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Abstract—This paper presents a novel fuzzy particle swarm
optimization with cross-mutated operation (FPSOCM), where a
fuzzy logic system developed based on the knowledge of swarm
intelligent is proposed to determine the inertia weight for the
swarm movement of particle swarm optimization (PSO) and the
control parameter of a newly introduced cross-mutated opera-
tion. Hence, the inertia weight of the PSO can be adaptive with
respect to the search progress. The new cross-mutated operation
intends to drive the solution to escape from local optima. A
suite of benchmark test functions are employed to evaluate the
performance of the proposed FPSOCM. Experimental results
show empirically that the FPSOCM performs better than the
existing hybrid PSO methods in terms of solution quality, robust-
ness, and convergence rate. The proposed FPSOCM is evaluated
by improving the quality and robustness of two real world
industrial systems namely economic load dispatch system and
self provisioning systems for communication network services.
These two systems are employed to evaluate the effectiveness
of the proposed FPSOCM as they are the multi-optima and
non-convex problems. The performance of FPSOCM is found
to be significantly better than that of the existing hybrid PSO
methods in a statistical sense. These results demonstrate that
the proposed FPSOCM is a good candidate on solving product
or service engineering problems which are multi-optima or non-
convex natures.

Index Terms—Economic load dispatch, Email communication
services, Fuzzy logic system, Particle swarm optimization.

I. INTRODUCTION

Recent research demonstrates that Particle swarm
optimization (PSO) is a more effective optimization
method in solving hard optimization problems comparing
with other commonly used stochastic optimization methods
such as evolutionary algorithms, tabu search and simulated
annealing, where it has more comparable or even superior
search performance with higher and more stable convergence
rates in performing the optimizations [1]. As PSO is
inspired by the social behaviours of animals or insects for
performing optimizations, it has memory [2]; previously
visited best positions are remembered, which is different
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from other evolution algorithms that do not keep the crucial
information as the population changes. Hence, best solution
quality can be generally obtained by PSO with a shorter
computational time on many industrial applications such as
product design [3], power systems design [4]–[9], parameter
learning of neural networks [10], [11], speech recognition
[12], photovoltaic system [13], traffic flow forecasting
[14], biomedical system [15], [16], manufacturing process
design [17], [18], optimization in dynamic environment
[19], parameter estimation and identification [20]–[22], etc.
Although reasonable solutions can generally be obtained by
the PSO within a reasonable computational time, enhancement
of the operations and the mechanisms of the PSO is essentially
required in order to obtain better solutions. A commonly
used enhancement approach is to integrate other optimization
operations into the PSO. Angekine [23] developed a hybrid
PSO by integrating with a selection mechanism in order to
select elitist particles. Noel and Jannett [24] developed a
gradient descent based PSO namely HGPSO by selecting
appropriate gradient information in order to achieve faster
convergence and aid to obtain global optimum. However,
the computational effort is increased by the approach in
computing the gradient descents, and also experimental
results show that the approach performs poorly in solving
multimodal problems which have many sub-optima. Juang
[11] proposed a hybrid PSO algorithm namely HGAPSO
which use evolutionary operations including crossover,
mutation and reproduction to control swarm movement, and
also a hybrid PSO namely HPSOM was proposed [4] by
integrating the PSO with mutation operation. Both HGAPSO
and HPSOM inject random components into particles using
mutation, but the mutating space used in both approaches is
fixed throughout the search. Although premature convergence
is more likely to be avoided, the approach can be further
improved by varying the mutating space with respect to the
searching progress of the PSO.

Shi [25] developed a PSO of which the inertia weight
factor varies linearly with respect to iterations. More recently,
a hybrid PSO with wavelet mutation operation (HPSOWM)
was proposed in [26], of which the mutating space varied
based on the wavelet theory. By solving a few industrial
problems, experimental results show that better and more
robust solutions can be obtained with smaller computational
time. Although the approaches provide a balance between
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the global exploration and local exploitation, they are not
appropriate to assume the searching progresses of the PSO
are linear or wavelet characteristics, and it is also impractical
and almost impossible to mathematically model the searching
progress of the PSO, in order to determine the appropriate
inertia weight for searching the optimum.
In this paper, a fuzzy logic based PSO with cross-mutated
operation namely FPSOCM is proposed by introducing it
with two novel components, namely (i) fuzzy inertia weight
and (ii) cross-mutated (CM) operation. (i) the value of
the fuzzy inertia weight is determined based on a fuzzy
inference system which consists of a set of linguistic rules
in representing the searching characteristics of the PSO. By
dynamically changing the fuzzy inertia weight, the dynamic
of the swarm can be varied with respect to the searching
progress of the PSO. Hence, solutions with better qualities
are more likely to be searched; ii) the CM injects momentum
to the swarm when the progress of the PSO is saturating,
where the amount of momentum is controlled based on the
fuzzy inference system. It intends to further avoid the PSO
in searching the local optima. Hence, the limitation of the
classical PSO can be further tackled.

A suite of 17 benchmark test functions with different
optimization characteristics were used to test the performance
of the FPSOCM. The resulting fuzzy inertia weight and CM
operation aid the proposed algorithm to offer better solu-
tion quality and solution reliability than the improved PSO
(IPSO) with inertia weight [25] and constriction factor [27],
and other recently developed hybrid PSO methods [4], [11],
[26]. We further evaluate the performance of the FPSOCM
by improving the quality and robustness of two real world
industrial systems namely economic load dispatch system and
self provisioning systems for communication network services.
The results are compared with those from other existing
hybrid PSO methods on these applications. We can see that
the performance of FPSOCM in tackling these applications
are improved with statistical significance. Hence, the optimal
systems can achieved better results in term of robustness and
solution quality, that can offer more stable but cheaper power
supply or network service to customers, than the exiting PSO
methods.

This paper is organized as follows. Section II presents the
details of FPSOCM. Experimental study and analysis will be
discussed in Section III, and 17 benchmark test functions with
different optimization characteristics will be given to evaluate
the performance of the proposed method. Furthermore, the
sensitivity of the parameter of the cross-mutated operation will
be discussed in this section. In Section IV, the three real-world
applications will be discussed. Finally, a conclusion will be
drawn in Section V.

II. FUZZY PARTICLE SWARM OPTIMIZATION WITH
CROSS-MUTATED OPERATION (FPSOCM)

Particle swarm optimization (PSO) models the social be-
havior of a swarm like bird flocking and fish schooling. The
swarm is composed of a number of particles. Every particle
traverses a search space for the best fitness value.

1) PSO with constriction and inertia weight factors (IPSO):
PSO with inertia weight [25] and PSO with constriction factor
[27] were reported to show improved searching ability over the
standard PSO [28]. Algorithm II.1 gives the pseudo code of the
PSO with constriction and inertia weight factors (IPSO). Under
Algorithm II.1, X (t) denotes a swarm at the t-th iteration.
Each particle xi (t) ∈ X (t) contains κ elements xi

j (t) ∈
xi (t), where i = 1, 2,... , γ and j = 1, 2,... , κ; γ denotes the
number of particles in the swarm and κ is the dimension of a
particle. At the beginning, the swarm particles are initialized
and then evaluated by a defined fitness function f

(
xi (t)

)
.

The current generation number t is initialized to 0. The job
of PSO is to minimize the fitness value through an iterative
process.

Algorithm II.1: PSEUDO CODE FOR IPSO(X(t))

t← 0
Initialize X(t)
output (f(X(t)))
while <not termination condition>

do



t← t+ 1
Update velocity v(t) based on (3)− (5).
Ensure the updated velocity is in the region of vmax

if v(t) > vmax

then v(t) = vmax

if v(t) < −vmax

then v(t) = −vmax

Generate a new swarm X(t) based on (2).
Ensure the updatedxi

j(t)is inside the boundary
if xi

j(t) > ρmaxj

then xi
j(t) = ρmaxj

if xi
j(t) < ρminj

then xi
j(t) = ρminj

output (f(X(t)))
return (g)
comment: g is the best particle among all particles (solution)

The evolution realised by PSO is governed by the velocity
(flight speed) of the particles in the search space. The velocity
vij (t) and the position xi

j (t) of the j-th element of the i-
th particle at the t-th generation is given by the following
formulae:

vij (t) = 2 · r1 ·
(
pij − xi

j (t− 1)
)

+ 2 · r2 ·
(
gj − xi

j (t− 1)
)

(1)

and

xi
j (t) = xi

j (t− 1) + vij (t) (2)

where
pi =

[
pi1 pi2 , . . . piκ

]
is the best position of the particle

i, and g =
[
g1 g2 , . . . gκ

]
is the best particle among

all the particles; r1 and r2 are random numbers in the range
of [0,1]. In [29], an improved PSO (IPSO) makes use of a
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constriction factor and an inertia weight factor to obtain vij (t):

vij(t) = k · {ω(t) · vij(t− 1)+

φ1 · r1 · (pij − xi
j(t− 1))

φ2 · r2 · (gj − xi
j(t− 1))} (3)

where ω (t) is the inertia weight factor; φ1 and φ2 are
acceleration constants; k is the constriction factor derived from
the stability analysis of (3) for assuring the system to converge
but not prematurely [29]. In this paper, k is related to φ1 and
φ2 as follows:

k =
2∣∣∣2− φ−
√
φ2 − 4φ

∣∣∣ (4)

where φ = φ1 + φ2 and φ > 4.
The particle velocity is limited by a maximum value vmax

(3). This parameter vmax determines the resolution of the
searched regions between the present position and the target
position. The value of this limit governs the local exploitation
of the problem space. Practically, it emulates the incremental
changes of human learning. If the value of vmax is too large,
the particles might fly past good solutions. If the value of vmax

is too small, the particles may not sufficiently explore beyond
the local solutions. Based on our experiments, it is suggested
vmax can be assigned with a value of 10% to 20% of the
dynamic range of each element. After updating the velocity
of all particles, we get a new swarm X(t) based on (2).
To ensure every particle element xi

j in X(t) falls within the
range

[
ρminj , ρmaxj

]
, we add the following conditions.

If xi
j(t) >ρmaxj , the updated xi

j(t) should be equal to ρmaxj .
Similarly, if xi

j(t) <ρminj , the updated xi
j(t) should be equal

to ρminj . Here, ρmin =
[
ρmin1 ρmin2 · · · ρminκ

]
and

ρmax =
[
ρmax1 ρmax2 · · · ρmaxκ

]
; ρminj and ρmaxj

are the minimum and maximum values of xi
j(t) respectively,

and j = 1, 2, ..., κ.
IPSO utilizes pi and g to affect the searching direction so

that the particles will move in different manner. Also, the
convergence can be made gradual towards pi and g. A suitable
choice of the value of ω (t) offers a balance between the global
exploration and local exploitations. ω (t), in general, can be
given by the equation:

ω (t) = ωmax −
ωmax − ωmin

T
× t (5)

where T is the total number of iteration, t is the current
iteration number, ωmax and ωmin are the upper and lower
limits of ω (t), which are normally set to 1.1 and 0.1
respectively [26], [30].

A. Fuzzy PSO with cross-mutated operation

The pseudo code for FPSOCM is given in Algorithm II.2.
A fuzzy inertia weight ω̃(t) is first proposed to improve the
searching quality. A cross-mutated (CM) operation is also
added to tackle the limitation of IPSO [25] [27] being easy to
trap in some local minima.

1) fuzzy inertia weight: In IPSO, the inertia weight ω(t)
provides a balance between the global exploration and local
exploitation of the swarm. When ω is linearly related to t as
in (5), if the value of t/T is smaller, more global exploration
is done; if it is larger, more fine-tuning (local exploitation) is
realised. However, a linear relation between ω(t) and t may not
be so appropriate because the search progress of the swarm is
not a linear movement. We propose a nonlinear inertia weight
ω̃(t) to enhance the searching performance. The value of ω̃(t)
is evaluated by a 2-input fuzzy inference system as one of its 2
outputs. (The other output is the control parameter β(t) of the
CM operation that will be discussed in the later sub-section.)
The inputs of the fuzzy inference system are ||ς(t)|| and t/T .
||ς(t)|| is the normalized standard deviation of fitness values
among all the particles, of which a larger value implies the
particles being far apart from one another. The term ||ς(t)|| is
given by:

||ς(t)|| =

√√√√ 1

γ

γ∑
i=1

(
||f (xi (t)) || − ||f̄ (xi (t))||

)2 (6)

where

||f̄
(
xi (t)

)
|| = 1

γ

γ∑
i=1

||f
(
xi (t)

)
|| (7)

and ∥·∥ denotes the l2 vector norm.

Algorithm II.2: PSEUDO CODE FOR FPSOCM(X(t))



t← 0
Initialize X(t)
Define the probability of CM operation pcm
output (f(X(t)))
while <not termination condition>

do



t← t+ 1
output (t/T )
output (||ς(t)|| based on (6) and (7))
Find the inertia weight ω̃k(t) by
using fuzzy inference system based on (8)− (10).

Update velocity v(t) based on (11).
Find the control parameter β(t) by
using fuzzy inference system based on (14)− (15).

Generate a random number Rcm

if Rcm > pcm
then Perform cross-mutated operation

based on (12)− (13).
Ensure the updated velocity is in the region of vmax

Generate a new swarm X(t) based on (2).
Ensure the updatedxi

j(t) is inside the boundary
output (f(X(t)))

return (g)
comment: g is the best particle among all particles (solution)

The following fuzzy rules govern the fuzzy inertia weight
ω̃ (t):
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Rule j : IF ||ς(t)|| is Nj
1, AND t/T is Nj

2, THEN ω̃ (t) = σj ,

j = 1, 2, . . . , ε (8)

where Nj
1 and Nj

2 are fuzzy terms of rule j, ε is the number of
rules, σj ∈

[
ωmin ωmax

]
is a singleton to be determined,

with ωmin and ωmax being set at 0.1 and 1.1 respectively [26],
[30]. The final value of ω̃ (t) is given by:

ω̃ (t) =
ε∑

j=1

mj (t)σj (9)

where

mj (t)=
µNj

1
(||ς(t)||)× µNj

2
(t/T )

ε∑
j=1

(
µNj

1
(||ς(t)||)× µNj

2
(t/T )

) (10)

µNj
1
(||ς(t)||) and µNj

2
(t/T ) are the membership function

values corresponding to Nj
1 and Nj

2 respectively. It should be
noticed that ω̃ (t) will replace ω(t) in (3) to produce vij (t):

vij(t) = k · {ω̃(t) · vij(t− 1)+

φ1 · r1 · (pij − xi
j(t− 1))

φ2 · r2 · (gj − xi
j(t− 1))} (11)

As shown in Fig. 1, the fuzzy inference system uses three
membership functions to model each input: L (Low), M
(Medium), and H (High). The output singletons use five terms,
namely VL (Very Low), L (Low), M (Medium), H (High), and
VH (Very High). The values for these five terms are set at 0.1,
0.35, 0.6, 0.85, 1.1 respectively. The values are determined
based on the values of ωmin and ωmax. For example, the
output term is Very High, the value is equal to ωmax (=1.1).
If the output term is Medium, then the value is equal to
(ωmin+ωmax)/2 (=0.6).With ||ς(t)|| and t/T as inputs, the 9
linguistic IF-THEN fuzzy rules for determining ω̃(t) are given
as follows:

Rule 1: IF ||ς(t)|| is “L” AND t/T is “L”, THEN ω̃ (t) is
“VH” (= 1.1)

Rule 2: IF ||ς(t)|| is “M” AND t/T is “L”, THEN ω̃ (t) is
“H” (= 0.85)

Rule 3: IF ||ς(t)|| is “H” AND t/T is “L”, THEN ω̃ (t) is
“VH” (= 1.1)

Rule 4: IF ||ς(t)|| is “L” AND t/T is “M”, THEN ω̃ (t) is
“M” (= 0.6)

Rule 5: IF ||ς(t)|| is “M” AND t/T is “M”, THEN ω̃ (t) is
“M” (= 0.6)

Rule 6: IF ||ς(t)|| is “H” AND t/T is “M”, THEN ω̃ (t) is
“H” (= 0.85)

Rule 7: IF ||ς(t)|| is “L” AND t/T is “H”, THEN ω̃ (t) is
“VL” (= 0.1)

Rule 8: IF ||ς(t)|| is “M” AND t/T is “H”, THEN ω̃ (t) is
“VL” (= 0.1)

Rule 9: IF ||ς(t)|| is “H” AND t/T is “H”, THEN ω̃ (t) is
“L” (= 0.35)

The rationale of the fuzzy rules for determining ω̃ (t) is given
as follows. The value of t/T represents the evolution stage
(a small t/T represents an early stage.) The value of ω̃ (t) is

set higher when the value of t/T is smaller (in early stage)
so that a larger value of the particle velocity is given for
global searching. Similarly, a larger value of t/T implies a
smaller value of the particle velocity for local searching and
fine-tuning. Thus, ω̃ (t) of the fuzzy rules 1, 2, and 3 (t/T
is “L”) has a larger value than that of the rules 4, 5, and 6
(t/T is “M”). As ||ς(t)|| is the normalized standard deviation
of fitness values among all the particles, a large value of
||ς(t)|| implies that the particle locations are far away from
one another. In rules 1 to 3, the searching process is in its
early stage (t/T is “L”). When ||ς(t)|| is “H”, the wide-spread
particle locations implies a larger value of ω̃ (t) should be used
for global exploration. When ||ς(t)|| is “L” in the early stage,
the value of ω̃ (t) is also set large as the chance of the solution
being trapped in a local optimum is high. In rule 2, the value
of ||ς(t)|| is “M”, and we set the value of ω̃ (t) to be slightly
smaller than that in rules 1 and 3 in the early stage (t/T is
“L”). In rule 4 to rule 6, the searching process is in its middle
stage (t/T is “M”). The rationale for suggesting the value of
ω̃ (t) is similar to that for rules 1-3. However, when ||ς(t)||
is “L”, the value of ω̃ (t) is smaller than that when ||ς(t)|| is
“H”. It is because the optimal solution may have been found
in the middle stage when a smaller value of ω̃ (t) is given.
In rule 7 to rule 9, the searching process is in its late stage
(t/T is “H”). Hence, the searching process is undergoing a
fine-tuning process (local exploitation) to reach the optimal
solution. As a result, when the value of ||ς(t)|| is “L”, the
locations of particles are close to one another and near the
optimal solution and the smallest value of ω̃ (t) is used.

2) Cross-mutated operation: The proposed cross-mutated
(CM) operation merges the ideas of crossover and mutation
operations of the Genetic Algorithm [31] in order to help
the particles escaping from some local optima. By injecting
random components into particles, the CM operation improves
the PSO performance, particularly when it is used to tackle
multimodal optimization problems with many local minima.

With the CM operation, the velocity of every particle
element will have a chance to undergo CM operation governed
by a probability of CM operation, pcm ∈

[
0 1

]
, which is

defined by the user. A random number Rcm between 0 and 1
will be generated for each particle element such that if it is
less than or equal to pcm, the CM operation will take place
on that element. The value of the pcm affects the solution
quality, and its sensitivity analysis with experimental results
will be discussed later.

After taking the CM operation, the resulting velocity of a
particle element is given by:

v̄ij(t) =

{
(1− β(t)) vij (t) + β(t)ṽij (t) , r3 > 0.5

(1− β(t)) vij (t)− β(t)ṽij (t) , r3 ≤ 0.5
(12)

where

ṽij (t) = 0.25
{
r4 ·

(
ρmaxj − ρminj

)
+ ρminj

}
(13)

r3, r4∈
[
0 1

]
is a random number, vij (t) is determined

by (11), ṽij (t) is a random velocity of particle element and
its value is bounded within 0.25 of the range of the particle
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(a) fuzzy input 1: ||ς(t)||
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(b) fuzzy input 2: t/T

Fig. 1. Membership functions (a) x-axis: ||ς(t)|| ,y-axis: µN1(||ς(t)||)
(b) x-axis: t/T ,y-axis: µN2(t/T ).

element value; a control parameter β(t) is introduced into
the CM operation, which is governed by some fuzzy rules
based on human knowledge. The maximum velocity and
minimum velocity are therefore 0.25 of the range of particle
element value. The value of 0.25 is chosen by trial and
error through experiments. If this value is too large or too
small, the searching performance might be degraded. In (12),
the resulting velocity of particle element v̄ij (t) combines the
information of vij (t) and ṽij (t), exhibiting the characteristic
of the crossover operation. However, in (12), v̄ij (t) is changed
individually the mutation operation. Therefore, it is called the
cross-mutated (CM) operation.

In (12), the control parameter β(t) provides a balance to
control the resulting velocity v̄ij (t) converging toward vij (t)
or ṽij (t). If β(t) is approaching 0, v̄ij (t) will approach vij (t).
Conversely, when β(t) is approaching 1, v̄ij (t) will approach
ṽij (t). Hence, ṽij (t) in (13) provides a means for the particle
element to escape from a local optimum through a random
movement governed by β(t), of which the value is generated
by the following fuzzy rules:

Rule j : IF ||ς(t)|| is Nj
1 AND t/T is Nj

2, THEN β (t) = χj ,

j = 1, 2, . . . , ε (14)

where χj is a singleton to be determined. The final value of

β (t) is given by:

β (t) =

ε∑
j=1

mj (t)χj (15)

where mj (t) is given by (10)
The output singletons use five terms, namely VL (Very

Low), L (Low), M (Medium), H (High), and VH (Very
High). As the control parameter of CM is in the range of 0.1
to 0.5. Thus, the values for these five terms are set at 0.1,
0.2, 0.3, 0.4, 0.5 respectively. Here, 9 linguistic IF-THEN
fuzzy rules for determining β(t) are used and listed as follows:

Rule 1: IF ||ς(t)|| is “L” AND t/T is “L”, THEN β (t) is
“VH” (= 0.5)

Rule 2: IF ||ς(t)|| is “M” AND t/T is “L”, THEN β (t) is
“H” (= 0.4)

Rule 3: IF ||ς(t)|| is “H” AND t/T is “L”, THEN β (t) is
“VH” (= 0.5)

Rule 4: IF ||ς(t)|| is “L” AND t/T is “M”, THEN β (t) is
“H” (= 0.4)

Rule 5: IF ||ς(t)|| is “M” AND t/T is “M”, THEN β (t) is
“M” (= 0.3)

Rule 6: IF ||ς(t)|| is “H” AND t/T is “M”, THEN β (t) is
“H” (= 0.4)

Rule 7: IF ||ς(t)|| is “L” AND t/T is “H”, THEN β (t) is
“VL” (= 0.1)

Rule 8: IF ||ς(t)|| is “M” AND t/T is “H”, THEN β (t) is
“L” (= 0.2)

Rule 9: IF ||ς(t)|| is “H” AND t/T is “H”, THEN β (t) is
“L” (= 0.2)

The rationale for formulating the fuzzy rules is similar to that
for formulating the rules governing the fuzzy inertia weight in
section II.A1. As mentioned before, rules 1-3 with t/T being
“L” correspond to the early searching process, and rules 7-9
correspond to the late searching process. The values of β(t) in
rules 1-3 are larger than those in rules 7-9. A more significant
random velocity (higher value of β(t) in (12)) provides more
global exploration in the early stage. Conversely, the effect
of the random velocity should be reduced in the late stage
for more fine-tuning (local exploitation).

In the early stage, when ||ς(t)|| is “L”, the locations of
particles are close to one another. Hence, we have to set the
value of β(t) to be larger than that when ||ς(t)|| is “M” as the
chance of trapping in a local optimum is high. Conversely,
when the value of ||ς(t)|| is “L”, a small β(t) is used to
fine-tune the solutions in the late stage.

III. BENCHMARK TEST FUNCTION: RESULTS AND
ANALYSIS

A suite of 17 benchmark test functions [31]–[33] are used
to test the performance of FPSOCM. Different landscapes of
optimization problems are covered by these benchmark test
functions. They can be divided into three categories. The first
one is the category of unimodal functions, which involves a
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symmetric model with a single minimum. The second one is
the category of multimodal functions with a few local minima.
The last one is the category of multimodal functions with many
local minima. Out of the 17 functions, 5 are benchmark test
functions [32] with shift and rotate in different categories. The
expressions of these functions are tabulated in Table I. (The
details of the parameter a, b, c, p in fkowa, fhart and the
function u() in fpen are given in [33]).

Name Test function f (x) Domain range

fsphere
30∑
i=1

x2
i −100 ≤ xi ≤ 100

frosen
9∑

i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
−2.048 ≤ xi ≤ 2.048

fstep
100∑
i=1

(⌊xi + 0.5⌋)2 −10 ≤ xi ≤ 10

fquart
10∑
i=1

ix4
i + random[0, 1) −2.56 ≤ xi ≤ 2.56

fsch2.21 ma
i
x {|xi|} , 1 ≤ i ≤ 30 −100 ≤ xi ≤ 100

fsch2.22
30∑
i=1

|xi|+
30∏
i=1

|xi| −10 ≤ xi ≤ 10

fkowa

11∑
i=1

[
ai −

x1(b2i+bix2)
b2i+bix3+x4

]2
−5 ≤ xi ≤ 5

fhart −
4∑

i=1
ci exp

[
−

6∑
j=1

aij (xj − pij)
2

]
0 ≤ xi ≤ 1

fpen 0.1


sin2 (π3x1)

+
29∑
i=1

(xi − 1)2 ·
[
1 + sin2 (3πxi+1)

]
+(x30 − 1)2

[
1 + sin2 (2πx30)

]
+

30∑
i=1

u (xi, 5, 100, 4) −50 ≤ xi ≤ 50

frastri
30∑
i=1

[
x2
i − 10 cos (2πxi) + 10

]
−50 ≤ xi ≤ 50

fgrie
1

4000

30∑
i=1

x2
i −

30∏
i=1

cos
(

xi√
i

)
+ 1 −600 ≤ xi ≤ 600

fack −20 exp

(
−0.2

√
1
30

30∑
i=1

x2
i

)
− exp

(
1
30

30∑
i=1

cos 2πxi

)
+ 20 + e −32 ≤ xi ≤ 32

fsphere sft

30∑
i=1

x2
i −100 ≤ xi ≤ 100

fsch1.2 sft f (x) =
30∑

k=1

k∑
i=1

x2
i −100 ≤ xi ≤ 100

felli sft

10∑
i=1

(
A

(
i−1
9

) (
x2
i

))
,whereA = 1× 106 −100 ≤ xi ≤ 100

frosen sft

30∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
−100 ≤ xi ≤ 100

frast sft

30∑
i=1

[
x2
i − 10 cos (2πxi) + 10

]
−5 ≤ xi ≤ 5

TABLE I
BENCHMARK TEST FUNCTIONS.

A. Experimental setup

For comparison purpose, the performance of HPSOWM
[26], HPSOM [4], HGAPSO [11], IPSO [25], [27], and the
proposed FPSOCM on solving the benchmark test functions
is evaluated.

The following simulation conditions are used:
For All PSOs:
• Swarm size (γ): 50
• Number of runs: 50
• Acceleration constant φ1: 2.05 [30]
• Acceleration constant φ2: 2.05 [30]
• Maximum velocity vmax: 0.2 [26]
• Initial population: it is generated uniformly at random

For FPSOCM:
• Probability of cross-mutated operation (pcm):

pcm = 0.001 for fsphere, fsch2.22, fpen, fgrie, fack,
fsphere sft;
pcm = 0.005 for frastri, fsch1.2 sft, felli sft;
pcm = 0.01 for frosen, fstep, fquart, fsch2.21, fkowa,
frosen sft, frast sft;
pcm = 0.1 for fhart;

For HPSOWM, HPSOM, and HGAPSO:
• Probability of mutation operation (pm): it is chosen by

trial and error through experiments for good performance
for all functions. pm= 0.2 for all unimodal functions, mul-
timodal functions with many local optima, and functions
with shift and rotate except pm= 0.1 for fsphere; pm= 0.3
for fkowa; pm= 0.5 for fhart

For HPSOWM:
• Shape parameter of the wavelet mutation: 2 (it is chosen

by the trial and error through experiments for good
performance for all functions)

• Parameter g of the wavelet mutation: 10000
For HGAPSO:
• Probability of crossover operation: 0.8

B. Results and analysis

In this section, the experimental results in terms of mean
and best cost value, standard deviation and computational
time for the 17 benchmark test functions are given to show
the performance of FPSOCM. The experimental results are
summarized in Tables II to V. A statistical evaluation (p-test)
is given in Table VI.

1) Unimodal functions: Unimodal functions are symmetric
with a single minimum. Six unimodal functions are used to
test the searching algorithms. The optimal value of all the
functions is equal to zero. The simulation results of unimodal
function are shown in Table II. The function fsphere depicts
a sphere model, which is smooth and symmetric. For this
function, the mean value, best value and standard deviation
offered by FPSOCM are better than those of the other PSO
methods. The mean value of FPSOCM is 0.00002882×10−6

(very near the optimal value), which is about 530 times better
than that of HPSOWM (the second-best method). In addition,
the standard deviation of FPSOCM is the smallest, meaning
that the searched solution is the most reliable.

The function frosen is the generalized Rosenbrock’s func-
tion, which is a non-separable function and the optimum
is located in a very narrow ridge. The tip of the ridge is
very sharp, and it runs around a parabola. From the table,
FPSOCM gives the best mean cost value and the smallest
standard deviation, which implies that the solution quality and
reliability are improved. The function fstep is a step function
which is a representation of flat surfaces. Flat surfaces are
obstacles for optimization algorithms because they do not
give any information about the search direction. Unless the
algorithm has a variable step size, it can get stuck in one of
the flat surfaces. All hybrid PSOs with the mutation operation
and FPSOCM are good to tackle this function because it can
generate a long jump by using the mutation or CM operation.

The function fquart is a quadratic function padded with
noise, which increases the difficulty for searching the mini-
mum value because the function would not return the same
value at the same point every time. The mean solution and
reliability offered by FPSOCM are the best. The function
fsch2.21 is the Schwefel’s problem 2.21. FPSOCM gives a
better performance in terms of mean value, best value, and
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standard deviation. The last unimodal function is the Schwe-
fel’s problem 2.22 fsch2.22. FPSOCM indicates the good
performance of the algorithm. In general, FPSOCM is the best
to tackle unimodal functions when compared with the other
methods. In terms of computational time, FPSOCM consumes
almost the same amount of time as the other methods.

FPSOCM HPSOWM HPSOM HGAPSO IPSO
Mean 0.00002882 0.01534812 2.73156256 108348.08 3901000×103

fsphere Best 0.00000273 0.00399741 0.72431698 1211.2577 2359.8337
(×10−6) Std Dev 0.00003108 0.00969838 1.49258407 180205.71 3751042×103

T = 1000 Time (s) 9.140 8.906 8.703 8.706 8.436
Rank 1 2 3 4 5
Mean 0.60950108 1.07276495 1.45500489 3.91451826 3.40327459

frosen Best 0.08869805 0.66293636 0.77316192 3.08690784 2.45991577
(×100) Std Dev 0.18512482 0.27233685 0.25291157 0.46018910 0.45763080

T = 1000 Time (s) 8.070 7.906 7.750 7.875 7.657
Rank 1 2 3 5 4
Mean 0.1600 0.8400 3.2000 5.0200 32.0799

fstep Best 0.0000 0.0000 0.0000 0.0000 13.0000
(×100) Std Dev 0.4218 0.9116 2.6186 11.7603 24.1313
T = 500 Time (s) 6.560 6.600 6.593 6.640 6.547

Rank 1 2 3 4 5
Mean 0.00435660 0.00512595 0.00784463 0.00549581 0.00706537

fquart Best 0.00215990 0.00178256 0.00240483 0.00293377 0.00275818
(×100) Std Dev 0.00084899 0.00168712 0.00216227 0.00134085 0.00229472

T = 1000 Time (s) 9.344 8.984 8.875 9.125 8.844
Rank 1 2 5 3 4
Mean 0.07381342 0.25872908 0.26844525 1.96894358 2.67772016

fsch2.21 Best 0.02179127 0.10570235 0.05043046 1.02841405 1.53375349
(×100) Std Dev 0.03575051 0.10697120 0.11293117 0.44177387 0.61486690

T = 1000 Time (s) 8.469 8.484 8.187 8.266 8.156
Rank 1 2 3 4 5
Mean 0.00000192 0.00008720 0.00091393 19.5603257 18.1898148

fsch2.22 Best 0.00000017 0.00002238 0.00027451 2.06753646 0.77553015
(×10−2) Std Dev 0.00000248 0.00004404 0.00053605 16.7876183 18.3568946
T = 1000 Time (s) 8.759 8.859 8.735 8.797 8.656

Rank 1 2 3 5 4
Overall Rank 1 2 3 4 5

TABLE II
COMPARISON BETWEEN DIFFERENT PSO METHODS FOR BENCHMARK

TEST FUNCTIONS (UNIMODAL FUNCTIONS). ALL RESULTS ARE
AVERAGED ONES OVER 50 RUNS. (RANK: 1-BEST, 5-WORST)

2) Multimodal functions with a few local minima: There
are two multimodal functions with a few local minima used
to do the testing. The results are tabulated in Table III .
The function fkowa is the Kowalik’s function and the optimal
value of this function is around 0.03075×10−2. For this
function, we obtain statistically different results from the
proposed FPSOCM and other PSO methods. Although the
standard deviation of FPSOCM is slightly larger than that
of HPSOWM, it is better than that of other PSO methods.
Furthermore, FPSOCM performs better in terms of mean and
best cost values. Another test function is the Hartman’s family
II function (fhart), of which the optimal value is around
−3.32. From the results, no statistically significant difference
among the PSO methods is seen. They all can reach or get
near to the optimal value. In general, FPSOCM is the best
to tackle multimodal function with a few local minima when
compared with the other methods.

3) Multimodal functions with many local minima: There
are four multimodal functions with many local minima to
be put to the test; the dimension of each function is larger
than that of fkowa and fhart in Section III.B2. The results
are tabulated in Table IV, where fpen, frastri, fgrie, and
fack are the Generalized penalized function, the Generalized
Rastrigin function, the Generalized Griewank’s function and
the Ackley’s function respectively. The optimal value of these
functions are all zero. Table IV shows that if the PSO method
does not involve any cross-mutated operation or mutation

FPSOCM HPSOWM HPSOM HGAPSO IPSO
Mean 0.07911638 0.10829255 0.43140062 0.30502802 0.14730902

fkowa Best 0.03074859 0.05844088 0.06485530 0.04208881 0.04040836
(×10−2) Std Dev 0.28391398 0.21739258 0.98862379 0.64609080 0.39021836
T = 500 Time (s) 3.922 4.188 3.766 3.812 3.733

Rank 1 2 5 4 3
Mean −3.28870509 −3.28394937 −3.25779282 −3.27443792 −3.28186516

fhart Best −3.32199517 −3.32199517 −3.32199516 −3.32199517 −3.32199517
(×100) Std Dev 0.05392485 0.05602387 0.05985758 0.05883683 0.05773915
T = 100 Time (s) 0.859 0.890 0.829 0.844 0.828

Rank 1 2 5 4 3
Overall Rank 1 2 5 4 3

TABLE III
COMPARISON BETWEEN DIFFERENT PSO METHODS FOR BENCHMARK

TEST FUNCTIONS (MULTIMODAL FUNCTION WITH A FEW LOCAL
MINIMA). ALL RESULTS ARE AVERAGED ONES OVER 50 RUNS. (RANK:

1-BEST, 5-WORST)

operation (FPSOCM, HPSOWM and HPSOM), it easily taps
at some local minimum. From the results, the mean cost value,
best cost value, and standard deviation of FPSOCM are better
than those of the other methods. FPSOCM is able to provide
more reliable and high-quality solutions. In general, FPSOCM
is the best to tackle multimodal functions with many local
minima when compared with the other methods.

FPSOCM HPSOWM HPSOM HGAPSO IPSO
Mean 0.17272×10−15 0.84681×10−9 0.97485×10−7 0.057175 739.9839

fpen Best 0.00099×10−15 0.06136×10−9 0.32841×10−7 0.000703 0.002429
(×100) Std Dev 0.33395×10−15 0.58306×10−9 0.89291×10−7 0.065261 2242.842

T = 1000 Time (s) 9.312 9.344 8.954 9.015 8.875
Rank 1 2 3 4 5
Mean 8.26120642 10.2854056 16.5168697 19.3510055 20.7363037

frastri Best 3.98014140 3.98283334 5.96984825 10.1299218 12.6419625
(×100) Std Dev 2.78186223 3.35215436 5.83979208 5.54214275 5.38951031

T = 1000 Time (s) 7.641 7.734 7.234 7.422 7.204
Rank 1 2 3 4 5
Mean 0.00002232 0.10521360 2.83079844 462481.940 4404184.04

fgrie Best 0.00000034 0.02530853 0.38603262 15624.9889 826.156570
(×10−8) Std Dev 0.00002843 0.08540789 3.17252049 482276.158 10251732.3
T = 1000 Time (s) 7.875 7.968 7.662 7.656 7.609

Rank 1 2 3 4 5
Mean 0.00090173 10.6067650 138.680594 228843.746 498939.484

fack Best 0.00007619 4.91853722 66.5416850 10222.0192 1536.83379
(×10−6) Std Dev 0.00069501 3.12032110 38.2603380 390456.528 627243.145
T = 1500 Time (s) 13.703 13.656 13.062 13.328 12.766

Rank 1 2 3 4 5
Overall Rank 1 2 3 4 5

TABLE IV
COMPARISON BETWEEN DIFFERENT PSO METHODS FOR BENCHMARK

TEST FUNCTIONS (MULTIMODAL FUNCTIONS WITH A MANY LOCAL
MINIMA). ALL RESULTS ARE AVERAGED ONES OVER 50 RUNS. (RANK:

1-BEST, 5-WORST)

4) Functions with shift or rotate: Some benchmark test
functions [31]–[33] have drawbacks [32]. For instance, all
variables might have the same numerical value at the global
optimum for different dimensions owing to their symmetry.
Typically, the global optimum is at the origin lying in the
center of the search domain. Some algorithms simply converge
to the center of the search domain that happens to be the
global optimum. Hence, these benchmark test functions might
not be good enough to test an optimization algorithm. To
avoid these drawbacks, five more benchmark test functions
[32], [34] with shift or rotate are used. In these functions, the
variables are made to have different numerical values at the
global optimum point, which is not lying in the center of the
search domain. The details of these functions are introduced
in [32], [34]. The five functions with shift or rotate are: the
Shifted sphere function (fsphere sft), the Shifted Schwefel’s
problem 1.2 (fsch1.2 sft), the Shifted rotated high conditioned
elliptic function (felli sft), the Shifted Rosenbrock’s function
(frosen sft) and the Shifted Rastrigin’s function (frast sft).
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The first four functions are unimodal functions and the last
is multimodal functions. The experimental results are shown
in Table V. From the table, we can see that the proposed
FPSOCM, HPSOWM, HPSOM and HGAPSO show better
performance than IPSO. When the PSO has no cross-mutated
or mutation operation, it is hard to solve the optimization
problems with the global optimum points shifted and rotated,
no matter the problem is unimodal or multimodal. Comparing
FPSOCM, HPSOWM, HPSOM and HGAPSO, the perfor-
mance of FPSOCM is the best in tackling functions with shift
or rotate.

5) P-test: The p-test is a statistical method to evaluate
the significant difference between two algorithms. When the
p-value is less than the significance level (p < 0.05), the
result is said to be statistically significant and the performance
is significantly better than the other methods with a 95%
confidence level. The p-values between FPSOCM and the
other optimization methods are shown in Table VI. We see that
around 86% p-values in this table are less than 0.05. 72% p-
value are less than 0.0001 which means the difference between
two methods is considered to be statically very significant.
One reason that some p-values being higher than 0.05 is that
all the hybrid PSO methods can reach or nearly reach the
optimal point of the function, for example, fhart. There is
92% of p-values in this table being less than 0.05 when fhart
is not included to evaluate the algorithms. In general, the
performance of FPSOCM is significantly better than the other
PSO methods with a 95% confidence level (p < 0.05).

FPSOCM HPSOWM HPSOM HGAPSO IPSO
Mean 0.00001038 0.00688587 1.23955015 100.531580 3843.10×109

fsphere sft Best 0.00000006 0.00049868 0.10838914 12.8393453 130.040×109

(×10−9) Std Dev 0.00002508 0.00650427 1.40738585 180.55471 2970.66×109

T = 1000 Time (s) 24.460 24.188 23.991 24.141 23.857
Rank 1 2 3 4 5
Mean 0.19941990 2.28726897 3.98412058 4.80494487 225.465158

fsch1.2 sft Best 0.02864735 0.06011202 0.53766698 1.09813575 225.465158
(×100) Std Dev 0.12470094 1.38115143 3.94147119 2.53962887 110.157119

T = 1500 Time (s) 43.520 44.047 43.985 44.297 43.189
Rank 1 2 3 4 5
Mean 0.99057319 1.24225443 1.2902117 1.30362559 2.65637576

felli sft Best 0.01313945 0.03160666 0.10001893 0.15561725 0.09915978
(×105) Std Dev 0.91490110 1.08794832 1.15561726 0.83779842 4.30836229

T = 2000 Time (s) 80.875 79.578 79.343 80.983 79.031
Rank 1 2 3 4 5
Mean 0.16560902 0.41886823 1.27705404 1.78652083 452295.412

frosen sft Best 0.00031570 0.01480565 0.00721032 0.01287281 15.0019863
(×103) Std Dev 0.32912649 0.53806929 3.48283223 4.11598323 605375.474
T = 500 Time (s) 12.672 12.766 12.439 12.578 12.462

Rank 1 2 3 4 5
Mean 55.89766296 110.844452 102.598313 136.327427 122.281957

frast sft Best 14.3241485 9.22564214 23.125384 16.8775564 67.5286722
(×100) Std Dev 40.7798978 51.4620399 55.2994743 54.8496199 34.7743748

T = 1000 Time (s) 40.045 38.811 38.719 38.813 38.546
Rank 1 3 2 5 4

Overall Rank 1 2 3 4 5

TABLE V
COMPARISON BETWEEN DIFFERENT PSO METHODS FOR BENCHMARK

TEST FUNCTIONS (FUNCTIONS WITH SHIFT AND ROTATE). ALL RESULTS
ARE AVERAGED ONES OVER 50 RUNS. (RANK: 1-BEST, 5-WORST)

C. Comparison between fuzzy inertia weight and linear inertia
weight

In this section, we give an analysis based on experimental
results to illustrate the improvement brought by the fuzzy
inertia weight ω̃. The experimental settings are the same as
before, except the probability of cross-mutated operation pcm
is set at 0. By using this setting, no particle will undergo the

Function p-value between p-value between p-value between p-value between
FPSOCM and FPSOCM and FPSOCM and FPSOCM and
HPSOWM HPSOM HGAPSO IPSO

fsphere <0.0001 <0.0001 <0.0001 <0.0001
frosen <0.0001 <0.0001 <0.0001 <0.0001
fstep <0.0001 <0.0001 <0.0001 <0.0001
fquart 0.0059 <0.0001 <0.0001 <0.0001
fsch2.21 <0.0001 <0.0001 <0.0001 <0.0001
fsch2.22 <0.0001 <0.0001 <0.0001 <0.0001
fkowa 0.5646 0.0193 0.0283 0.3222
fhart 0.6691 0.0092 0.2136 0.5447
fpen <0.0001 <0.0001 <0.0001 0.0240
frastri 0.0019 <0.0001 <0.0001 <0.0001
fgrie <0.0001 <0.0001 <0.0001 0.0038
fack <0.0001 <0.0001 0.0001 <0.0001
fsphere sft <0.0001 <0.0001 <0.0001 <0.0001
fsch1.2 sft <0.0001 <0.0001 <0.0001 <0.0001
felli sft 0.2172 0.1562 0.0813 0.0103
frosen sft 0.0066 0.0290 0.0077 <0.0001
frast sft <0.0001 <0.0001 <0.0001 <0.0001

TABLE VI
P-VALUE BETWEEN FPSOCM AND THE OTHER PSO METHODS.

CM operation. Hence, the performance of the fuzzy inertia
weight can be evaluated. For comparison purpose, IPSO uses
a linear inertia weight ω which is employed without using
any hybrid operation. The experimental results (mean cost
values) on using the fuzzy inertia weight and the linear inertia
weight for all 17 benchmark test functions are summarized
in Table VII. We can see that except fsch2.21, all functions
using the fuzzy inertia weight give better mean cost values. In
conclusion, the searching performance of PSO with the fuzzy
inertia weight is improved. We can see also the effectiveness
of the CM operation. Comparing Table II to V (mean values),
the performance of fuzzy PSO with CM operation is better
than that without CM operation.

Function fuzzy inertia weight Linear inertia weight
fsphere 2200.00337 3901.00079
frosen 0.9091225 3.40327459
fstep 29.9152 32.0799
fquart 0.00635508 0.00706537
fsch2.21 2.71231265 2.67772016
fsch2.22 0.12485042 0.18189815
fkowa 0.00051884 0.00147309
fhart −3.28201027 −3.28186516
fpen 580.2509 739.9839

frastri 18.8930033 20.7363037
fgrie 0.00221422 0.04404187
fack 0.30051016 0.49893948

fsphere sft 2861.191 3843.100
fsch1.2 sft 192.317624 225.465158
felli sft 1.443740×105 2.656375×105

frosen sft 372857×103 452295×103

frast sft 116.416818 122.281957

TABLE VII
COMPARISON OF MEAN COST VALUES BETWEEN PSO WITH FUZZY

INERTIA WEIGHT AND PSO WITH LINEAR INERTIA WEIGHT. ALL RESULTS
ARE AVERAGED ONES OVER 50 RUNS.

D. Sensitivity of the parameter pcm

FPSOCM seeks a balance between the exploration of new
regions and the exploitation of the already sampled regions
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in the search space. This balance, which critically affects the
performance of FPSOCM, is governed by the right choice of
the control parameter value: the probability of CM operation
(pcm). Increasing the probability of the CM operation (pcm)
tends to transform the search into a random search such that
when pcm = 1, all elements of particles in the swarm will
mutate under the CM operation. This probability gives us an
expected number (pcm × γ × κ) of elements of particles that
undergo the CM operation. In other words, the value of pcm
depends on the desired number of element of particles that
undergo the CM operation, which is application dependent.

Normally, when the dimension of the search space is very
low (say, the number of elements in a particle is less than 5),
pcm can be set at 0.1 to 0.2 (10-20% elements of particles will
undergo the CM operation). When the dimension is around 5-
10, pcm can be set at 0.01 to 0.05 (1-5% elements of particles
will undergo the CM operation). When the dimension is in the
range of 11 to 100, pcm can be set at 0.001 to 0.005 (0.1-0.5%
elements of particles will undergo the CM operation). Lastly,
when the dimension is in the range of 101 to 1000, pcm can be
set at 0.0001 to 0.0005 (0.01-0.05% elements of particles will
undergo the CM operation). In principle, when the dimension
is high, pcm should be set to a small value. It is because if
the dimension is high and pcm is set to a larger value, the
absolute number of elements of particles undergoing the CM
operation will be large. It will increase the searching time
and more importantly destroy the current information about
the application in each time of iteration, as the elements of
particles are randomly assigned.

Generally, by properly choosing the value of pcm, the appro-
priate ratio of the number of elements of particles undergoing
the CM operation to the swarm size can be maintained to
prevent the searching process from turning to a random search-
ing one. The choices of the values of pcm for all the above
benchmark functions and the following numerical examples in
this paper are based on this selection criterion, and set by trial
and error through experiments for good performance.

The mean cost values offered by FPSOCM with different
values of pcm for some benchmark test functions are tabulated
in Table VIII. The functions are tested by using pcm = 0.05,
0.01, 0.005, 0.001 and 0.0005. Results show that the value
of the parameter pcm is sensitive to the performance of the
searching process. The dimension of the functions fsch2.22,
fpen, fack, and fsch1.2 sft is in the range of 11-100, we can
see that the best mean cost value of these functions are given
when pcm is in the range of 0.001 to 0.005. It meets the
selection criterion. On the other hand, the dimension of the
functions frosen and felli sft is in the range of 5-10, we can
see that the best mean cost values of these two functions are
given when pcm is set at 0.01, meeting the selection criterion.
It should be noted that no formal method is available to choose
the value of the pcm; its value depends on the characteristics
of the optimization problem. We can see that the dimension of
the function frast sft is 30 and the best mean value is given
when pcm = 0.01; the selection criterion is not met. Thus, the
selection criterion above just gives an idea to choose the range
of the pcm value for general optimization problems.

Function pcm = 0.05 pcm = 0.01 pcm = 0.005 pcm = 0.001 pcm = 0.0005

frosen 1.2879 0.6095 0.9638 2.4041 3.2133
fsch2.22 0.4085×10−2 0.0049×10−6 0.155×10−6 0.0192×10−6 0.1756×10−2

fpen 0.2203 3.0092×10−6 0.9167×10−9 0.1727×10−15 6.5220×10−15

fack 0.4269 0.9920×10−3 8.4530×10−6 0.9017×10−9 1.2786×10−9

fsch1.2 sft 1.0236 0.8001 0.1994 3.2658 106.8590
felli sft 1.4980×105 0.9906×105 1.2307×105 1.4598×105 1.6824×105

frast sft 59.6823 55.8977 64.0543 83.4474 75.8785

TABLE VIII
SENSITIVITY OF pcm .

IV. REAL WORLD APPLICATIONS

In this section, two real world applications namely economic
load dispatch and email network services, are used to illus-
trate the performance and the applicability of the proposed
FPSOCM.

A. Application I: Economic Load Dispatch

In this section, an industrial application example on eco-
nomic load dispatch (ELD) was used to shown in the perfor-
mance of different PSOs. The ELD aims to schedule power
generator outputs with respect to the load demands, and to
operate a power system economically [35]. Power generated
for the ELD are nonlinear due to the valve-point loadings
and rate limits. Hence, the problem of ELD is multimodal,
discontinuous and highly nonlinear, and PSO has commonly
been used to solve ELD problem.

1) Mathematical model for ELD: The economic load dis-
patch with a valve-point loading problem concerns the mini-
mization of the following objective function:

Min
n∑

i=1

Ci(PLi) (16)

where Ci(PLi) is the operation fuel cost of generator i, and
n denotes the number of generators. The problem is subject
to balance constraints and generating capacity constraints as
follows:

D =
n∑

i=1

PLi − PLoss (17)

PLi,min ≤ PLi ≤ PLi,max (18)

where D is the load demand, PLi is the output power of the
i-th generator, PLoss is the transmission loss, PLi,max and
PLi,min are the maximum and minimum output powers of the
i-th generator respectively. The operation fuel cost function
with valve-point loadings of the generators is given by,

Ci(PLi) = aiP
2
Li

+ biPLi + ci

+ ∥ei × sin(fi × (PLi,min − PLi))∥ (19)

where ai ,bi, and ci are coefficients of the cost curve of the i-th
generator, ei and fi are coefficients of the valve-point loadings.
(The generating units with multivalve steam turbines exhibit
a greater variation in the fuel-cost functions. The valve-point
effects introduce ripples in the heat-rate curves.)
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2) PSO for the ELD: To solve the ELD problem by PSO,
the particle is defined as follows:

x = [PL1PL2PL3 ...PLn−1 ], (20)

where n denotes the number of generators. From (17), we
have,

PLn = D −
n−1∑
i=1

PLi + PLoss (21)

In this example, the power loss is not considered. Therefore,

PLn = D −
n−1∑
i=1

PLi (22)

To ensure PLn falls within the range [PLi,min PLi,max] , the
following conditions are considered:

if PLn > PLn,max

{
PL1 = PL1 + (PLn − PLn,max)

PLn = PLn,max

(23)

if PLn < PLn,max

{
PL1 = PL1 − (PLn,min − PLn)

PLn = PLn,min

(24)

It should be noted from (23) and (24) that if the value of PL1

is also outside the constraint boundary. The exceeding portion
of the power will be shared by other generators in order to
make sure that all generators’ output power is within the safety
range.

3) Result and analysis: The PSO methods were applied to
a 40-generator system, which was adopted as an example in
[35]. The system is a very large one with nonlinearities. The
load demand (D) is 10500MW. For comparison, FPSOCM,
HPSOWM, HPSOM, HGAPSO, and IPSO were used to
minimize the operation fuel cost in (19). The set values of
the parameters of the PSO methods were basically the same
as those in Section III(A). The number of iteration is 1000. The
probability of mutation operation for HPSOWM, HPSOM and
HGAPSO was set at 0.1. The statistical results are tabulated
in Table IX, and the comparison of the convergence rate
between different PSO methods is shown in Fig. 2. As can
be seen from the table and figure, the mean and the best
values offered by FPSOCM are the best. In addition, the
convergence rate of FPSOCM is the highest. Furthermore, the
smaller standard deviation implies a more reliable solution.
Lastly, all p-values are less than 0.0001 which means that the
performance of FPSOCM is statistically significant when com-
pared with the other PSO methods. For example, FPSOCM
gives a cost value that is statistically significant as compared
with second best PSO method, HPSOWM (121790.16±77.37
vs 122608.60±524.60 (p < 0.0001)).

B. Application II: self-provisioning of communication network
services

1) Background: In this section, a telecommunication prob-
lem on self-provisioning of communication email services is
used to further evaluate the performance of the FPSOCM.
A four-layer networking structure is inspired from the infor-
mation framework of Telecommunication Management Forum

FPSOCM HPSOWM HPSOM HGAPSO IPSO
Mean 121790.16 122608.60 123267.46 123542.48 124984.88
Best 121633.62 121697.24 121846.52 121764.34 122740.25
Std Dev 77.37 524.60 903.30 826.55 1043.33
p-value – < 0.0001 < 0.0001 < 0.0001 < 0.0001

TABLE IX
COMPARISON BETWEEN DIFFERENT PSO METHODS FOR ELD. ALL

RESULTS ARE AVERAGED ONES OVER 50 RUNS (p-VALUE ILLUSTRATE THE
SIGNIFICANT DIFFERENCE BETWEEN FPSOCM AND THE OTHER

METHODS).
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Fig. 2. Comparison of the convergence rate between different PSO
methods.

(TMF) [36]. A graph theory-based model is created to guide
the email-box service configuration process. The managed
network elements (NEs) are categorized into classes with a
number of instantiated objects in the multiple layers, which
are 1) email product layer (denoted as P below); 2) email
component layer (denoted as C below); 3) email services layer
(denoted as S below); and 4) email resources layer (denoted
as R below). The problem is to make the service activation
process become seamlessly self-sustained and as a result fewer
human operators’ interventions are required.

Essentially, from the operators and end-user’s points of
view, networks are designed and implemented for providing
usable and configurable services [37]. Reducing the costs
within the provisioning process is a major concern in the
network management area. It is of vital importance to consume
less cost to activate and configure services with necessary
NEs. Provisioning of services requires a number of resources
and processes to be coordinated. A number of sub-costs
are therefore considered into the process. These costs are
determined by many aspects, such as NEs’ interdependen-
cies, servers capacity, link utilization status, bandwidth, router
status, CPU/Memory usage, and so on. These work together
and exhibit a multimodal, nonlinear network behavior of
high complexity with a large number of parameters to be
considered, optimized and balanced.

2) Mathematical model for the self-provisioning of commu-
nication email network services: The cost-based email service
configuration problem can be formulated with the following
objective function:

minZ =

ñr∑
l=1

ñs∑
k=1

ñc∑
i∈Np,j=1

 mijfPiCj (·)
+nj,kfCjSk

(·)
+ok,lfSkRl

(·)

 (25)
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and subject to the following constraints:

a)
∑ñp

i=1 fPiCj (·) ≤
ñc∑
j=1

ω̄nj ;

b)
∑ñc

j=1 fCjSk
(·) ≤

ñs∑
k=1

ω̄nk
;

c)
∑ñs

k=1 fSkRl
(·) ≤

ñr∑
l=1

ω̄nl

where Z is the overall configuration cost across the
four layer networking structure for NEs i, j, k and l;
ñr, ñs, and ñc denote the number of the correspond-
ing NEs; fPiCj (·), fCjSk

(·), and fSkRl
(·) denote the cor-

responding total costs, which consist of a number of
subcosts including the Base Cost (BC), Variable Cost
(V C), and φ (ωn,i,k(t), Rn,i,k(t), Cn,i(t), λj,k)∈ Rn which
is the link cost for the components in the resource layer.
CPU/Memory usage, bandwidth, capacity are all factors
considered into the calculation of this cost. Specifically,
ωn,i,k(t), Rn,i,k(t), Cn,i(t), λj,k are referring to the following
costs respectively: 1) Traffic Intensity Condition, 2) Node
Capacity Level, 3) Link Capacity Level and 4) Delay Time
[38]–[40].

This four layer operational structure has Np email product
instances for cp classes of products; ñc email component
instances for cc classes of product components; ñs email
service instances for cs classes of services; and ñr email
resource instances for cr classes of resources. The cost
elements among instances between layers are depicted as
(ñp × ñc), (ñc × ñs), (ñs × ñr).
PiC,CjSk,and SkRl describe the connections between the

layers as described above. mij , nj,k, ok,l are the weights for
the cost across the layers P to C, layers C to S, and layers
S to R respectively. They are used as a way to further adjust
the overall cost within constrained communication links. The
objective is to minimize this configuration cost, and therefore
find a suitable configuration path with necessary NEs activated
for services.

The PSO particle is defined as X = [M,N,O], where
M,N,O are the vector representation for individual weights
mij , nj,k, ok,l respectively. As indicated in (25), the parame-
ters mij , nj,k,and ok,l are to be tuned by PSOs. The objective
is to find the optimal parameters of mij , nj,k, and ok,l to
minimize the overall configuration cost Z.

3) Result and analysis: We applied FPSOCM to minimize
the configuration cost value as given in (25). To simplify the
experiment, we assume each layer has only 4 classes, and each
class only has a maximum of four instantiated objects, i.e.
Np = 4. The following parameter values are used in this ap-
plication: ñr = 16, ñs = 16, ñc = 16, cp = 1, cc = 4,cs = 4,
and cr = 4. For comparison HPSOWM, HPSOM, HGAPSO,
and IPSO are used to minimize the overall configuration cost
given in (25). The set values of the parameters of the PSO
methods are basically the same as those in Section III(A).
The number of iteration used in all PSO methods is 500. The
probability of mutation operation for HPSOWM, HPSOM and
HGAPSO is set at 0.5. The statistical results are tabulated in
Table X, and the comparison of the convergence rate between
different PSO methods is shown in Fig. 3. They show that the
mean and the best values offered by FPSOCM are the best.

It gives the smallest overall configuration cost. Referring to
Fig. 3, FPSOCM gives a faster convergence than the other
methods. Furthermore, the p-values are less than 0.005 for
HPSOM, HGAPSO, and IPSO which means that the result
of FPSOCM is very statistically significant. To compare with
HPSOWM, FPSOCM gives a cost value that is statistically
significant (27±1.56 vs 27.56±1.45 (p = 0.0718)) with a 93%
confidence level. Hence, FPSOCM is the best method among
all the tested PSO methods for solving this telecommunication
problem.

FPSOCM HPSOWM HPSOM HGAPSO IPSO
Mean 27.00 27.56 28.00 28.44 28.24
Best 21 22 23 24 24
Std Dev 1.56 1.45 1.59 1.68 1.60
p-value – 0.0718 0.0049 < 0.0001 0.0003

TABLE X
COMPARISON BETWEEN DIFFERENT PSO METHODS FOR THE

SELF-PROVISIONING OF COMMUNICATION NETWORK SERVICES. ALL
RESULTS ARE AVERAGED ONES OVER 50 RUNS (p-VALUE ILLUSTRATES

THE SIGNIFICANT DIFFERENCE BETWEEN FPSOCM AND THE OTHER
METHODS).
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Fig. 3. Comparison of the convergence rate between different PSO
methods.

V. CONCLUSION

In this paper, we have proposed a novel particle swarm
optimization named FPSOCM that incorporates an adaptive
inertia weight and a new cross-mutated operation. The value of
the weight and the parameter for the cross-mutated operation
are determined by a set of fuzzy rules. The new cross-mutated
operation is used to force the particle escaping from the
local optimum. With the fuzzy engine added, the solution
quality obtained by the PSO is improved. On solving a suite
of benchmark test functions, FPSOCM gives better results
than the other recently developed PSO methods, including
HPSOWM, HPSOM, HGAPSO, HGPSO and IPSO. Also,
FPSOCM provides a faster convergence than all these PSO
methods. On applying to real world applications, FPSOCM is
found to be successful to 1) minimize the cost for economic
load dispatch and 2) minimize the overall configuration cost
for email network services. FPSOCM also outperforms the
other PSO methods. Hence, better and more robust service
quality can be generated using the proposed FPSOCM com-
pared with the other tested PSO algorithms. These results also
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indicate that the proposed FPSOCM is a good candidate on
optimizing the quality and robustness on product or service
engineering design which are generally multi-optima or non-
convex natures. One limitation in this study is that choosing
the suitable parameter values for the PSO is quite difficult.
Most parameter values are determined by trial and error
through experiments. The dynamic cross-mutated rate could be
further studied to reduce the time for selecting a suitable rate
for applications. In addition, an online fuzzy inference system
can be developed to determine the fuzzy rules dynamically
during learning.
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