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Abstract: In this work, an effort is made to characterize seven bearing states depending on the energy 

entropy of Intrinsic Mode Functions (IMFs) resulted from the Empirical Modes Decomposition (EMD). 

Three run-to-failure bearing vibration signals representing different defects either degraded or different 

failing components (roller, inner race and outer race) with healthy state lead to seven bearing states 

under study. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are used for 

feature reduction. Then, six classification scenarios are processed via a Probabilistic Neural Network 

(PNN) and a Simplified Fuzzy Adaptive resonance theory Map (SFAM) neural network. In other words, 

the three extracted feature data bases (EMD, PCA and LDA features) are processed firstly with SFAM 

and secondly with a combination of PNN-SFAM. The computation of classification accuracy and 

scattering criterion for each scenario shows that the EMD-LDA-PNN-SFAM combination is the suitable 

strategy for online bearing fault diagnosis. The proposed methodology reveals better generalization 

capability compared to previous works and it’s validated by an online bearing fault diagnosis. The 

proposed strategy can be applied for the decision making of several assets. 

 

Keywords: Empirical Mode Decomposition (EMD), Linear Discriminant Analysis (LDA), Principal 

Component Analysis (PCA), Probabilistic Neural Network (PNN), Scatter matrix, Simplified Fuzzy 

Adaptive resonance theory Map (SFAM). 
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1. Introduction 

Anomalous operating condition and fault detection of industrial assets is the core of process engineers in 

industry. Effective detection ensures the product quality improvement and reduces the cost and the time 

of repair. Consequently, industrial assets safety and reliability are very important to ensure the continuity 

of production, to improve process operation, to increase plant throughput, to reduce process downtime 

and to comply with increasingly stringent environmental rules and safety regulations (Lau et al., 2013). 

Rolling Element Bearing (REB) is the most used solution for industrial machinery guiding in rotation. 

This critical component requires running with high reliability to decrease fault occurrences and fatal 

breakdowns of machineries (Lei et al., 2007; Konar and Chattopadhyay, 2011). It is well known that 

bearing defects are one of the most common fault sources in induction machineries (about 40-50%) 

(Widodo and Yang, 2007; Frosini and Bassi, 2010). Failure surveys by the electric power research 

institute indicate that bearing-related faults are about 40% among the most frequent faults in induction 

motors (Bellini et al., 2008). Therefore, accurate strategies for REB defect detection are a trivial task 

nowadays in the industry. 

Over the past few years, various signal processing methods have been proposed to detect and diagnose 

bearing defects. These methods may be roughly classified into vibration and acoustic measurements, 

temperature measurements and wear debris analysis (Nandi et al., 2005). The mechanical bearing 

vibration signals remain the most immediate, simplest, and richest source of information for 

understanding phenomena related to bearing defects (Seungdeog et al., 2011; Žvokelj et al., 2011). 

Certainly, vibration analysis is a powerful source to extract interesting information and to apply 

appropriate techniques. However, REB accelerations are considered as non-stationary and nonlinear 

(Randall and Antoni, 2011). Besides, noises present a serious trouble in the study of this type of signals 

(Zhang and Randall, 2009). Moreover, the relatively weak bearing signals are always affected by quite 

stronger signals (gear meshing, unbalance, bars, …) (Randall and Antoni, 2011). 

Several efforts based on vibration signals have been recently proposed in the open literature to deal with 

the diagnosis of bearing faults. When a fault occurs on one bearing surface, the acceleration is 

characterized by the presence of periodic repetitive sharp peaks and further modulated by a number of 

harmonic frequencies (Zhang and Randall, 2009). However, interesting information is often contained in 

the periodicity of impacts, rather than in the rest of the signal frequency content. Thereby, vibration 
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signals are non-stationary and always masked by machine noise (Randall and Antoni, 2011). For this 

reason, conventional vibration analysis techniques, which were successfully employed for stationary 

signals such as fast Fourier transform, haven’t provided good and significant results based on REB 

vibration signals (Braun and Feldman, 2011).  

In the literature, non-stationary or transient signals are often decomposed into sub-bands where 

stationary and linear characteristics could be obtained and fault patterns are easily extracted (Priestley, 

1988). Consequently, Wavelet Transforms (WT) (Wang et al., 2015), Empirical Mode Decomposition 

(EMD) (Liu et al., 2015), Local Characteristic-scale Decomposition (LCD) (Zheng et al., 2013a), 

Ensemble Empirical Mode Decomposition (Wang et al., 2014), and Generalized Empirical Mode 

Decomposition (Zheng et al., 2013b) were widely used for the processing of bearing vibration signals in 

the presence of nonlinear and non-stationary data. By analyzing some series of decomposed REB signals 

based on WT and EMD, it was demonstrated that the energy entropy changes in different frequency 

bands when a bearing fault occurs. Besides, EMD is more highlighted than WT in terms of mean fault 

characterization (Tavakkoli and Teshnehlab, 2007).  

After decomposing bearing accelerations into some linear and stationary signals, it is recommended to 

extract the most useful features. Bearing fault diagnosis is not an easy task, it is essentially a problem of 

pattern recognition. The most effective features and accurate classifiers are needed to obtain higher 

diagnostic accuracy (Li and Zhang, 2011). 

Several previous works based on feature extraction and classification techniques have been proposed for 

bearing fault diagnosis. Yang et al have used the discrete WT to decompose vibration and acoustic 

signals into different frequency levels. Then, some statistical measures were extracted from the first-four 

levels. Also, an Artificial Neural Networks (ANNs) combined with a Support Vector Machine (SVM) 

were used to classify the faults of small reciprocating compressor used in refrigerators (Yang et al., 

2007). In (Lin, 2010), the EEMD was applied to decompose vibration signals into different Intrinsic 

Mode Functions (IMFs) and then the Hilbert spectrum was computed to extract bearing fault features. In 

(Bin et al., 2012), authors have demonstrated that the WT generally has some shortcomings and 

difficulties in selecting suitable basic function because there are no standards or general selection rules 

for different tasks. However, the EMD is an automated method that extracts easily failure patterns thanks 

to the use of a wide scale of frequency. In (Saidi et al., 2014), a combination of EMD and bi-spectrum 

was presented. The computation of the bi-spectrum was based on the first IMF which contains more 



4 

 

information. The proposed combination was promising but it needs always an expert intervention for the 

analyses of the bi-spectrum plot. Unfortunately, all these methods presented an offline bearing fault 

detection. Generally, some holes were created in the tested REB and subsequently the fault detection 

efficiency of the proposed method was given. In this case, the bearing vibration signals increase and the 

fault detection task become effortless. In an industrial environment, REBs are in continuous rotation 

where fault characteristics are always submerged and hidden by noises. So, it is recommended to 

investigate bearing defects online by using run-to-failure histories. 

The online bearing monitoring is very important to avoid unexpected breakdowns where the breakdown 

of a single machine can halt the production of the entire process chain. However, investigations related 

to naturally induced and naturally progressed defects of REBs are relatively scarce. In fact, online 

detection of REB degradation for naturally progressing defect in damage stages is not available in the 

literature (Shakya et al., 2014). Recently, some approaches have been proposed for the online bearing 

health monitoring. In (Pan et al., 2014), the authors have proposed a new approach based on dynamic 

fuzzy neural networks where only consequent parameters were updated online. In (Shakya et al., 2014), 

various damage stages for naturally progressing REB defect were given online. For this, time domain, 

frequency domain and time-frequency domain were together under study. The Mahalanobis distance was 

used as a trend parameter for bearing fault diagnosis. In (Loutas et al., 2011), the combination of 

vibration, acoustic emission and oil debris measures is used in an online condition monitoring of 

bearings and gearboxes. Several techniques were combined such as fusion technique, Principal 

Component Analysis (PCA) and Independent Component Analysis (ICA) to identify different damage 

modes. The computational time was not discussed in this work and with respect the definition of failure 

thresholds was arbitrary. In (Ben Ali et al., 2015b), the combination of traditional statistical features and 

EMD energy entropy were jointed with the back propagation neural network for an online bearing fault 

diagnosis. The classification results were relatively low (93%) that is why the authors have proposed a 

health index for a more reliable online monitoring. 

In this paper, an attempt is made to diagnose the state of bearings using a new nearly online method. The 

proposed method is based on the EMD feature extraction, linear feature reduction and feature 

classification using neural networks. The validation of the proposed method is based on bearing run-to-

failure histories. This method is able to detect online perfectly the state of the bearing. The remainder of 

this paper is organized as follows: Section 2 is devoted to describing the used techniques in this work. 
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This section describes the different steps of the EMD method. Also, a brief description of linear 

discriminant analysis and principal component analysis algorithms is given. Besides, this section details 

the different steps to implement the used neural networks in this work. Section 3 is dedicated to the 

experimental results by analyzing the proposed feature extraction, feature reduction and feature 

classification techniques. Section 4 gives a numerical analysis of the most effective features based on a 

mathematical criterion. Also, a good discussion and analysis of the experimental results by comparing 

the performances of the proposed method with some previous works is provided in this section. Finally, 

conclusions and prospects of this work are given in Section 5. 

2. Methods 

2.1 Empirical Mode Decomposition (EMD) 

EMD algorithm is developed from the simple assumption that any signal consists of different simple 

intrinsic modes of oscillations called Intrinsic Mode Functions (IMFs). This adaptive decomposition 

method is especially applicable to the analysis of nonlinear and non-stationary signals (Yu et al., 2006).  

By the definition, any signal x(t) can be decomposed as detailed in Table 1 (Huang et al., 2011). 

The step (G) in Table 1 presents a stoppage criterion for the EMD which is one of the weaknesses of this 

algorithm (Lei et al., 2013). Huang et al proposed a robust way to access the IMF component of a signal 

as “Sifting process”. The sifting process is stopped by limiting the size of the standard deviation (SD), 

computed from two consecutive results as (Huang et al., 1998): 

 
0.2 0.3

2
T

k-1 k

D 2
t=0 k-1

h (t)- h (t)
S =  

h (t)
                                                                  (1) 

Numerous publications of the EMD for bearing fault diagnosis have shown several advantages and very 

encouraging results. Nowadays, EMD is one of the most powerful advanced signal processing 

techniques and it has been extensively studied and widely applied in fault diagnosis of rotating 

machinery. To achieve better results, it is recommended to combine the EMD with other signal 

processing techniques or artificial intelligent techniques for an effective strategy for bearing diagnosis 

(Lei et al., 2013). 
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2.2 Brief description of principal component analysis 

In literature, Principal Component Analysis (PCA) is the most used technique for feature reduction 

which means transforming the original features into a lower dimensional space. PCA, as a linear 

technique, is a quantitatively rigorous method for achieving data dimensionality reduction of the 

extracted features. The method generates a new set of variables, called Principal Components (PCs), 

which maximize the variance of the projected vectors. Each PC is a linear combination of the original 

variables. All PCs are orthogonal to each other, so there is no redundant information. The PCs are a 

whole of an orthogonal basis for the data space. Thus, the first PC consists of the high variability, the 

second PC consists of the next highest variability and so on for other directions. The first few 

components are kept and others with less variability are discarded (Widodo et al., 2007). In this work, 

the PCA algorithm will be used to eliminate the non significant features in the recorded vibration 

signals. The step by step procedure of PCA is provided below. Let’s say we have N observations of M-

dimensional data. 

 Step 1: To perform PCA we should first compute the covariance matrix ΣR
MM

; Σ=E{(x- x )(x-

x )
T
}, where x is the given signal, x  is its mean vector, and E{.} is an average over an ensemble of N 

samples. 

  Step 2: Find matrix Λ of eigenvectors and diagonal elements of matrix D as eigenvalues of 

covariance matrix Σ as given by, Λ
-1

ΣΛ= D. 

 Step 3: Sort the eigenvectors of PCs in the decreasing order of importance of eigenvalues in D. 

 Step 4: Project the data into the directions of sorted eigenvectors by taking the dot product between 

the given data and eigenvectors. 

 Step 5: Select the first few principal components depending on the containment of a given percentage 

of variability (like 95% or 98% depending on the problem). 

2.3 Brief look into linear discriminant analysis 

Linear Discriminant Analysis (LDA) is a mathematical transformation based on a linear discriminant 

combination. As the PCA method, LDA is used to reduce features by transforming the original features 

into a lower dimensional space. Typically, LDA is used to analyze the original dataset and to produce K-

1 independent components where K is the number of classes. Generally, LDA dataset preprocessing is 

more suitable for classification tasks than PCA (Mouelhi et al., 2013): PCA tends to minimize feature 

variances of the same class although LDA tends to minimize feature variances of the same class and to 
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maximize feature variances of different classes. The aim of LDA is to create new variables by 

maximizing discrimination between all classes. New variables maximize the differences between the 

predefined classes and minimize differences in the same class (Subasi and Gursoy, 2010). 

2.4 Probabilistic neural network 

The first formulation of the Probabilistic Neural Network (PNN) was by Specht in 1990. The different 

steps of PNN algorithm are well described in (Specht, 1990). Brief, PNN is based on the computing of 

Bayes statistics for two categories (A and B). Consequently, for each p dimensional vector x, the state θ 

could either be θA or θB. The state decision is based on the Bayes rule as follow: 

 If    A A A B B Bh l f x h l f x then   Ad x  : State A. 

 Contrarily, if    A A A B B Bh l f x h l f x then   Bd x  : State B. 

where fA(x) and fB(x) are respectively the probability density functions of the category A and B, lA and lB 

are the loss functions associated respectively with the decision d(x)=θB and d(x)=θA, hA is the prior 

probability of category A pattern occurrences and vice-versa for hB. We should note that the boundary of 

density probabilities A and B is given by:  

   B B
A B

A A

h l
f x f x

h l
                                                                                       (2) 

As shown in Fig. 1, PNN consists of four layers: the input layer, the pattern layer, the summation layer 

and the decision layer. The p nodes in the input layer consist of the p input vector components. The 

pattern layer is designed to receive all components of the input vector x. For each patter node i, the 

product Zi=xWi is computed. To deal with the nonlinear feature distributions for any classification task, a 

nonlinear function, where x and iW  should be normalized to the unit length, is introduced as follow:  

   
T

i ii

2

W X W XZ 1
exp exp

2 2

   
   

    

                                                    (3) 

After computing the nonlinear function for all nodes, this function will be transferred to the summation 

layer. Afterwards, summation units sum pattern unit inputs which correspond to the desired category. 
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The decision layer consists of two neurons that produce binary outputs taking into account the variable 

weight Ck with the following mathematical expression: 

k k k

k k k

B B A

k

A A B

h l n
C

h l n
                                                                                              (4) 

where nA and nB is the number of training patterns from the category A and B respectively. More details 

are given by (Specht, 1990). 

2.5 Simplified Fuzzy Adaptive Resonance Theory Map neural network (SFAM) 

The Simplified Fuzzy Adaptive Resonance Theory map (SFAM) neural network is a fast, incremental, 

supervised learning system for analog inputs (Ben Ali et al., 2014). In 1993, Kasuba proposed the SFAM 

network which is a simplification of Fuzzy ARTMAP (Venkatesan and Suresh., 2009). This neural 

network is a step ahead of Fuzzy ARTMAP in reducing the computation and architectural redundancy. 

As illustrates Fig. 2, the SFAM is formed of three layers; the input layer F1, the competitive layer F2 and 

the output layer F
ab

.  

The activity patterns of layers F1 and F2 are fully interconnected. Each neuron is initially connected to 

every neuron on the other layer. All connections are weighted by synaptic weights lying between 0 and 1. 

Each neuron of the F2 layer represents one category formed by the network and it is characterized by its 

weight vector Wj (j is the index of the neuron). The weight vector’s size is equal to the dimension M of 

layer F1. In the training process, if the weights of a neuron are not modified, this neuron is called 

uncommitted. Inversely, once a neuron’s weights have been modified, this neuron is named committed. 

SFAM is based on a form of normalization called complement coding. The operation consists on taking 

the input vector and concatenating it with its complement. The resulting vector should be presented to 

the layer F1. Therefore, the dimension M of layer F1 is equal to the double of the input vector’s 

dimension (M=2L’).  

The F
ab

 layer is connected with the competitive layer F2 by the W
ab

 weights to locate the appropriate 

class t of the input vector in the test mode.  

The SFAM has a self-determining architecture: the training vectors are presented to the network, the 

output category nodes are grown and assigned to a particular class. If there is a new category of input 
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training example, a new output category node is grown and its weights are set equal to the elements of 

the complement-coded input vector I.  

For further applied training vectors, the subset hood of the weight vectors to the complement coded input 

is computed using the activation function: 

 
j

j

j

I W
T I

W





                                                                                            (5) 

where : 

 ^ is the fuzzy AND operator; 

 α is a very small value (typically 510 ); 

 j is the number of the current output category node. 

The node with the highest Tj(I), called the “winner”, is initially chosen (G) to represent the input vector. 

To know if associating WG with I is a good match, the matching function MF(I,WG) between the two is 

calculated as : 

  G

G

I W
MF I, W

I


                                                                                    (6)  

The matching function should be compared to the vigilance parameter ρ. 

 If MF(I,WG) ≤ ρ, the winner G is disabled and the next most activated node is selected. 

 If MF(I,WG)>ρ, a category agreement test between the winner and the input example is 

performed. 

If the categories disagree, the vigilance ρ is increased by a small amount α and the winner is disabled. If 

they agree the SFAM is considered in a state of resonance and the weight vector WG is updated using the 

following formula: 

   new old old

G G GW 1 W I W                                                                   (7) 

where β is the learning rate introduced to select the mode of learning as follow: 

 If β=1, the fast learning mode is selected with just one iteration of the training data. 

 Whereas if 0<β<1, slow learning is selected and it requires a number of iterations for the training. 

Finally, when classifying, each test vector is applied in turn and its predicted class is that of the node 

with the highest activation. More details are given in (Ben Ali et al., 2014; Ben Ali et al., 2015a). 
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3 Experimental results 

3.1 Experimental setup and data recording 

The vibration signals used in this paper were provided by the Center for Intelligent Maintenance Systems 

(IMS), University of Cincinnati, USA, in collaboration with the National Aeronautics and Space 

Administration (NASA). A schematic of experimental test rig is shown in Fig. 3. Four Rexnord ZA-

2115 double row bearings are installed on the shaft. Each bearing contains 16 rollers (for each row), a 

pitch diameter of 2.815in, a roller diameter of 0.331in, and a tapered contact angle of 15.17° (Qiu et al., 

2006). 

Three tests were made. Each test is an experience of 4 bearings. In this way 12 bearings are used but 

only 4 bearings have reached failure with known defects. Each data set describes a run-to-failure 

experiment. It consists of individual files that are 1-second vibration signal snapshots recorded at 

specific intervals (every 10min). Each file consists of 20480 points with the sampling rate set at 20 kHz. 

Records (row) in the data ASCII files are data points. Data collection is provided by NI DAQ Card 

6062E (Ben Ali et al., 2015b). 

The three tests have been carried out for 35 days until a significant amount of metal debris is found on 

the magnetic plug of the test bearing. Larger intervals of time stamps (showed in file names) indicate 

resumption of the experiment in the next working day. Table 2 summarizes the necessary information of 

the IMS bearing dataset and full details are provided at« http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-

data-repository/ ». 

In the first test, two perpendicular sensors (12 o’clock and 3 o’clock positions) were used to record 

bearing vibration signals. However, only one sensor (12 o’clock) was used. In this paper only the 12 

o’clock is used. We should also note that the last file in the first test is uninformative because the record 

was made in the stoppage phase of the machine. 

Table 2 focuses on some important points. The REB life is a highly nonlinear phenomenon. The 12 used 

bearings in the experimental setup were tested in the same conditions of speed and load. Despite that, 

only four bearings were broken and one bearing was slightly degraded (bearing 3 of testing 3). 

Moreover, the failure time and the failure nature of the three broken bearings were not the same. All 

these confirm that online bearing fault assessment is a very hard task. 
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3.2 Feature extraction 

In this section, the three broken bearings in the IMS database are explored. These bearings are bearing 4 

and 3 of testing 1 ending respectively with a failure roller and a failure inner race and bearing 1 of testing 

2 ending with a failure outer race. The run-to-failure vibration signals of these bearings are shown in the 

Fig. 4. Each run-to-failure history is divided into three zones: the healthy zone (number 1), the 

degradation zone (number 2) and the faulting zone (number 3). This partition was done based on the 

magnitude of vibration signals by proposing two thresholds for each history. Consequently, seven REB 

states are considered: healthy (H), degraded roller (DR), failure roller (FR), degraded inner race (DIR), 

failure inner race (FIR), degraded outer race (DOR), and failure outer race (FOR). 

Every 10 minutes, an individual file is recorded during 1 second vibration signal with the sampling rate 

20kHz. The original vibration signals recorded during 1 second are decomposed into some IMFs. For 

each decomposition, the number of the found IMFs is higher than 12. Consequently, the first 12 IMFs 

are chosen to extract features. However, the computational time was very important and sometimes the 

EMD algorithm diverges and no IMF is given even after 10 minutes. To solve these troubles, we propose 

the following steps for EMD feature extraction: 

i. Every 10 min, extract vibration signals with recording duration of one second from bearing run-to-

failure accelerations.  

ii. Decompose just the first part of the extracted signal (with 0.1 second as length) into some IMFs. If 

the EMD algorithm still running after 10s, stop it and consider the second part of the signal (from 0.1 

second to 0.2 second) and so on. 

iii. Compute the total energy Ei of the first 12 IMFs as (where i is the IMF number) : 

2048
2

i ij

j=1

E = c                                                                                                     (8) 

iv. Compute the total energy of all IMFs: 

12

i

i=1

E = E                                                                                                        (9) 

v. Construct the feature vector as: 

 1 2 12
en en en 1 en 2 en 12

E E E
H , , ,…, = H ,H IMF , H IMF , ,H IMF

E E E

 
 
 

                                    (10) 
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where Hen is EMD energy entropy of the whole original signal and HenIMFG is EMD energy entropy of 

the IMF number G. The EMD energy entropy is designated as (Hong et al., 2014): 

 
n

en i i

i=1

H = - p log p                                                                                    (11) 

Where pi=Ei/E is the percent of the energy of ci(t) in the whole signal energy. 

By considering just the first part of the vibration signal, the number of the treated points by the EMD 

algorithm is reduced from 20480 to 2048 and the computational time is reduced impressively. Besides, if 

the computational time of the EMD algorithm exceeds 10s, we consider the next part of the vibration 

signals. This is a very smart step to ensure a quick convergence of the proposed feature extraction 

strategy. We note that for all the considered vibration signals, just the first three parts of the signal were 

considered and thereby the maximum computational was time less than 30s. Note that the reported time 

is on a typical PC configured with CPU i3 2.3 GHz, 4GB RAM, and running Windows 7. 

The energy entropy of the original signal and the first twelve IMFs of the bearing 1 of testing with an 

outer race defect (shown in Fig. 4.c) are shown in Fig. 5. In this plot, feature number zero is the energy 

entropy of the original signal and the other features (from 1 to 12) are the energy entropies of IMFs 

(from 1 to 12 respectively). Through Fig. 5 it is obvious that the energy entropy is near zero for the last 

IMFs. 

In (Yu et al., 2006), Yu et al. demonstrated that the EMD energy entropy changes with the energy 

variation of bearing fault vibration signals when the REB operates with different faults. Thereby, we 

propose to use the energy entropy of the first 12 IMFs as features to characterize REB defects. We select 

just the first 12 IMFs because it is the minimum IMF number found using the EMD. Thus, we are sure 

that any REB vibration signals produce more than 12 IMFs. 

3.3 Feature reduction and classification 

To show the repartition of the extracted features, 50 vectors were selected arbitrarily from three classes 

(H, DR, FR). Fig. 6 shows the energy reparation of the first eight IMF energy entropies and the original 

signal energy entropy. This plot clearly demonstrates that the first IMFs consist of the highest 

discrimination. For more clarification, Fig. 7 and Fig. 8 show two bi-dimensional plots of the highest 

features’ discrimination (shown in Fig. 6.a) and lowest features’ discrimination (shown Fig. 6.g) 
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respectively. Fig. 7 and Fig. 8 reveal that the overlapping of features increases for IMFs higher order 

than 4. 

As shown previously, plotting EMD energy entropy features indicates the necessity of the preprocessing 

step them to generate separable features more suitable for the classification task. Disorder distribution of 

original features tends to decrease the performance of the used classifier. So, the combination of these 

features directly with a classifier is not recommended. 

To avoid this drawback, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) 

are proposed to extract and to reduce the feature dimensionality based on the eigenvalues of the 

covariance matrix. Firstly, because the overlap between normal-degradation zones and degradation-

faulting zones, the number of records of the broken three bearings is reduced from 5394 to 3911. This 

reduction is made with a very great caution to ensure the reliability of measures. Then, the new data set 

is divided into two sub-sets: one for training (containing 60% of the samples), and the other for test 

(containing 40% of the samples). 

By using the PCA for the training dataset, the first eight principal components have been selected to 

replace the original feature vector (which contains 13 components). As shown in Fig. 9, the number of 

features is reduced from 13 to 8 where principal components 9, 10, 11, 12 and 13 are discarded. 

By using LDA technique, original features of the training dataset are reduced to automatically to K-1 

where K is the number of classes. In this paper, we have used seven REB states. Thereby, the original 

features are reduced from 13 to 6 by applying the LDA.  

Fig. 10.b and Fig. 10.c shows the distribution of the first three features extracted using PCA and LDA 

respectively. To evaluate the importance of PCA and LDA techniques, in Fig. 10 we have used the same 

features shown in Fig. 6. To have a good interpretation, Fig. 10.a shows the optimal and the desired 

feature distribution where classes are perfectly separated. 

Compared to previous works, this paper is based on a large data set which contains 3911 records 

extracted from run-to-failure REB vibration signals. For each record, the EMD energy entropy is used to 

extract 13 features. Then, the PCA and LDA are employed to reduce features to 8 and to 6 respectively.  

To obtain a good analysis of the proposed method, six scenarios are proposed: 

i. Scenario 1: Combination of original features with SFAM. 

ii. Scenario 2: Combination of PCA and SFAM. 

iii. Scenario 3: Combination of LDA and SFAM. 
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iv. Scenario 4: Combination of original features, PNN and SFAM. 

v. Scenario 5: Combination of PCA, PNN and SFAM. 

vi. Scenario 6: Combination of LDA, PNN and SFAM. 

In the first three scenarios, the SFAM neural network is used to classify seven REB states (H, DIR, FIR, 

DOR, FOR, DR, FR). However, in the last three scenarios, the PNN is introduced to classify REB states 

in two classes: healthy and not healthy. If the PNN decision shows that the processed state is unhealthy, 

then the SFAM is used to detect the type of failure (DIR, FIR, DOR, FOR, DR, FR).  

For each scenario, the training-bearing dataset is divided into ten equal sized sub-datasets (ten folds). 

Then, ten iterations of training and validation are performed. One iteration presents nine folds for the 

training and one fold for the validation. Also, ten folds cross-validation experiments are done to validate 

the classification accuracy of each scenario.  

After the validation phase, we have projected the testing dataset using PCA and LDA techniques. Then, 

the classification accuracy (CA) is computed for each scenario. The CA is the ratio between the total 

number of correctly classified test samples to the total number of test samples and it can be expressed as 

follow: 

 
(number of  correctly classified samples )

CA[%] = 100
(total number of  samples  in testing dataset )

                       (12) 

Table 3 shows the CA for each scenario where the introduction of PNN is highlighted compared to the 

direct use of the SFAM neural network. The PNN neural network is able to classify the whole dataset in 

two classes (healthy and not healthy) with a CA about 100%. Compared to the use of SFAM only, the 

proposed combination of PNN-SFAM is very promising for classification tasks. Besides, LDA is better 

than PCA in terms of feature discrimination. This result is validated when comparing the CA of 

scenarios (2,3) and (5,6). Better experimental results are insured by the combination of LDA, PNN and 

SFAM as illustrated by the 6
th

 scenario summarized in Fig. 11. 

3.4  Nearly Online bearing fault diagnosis 

As mentioned above, the online diagnosis is a very hard task for scientists. With the recent advances in 

modern technology, industry and scientist researchers are progressing toward providing enhanced 

strategies to detect online REB anomalies.  
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In this section, we will present the application of the proposed EMD-LDA-PNN-SFAM combination for 

an online diagnosis task. We recall that the three used bearings (see Fig. 4) contain 5394 records were 

just 3911 are used in the training and testing modes. Consequently, the other 1483 records are unknown 

for the validated SFAM and PNN neural networks. Experimental results, given in Fig. 12, show that the 

application of the proposed strategy is very promising for a nearly online bearing diagnosis. 

The online evaluation of the proposed strategy for the diagnosis of naturally bearing progressing defects 

is very encouraging. The proposed strategy is able to indicate qualitatively a clear distinction between 

the healthy and damaged states. In addition, this approach proposes automatic fault detection without 

any human intervention. The application of the proposed methodology perfectly separates the healthy 

stage, the degraded stage and the faulting stage. Besides, the type and the severity of defects are given 

for all tests which provide an idea about the remaining useful life of the tested bearing. However, the 

three tested bearings are already modeled by the PNN and SFAM neural networks and another test is 

needed. Another bearing is needed where records were not yet treated by the neural networks. Hence, we 

thought to use the bearing 3 of testing 3 where any record was used in the training phase. Experimental 

results shown in Fig. 13 confirm that the proposed methodology is really interesting. The probability 

density of failure increases at the end of the experiment although that the magnitude of vibration signals 

remains substantially constant. For more clarity and better resolution, experimental results are enlarged 

in Fig. 14. 

To improve the quality of the proposed diagnosis approach, we propose a smart step to minimize the 

false alarm rate: It is a sliding window that filters external tests which were not used in the training mode 

and it can be summarized as follow: 

- Select a sliding window (sliding step (ss=1), window length (wl=16)) to browse the nearly online 

classification results. 
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- Set kDIR=kFIR=kDOR=kFOR=kDR=kFR=0, where ki is the occurrence of the defect i along the sliding 

window. 

- For each point of the window, if the classification result is i then ki=ki+1; 

- After 16 sliding steps, determine the highest occurrence as occ=max(kDIR, kFIR, kDOR, kFOR, kDR, 

kFR); 

- Determine the fault with the highest occurrence as occtype= argmax(kDIR, kFIR, kDOR, kFOR, kDR, 

kFR); 

- If occ≥2 then the fault type is occtype else the state of bearing is healthy. 

- Run the next 16 classification results. 

Fig. 15 shows the adverse effect of the proposed smart filtering phase on the bearing 3 of testing 3. 

Compared to Fig. 14, Fig. 15 exhibits fewer false alarms, which can improve the classification task. 

The first fifteen points on Fig. 15 are equal to zero (omitted) due to the sliding window length which set 

to sixteen. Despite the fact that increasing window length decreases the false alarm rate, it increases the 

number of zero points and the computational time. Consequently, several tests have been performed in 

this work to select the most effective window length and to select the threshold of occurrences. By 

evaluating the percentage of false alarms, the best window length is chosen to ensure more sensitivity to 

the proposed method. 

 

4 Discussion 

4.1 Feature performance measures 

The ultimate goal in pattern classification is to find the best feature dataset. It is a common practice to 

get a feature dataset with high performance measures. To achieve this goal, a mathematical treatment is 
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presented in this section. From various measures known in literature, we discuss the interclass/intraclass 

distance well known as scatter matrix. This measure is applied to the multi-class case and it is well 

known as the J criterion. In this paper, the J criterion is used to evaluate original extracted features, PCA 

features and LDA features. As clarified previously, seven REB states are defined in this work. For each 

class, 50 extracts are used to be evaluated. Also, these features are projected with PCA and LDA to be 

evaluated. In this way seven classes have been used (K = 7) and 50 extracts are evaluated (N = 50). The 

procedure of the J criterion is summarized as follows (Ben Ali et al., 2013): 

i. Compute the average feature vectors of the k
th

 class: 

N

k,nk
n=1

1
µ = x

N
                                                                                             (13) 

where xk,n the n
th

 extract of the k
th

 class. 

ii. Compute the total average feature vectors of all classes: 

1

1 K

c k
k

μ
K




                                                                                                (14) 

iii. Compute the intra-class variance matrix of average dispersion coefficients: 

  
  

, ,intra

1 1

1 K N t

k n k nk k
k n

S x µ x µ
KN  

                                                      (15) 

iv. Compute the inter-class variance of average dispersion between different classes: 

  
  

inter

1

1 K t

k c k c
k

S µ µ µ µ
K 

                                                                (16) 

v. Finally, the J degree of the average scattering within classes is given by: 

 1

intra interJ trace S .S
                                                                               (17) 

 

The computation of the J criterion based on original features, PCA features and LDA features is given 

respectively in Table 4, Table 5 and Table 6. These three tables improve the importance of the LDA 

feature reduction technique. First, the use of LDA reduces the 13 original features to 6 features which 

decrease the training computational time of PNN and SFAM. In addition, the first component LD1 shows 

the greatest scattering criterion compared to all features. Besides, the scattering criterion of all LDA 

features is more discriminant compared to original and PCA features. In conclusion, the comparison of 

the six proposed scenarios confirms the important of EMD-LDA-PNN-SFAM combination. 
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4.2 Comparison with some previous works 

Classification accuracy is much more improved for all bearing diagnosis conditions by the use of 

methodologies based on feature extraction, feature selection (or reduction) and classification tools. The 

classification accuracy results are all greater than 92%. To get a good classification, the majority of 

scientific researches in the previous works have used four bearing states (H, FIR, FOR and FR). The 

superiority of this work is highlighted in the introduction of the default severity which was not held 

before. Severity consists of three types: normal, degraded and faulty. Thereby, seven bearing states have 

been used in our work. These added modifications allow the real time monitoring degradation. Table 7 

summarizes previous works on automated identification of bearing faults.  

The importance of our work over others is the use of real data which results from real time vibrations 

describing the dynamic response of defective REBs. However, previous works are based on simulation 

defects by creating holes with different diameters and depths. The proposed approach produces good 

classification accuracy despite the important number of classes and records. Moreover, our proposed 

methodology is tested online however the majority of the previous works do not satisfy this aim and 

scope. 

Compared to the work proposed in (Ben Ali et al., 2015b), this paper presents a strategic improvement. 

As showed in Table 7, the number of features used in (Ben Ali et al., 2015b) was 18 and the used 

classifier was the back propagation neural network (which is perhaps, with respect, even a bit outdated). 

The structure of the used neural network was important (four layers and 60 nodes) which increase 

remarkably the computational time. Besides, the use of statistical features certainly degrades the quality 

classification: it is well known that they are redundant and consequently we don’t need all of them as 

they provide the same information (Tandon and Choudhury, 1999). Also, statistical features present 

strange behavior: their values come down to the level of an undamaged bearing when the damage is well 

advanced (Tandon and Choudhury, 1999). In this paper, we have applied the LDA technique to select 

best features derived from the EMD method and guarantee an optimal separation between features of 

different classes. Moreover, we have proposed a new combination of PNN and SFAM neural networks. 

This combination is very promising and it is through her that we obtained 97.82% as classification 

accuracy. The combination of PNN and SFAM don’t require structure initialization, however, the back 

propagation neural network needs to be compiled many times to confirm a structure which can be not 
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optimal. In the literature there are some empirical recommendations to define the structure of the back 

propagation neural network, however, no mathematical justification was given (Capocchi et al., 2011). 

Although that classification accuracy, of the previous works given in Table 7, was very satisfactory, 

these works were based on synthetic bearing defects which were always introduced by the user (holes 

with different diameters, depths and numbers). In reality, this is not the case of a bearing defect in 

industrial environment. Many factors can cause deterioration of bearings such as: 

- Contamination and corrosion, 

-  Lack of lubrication causing heating and abrasion, 

- Defect of bearing's mounting, by improperly forcing the bearing onto the shaft, 

- Misalignment defects. 

REB degradation is a highly nonlinear phenomenon; using the same type of bearing in the same 

experimental conditions never produces the same kind of failure in terms of time, type, and severity. 

This property is confirmed by Intelligent Maintenance Systems (IMS) bearing run-to-failure data set. 

Relatively, only few papers discussed the bearing diagnosis based on run-to-failure vibration signals. 

This is due to the difficulties in processing these signals. The major problem is the noise; it is very 

difficult to detect degradation when it is smaller than the noise measurements. This form of degradation 

is often known as “naturally progressing degradations”. Even though many researchers have performed 

fault bearing detection, they do not perform the diagnosis and identification of naturally progressing 

degradations. 

The twelve used bearings in this work confirm that bearing degradation is a highly nonlinear 

phenomenon. The failure time and the failure nature of the three broken bearings were not the same. All 

these confirm that bearing fault assessment is a very hard task. In conclusion, the proposed method is 

very adequate in terms of fault accuracy detection. 

 

4.3 Statistical validation 

The confusion matrix is a useful tool for analyzing how well the classifier can recognize tuples of 

different groups, which contains information about real and predicted classifications done by a 

classification system (Fawett, 2001). 
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From the confusion matrix of the proposed method given in Table 8 and presented in Fig. 16 by a 

compact box plot, it can be seen that the EMD-LDA-PNN-SFAM combination recognize the type and 

the severity of defects effectively. 

For more statistical significance and better generalization, some series of experiments should be 

conducted to support the author’s claims. In fault detection problems, the performance of a detection 

algorithm usually depends on the trade-off between robustness and sensitivity. The sensitivity and 

robustness of the proposed method need to be explored by running a series of experiments. A receiver 

operating characteristic (ROC) curve will make the results more convincing. The ROC curves are often 

the only valid method of evaluation (Fawett, 2006). An ROC curve is a detection performance 

evaluation methodology that shows how successfully a certain detector can separate two groups in a 

quantitative manner (Fawett, 2001). An ROC curve gives the trade-off between the probability of 

detection or true positives rate, also called sensitivity and recall versus the probability of false alarm or 

false positives rate (Fawett, 2006). 

In order to compute the performance of the developed diagnosis methodology, the ten folds cross-

validation experiments mentioned in section 3.3 are re-used in this validation phase. Based on the 

correct classification of patterns in the test set (in each fold), the performance measures are computed. 

The average of these performance measures is computed to report the overall performance of the 

proposed method. To handle the problem of multiple classes, we used the one-against-all strategy: Each 

class was treated as appositive class in turn, while all remaining six classes were combined to form a 

negative class. 

In each fold, based on correct classification of test patterns, the following parameters are defined: 

- True Positive (TP): It is the number of actually abnormal test patterns which were classified as 

abnormal by our automated classifiers. 

- True Negative (TN): It is the number of normal patterns in the test set which were classified into 

normal class by the automated classifiers. 

- False Positive (FP): It is the number of normal test patterns classified as abnormal by the automated 

classifiers. 

- False Negative (FN): It is the number of abnormal test patterns which are classified as normal by the 

automated classifiers. 

Based on TP, TN, FP and FN, the sensitivity (Sn), and specificity (Sp), were defined as follows. 
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TP
Sn

TP FN



                                                                                             (18) 

TN
Sp

TN FP



                                                                                             (19) 

Fig. 17 shows one of the found ROC performances of our proposed strategy. It can be seen that PNN-

SFAM classifier provides good accuracies of sensitivity (91.7%) and specificity (93.4%) and an area 

under curves equal to 0.847. We should note that this curve has the least important features among all 

ROC curves found which validates the strength of our strategy. 

 

5 Conclusion and prospects 

In this work, a new online automated bearing fault diagnosis methodology is proposed. This effective 

method is introduced by feature extraction, characterization, reduction and classification based on non-

stationary vibration signals. Compared to previous works, experimental results demonstrate that the 

proposed method is extremely promising and it can be summarized as follows: 

- EMD is a self-adaptive signal processing method applied to decompose nonlinear and non-stationary 

vibration signals into some stationary IMFs. 

- The diagnosis method is based on eigenvalues of LDA method to investigate a higher classification 

accuracy compared to the use of EMD energy entropy and PCA features. 

- The combination of PNN and SFAM neural networks presents a better categorization than the use of 

SFAM only.  

Finally, the proposed method accurately identifies bearing faults online and a better generalization 

capability is shown compared to previous works. As future works, we will focus on the variable 

operating conditions of speed and charge which can generalise the proposed methodology. 
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Fig. 1: Probabilistic Neural Network architecture. 
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Fig. 2. SFAM neural network architecture. 
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Fig. 3: Experimental test rig, (a) photo from the IMS center (Qiu et al., 2006), (b) simplified 

schematic of the test rig. 
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a) 

 
b) 

   
c) 

 
Fig. 4: (a) Acceleration of bearing 4 of testing 1 ending with failure roller. (b) Acceleration of 

bearing 3 of testing 1 ending with failure inner race. (c) Acceleration of bearing 1 of testing 2 

ending with failure outer race. 
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Fig. 5 : Original extracted features from the bearing 1 of testing 2. 
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Fig. 6: Original feature distributions. 
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a) 

 

b) 

 

c) 

 

Fig. 7: Bi-dimensional distributions of highest features’ discrimination ( shown in Fig. 6.a). 
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a) 

 

b) 

 

 

c) 

 

 

Fig. 8: Bi-dimensional distributions of the lowest features’ discriminations (shown in 

Fig.6.g). 
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                    a) 

 

                      b) 

 

 Fig. 9: PCA eigenvalue: (a) Entire distribution of covariance matrix, (b) Zoom in the 

area of the last features 
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a) 

 

b) 

 

 

Fig. 10: Distribution of the best original features: (a) obtained from PCA, (b) obtained from 

LDA. 
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Fig. 11: General synoptic of the selected EMD-LDA-PNN-SFAM methodology. 
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a) 

 
b) 

 
c) 

 
Fig. 12: Application of the proposed method for an online automatic decision making, (a) 

Bearing 4 of testing 1, (b) Bearing 3 of testing 1 (c) Bearing 1 of testing 2. 
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Fig. 13: Application of the proposed method for an online diagnosis of bearing 3 of testing 3. 
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a) 

 

b) 

 

Fig. 14: Zoom of Fig. 13 in the area between, (a) 0 and 500 (unit of time), (b) 4000 and 4500 

(unit of time). 
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 Fig 15: Enhanced nearly online diagnosis of bearing 3 of testing 3 using a smart 

average technique. 
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 Fig 16: Compact box plot of the confusion matrix. 
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Fig 17: Validation of the proposed method using ROC curves. 
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(1)  Initialize: r0=x(t), and i=1 
(2)  Extract the i

th
 IMF ci 

A) Initialize: hi(k-1)=ri-1, k=1 
B) Extract the local maxima and minima of hi(k-1) 
C) Interpolate the local maxima and the minima by cubic spline lines to form upper and 

lower envelops of hi(k-1) 
D) Compute the mean mi(k-1)of the upper and lower envelops of hi(k-1) 
E) Let hik =hi(k-1)-mi(k-1) 
F) If hik is an imf then set ci=hik else go to step (B) with k=k+1define the residue ri+1=ri –

c 
G) If  ri+1 still has least 2 extrema then go to step (2) with i=i+1 else the decomposition 

process is finished and ri+1  is the monotonic residue of the signal. 

Table 1: EMD algorithm. 
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 Test 1 Test 2 Test 3 

Recording Duration  October 22, 2003 

12:06:24 to 

November 25, 2003 

23:39:56. 

February 12, 2004 

10:32:39 to February 

19, 2004 06:22:39. 

March 4, 2004 

09:27:46 to April 4, 

2004 19:01:57. 

#. of Files  2156 984  4448  

#. of Channels  8  4  4  

File Recording 

Interval  

 

Every 10 minutes 

(except the first 43 

files were taken 

every 5 minutes). 

Every 10 minutes  Every 10 minutes. 

Description  

 

At the end of the test-

to-failure experiment, 

inner race defect 

occurred in bearing 3 

and roller element 

defect in bearing 4.  

At the end of the test-

to-failure experiment, 

outer race failure 

occurred in bearing 1.  

At the end of the test-

to-failure experiment, 

outer race failure 

occurred in bearing 3.  

Table 2 : IMS bearing dataset description. 
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Scenario 1 2 3 4 5 6 

CA [%] 92.32 93.41 94.05 92.77 95.07 97.82 

Table 3: Testing accuracies of the proposed methodologies. 
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Features J 

Hen 0.6446 

HenIMF1 0.4052 

HenIMF2 0.3163 

HenIMF3 0.3560 

HenIMF4 1.3972 

HenIMF5 0.7359 

HenIMF6 0.1853 

HenIMF7 0.1357 

HenIMF8 0.0774 

HenIMFG (G>8) ≈ 0 

All features 3.3292 

Table 4 : J criterion of original features. 
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PCs J 

PC1 1.7677 

PC2 0.8489 

PC3 0.8242 

PC4 0.7149 

PC5 0.4005 

PC6 0.3445 

PC7 0.34 

PC8 0.2925 

All features 5.6205 

Table 5 : J criterion of PCA features. 
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LDs J 

LD1 3.8574 

LD2 0.3629 

LD3 0.228 

LD4 0.3539 

LD5 0.5555 

LD6 0.0513 

All features 6.8044 

Table 6 : J criterion of LDA features. 
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Literature Features/techniques 

used 

Classifier REB 

classes 

Accuracy 

[%] 

Online 

diagnosis 

(Gryllias 

and 

Antoniadis, 

2012) 

Frequency domain based 

vibration energy features. 

Support 

Vector 

Machine 

(SVM) 

3: H, FIR, 

FOR. 

100 No 

(Yu et al., 

2006) 

EMD energy entropy of 

the first eight IMFs 

Artificial 

neural 

networks 

(ANN) 

3: H, FIR, 

FOR 

93 No 

(Liu et al., 

2013) 

EMD features extraction 

in time and frequency 

domains 

Particle 

swarm 

optimization 

(PSO) and 

SVM 

4: H, FIR,  

FOR,  

FR. 

97.5 No 

(Xu et al., 

2013) 

EMD energy entropy of 

the first six IMFs 

Improved 

PSO and 

least squares 

SVM 

3: H, FIR, 

FOR. 

97 No 

(Zarei et 

al., 2014) 

Removing non-bearing 

fault component (RNFC) 

filter  

 ANN 4: H, FIR, 

FOR (one 

hole), 

FOR 

(double 

holes). 

97.66 No 

(Pandya et 

al., 2013) 

Hilbert Huang transform 

(HHT) based on EMD 

Asymmetric 

proximity 

function and 

K-nearest 

neighbor 

5: H, FIR,  

FOR,  

FR, 

combined 

defect. 

96.67 No 

(Ben Ali et 

al., 2015b) 

EMD energy entropy of 

the first seven IMFs and 

classical statistical 

features 

ANN 7: H, 

DIR, 

DOR, 

DR, FIR, 

FOR, FR. 

93 Yes 

This work  EMD energy entropy and 

LDA  

PNN and 

SFAM 

7: H, 

DIR, 

DOR, 

DR, FIR, 

FOR, FR. 

97.82 Yes 

Table 7: Summary of some studies reporting bearing fault diagnosis. 
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Estimated 

 

Real 

 

H 

 

DR 

 

FR 

 

DIR 

 

FIR 

 

DOR 

 

FOR 

H 2900 0 0 0 0 0 0 

DR 3 139 0 4 5 0 0 

FR 6 8 423 1 1 7 5 

DIR 3 0 1 140 2 4 1 

FIR 2 0 1 2 46 2 3 

DOR 2 0 0 12 1 130 6 

FOR 1 0 0 0 1 1 48 

 

Table 8: Confusion matrix of the proposed method. 
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