i) · · · → G

↑ ↑ ↑ · · · ↑ · · ·

Environment model A
(0)
2 A

(1)
2 A

(2)
2 · · · A

(i)
2 · · · → A2

↑ ↑ ↑ · · · ↑ · · ·

Presentation φ(0) φ(1) φ(2) · · · φ(i) · · ·

(b) Learning and planning with grammatical inference module

at the higher level.

Fig. 1: The architecture of hybrid agentic planning and control with a module for grammatical inference.

the system constructs a hypothesis (model)G(i) capturing how the “game” between itself and the

environment is played, and uses this model to devise a winning strategy (control law)WS
∗
1. As

the environment model converges asymptotically to the truedynamicsA2, the winning strategy

becomes increasingly more effective. In the limit, the system is guaranteed to win the game.

Definitions 7, 8 and Theorem5 establish how a game can be constructed from the system

abstractions of the (hybrid) system dynamics (A1), the environmental dynamics (A2), and the task

specification (As). Theorem4 proves that the hybrid agent can determine whether a winning

strategy exists, and if it does, what it is. Grammatical inference methods yield increasingly

accurate models of environmental dynamics (assuming adequate data presentations and reachable

targets), and permit the system to converge to an accurate model of its environment. Discrete

backward reachability calculations can be executed in a straightforward manner and can allow

the determination of winning strategies (symbolic controllaws), whenever the latter exist.

The contribution of this paper is two-fold: (i) it integrates GIMs into hybrid systems for the

purpose of identifying the discrete dynamics of the environment that evolve and possibly interact

with the system, and (ii) it uses the theory of games on infinite words for symbolic control

synthesis, and discrete abstractions which ensure implementation of the symbolic plans on the

concrete hybrid system. In the paper, both elements are combined, but each element has merit

even in isolation. A hybrid system equipped with GIM is stillcompatible with existing symbolic

November 16, 2018 DRAFT

6

control synthesis methods (including model checking). On the other hand, the abstractions

methods we utilize here—although requiring strong properties on the continuous components

dynamics of the hybrid system—offer discrete abstract models which are weakly simulated by

the concrete systems, irrespectively of whether the latterinclude a GIM or not.

D. Organization

The rest of this paper is organized as follows. SectionII introduces the technical background,

the notation, and the models used. The type of hybrid systemsconsidered and their discrete

abstractions are presented there. In SectionIII , we show how the control problem can be

formulated as a game and employ the concept of the attractor in games for control synthesis.

SectionIV describes first how a GIM can be used to identify asymptotically the dynamics of the

system’s unknown and adversarial environment, and then howthis knowledge can be utilized in

planning and control synthesis. In SectionV, we establish the properties of the relation between

the hybrid system and its discrete abstraction, which ensure that the strategy devised based on

the discrete model is implementable on the concrete system.SectionVI illustrates the whole

approach through an example robotic application. In Section VII we discuss possible extensions

of the proposed methodology and compare our grammatical inference to other learning methods.

II. TECHNICAL PRELIMINARIES

A. Languages and Grammatical Inference

Let Σ denote a fixed, finite alphabet, andΣn, Σ≤n, Σ∗, Σω be sequences over this alphabet of

lengthn, of length less than or equal ton, of any finite length, and of infinite length, respectively.

The empty stringis denotedλ, and thelength of stringw is denoted|w|. A languageL is a

subset ofΣ∗. A string u is a prefix (suffix) of a stringw if and only if there exists a string

v such thatw = uv (w = vu). A prefix (suffix) of lengthk of a stringw is denotedPr=k(w)
(

respectively,Sf=k(w)
)

and a set of prefixes (suffixes) of a stringw of length≤ k is denoted

asPr≤k(w)
(

respectively,Sf≤k(w)
)

. Forw = σ1σ2 · · ·σn ∈ Σ∗, theshuffle idealof w is defined

as SI(w) := Σ∗σ1Σ
∗σ2 · · ·Σ

∗σnΣ
∗. A string u is a factor of string w iff ∃x, y ∈ Σ∗ such that

w = xuy. If in addition |u| = k, thenu is a k-factor of w. If E is a set,2E denotes the set

of all subsets and2E
fin

the set of all finite subsets ofE. A string extension function (SEF) is a

total function,f : Σ∗ → 2E
fin

. The k-factor function fk : Σ∗ → 2Σ
≤k

fin
maps a word to the set of

November 16, 2018 DRAFT

7

k-factors within it. If |w| ≤ k, fk(w) := {w}, otherwisefk(w) := {u | u is a k-factor ofw}.

This function is extended to languages asfk(L) :=
⋃

w∈L fk(w).

A semiautomaton (SA) is a tupleA = 〈Q,Σ, T 〉 whereQ is the set of states,Σ is the set of

alphabet and the transition function isT : Q × Σ → Q. The elements ofΣ are referred to as

actionsand are thought to initiate transitions at a given state according to T . If T (q1, σ) = q2

(also written asq1
σ
→ q2) with σ ∈ Σ, then we say thatA takes actionσ on q1 and moves to

q2. The transition function is expanded recursively in the usual way. Note by definition, these

SAs are deterministic in transition. For a (semi)automatonA, we define the set-valued function

Γ : Q→ 2Σ asΓ(q) := {σ ∈ Σ | T (q, σ) is defined}. A finite state automaton (FSA) is a tuple

A = 〈A, I, F 〉 whereA = 〈Q,Σ, T 〉 is a semiautomaton andI, F ⊆ Q are the initial and final

states, respectively. The language of a FSA isL(A) := {w | T (I, w) ∩ F 6= ∅}. For a regular

languageL, deterministic FSAs recognizingL with the fewest states are calledcanonical.

For concreteness, let grammars of languages be constructedas the set of possible Turing

machinesG. (Other kinds of grammars are used later, but they are translatable into Turing

machines.) The language of a particular grammarG is L(G). A positive presentationφ of a

languageL is a total functionφ : N → L ∪ {#} (# is a ‘pause’1) such that for everyw ∈ L,

there existsn ∈ N such thatφ(n) = w. With a small abuse of notation, a presentationφ can

also be understood as an infinite sequenceφ(1)φ(2) · · · containing every element ofL.

Let φ[i] denote the initial finite sequenceφ(1)φ(2) . . . φ(i). Let Seq denote the set of all

finitely long initial portions of all possible presentations of all possible languages (i.e., allφ[i]

for all i ∈ N and for allL). Thecontentof φ[i], written content(φ[i]), is the set of the elements

of the sequence, less the pauses. Alearner (learning algorithm, or GIM) is a program that takes

the first i elements of a presentation and returns a grammar as output:Gim : Seq → G. The

grammar returned byGim is the learner’shypothesisof the language. A learnerGim identifies in

the limit from positive presentationsof a collection of languagesL if and only if for all L ∈ L,

for all presentationsφ of L, there exists an ∈ N such that for allm ≥ n, Gim(φm) = G and

L(G) = L [25]. A characteristic sampleS for a languageL and a learnerGim is a finite set of

strings belonging toL such that for anyφ[i] such thatcontent(φ[i]) = S, it is the case that for

all j ≥ i, Gim(φ[j]) = G andL(G) = L.

1Pause# can be understood as “non data.”

November 16, 2018 DRAFT

8

Definition 1 (String extension grammar and languages [26]): Let f be a SEF, andE be a

set. A string extension grammarG is a finite subset ofE. The string extension language of

grammarG is Lf(G) = {w ∈ Σ∗ : f(w) ⊆ G}. The class of string extension languagesis

Lf := {Lf(G) : G ∈ 2E
fin
}.

Definition 2 (String Extension Learner [26]): Let f be a SEF. For all positive presentations

φ, defineGimf as:Gimf(φ[i]) = ∅ if i = 0, and

Gimf(φ[i]) :=











Gimf(φ[i− 1]) if φ(i) = #

Gimf(φ[i− 1]) ∪ f(φ[i]) otherwise .
(1)

According to [25], the class of regular languages is not identifiable in the limit from positive

presentation, but string extension languages—which are subclasses of regular languages—are.

Theorem 1 ([26]): LearnerGimf identifiesLf in the limit.

Many attractive properties of string extension learners are established in [27]. A languageL

is Strictly k-Local (SLk) [28], [29] iff there exists a finite setS ⊆ fk(⋊Σ∗⋉), such thatL =

{w ∈ Σ∗ : fk(⋊w⋉) ⊆ S}, where⋊,⋉ are the symbols indicating the beginning and end of

a string, respectively. Obviously, Strictlyk-Local languages are string extension languages. The

following theorem follows immediately.

Theorem 2 ([30]): For everyk, Strictly k-Local languages are identifiable in the limit from

positive presentations.

Theorem 3 (SL-Hierarchy [31]): SL1 ⊂ SL2 ⊂ . . . ⊂ SLi ⊂ SLi+1 ⊂ . . .SL.

The implication of Theorem3 is that any Strictlyk-Local language can be described using a

SLj grammar, wherej ≥ k. SectionIV illustrates this argument with the help of an example.

B. Hybrid Systems and Abstractions

A hybrid systemH is defined as a tuple of objects (for a precise definition, see [32]) that

includes the domains of continuous and discrete variables,the subsets of initial states in those

domains, the description of the family of continuous dynamics parametrized by the discrete

states, and rules for resetting continuous and discrete states and switching between the members

of the family of continuous dynamics.

In this paper, we restrict our attention to a specific class ofhybrid systems where the continuous

dynamics have specific (set) attractors [1]. The shape and location of these attractors are assumed

November 16, 2018 DRAFT

9

dependent on a finite set of continuous parameters that are selected as part of closing the outer

control loop. Judicious selection of the parameters activates a specific sequence of continuous

and discrete transitions, which in turn steers the hybrid systemH from a given initial state to a

final desired state. This class admits purely discrete (predicate-based) abstractions. We call these

particular types of hybrid automatahybrid agents, to distinguish them from general cases.

Definition 3 (Hybrid Agent):The hybrid agent is a tuple:

Ha = 〈Z,Σa, ι,P, πi,AP, fσ,PRE,POST, s, Ta〉.

• Z = X × L is a set ofcomposite(continuous and Boolean) states, whereX ⊂ R
n is a

compact set, andL ⊆ {0, 1}r wherer is the number of Boolean states.

• Σa is a set of finite discrete states (control modes).

• ι : Σa → {1, . . . , k} is a function, indexing the set of symbols inΣa.

• P ⊆ R
m is a (column) vector of continuous parameters.

• πi : Rm → R
mi , for i = 1, . . . , k is a finite set of canonical projections, such thatp =

(π1(p)
T, . . . , πk(p)

T)T.

• AP is a set of (logical) atomic propositions overZ × P, denoted{αh(z, p)}
|AP|
i=1 . A set

of well-formed formulaeWFF [33] is defined inductively as follows: (a) ifα ∈ AP, then

α ∈ WFF; (b) if α1 andα2 are inWFF, then so are¬α1 andα1 ∧ α2.

• fσ: Z ×P → TX is a finite set of families of vector fields parametrized byp ∈ P, ℓ ∈ L

andσ ∈ Σ, with respect to whichX is positively invariant. These vector fields have limit

sets2 parametrized byp andσ, denotedL+(p, σ).

• PRE: Σa →WFF maps a discrete state to a formula that needs to be satisfied wheneverHa

switches to discrete stateσ from any other state. When composite statez and parameter

vectorp satisfy this formula we write(z, p) |= PRE(σ).

• POST: Σa →WFF maps a discrete location to a formula that is satisfied when the trajectories

of fσ reach anǫ-neighborhood3 of their limit set. When composite statez and parameter

vectorp satisfy this formula we write(z, p) |= POST(σ).

• s: Z × P → 2P is the reset map for the parameters. It assigns to each pair ofcomposite

state and parameter a subset ofP which contains all values to which the current value of

2The compactness and invariance ofX guarantee the existence of attractive, compact and invariant limit sets [34].

3Written L+(p, σ)⊕ Bε, where⊕ denotes the Minkovski (set) sum andBε is the open ball of radiusε.

November 16, 2018 DRAFT

10

p ∈ P can be reassigned to.

• Ta: Z × P × Σa → Z × P × Σa is the discrete state transition map, according to which

(z, p, σ)→ (z, p′, σ′) iff (z, p) |= POST(σ) and (z, p′) |= PRE(σ′) with p′ ∈ s(z, p).

The configurationof Ha is denotedh := [z, p, σ], and for each discrete state, we define the

following subsets ofZ × P: ←−σ := {(z, p) : (z, p) |= PRE(σ)} and−→σ := {(z, p) : (z, p) |=

POST(σ)}. A transition fromσi to σi+1 (if any) is forced and occurs at the time instance when

the trajectory offσi
(x, ℓ, p) hits a nonempty intersection of aε-neighborhood of its limit set

and the region of attraction ofσi+1 parametrized byp′ (p′ not necessarily equalsp.) After a

transition(z, p, σ)→ (z, p′, σ′) occurs, the composite statez evolvesinto composite statez′ for

which (z′, p′) |= POST(σ′). The (non-instantaneous) evolution is denotedz
σ′[p′]
→֒ z′.

We will use a form of predicate abstraction to obtain a coarse, discrete representation ofHa.

Our abstraction map is denotedVM : Z ×P → {0, 1}|AP| and referred to as thevaluation map:

Definition 4 (Valuation map):The valuation mapVM : Z × P → V ⊆ {1, 0}|AP| is a function

that maps pairs of composite states and parameters, to a binary vectorv ∈ V of dimension|AP|.

The element at positioni in v, denotedv[i], is 1 or 0 if αi ∈ AP is true or false, respectively,

for a particular pair(z, p). We writeαi(z, p) = v[i], for v ∈ V.

The purely discrete model that we use as an abstraction ofHa, referred to as theinduced

transition systemis defined in terms of the valuation map as follows.

Definition 5 (Induced transition system):A hybrid agentHa induces a semiautomatonA(Ha) =

〈Q,Σ, T 〉 in which (i) Q = VM(Z × P) is a finite set of states; (ii)Σ = Σa ∪ {τ1, . . . , τm},

m ≤ |Q × Q| is a finite set of labels; (iii)T ⊆ Q × Σ × Q is a transition relation with

the following semantics:q
σ
→ q′ ∈ T iff either(1) σ ∈ Σa and (∃p) (∀z ∈ {z | VM(z, p) = q})

(∀z′ ∈ {z′ | (z′, p) |= POST(σ)}) [(z, p) |= PRE(σ), VM(z′, p) = q′], or (2) σ ∈ Σ \ Σa and (∃p)

(∀z ∈ {z | VM(z, p) = q}) (∃p′ ∈ s(z, p), σ′ ∈ Σa) [VM(z, p′) = q′, (z, p′) |= PRE(σ′)].

It will be shown in SectionV thatHa andA(Ha) are linked through an equivalence relation

– observable (weakly) simulationrelation. Broadly speaking, the sequences (strings inΣa
∗) of

discrete states whichHa visits starting from[z, p, σ] can be matched by a wordw such that

T
(

VM(z, p), w
)

is defined inA(Ha), and vice versa, modulo symbols inΣ\Σa that are thought

of assilent. When a SA moves from stateq to stateq′ through a series of consecutive transitions

among which only one is labeled withσ ∈ Σa and all others inΣ \Σa, then we say that the SA

takes acompositetransition fromq to q′, labeled withσ, and denotedq
σ
❀ q′.

November 16, 2018 DRAFT

11

Definition 6 (Weak (observable) simulation [35]): Consider two (labeled) semiautomata over

the same input alphabetΣ, A1 = 〈Q1,Σ,❀1〉 andA2 = 〈Q2,Σ,❀2〉, and letΣǫ ⊂ Σ be a set

of labels associated with silent transitions. An ordered binary relationR on Q1 ×Q2 is a weak

(observable) simulationif: (i) R is total, i.e., for anyq1 ∈ Q1 there existsq2 ∈ Q2 such that

(q1, q2) ∈ R, and (ii) for every ordered pair(q1, q2) ∈ R for which there existsq′1 such that

q1
σ
❀1 q

′
1, then∃ (q′1, q

′
2) ∈ R : q2

σ
❀2 q

′
2. ThenA2 weakly simulatesA1 and we writeA2 & A1.

Task specifications for hybrid systems (and transition systems, by extension) may be translated

to a Kripke structure [36] (see [9] for examples), which is basically a SA with marked initial

states, equipped with a labeling function that maps a state into a set of logic propositions that

are true at that state. In this paper we also specify final states, and allow the labeling function

to follow naturally from the semantics of the valuation map.We thus obtain a FSAAs =

〈Qs,Σs, Ts, Is, Fs〉, whereIs andFs denote the subsets of initial and final states, respectively.

Given the dynamic environment, a system
(

Ha or A(Ha)
)

satisfiesthe specificationAs if the

interacting behavior of the system and the environment forms a word that is accepted inAs.

C. Games on Semiautomata

Here, we follow for the most part the notation and terminology of [37, Chapter 4]. Let

A1 = 〈Q1,Σ1, T1〉 represents the dynamics of player 1, andA2 = 〈Q2,Σ2, T2〉 those of player 2.

We define the setIi ⊆ Qi as the set oflegitimate initial statesof Ai, for i = 1, 2 respectively,

but we do not specify final states in these two SA. The languageadmissiblein Ai is L(Ai) =
⋃

q0∈Ii

⋃

q∈Qi
{w | Ti(q0, w) = q}, which essentially includes all possible sequences of actions

that can be taken inAi. Let Λ = Σ1 ∪ Σ2. Define an (infinite)game[37] G(Φ) on Λ as a set

Φ ⊂ Λω of infinite strings consisted of symbols from the two alphabets Σ1 and Σ2 taken in

turns. A play is an infinite stringw = σ1σ2 · · · ∈ Λω. Players take turns with player 1 playing

σ1 first by default. In this paper we assume that players can giveup their turn and “play” a

generic (silent) symbolǫ, i.e. ǫ ∈ Σi and Ti(q, ǫ) = q, ∀ q ∈ Qi. A pair of symbolsσ2i−1σ2i

for i = 1, . . . denotes a round, with any one of the two symbols being possibly equal toǫ. We

say that player 1 wins the game ifw ∈ Φ; if not, then player 2 wins. Astrategyfor player

i in gameG(Φ) is a functionSi : Λ∗ → Σi. Player 1 (2)follows strategyS1 (respectively,

S2) in a playw = σ1σ2 · · · if for all n ≥ 1, σ2n−1 = S1(σ1σ2 · · ·σ2n−2)
(

respectively,σ2n =

S2(σ1σ2 · · ·σ2n−1)
)

. A strategy for player 1 is awinning strategyWS1 if all stringsw = σ1σ2 · · ·

November 16, 2018 DRAFT

12

that satisfyσ2n−1 = WS1(σ1σ2 · · ·σ2n−2), ∀n ≥ 1, belong inΦ. Winning strategies for player 2

are defined similarly. If one of the players has a winning strategy, then the game isdetermined.

III. GAME THEORETIC APPROACH TOPLANNING

A. Constructing the game

Consider a hybrid agent having to satisfy a task specification, encoded in a FSAAs. Assume

that this agent is operating in an unknown environment. In the worst case, this environment

is controlled by an intelligent adversary who has full knowledge of the agent’s capabilities.

The adversary is trying to prevent the agent from achieving its objective. The behavior of the

environment is still rule-based, i.e. subject to some givendynamics, although this dynamics is

initially unknown to the agent.

Assume that the agent has been abstracted to a SAA1 (player 1) and the dynamics of the

environment is similarly expressed in another SAA2 (player 2). Without loss of generality, we

assume the alphabets ofA1 andA2 are disjoint, i.e.Σ1 6= Σ2. In this game, the agent is not

allowed to give up turns (ǫ /∈ Σ1) but the adversary that controls the environment can do so

(ǫ ∈ Σ2). For two-player turn-based games, the actions of one player may influence the options

of the other by forbidding the latter to initiate certain transitions. To capture this interaction

mechanism we define theinteraction functionsUi : Qi ×Qj → 2Σj , (i, j) ∈ {(1, 2), (2, 1)}. An

interaction functionUi maps a given pair of states(qi, qj) of playersi andj, to the set of actions

player j is not allowed to initiate at stateqj .

We now define a SA that abstractly captures the dynamics of interaction between the two

players, by means of a new operation on SA which we call theturn-based product. An intersec-

tion of the turn-based product with the task specification yields the representation of the game

and further allows us to compute the strategy for the agent.

Definition 7 (Turn-based product):Given two SAs for playersA1 = 〈Q1,Σ1, T1〉 andA2 =

〈Q2,Σ2, T2〉 with the sets of legitimate initial statesI1, I2 and interacting functionsU1, U2, their

turn-based productP = 〈Qp,Σ1 ∪ Σ2, Tp〉 is a SA denotedA1 ◦ A2, and is defined as follows:

• Qp = Q1×Q2×{0, 1}, where the last component is a Boolean variablec ∈ {0, 1} denoting

who’s turn it is to play:c = 1 for player 1,c = 0 for player 2.

• Tp

(

(q1, q2, c), σ
)

= (q′1, q2, 0) if c = 1, q′1 = T1(q1, σ), with σ /∈ U2(q2, q1) andTp

(

(q1, q2, c), σ
)

= (q1, q
′
2, 1) if c = 0, q′2 = T2(q2, σ), with σ /∈ U1(q1, q2).

November 16, 2018 DRAFT

13

Assuming player 1 is the first one to make a move, the set of legitimate initial states inP is I1×

I2×{1} and the languageadmissiblein P is L(P) =
⋃

q0∈I1×I2×{1}

⋃

q∈Qp
{w | Tp(q0, w) = q} ,

the set of all possible plays between two players. Note that if one includes the silent actionǫ in

Σi for i = 1, 2, the players may not necessarily play in turns—as in the specific case of agent-

environment interaction considered here. The product operation is still applicable as defined.

The turn-based productP gives snapshots of different stages in a game. It does not capture

any of the game history that resulted in this stage. Often, task specifications encoded inAs

involve a history of actions, and thus the winning conditions for player 1 cannot be encoded in

P by simply marking some states as final. We overcome the lack ofmemory inP by taking its

product withAs. Taking the product is suggested by the fact that player 1 canwin the game

(i.e. agent can satisfy the specification) only ifL(As) ∩ L(P) 6= ∅. The technical complication

is that the two terms in this product are heterogeneous: one is a SA and the other is a FSA. We

resolve this by transforming the SA into a FSA and applying the standard product operation;

and the result is what we call thegame automaton.

Definition 8 (Game automaton):The game automaton is a FSA defined asG = P × As =

〈Q,Σ, T, Q0, F 〉, whereAs = 〈Qs,Σ, Ts, Is, Fs〉 is a FSA encoding the winning conditions for

player 1, andP is a FSA obtained from the turn-based productP = A1◦A2 by defining the set of

initial states ofP as the legitimate initial statesI1×I2×{1}, and marking all other states as final.

The set of initial states forG is defined asQ0 = {(q1, q2, 1, q0s) | q1 ∈ I1, q2 ∈ I2, q0s ∈ Is}.

The set of final states forG is given byF = {(q1, q2, 0, qs) | qs ∈ Fs}.

It follows (from the fact that the language ofG is regular) that the game defined byG is a

reachability game [38], and therefore it is determined. Note that the final states of G are exactly

those in which player 1 wins the game. On FSAG, we define theattractor of F , denoted

Attr(F), which is the largest set of statesW ⊇ F in G from where player 1 can force the play

into F . It is defined recursively as follows. LetW0 = F and set

Wi+1 := Wi ∪ {q ∈ Q | q = (q1, q2, 1, qs), and∃σ ∈ Γ(q) : T (q, σ) ∈ Wi}

∪ {q ∈ Q | q = (q1, q2, 0, qs), and∀σ ∈ Γ(q) : T (q, σ) ∈ Wi} . (2)

The functionρ : Q→ N ; ρ(q) 7→ min{i ≥ 0 | q ∈ Wi} is called therank functionof the game.

SinceG is finite, there exists the smallestm ∈ N such thatWm+1 = Wm. ThenAttr(F) = Wm.

Moreover, becauseG is determined, the complement ofAttr(F) in Q forms atrap for player 1;

November 16, 2018 DRAFT

14

it contains all the states at which player 2 can prevent player 1 from winning the game.Attr(F)

can be computed in timeO(n1 + n2) wheren1 = |Q| andn2 is the number of transitions inG.

B. Computing a winning strategy

The following statement is straightforward.

Theorem 4:Player 1 has a winning strategy iffAttr(F) ∩Q0 6= ∅.

Proof: If Attr(F) ∩ Q0 6= ∅, the winning strategy of player 1 can be defined as a map

WS1 : Q→ 2Σ1, so that forq = (q1, q2, 1, qs), the image of this map isWS1(q) = {σ | T (q, σ) ∈

Attr(F)}. If the game starts atq0 ∈ Attr(F) ∩ Q0, by exercisingWS1, player 1 ensures that

subsequent states are within its attractor.

We refer toAttr(F) ∩Q0 as the set ofwinning initial statesof G. Notice that strategyWS1

keeps player 1 in its attractor, ensuring that it can win the game, but does not necessarily guide

it into winning. To compute anoptimal winning strategy—one that wins the game for player

1 in the least number of turns—we partitionWm into a set of subsetsVi, i = 0, . . . , m in the

following way: let V0 = W0 = F and setVi := Wi \Wi−1, for all i ∈ {1, . . . , m}. The setsVis

partition the attractor into layers, according to the rank of the states that are included. That is,

∀q ∈ Vi, ρ(q) = i and thus the{Vi}
m
i=1 partition is the one induced by the ranking function. We

can then prove the following sequence of statements.

Once the game is inAttr(F), all the actions of player 2, and some of player 1 strictly decrease

the rank function:

Lemma 1:For eachq ∈ Vi+1, i = 0, . . . , m − 1, if c = 1, then∃ σ ∈ Σ1 ∩ Γ(q) such that

T (q, σ) ∈ Attr(F), it is ρ
(

T (q, σ)
)

= i. If c = 0, then∀σ ∈ Σ2∩Γ(q), such thatρ
(

T (q, σ)
)

= i.

Proof: Let q ∈ Vi+1. According to (2), either (a)c = 1 and soT (q, σ) ∈ Wi for some

σ ∈ Γ(q), or (b) c = 0 and T (q, σ) ∈ Wi, ∀ σ ∈ Γ(q) . We show the argument for case (a)

whenc = 1 by contradiction: suppose there existsk < i, so thatT (q, σ) ∈ Vk—by construction

(2) we already havek ≤ i. Then according to (2), q belongs toVk+1. But since the setsVi

partitionAttr(F), Vk+1 andVi+1 are disjoint. Thereforeq cannot be inVi+1 as assumed in the

statement of the Lemma. Thus, whenc = 1, all actions that enable the player to remain in its

attractor in fact move it only one (rank function value) stepcloser to the winning set. A similar

contradiction argument applies to case (b) whenc = 0: Assume that allσ ∈ Σ2 ∩ Γ(q) yield

November 16, 2018 DRAFT

15

T (q, σ) ∈ Vj for somej < i. Let k = maxq′∈T (q,σ) ρ(q′). Then i > k ≥ j, which means that

k + 1 < i+ 1. In the same way we arrive atq /∈ Vi+1 which is a contradiction.

Informally, actions of player 1 fromVi+1 cannot take the game any closer toF thanVi. This

implies that the rank of a state expresses the total number ofturns in which player 1 can win

the game from that state.

Proposition 1: For eachq ∈ Vi, there exists at least one wordw ∈ L(G), with |w| = i such

that T (q, w) ∈ F .

Proof: We use induction, and we first prove the statement fori = 1. For eachq =

(q1, q2, 1, qs) ∈ V1, Lemma1 suggests that at least one action of player 1 which keeps it in

the attractor, actually sends it toV0 = F . So for i = 1 the plays in which player 1 wins

have length one. Now suppose the statement holds fori = n; we will show that also holds for

i = n + 1. According to Lemma1, for eachq ∈ Vn+1, ∀ σ ∈ Σ2 ∩ Γ(q) (player 2 taking its

best action) or for at least oneσ ∈ Σ1 ∩ Γ(q) (player 1 taking its best action) we will have

T (q, σ) ∈ Vn. In other words, if both players play their best, the rank of the subsequent state in

the game automaton will ben. Inductively, we conclude the existence of a path of lengthn in

G starting atq ∈ Vn and ending inq′ ∈ V0 = F .

Proposition 2: Supposeq0 = (q1, q2, 1, qs0) and thatρ(q0) = k ≤ m. Then player 1 can win

the game in at mostk rounds following the strategyWS
∗
1, defined as

WS
∗
1(q) = {σ | T (q, σ) ∈ Vi−1, q ∈ Vi, i ≥ 1} . (3)

Proof: Given a stateq = (q1, q2, 1, qs) ∈ Vi, WS
∗
1 allows player 1 to force the game

automaton to reach a state inVi−1 by picking actionσ∗ such thatT (q, σ∗) = q′ whereq′ ∈ Vi−1

(Lemma1). At q′, c = 0. Any action of player 2 takes the game automaton to a stateq′′ ∈ Vj

for j ≤ i − 2. In fact, the best player 2 can do is to delay its defeat by selecting an actionσ

such thatj = i− 2 (Lemma1). An inductive argument can now be used to complete the proof.

IV. L EARNING THROUGH GRAMMATICAL INFERENCE

In SectionIII it was shown that the agent can accomplish its task iff (a) it has full knowledge

of the environment, and (b) the game starts at the winning initial state inAttr(F) ∩ Q0. The

problem to be answered in this section is if the environment is (partially) unknown but rule-

governed, how the agent plans its actions to accomplish its task. By assuming the language of

November 16, 2018 DRAFT

16

the environment islearnableby some GIM, we employ a module of grammatical inference to

solve this problem.

A. Overview

The theory of mindof an agent refers to the ability of the agent to infer the behavior of its

adversary and further its own perception of model of the game[39], [40]. In the context of

this paper, the agent initially has no prior knowledge of thecapabilities of its adversary and

plans a strategy based on its own hypothesis for the adversary. Therefore, although the agent

makes moves which keep it inside thehypothesizedattractor, in reality these moves might take

it outside thetrue attractor. Once the agent has departed its true attractor, then it is bound to fail

since the adversary knows the true nature of the game and can always prevent the agent from

fulfilling its task.

An agent equipped with a GIM is able to construct an increasingly more accurate model of

the behavior of its adversary through consequent games (Fig. 1(b)). The expected result is that

as the agent refines the model it has for its environment and updates its “theory of mind,” its

planning efficacy increases. We expect that after a sufficient number of games, the agent should

be able to devise strategies that enable it to fulfill its taskirrespective of how the adversary

proceeds. This section presents the algorithms for constructing and updating this model.

B. Assumptions and Scope

In the agent-environment game, the behavior of the unknown environment becomes a positive

presentation for the learner. The hypothesis obtained by the learner is used for the agent to

recompute the game automaton and the attractor as describedin Section III . It is therefore

guaranteed that the agent’s hypothesis of the unknown environment will eventually converge to

the true abstract model of the environment, provided that (i) the true model lies within the class of

models inferable by the learner from a positive presentation, and (ii) the unknown environment’s

behavior suffices for a correct inference to be made (for example if a characteristic sample for

the target language is observed).

We make the following assumption on the structure of the unknown discrete dynamics of the

adversarial environment:

November 16, 2018 DRAFT

17

Assumption 1:The language admissible in the SAA2 of the adversarial environment (player

2) is identifiable in the limit from positive presentation.

Although the results we present extend to general classes ofsystems generating string extension

languages, for clarity of presentation we will focus the remaining discussion on a particular

subclass of string extension languages, namelyStrictly k-Local languages (SLk) [29], which has

been defined in SectionII-A .

C. Identifying the Class of the Adversary’s Behavior

As suggested by Theorem2, in order to identify the behavior of the adversary, which is

expressed in form of a language, the agent must know whether this language is SL and if it is,

for whichk in SL hierarchy. We assume the information is provided to theagent before the game

starts. We employ the algorithm in [41] adapted for SA to check whether a given SA admits a

SL language.4 In what follows we provide a method for determining the natural numberk:

For somek > 0, consider a (non)-canonical FSA that acceptsΣ∗: Dk = 〈QD,Σ, TD, {λ}, FD〉,

where (i)QD = Pr
≤k−1(Σ∗); (ii) TD(u, a) = Sf

=k−1(ua) iff |ua| ≥ k − 1 and ua otherwise;

(iii) λ is the initial state, and (iv)FD = QD is the set of final states (all states are final).

We refer toDk as the SLk-FSA for Σ∗. It is shown [42] that for a given a SLk language

with grammarG, a (non)-canonical FSA acceptingL(G) can be obtained by removing some

transitions and the finality of some of the states5 in Dk. We call the FSA of a SLk language

L(G) obtained in this way, the SLk-FSA of L(G). Figure2(a) shows a SL3-FSA for Σ∗, with

Σ = {a, b}. Figure2(b) shows another SL3 grammar that generates the language given by the

string extension grammarG = {⋊aa,⋊ab, aab, aaa, aba, ba⋉}. For example,aaba ∈ L(G)

becausef3(⋊aaba⋉) = {⋊aa, aab, aba, ba⋉} ⊂ G. Yet aababa /∈ L(G) as f3(⋊aababa⋉) =

{⋊aa, aab, aba, bab, ba⋉} * G, in fact the3-factor bab /∈ G.

4This algorithm works with the graph representation of a FSA and therefore it is not necessary to designate the initial states.

5Removing finality of a stateq in FSA A means to removeq from the set of final states inA.

November 16, 2018 DRAFT

18

λ

b

a

aa

bb

ab

ba

b

a

a

b

b

a

a

b

ab

a

b

(a) The (non)-canonicalD3

λ

a

aa

ab

baba

a

a

b

a

a

b

(b) SL3-FSA for L(G)

Fig. 2: The (non)-canonical FSAD3 acceptingΣ∗ for Σ = {a, b} (left) and the SL3-FSA obtained forL(G), where

G = {⋊aa,⋊ab, aab, aaa, aba, ba⋉}, after removing transitions and the finality of some states (right).

In a FSA, we sayq ∈ Q is at leveli iff i = min{|w| | w ∈ Σ∗, T (q0, w) = q}, whereq0 is an

initial state. The functionγ : Q→ N maps a stateq to its level. Now we can state the following.

Lemma 2: If a canonical FSAC = 〈Qc,Σ, Tc, q0c, Fc〉 accepts a SL languageL for somek

wherek is the smallest number such thatL(C) ∈ SLk, thenk ≤ maxq∈Fc
γ(q) + 1.

Proof: Let G be a SLk grammar that generatesL. Then we can generate a (non)-canonical

FSA B = 〈Qb,Σ, Tb, {λ}, Fb〉 by removing transitions and finality of nodes fromDk. Let q∗ =

argmaxq∈Fc
γ(q) be a state inC furthest from the initial state, letn = γ(q∗) be its level, and

w = w1w2 · · ·wn be a word that bringsC to stateq∗ = T (q0c, w). FSAsB and C accept the

same languages, sow ∈ L(C) iff w ∈ L(B). In B, however, we can compute ak, because

Tb(λ, w) = Sf
=k−1(w) ∈ Fb with k − 1 ≤ n, i.e. k ≤ n+ 1.

Though we can only obtain an upper boundkmax = maxq∈Fc
γ(q)+1 on the smallestk (in the

worst case this bound is|Qc|), the hierarchy of SL language class given by Theorem3 guarantees

that this upper boundkmax is sufficient for us to obtain a correct SLkmax
grammar that generates

the exact language presented to the learner, irrespectively if this language can also be generated

by a SLk grammar for somek ≤ kmax. For example, for the language accepted by the FSA in

Fig. 2(b), we can also obtain a SL4 grammarG′ = {⋊aaa,⋊aba,⋊aab, aaba, aaab, aba⋉} and

it can be verified thatL(G′) = L(G).

D. Learning the Adversary’s Dynamics

Before the game starts, player 1 is informed that the behavior of its adversary is a SLk

language for some knownk and the adversary can always give up a turn, i.e.ǫ ∈ Σ2. With this

knowledge, player 1 builds a SLk-FSA for {Σ2 \ {ǫ}}
∗. Then, by unmarking initial and final

November 16, 2018 DRAFT

19

states and adding a self-loop labeledǫ at each state, it obtains an initial model of its adversary

A
(0)
2 = 〈Q2,Σ2, T2〉.

In the course of game, player 1 (agent) records the continuous sequence of actions of player 2

(the environment). This amounts to a presentationφ of the form:φ(0) = λ, φ(i+1) = φ(i)σ, i ≥

1, i ∈ N , for someσ ∈ Γ
(

T (q0, w)
)

∩ Σ2 6= ∅ whereq0 ∈ Q0 andw ⇂Σ2
= φ(i).6 The learning

algorithm is applied by player 1 to generate and refine the hypothesized model of its adversary

from the presentationφ.

Since a FSA for any SLk grammar can be generated by removing edges and finality of nodes

in the SLk-FSA for Σ∗, then the SA for player 2 can be obtained by just removing edges in

A
(0)
2 . Due to this special property, we can use an instrument with which the agent encodes

new knowledge into the hypothesized model for the adversary, namely, aswitching functionsw,

which operates on a SA (or FSA) and either blocks or allows certain transitions to take place:

sw : Q2 × Σ2 → {0, 1}, so that forq ∈ Q2, σ ∈ Γ(q) only if sw(q, σ) = 1. Consequently, at

round i + 1, the incorporation of new knowledge forA2 obtained at roundi redefinessw. We

assume a naive agent that starts its interaction with the environment believing that the latter is

static (has no dynamics). That hypothesis corresponds to having sw(0)(q, σ) = 0, ∀σ ∈ Σ2 \ {ǫ}

and sw(0)(q, ǫ) = 1, ∀q ∈ Q2.

Note thatφ(i) denotes the presentation up to roundi. The initialization of the game can be

considered as a single round played blindly by both players (without any strategy). Hence, if the

game starts with
(

(q1, q2, 1), q0s
)

, it is equivalent to haveφ(1) = σ, for whichT2(λ, σ) = q2. Let

sw(i) denote the refinement ofsw made at roundi, suppose that at roundi + 1, the adversary

plays σ′. This suggestsφ(i + 1) = φ(i)σ′. Supposeq2 = T2(λ, φ(i)), then for all q ∈ Q2 and

σ ∈ Σ2, sw(i+1) is defined by

sw(i+1)(q, σ) =











sw(i)(q, σ) if (q, σ) 6= (q2, σ
′)

1 if (q, σ) = (q2, σ
′)

(4)

meaning that the transition fromq2 on input σ′ in A2 is now enabled. With a small abuse of

notation, we denote the pair
(

A
(0)
2 , sw(i)

)

= A
(i)
2 , read as the SAA(0)

2 with switching function

sw(i). Pictorially,A(i)
2 is the SA obtained fromA(0)

2 by trimming the set of transitions which are

switched off (sw(·) = 0).

6This is a map⇂Σ2
: Σ∗ → Σ∗

2. The imagew ⇂Σ2
is the string after removing all symbols inw which are not inΣ2.

November 16, 2018 DRAFT

20

Correspondingly, the game automaton in the initial theory of mind of the agent is constructed

asG(0) = 〈P(0)×As〉 whereP(0) is the FSA obtained byP (0) = A1◦A
(0)
2 after settingI1×I2×{1}

as the set of legitimate initial states, whereI2 = {q | T2(λ, σ) = q, σ ∈ Σ2 \ {ǫ}}, and all other

states inP (0) as final. By the construction of game, the switching functionassociated withA(i)
2

can be extended naturally toG(i) =
(

G(0), sw(i)
)

by:

∀q = (q1, q2, 0, qs), σ ∈ Σ2, sw(i)(q, σ) = 1 (or 0) in G(i) iff sw(i)(q2, σ) = 1 (or 0) in A
(i)
2 .

(5)

With the extension of switching function, one is able to update the game automaton without

computinganyproduct during runtime. This is because the structure of thegame has essentially

been pre-compiled. This results in significant computational savings during runtime, depending

on the size ofA(0)
2 .

This switching mechanism along with the extension fromA(i)
2 to G(i) can be applied to other

classes of string extension languages, in particular any class of languages describable with FSAs

obtainable by removing edges and finality of states from somedeterministic FSA acceptingΣ∗.

E. Symbolic Planning and Control

With the theory of mind as developed in roundi, and with the game automaton at stateq,

the agent computes an optimal winning strategyWS
∗
1 based on (3), by settingW0 = V0 = F

and iteratively evaluating (2), where sw(i) defined inG(i) has to be taken account of: for all

(q, σ) ∈ Q × Σ, if sw(i)(q, σ) = 0, then σ /∈ Γ(q). The computation terminates when the

following condition is satisfied:

∃m ∈ N : q ∈ Wm ∨ q /∈ Wm = Wm+1 . (6)

Whenq ∈ Wm, WS
∗
1 can be computed atq. Then based on Proposition2, the strategy ensures

victory in at mostm turns. The agent implements this strategy as long as its theory of mind

for the adversary remains valid, in other words, no new transition has been switched on. In the

absence of new information, the plan computed is optimal andthere is no need for adjustment. If

in the course of the game an action of the adversary, which thecurrent model cannot predict, is

observed, then that model is refined as described in SectionIV-D. Once the new game automaton

is available, (2)-(3) are recomputed, and (6) is satisfied.

November 16, 2018 DRAFT

21

If insteadq /∈ Wm = Wm+1, then the agent thinks thatq ∈ Attr(F)c: the agent is in the trap

of its adversary. If the adversary plays its best, the game islost. It should be noted that this

attractor is computed on the hypothesized game and may not bethe true attractor. Assuming that

the adversary will indeed play optimally, the agent loses its confidence in winning and resigns. In

our implementation, when the agent resigns the game is restarted at a random initial stateq0 ∈ Q0,

but with the agentretaining the knowledge it has previously obtained about its adversary. The

guaranteed asymptotic convergence of a string extension learner ensures that in each subsequent

game, the agent increases its chances of winning when initialized at configurations from which

winning strategies exist. The adversary can always choose to prevent the agent from learning by

not providing new information, but by doing so it compromises its own strategy.

The following section illustrates how the methodology outlined can be implemented on a

simple case study, and demonstrates the effectiveness of the combination of planning with string

extension learning. As it turns out, the identification of the adversary’s dynamics is quite efficient

in relation to the size ofA2.

V. REFINEMENT ON HYBRID DYNAMICS

SectionIV established a methodology based on which the agent can concurrently learn and

(re)plan an optimal strategy for achieving its objective, in a partially known and adversarial

environment. This section addresses the problem of implementing the optimal strategy on the

concrete dynamics of the hybrid agentHa as given in Definition3.

Proposition 3: Every transition labeled withτ ∈ Σ \ Σa must be followed by a transition

labeled with someσ ∈ Σa, i.e., every silent transition inA(Ha) must be followed by an

observable one.

Proof: Assume, without loss of generality that theτ transition appears somewhere between

two observable transitionsσ1, σ2 ∈ Σa. We will show thatτ is the only silent transition that

can “fit” betweenσ1 and σ2, in other words we can only haveq
σ1→ q1

τ
→ q2

σ2→ q′ for some

q, q1, q2, and q′ ∈ Q. For that, note that by definition,q must be such that for all(z, p)

giving VM(z, p) = q, (z, p) |= PRE(σ1); similarly q1 must be such that for all(z′, p) giving

VM(z′, p) = q1 we should have(z′, p) |= POST(σ1). Now suppose that there is another silent

transition τ ′, in addition to τ betweenσ1 and σ2 and for the sake of argument assume that

it comes right afterτ : q
σ1→ q1

τ
→ q′′

τ ′

→ q′′′ · · · q2
σ2→ q′. With the τ transition followingσ1

November 16, 2018 DRAFT

22

we have by definition that there exists ap′ such that once theτ transition is completed it is

(z′, p′) |= PRE(σ′) for someσ′ ∈ Σa. Since(z′, p) |= POST(σ1) and(z′, p′) |= PRE(σ′), we have

by Definition3 thatHa makes a transition from(z′, p′, σ1) to (z′, p′, σ′), and then the continuous

component dynamicsfσ′ is activated yieldingz′
σ′[p′]
→֒ z′′ for some(z′′, p′) |= POST(σ′). This

time, with (z′, p′) |= PRE(σ′) and (z′′, p′) |= POST(σ′), it follows that there is aσ′ transition

in A(Ha) taking q′′
σ′

→ q′, and σ′ = σ2 because there cannot be more than two observable

transitions betweenq and q′ by assumption. Therefore,τ is the only silent transition that must

have occurred whileA(Ha) moved fromq to q′.

Due to Proposition3, without loss of generality we will assume that a composite transition

consists of a silent transition followed by an observable transition,q
σ
❀ q′ ⇐⇒ q

τ
→ q′′

σ
→ q′.

Theorem 5:LetΣǫ = Σ\Σa, the hybrid agentHa weakly simulates its induced semiautomaton

A(Ha) (Ha & A(Ha)) in the sense that there exists an ordered total binary relation R such that

whenever(q, z) ∈ R andq
σ
❀ q′ for someq′ ∈ Q, then∃z′ ∈ Z : z

σ[p]
→֒ z′ such that(q′, z′) ∈ R.

Proof: If (q, z) ∈ R, then there existsp0 ∈ P such thatVM(z, p0) = q. In general,p0 6= p.

Using the convention adopted above for the composite transition, we write q
σ
❀ q′ ⇐⇒ q

τ
→

q′′
σ
→ q′ with σ ∈ Σa and τ ∈ Σ \ Σa. The transitionq

τ
→ q′′, by definition, implies that for

all z such thatVM(z, p0) = q, there existsp ∈ s(z, p0) and σ′ ∈ Σa such thatVM(z, p) = q′′

with (z, p) |= PRE(σ′). With q′′
σ
→ q′ assumed, we have by definition that for allz such that

VM(z, p) = q′′ it should beVM(z′, p) = q′ for all z′ satisfying(z′, p) |= POST(σ). (Note that this

is the samep ∈ s(z, p0) that appeared before, because there can only be one silent transition

before an observable one and only silent transitions changethe parameters.) From Definition3

we then have thatz
σ[p]
→֒ z′, and(z′, q′) ∈ R becauseVM(z′, p) = q′.

We have thus shown that whatever sequence of labels is observed in a run ofA(Ha), a

succession of continuous component dynamics with this samesequence of subscript indices can

be activated inHa. Thus, whatever strategy is devised inA(Ha), has a guaranteed implementation

in the concrete dynamics of the hybrid agent. The issue of selecting the parameters so that the

implementation is realized is not treated here. This subject is addressed, using slightly different

discrete models, in [43].

November 16, 2018 DRAFT

23

VI. CASE STUDY

A. Experimental Setup

To demonstrate the efficacy of our methodology, we consider agame, played between a robot

and an intelligent adversary. The purpose of the robot (hybrid agent) is to visit all four rooms in

the triangular “apartment” configuration of Fig.3. The four rooms in this triangular apartment

are connected through six doors, which an intelligent adversary can close almost at will, trying

to prevent the robot from achieving its goal. TableI shows three possible rule regimes that the

adversary could use. Initially the robot is capable of distinguishing closed from open doors, but

it does not know which doors can be closed simultaneously. Infact, it assumes that only the

initially closed doors are ones that can be closed.

Rules Description

Opposite Only one pair of doors opposite to each other can be closed at any time:

{a, d}, {a, e}, {a, f}, {b, f}, {c, e}, {e, f}

Adjacent Only one pair of doors adjacent to each other can be closed at any time:

{a, b}, {a, c}, {b, c}, {b, d}, {b, e}, {c, d}, {c, f}, {d, e}, {d, f}

General Any pair of doors can be closed at any time.

TABLE I: Some possible rules for the adversary (controlling the doors): at each round, the environment either

keeps static or opens exactly one door in the closed pair of doors and closes exactly one, which results in another

pair of closed doors.

The Khepera II, manufactured by K-Team Inc., is a differential-drive mobile robot, with

two actuated wheels and kinematics that are accurately represented by the equations of a

unicycle. Motion control is achieved throughPID loops that independently control either angular

displacement or speed of the two wheels. ThesePID loops can support the development of

mid-level motion planning controllers. For example, input-output feedback linearization of the

unicycle dynamics [44] leads to a fully actuated reduced system of the formq̇ = u, where the

sequential composition flow-through approach of [45] can be applied to produce controllers that

steer the robot from roomi to a neighboring roomj. This same approach has been used in [46]

to generate discrete abstractions for the purpose of findingWaldo; details on how the sequential

composition approach can give rise to finite state automata abstractions are found in [47].

November 16, 2018 DRAFT

24

(a) The triangle room game representation. (b) A physical implementation of the game.

Fig. 3: The non-cooperative game used in this case study. Figure3(a) is a graphical depiction of the triangular

apartment game, while Fig.3(b) shows a physical realization of the scenario, with aKhepera II miniature

mobile robot in the role of the hybrid agent. The robot localizes itself and observes which doors are closed (door

closure implemented manually using the yellow caution cones) through aVICONTM motion capture system. The

grammatical inference module and the strategy computationalgorithm have been implemented in python, which

communicates with the control for the robot (through MatlabTM) over a serial link.

For the case at hand, we can use the flow-through strategies togenerate potential field-based

velocity controllers to realize transitions from roomi to room j in a way compatible to the

requirements on the continuous dynamics of the hybrid agentof Definition 3, that is, ensure that

PRE(σ) is positively invariant forfσ, and that trajectories converge toL+(p, σ) ⊕ Bε in finite

time (see [47]). The latter set is in fact the formula for POST(σ): x ∈ L+(p, σ)⊕ Bε.

In the context of the flow-through navigation strategy of [45], a transition from, say, room 1

to room 2 (see Fig.3) would involve aflow-through vector field[45] by which the robot exits

the polygon outlining room 1 from the edge corresponding to door a (slightly more sophisticated

behavior can be produced by concatenating the flow-through policy with a convergent[45] one

that “centers” the robot in room 2.)

The hybrid agent that is obtained by equipping the robot withthese flow-through policies can

be defined as a tupleHa = 〈Z,Σa, ι,P, πi,AP, fσ,PRE,POST, s, Ta〉 where

• Z is the triangular sector ofR2 consisted of the union of the areas of the four rooms.

• Σa = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)},

with each element associated with a single flow-through policy: (i, j) denotes a flow-through

policy from roomi to room j.

November 16, 2018 DRAFT

25

• ι : Σa → {1, 2, 3, 4} where we slightly abuse notation and defineι not as a bijection

but rather a surjection, where we abstract away the room of origin and we maintain the

destination, for simplicity.

• πi = π = I (the identity),P = Z, ands(z, p) = P, ∀(z, p) ∈ Z × P; in this case we do

not have to use parameters explicitly—they are hard-wired in the flow-through policies.

• AP = {αi : robot in roomi}, i = 1, 2, 3, 4.

• fσ = K(Xσ − q̇), K > 0, a simple proportional controller on velocity intended to align the

system’s vector field with the flow-through fieldXσ.

• PRE
(

(i, ·)
)

= αi, i ∈ {1, . . . , 4} and POST
(

(·, j)
)

= αj , j ∈ {1, . . . , 4}.

• Ta following Definition 3, once all other components are defined.

One can verify by inspection when constructingA(Ha), that the first element ofσ = (i, j)

is encoded in the label for the discrete state,αi, from which the transitionαi

(i,j)
→ αj. Thus, to

simplify notation, we change the label of a state fromαi to i, and the label of the transition from

(i, j) to just j—the destination state. We writei
j
→ j instead. Figure4 (left) gives a graphical

representation ofA(Ha) after the state/transition relabeling, basically expressing the fact that

with all doors open, the robot can move from any room to any other room by initiating the

appropriate flow-through policy.

B. Results

Suppose the adversarial environment adheres to theOpposite rule in TableI. The SAA1 for

the agent (player 1) and a fragment of SAA2 modeling the environment (player 2) are shown in

Fig. 4.7 By assigningI1 = Q1 andI2 = Q2, the game can start with any state inQ1×Q2×{1}.

The goal of the agent in this example is to visit all four rooms(in any order). Therefore,

the specification can be described by the union of shuffle ideals of the permutations of1234.

In this special case, since the robot occupies one room when game starts,As = 〈Qs,Σs =

Σ1 ∪ Σ2, Ts, Is = {1, 2, 3, 4}, Fs = {1234}〉. A fragment ofAs is shown in Fig.5.

The interaction functions follow from obvious physical constraints: when the environment ad-

versary closes a door, the agent cannot then move through it.The interaction functionU2(d1d2, r)

gives the set of rooms the agent cannot access from roomr because doorsd1 andd2 are closed.

7SAsA1 andA2 happen to be Myhill graphs, but the analysis presented applies to general SAs.

November 16, 2018 DRAFT

26

1 2

34

2
1

1
3

4 1 3 2

4

2
4
3

ad af

bf

ef

ǫ ǫ
ǫ

ǫ

. . .

. . .

. . .

. . .

. . .

af

ad ef

af

bf

af

efbf

Fig. 4: Semiautomata for the agent (left) and for a fragment of the environment (right). InA1, the states are the

rooms and the transitions are labeled with the rooms that theagent is to enter. ForA2, the states represent the pairs

of doors that are currently closed and a transitionxy indicates the pair of doorsx, y are to be closed.

1

13

12

134

123

124

. . .

12343

2

4

3

4
2

3

4
2

x,1
x,1,2

x,1,3

x,1,2,3

x,1,3,4

x,1,2,4

x,1,2,3,4

Fig. 5: Fragment ofAs = 〈Qs,Σs = Σ1 ∪ Σ2, Ts, Is = {1, 2, 3, 4}, Fs = {1234}〉, wherex = Σ2.

In Fig. 3(b), for instance,U2(ab, 1) = {2, 3}. In this example, the agent cannot enforce any

constraints on the adversary’s behavior, soU1(q) = ∅, ∀q ∈ Q1×Q2. Figure6 shows a fragment

of A1 ◦ A2, while a fragment of the game automatonG is shown in Fig.7.

(1, ad, 1)

(4, ad, 0)

(3, ad, 0) (3, af, 1)

(4, af, 1)

(2, af, 0)

(4, af, 0)

(1, af, 0)

(3, af, 0). . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

. . .4

3

af

af

4

1

2

1

3

Fig. 6: Fragment of turn-based productP = A1 ◦A2 = 〈Qp,Σ1 ∪Σ2, Tp〉. State(r, d1d2, c) means the agent is in

room r, doors{d1, d2} are closed and the Boolean variable keeping track of whose turn it is set toc.

Let us show how Proposition2 applies to this case study. The winning set of states isF =

{
(

(q1, q2, 0), 1234
)

∈ Q | (q1, q2, 0) ∈ Qp}; Attr(F) is obtained by computing the fixed-point

of (2). Due to space limitations, we only give a winning path for the robot according to the

winning strategyWS
∗
1 with the initial setting of the game inQ0.

November 16, 2018 DRAFT

27

1,ad,1,1

4,ad,0,14

3,ad,0,13

3,af,1,13

4,af,1,14

1,af,0,13

2,af,0,123

4,af,0,124

1,af,0,14

3,af,0,134

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

4

3

af

af

1

2

4

1

3

Fig. 7: Fragment of the game automatonG = 〈Q,Σ1 ∪ Σ2, T,Q0, F 〉 for the door-robot game, whereQ0 =

{(q1, q2,1, qs) | q1 ∈ I1, q2 ∈ I2, qs = q1 ∈ {1, 2, 3, 4}} and F = {(q1, q2,0, 1234) | (q1, q2,0) ∈ Qp}, note that

upon initialization of a game, the state ofA1 (the room occupied by the robot) determines the choice of initial state

in As (the room visited by the robot.)

If the agent were to have complete knowledge of the game automaton, it could compute the

set of initial states from which it has a winning strategy:

Q0 ∩ Attr(F) =
{

(1, ad, 1, 1), (1, ce, 1, 1), (2, ad, 1, 2), (2, bf, 1, 2), (4, ce, 1, 4), (4, bf, 1, 4)
}

.

Hence, with complete game information, the robot can win thegame starting from initial

conditions inQ0 ∩ Attr(F); note that |Q0∩Attr(F)|
|Q0|

makes up a mere25% of all possible initial

configurations. For instance, the agent has no winning strategy if it starts in room3.8

For the sake of argument, takeq0 = (1, ad, 1, 1) ∈ Attr(F) ∩ Q0. Since the rank ofq0 is

ρ(q0) = 7, following WS
∗
1 of (3) the robot’s fastest winning play is

(1, ad, 1, 1)
4
→ (4, ad, 0, 14)

ae
→ (4, ae, 1, 14)

2
→ (2, ae, 0, 124)

ce
→

(2, ce, 1, 124)
1
→ (1, ce, 0, 124)

ef
→ (1, ef, 1, 124)

3
→ (3, ef, 0, 1234) .

The adversary’s moves,ae, ce and ef , are selected such that it can slow down the process

of winning of the robot as much as possible; there is no move the environment can make to

prevent the agent from winning since the initial state is in the agent’s attractor and the agent

has full knowledge of the game. Note that in the cases where the game rules are described by

Adjacent andGeneral regimes (see TableI), the robot cannot win no matter which initial

8Although the construction assumes the first move of the robotis to select a room to occupy (because it begins in state 0),

we assume the game begins after the robot has been placed and the closed doors have been selected.

November 16, 2018 DRAFT

28

state is in because in both casesAttr(F) ∩ Q0 = ∅. In these game automata, the agent, even

with perfect knowledge of the behavior of the environment, can never win.

Let us show how a robot, which has no prior knowledge of the game rules but is equipped

with a GIM, can start winning the game after a point when it hasobserved enough to construct a

correct model of its environment. As the first game starts, the agent realizes that the environment

is not static, but is rather expressed by some (discrete) dynamical system, a SAA2. It assumes

(rightfully so in this case) that the language admissible inA2 is strictly 2-local. With these

knowledge, the robot’s initial hypothesis of the environment A
(0)
2 =

(

〈Q2,Σ2, T2〉, sw(0)
)

is

formulated in two steps: (i) obtain the SL2-FSA for{Σ2 \ {ǫ}}
∗ and assign sw(0)(q, σ) = 1, ∀σ ∈

Σ2 \ {ǫ}; (ii) add self-loopsT2(q, ǫ) = q and letsw(0)(q, ǫ) = 1 , ∀q ∈ Q2.

In every round, the agent does the best it can: it takes the action suggested by the strategy

WS
∗
1 constructed based on its its current theory of mind. Each time it observes a new action on

the part of its adversary, it updates its theory of mind using(4), recomputesWS
∗
1 using (3), and

applies the new strategy in the following round. The agent may realize that it has lost the game

if it finds its current state out of the attractor computed based on its most recent theory of mind.

In this case, the agent resigns and starts a new game from a random initial condition, keeping

the model for the environment it has built so far and improving it as it goes. We set an upper

limit to the number of games by restricting the total number of turns played to be less thann.

The following simplified algorithm illustrates the procedure.

1) Let i = 0, the game hypothesis isG(0). The game starts with a randomq0 ∈ Q0.

2) At the current stateq = (q1, q2, 1, qs), if the number of turns exceeds the upper limitn, the

sequence of repeated games is terminated. Otherwise, the robot computesAttr(F) based

on G(i) (note that it is not necessary to computeAttr(F) andWS
∗
1(q) as long as there is

no update inG(i) from the previous round.) Then, according toAttr(F) and (6), the robot

either makes a moveσ ∈ WS
∗
1(q) or resigns. If a move is made andT (q, σ) ∈ F , the robot

wins. In the case of either winning or resigning the game, therobot restarts the game at

someq0 ∈ Q0 with a theory of mindA(i)
2 and a hypothesized game automatonG(i); then

its control goes to Step2. Otherwise, it goes to Step3.

3) The adversary takes some action. The robot observes this action and determines whether

to switch on a blocked transition. If a new transition inA(i)
2 is observed, it updatesA(i)

2

to A
(i+1)
2 . ThenG(i) is updated toG(i+1) according to (5). Otherwise,A(i+1)

2 = A
(i)
2 and

November 16, 2018 DRAFT

29

G(i+1) = G(i). The robot setsi = i+ 1 and goes to Step2.

We can measure the efficiency of the learning algorithm by computing the ratio between

transitions that are switched on during the game sequence versus the total number of enabled

transitions in the true game automaton. The convergence of learning is shown in Fig.8(a)and the

results show that after 125 turns including both robot’s andenvironment’s turns (approximately

42 games), the robot’s model of the environment converges tothe actual one.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Turns

%
 tr

an
si

tio
ns

 s
w

itc
he

d
on

(a) The convergence of learning algorithm. The figure

shows the ratio of adversary transitions that have been

identified by the agent versus the number of turns the

two players have played. In just 125 turns the hybrid

agent has full knowledge of its adversary’s dynamics.

Num of games Num of wins

No learning 300 0

With learning 300 79

Full knowledge 300 82

(b) Comparison results with three types of the robot.

For the case of “no learning,” the robot eventually

moves out of its attractor and gets trapped.

Table8(b) gives outcomes of repeated games in three different scenarios for the robot: (a) Full-

Knowledge: the robot knows exactly the model of the environment; (b) No Learning: the robot

has no knowledge of, and no way of identifying the environment dynamics, and (c) Learning: the

robot starts without prior knowledge of environment dynamics but utilizes a GIM. The initial

conditions for the game are chosen randomly. In the absence of prior information about the

environment dynamics, and without any process for identifying it, the robot cannot win: in 300

games, it scores no victories. If it had full knowledge of this dynamics, it would have been

able to win 82 out of the 300 times it played the game, a percentage of27%, which is close

to the theoretical value of25%. A robot starting with no prior knowledge but uses its GIM

performs just as well (reaching a win ratio of26%) as one with full knowledge. In fact, as

Fig. 8(a) suggests, the robot has recovered the performance of an “all-knowing” agent in less

than 15% (42
300

) of the number of games played repetitively used in Table8(b). We demonstrate

the planning and control of the robot using KiKS simulation environment in MatlabTM.9

9A simulation video is available athttp://research.me.udel.edu/∼btanner/Projectfigs/newgame.mp4.

November 16, 2018 DRAFT

http://research.me.udel.edu/~btanner/Project_figs/newgame.mp4

30

VII. D ISCUSSION ANDCONCLUSIONS

This paper shows how the use of grammatical inference in robotic planning and control allows

an agent to perform a task in an unknown and adversarial environment. Within a game-theoretic

framework, it is shown that an agent can start from an incomplete model of its environment

and iteratively update that model via a string extension learner applied to the language of

its adversary’s turns in the game, to ultimately converge onthe correct model. Its success is

guaranteed provided that the language being learned is in the class of languages that can be

inferred from a positive presentation and the characteristic sample can be observed. This method

leads to more effective planning, since the agent will win the game if it is possible for it to do

so. Our primary contribution is thus a demonstration of how grammatical inference and game

theory can be incorporated in symbolic planning and controlof a class of hybrid systems with

convergent closed loop continuous dynamics.

The architecture (framework) we propose is universal and can be seen as being composed

of two distinct blocks: Control synthesis and Learning. Thecontents of these blocks can vary

according to the task in consideration and the target model to be learned. The current task is

a reachability problem, and hence we utilize algorithms forcomputing a winning strategy in

reachability games to synthesize symbolic controllers. However, there is nothing inherent in

the architecture that prevents synthesis of the control using winning strategies of other types of

games, such as Büchi games [48], [49]. Similarly, as in this paper the rules of the environment are

encoded in strictlyk-local grammar, the learning module operates on string extension languages.

However, any language that is identifiable from positive presentation can be considered. The

main difference compared to our learning module and other machine learning methods—such as

reinforcement learning and Bayesian inference—is that we take advantage of prior knowledge

about the structure of the hypothesis space. This assumption enables the development of faster

and more efficient learning algorithms.

REFERENCES

[1] H. Tanner, J. Fu, C. Rawal, J. Piovesan, and C. Abdallah, “Finite abstractions for hybrid systems with stable continuous

dynamics,”Discrete Event Dynamic Systems, vol. 22, pp. 83–99, 2012.

[2] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal logic motion planning for dynamic robots,”

Automatica, vol. 45, no. 2, pp. 343–352, Feb. 2009.

[3] C. de la Higuera,Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, 2010.

November 16, 2018 DRAFT

31

[4] W. Zielonka, “Infinite games on finitely coloured graphs with applications to automata on infinite trees,”Theoretical

Computer Science, vol. 200, no. 1–2, pp. 135–183, 1998.

[5] P. J. Ramadge and W. M. Wonham, “Supervisory Control of a Class of Discrete Event Processes,”SIAM Journal on

Control and Optimization, vol. 25, no. 1, pp. 206–230, 1987.

[6] J. Knight and B. Luense, “Control theory, modal logic, and games,” inHybrid Systems: Computation and Control, ser.

Lecture Notes in Computer Science, P. Antsaklis, W. Kohn, A.Nerode, and S. Sastry, Eds. Springer Berlin / Heidelberg,

1997, vol. 1273, pp. 160–173.

[7] E. Grädel, W. Thomas, and T. Wilke, Eds.,Automata logics, and infinite games: a guide to current research. New York,

NY, USA: Springer-Verlag New York, Inc., 2002.

[8] N. Piterman and A. Pnueli, “Synthesis of reactive(1) designs,” in In Proceedings of Verification, Model Checking, and

Abstract Interpretation. Springer, 2006, pp. 364–380.

[9] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. Pappas, “Symbolic planning and control of robot motion,”

IEEE Robotics Automation Magazine, vol. 14, no. 1, pp. 61–70, 2007.

[10] M. Lahijanian, J. Wasniewski, S. Andersson, and C. Belta, “Motion planning and control from temporal logic specifications

with probabilistic satisfaction guarantees,” inIEEE International Conference on Robotics and Automation, 2010, pp. 3227–

3232.

[11] A. LaViers, M. Egerstedt, Y. Chen, and C. Belta, “Automatic generation of balletic motions,” inProceedings of the 2011

IEEE/ACM Second International Conference on Cyber-Physical Systems, Washington, DC, USA, 2011, pp. 13–21.

[12] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Recedinghorizon control for temporal logic specifications,” inHybrid

Systems: Computation and Control, K. H. Johansson and W. Yi, Eds. New York, NY, USA: ACM, 2010, pp. 101–110.

[13] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi, “Computational techniques for the verification of hybrid systems,”

Proceedings of the IEEE, vol. 91, no. 7, pp. 986–1001, july 2003.

[14] M. Kloetzer and C. Belta, “Dealing with nondeterminismin symbolic control,” in Hybrid Systems: Computation and

Control, ser. Lecture Notes in Computer Science, M. Egerstedt and B.Mishra, Eds. Springer, 2008, pp. 287–300.

[15] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based reactive mission and motion planning,”IEEE

Transactions on Robotics, vol. 25, no. 6, pp. 1370–1381, dec. 2009.

[16] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive, high-level robot control,”Robotics Automation

Magazine, IEEE, vol. 18, no. 3, pp. 65 –74, sept. 2011.

[17] K. J. Astrom and B. Wittenmark,Adaptive Control. Addison-Wesley, 1995.

[18] S. Sastry and M. Bodson,Adaptive Control. Prentice Hall, 1989.

[19] M. J. Matarić, “Reinforcement learning in the multi-robot domain,”Autonomous Robots, vol. 4, no. 1, pp. 73–83, 1997.

[20] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning for humanoid robotics,” inProceedings of the IEEE-RAS

International Conference on Humanoid Robots, 2003.

[21] E. Brunskill, B. R. Leffler, L. Li, M. L. Littman, and N. Roy, “Provably efficient learning with typed parametric models,”

Journal of Machine Learning Research, vol. 10, pp. 1955–1988, 2009.

[22] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aerobatics through apprenticeship learning,”International

Journal of Robotics Research, vol. 29, no. 13, pp. 1608–1639, 2010.

[23] A. Hamdi-Cherif and C. Kara-Mohammed, “Grammatical inference methodology for control systems,”WSEAS Transaction

on Computers, vol. 8, no. 4, pp. 610–619, Apr. 2009.

November 16, 2018 DRAFT

32

[24] C. B. Yushan Chen, Jana Tumova, “LTL robot motion control based on automata learning of environmental dynamics,” in

IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 2012.

[25] E. M. Gold, “Language identification in the limit,”Information and Control, vol. 10, no. 5, pp. 447–474, 1967.

[26] J. Heinz, “String extension learning,” inProceedings of the 48th Annual Meeting of the Association for Computational

Linguistics, Uppsala, Sweden, July 2010, pp. 897–906.

[27] A. Kasprzik and T. Kötzing, “String extension learning using lattices,” inLanguage and Automata Theory and Applications:

4th International Conference, LATA 2010, ser. Lecture Notes in Computer Science, C. Martin-Vide, H.Fernau, and A. H.

Dediu, Eds., vol. 6031. Trier, Germany: Springer, 2010, pp.380–391.

[28] R. McNaughton and S. Papert,Counter-Free Automata. MIT Press, 1971.

[29] A. De Luca and A. Restivo, “A characterization of strictly locally testable languages and its application to subsemigroups

of a free semigroup,”Information and Control, vol. 44, no. 3, pp. 300–319, Mar. 1980.

[30] P. Garcia, E. Vidal, and J. Oncina, “Learning locally testable languages in the strict sense,” inProceedings of the Workshop

on Algorithmic Learning Theory, 1990, pp. 325–338.

[31] J. Rogers, “Cognitive complexity in the sub-regular realm,” UCLA Colloquium, Oct. 2010.

[32] J. Lygeros, K. Johansson, S. Simić, and S. Sastry, “Dynamical properties of hybrid automata,”IEEE Transactions on

Automatic Control, vol. 48, no. 1, pp. 2–17, 2003.

[33] H. Enderton,A Mathematical Introduction to Logic. Academic Press, 1972.

[34] H. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.

[35] C. Stirling, “Modal and temporal logics for processes,” in Logics for concurency: structure vs automata, F. Moller and

G. Birtwistle, Eds. Springer, 1996.

[36] E. M. Clarke Jr., O. Grumberg, and D. A. Peled,Model checking. MIT Press, 1999.

[37] D. Perrin and J.́Eric Pin, Infinite words:automata, semigroups, logic and games. Elsevier, 2004.

[38] W. Thomas, “Infinite games and verification (extended abstract of a tutorial),” inProceedings of the 14th International

Conference on Computer Aided Verification, ser. CAV ’02. London, UK, UK: Springer-Verlag, 2002, pp. 58–64.

[39] U. Frith and C. Frith, “Development and neurophysiology of mentalizing,”Philosophical Transactions of the Royal Society

B Biological Sciences, no. 358, pp. 459–473, 2003.

[40] D. Premack and G. Woodruff, “Does the chimpanzee have a theory of mind?”Behavioral and Brain Sciences, vol. 1,

no. 04, pp. 515–526, 1978.

[41] P. Caron, “LANGAGE: a maple package for automaton characterization of regular languages,” inAutomata Implementation,

ser. Lecture Notes in Computer Science, D. Wood and S. Yu, Eds. Springer, 1998, vol. 1436, pp. 46–55.

[42] J. Heinz, “Inductive learning of phonotactic patterns,” Ph.D. dissertation, University of California, Los Angeles, 2007.

[43] J. Fu and H. G. Tanner, “Optimal planning on register automata,” inAmerican Control Conference, Jun 2012 (to appear).

[44] A. K. Das, R. Fierro, V. Kumar, B. Southall, J. Spletzer,and C. J. Taylor, “Real-time vision-based control of a nonholonomic

mobile robot,” inProceedings of the IEEE International Conference on Robotics and Automation, 2001, pp. 1714–1719.

[45] D. C. Conner, H. Choset, and A. A. Rizzi, “Flow-through policies for hybrid controller synthesis applied to fully actuated

systems,”IEEE Transactions on Robotics, vol. 25, no. 1, pp. 136–146, 2009.

[46] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Where’s Waldo? sensor-based temporal logic motion planning,” in

Proceedings of the IEEE International Conference on Robotics and Automation, 2007, pp. 3116–3121.

[47] D. C. Conner, “Integrating planning and control for constrained dynamical systems,” Ph.D. dissertation, Carnegie Mellon

University, December 2007.

November 16, 2018 DRAFT

33

[48] R. Mazala, “Infinite games,” inAutomata, Logics, and Infinite Games, 2001, pp. 23–42.

[49] K. Chatterjee, T. Henzinger, and N. Piterman, “Algorithms for Büchi games,” inGames in Design and Verification, 2006.

November 16, 2018 DRAFT

	I Introduction
	I-A Overview
	I-B Related work
	I-C Approach and contributions
	I-D Organization

	II Technical Preliminaries
	II-A Languages and Grammatical Inference
	II-B Hybrid Systems and Abstractions
	II-C Games on Semiautomata

	III Game Theoretic Approach to Planning
	III-A Constructing the game
	III-B Computing a winning strategy

	IV Learning through Grammatical Inference
	IV-A Overview
	IV-B Assumptions and Scope
	IV-C Identifying the Class of the Adversary's Behavior
	IV-D Learning the Adversary's Dynamics
	IV-E Symbolic Planning and Control

	V Refinement on Hybrid Dynamics
	VI Case Study
	VI-A Experimental Setup
	VI-B Results

	VII Discussion and Conclusions
	References

