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Abstract

A degenerate symbol T over an alphabet 3 is a non-empty subset of
2, and a sequence of such symbols is a degenerate string. A degenerate
string is said to be conservative if its number of non-solid symbols is
upper-bounded by a fixed positive constant k. We consider here the
matching problem of conservative degenerate strings and present the
first linear-time algorithm that can find, for given degenerate strings
P and T of total length n containing k& non-solid symbols in total, the
occurrences of P in T in O(nk) time.

1 Introduction

Degenerate, or indeterminate, strings are found in Biology, Musicology and
Cryptography. They are defined by the occurrence of one or more positions
which are represented by sets of symbols. In conservative degenerate strings,
the number of such occurrences is bounded by k. In music, single notes may
match chords. In encrypted and biological sequences, a position in one string
may match exactly with various symbols in other strings.

Previous algorithmic research of degenerate strings has been focused on pat-
tern matching. Pattern matching in degenerate strings is particularly rele-
vant in the context of coding biological sequences. Due to the degeneracy of
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the genetic code, two dissimilar DNA sequences can be translated into two
identical protein sequences. Without taking this degeneracy into account,
many associations between biological entities can be overlooked. For exam-
ple, the following six DNA codons are all translated into the amino acid
Leucine: TTA, TTG, CTT, CTC, CTA and CTG. This example highlights
the significance of solving problems relating to degeneracy in strings. In fact,
special symbols to represent sets of DNA symbols have long been established
by the IUPAC-IUBMB Biochemical Nomenclature Committee [1]. For exam-
ple, R represents any purine (A or GG), Y represents any pyrimidine (C, T or
U) and N represents any nucleic acid. An example of practical implications
of such research is in the design of primers for cloning DNA sequences using
PCR (Polymerase Chain Reaction). Degenerate primers are used when their
design is based on protein sequences, which can be reverse-translated to n*
different sequences, where n is the length of the sequence.

This paper introduces an algorithm which is a significant improvement from
those published previously. The first significant contribution for the problem
of pattern matching of degenerate strings was in 1974 2|, and was later im-
proved [3]. Later still, faster algorithms for the same problem were proposed
[4, 5]. Since, many practical methods have been suggested [6-8], as well
as variations of the problem considered. For example, a non-practical gen-
eralised string matching algorithm was introduced by Abrahamson in 1987
[9]. Most recently, Crochemore et al. [10] reported an algorithm to find the
shortest solid cover in a degenerate string with time complexity O(2%). We
report here a major improvement in time: O(kn). Further to the problem of
pattern matching, the linear algorithm reported here can be applied to many
different problems, including finding cover and prefix arrays.

The rest of the paper is organised in the following format: The next section
introduces the vocabulary and the notions that will be used in this paper.
Section 3 formally defines the problem and presents the algorithm we have
proposed. The algorithm is analysed in Section 4 and finally, Setion 5 con-
cludes the paper.



2 Preliminaries

To provide an overview of our results we begin with a few definitions, gener-
ally following [8, 10]. An alphabet ¥ is a non-empty finite set of symbols of
size |X]. A string over a given alphabet is a finite sequence of symbols. The
length of a string x is denoted by |z|. The empty string is denoted by €. The
set of all strings over an alphabet ¥ (including empty string ) is denoted by
DI

A degenerate symbol & over an alphabet ¥ is a non-empty subset of X, i.e.,
T C Y and T # (). |Z| denotes the size of the set and we have 1 < |zZ| < |X|.
A finite sequence X = T1%9...T, is said to be a degenerate string if z; is a
degenerate symbol for each ¢ from 1 to n. In other words, a degenerate string
is built over the potential 2! — 1 non-empty sets of letters belonging to X.
The number of the degenerate symbols, n here, in a degenerate string X is
its length, denoted as | X|. For example, X = [a, b][a][c][b, c][a][a, b, ] is a de-
generate string of length 6 over ¥ = [a, b, ¢|. If |Z;| = 1, that is, Z; represents
a single symbol of ¥, we say that Z; is a solid symbol and 7 is a solid position.
Otherwise Z; and ¢ are said to be non-solid symbol and non-solid position re-
spectively. For convenience we often write Z; = ¢ (¢ € ¥), instead of Z; = [c],
in case of solid symbols. Consequently, the degenerate string X mentioned
in the example previously will be written as [a, blac[b, cla[a,b,c]. A string
containing only solid symbols will be called a solid string. Also as a conven-
tion, capital letters will be used to denote strings while small letters will be
used for representing symbols. Furthermore, the degeneracy will be indicated
by a tilde, for example, X denotes a degenerate string while a plain letter
like X represents a solid string. The empty degenerate string is denoted by €.

A conservative degenerate string is a degenerate string where its number of
non-solid symbols is upper-bounded by a fixed positive constant k. The con-
catenation of degenerate strings X and Y is XY. A degenerate string Visa
substring (resp. prefir, suffiz) of a degenerate string XifX=0VW (resp
X =VW, X = UV) for some degenerate strings U and W. By X[i..j], w
represent a substring z; ;.1 . . .x] of 7.

For degenerate strings, the notion of symbol equality is extended to single-
symbol match between two degenerate symbols in the following way. Two
degenerate symbols ¥ and ¢ are said to match (represented as T ~ ) if



2Ny # 0. Extending this notion to degenerate strings, we say that two
degenerate strings X and Y match (denoted as X ~ Y ) if |X| = [Y]| and
corresponding symbols in X and Y match, i.e., for each i = 1,--- | |X| we
have 7; ~ y;. Note that the relation & is not transitive. A degenerate string
X is said to occur at position i in another degenerate (resp. solid) string ¥

(resp. V) if X = Yi.i+ |X]| — 1] (resp. X ~ Y[i..i +|X]| —1]).

3 Conservative Degenerate String Matching

Problem 1. Given a conservative degenerate pattern P with £ non-solid
symbols, and a solid text 7', find all positions in 1" at which P occurs.

Example 1. We consider a degenerate pattern, P = albc]dalbd] with k = 2
and a text, T" = dacdabdadcabdac . Table 1 shows that P occurs in T at
positions 2 and 5.

Table 1: Occurrence of P in T

() 12 3 45 6 7 & 9 10 11 12 13 14 15
t d a ¢ da b da d ¢ a b d a c
Matches a [bc] d a [bd]
a [be] d a [bd]

For convenience, we compute a table Pre[k, ||| such that for each non-solid
position i (1 < i < k) and each letter a € ¥, we have Pre[i,a] = 1if a € PJi
and 0 otherwise. After such O(k|X|)-time preprocessing, we can check in
O(1) time whether a non-solid position in P matches a position in 7" or not.

An Outline of Our Approach

Our algorithm to solve Problem 1 is built on the top of an adapted version
of the sequential algorithm presented by Landau and Vishkin to find all
occurrences of a (solid) pattern P of length m in a (solid) text 7" of length
n with at most e differences each [11|, where a difference can be due to
either a mismatch between the corresponding characters of the text and the
pattern, or a superfluous character in the text, or a superfluous character
in the pattern. The modification required for our strategy is to treat only



mismatches as the differences in Landau and Vishkin’s algorithm. On the
lines of the original Landau and Vishkin’s algorithm, the modified one works
in the following two steps .

Step 1: Compute the suffix tree of the string obtained after concatenating
the text, the pattern and a character # which is not present in X U A,
i.e. T'P#; using the serial algorithm of Weiner [12].

Step 2: Let Mismatch, ; be the position in the pattern at which we have j™"

mismatch (when defined) between T'[i +1..i+m] and P[1..m]. In other
words, Mismatch; ; = f represents j mismatch from left to right and
implies that ¢,y # py. In this step, we find Mismatch, ; for each i and j
such that 0 <7 <n—mand 1 < j < ¢+1 where ¢ denotes the maximum
of the two : e and the total number of mismatches between T'[i+1..i+m]
and P[1..m]. If some Mismatch; ; = m+ 1, it signifies that there is an
occurrence of the pattern in the text, starting at t[i 4+ 1], with at most
e mismatches. Mismatch;; can be computed from Mismatch; ;1 as
follows :
Let LCA; 5; be the lowest common ancestor (in short LCA) of the
leaves of the suffixes T'[si + 1,n] and P[sj + 1] in the suffix tree and
|LC' A 5;] denotes its length. Mismatch; j_; = f implies that T[i +
1..i + f] and P[l..f] is matched with j — 1 mismatches. We want to
find the largest g such that T[i+ f+1..i+ f +q] = P[f+1..f +¢] and
titq+1 7 Dg+1, S0 that Mismatch; ; = q¢ + 1. The desired ¢ is same as
length of LCAH_f,f. Thus, Mismatchi,j = f + |LCAi+f7f|.

Pseudocode for our approach is given as Algorithm 1. It works in the follow-
ing three stages :

STAGE 1: Substitute

In the first stage, each of the non-solid symbols occurring in the given de-
generate pattern is replaced by a unique symbol which is not present in 3.
A represents the set of these unique symbols i.e. {\;} such that 0 < ¢ < k.
It is to be noted that the pattern, p,, obtained by such a substitution will
be a solid string. For example, Py obtained from P in Example 1 is given in
Table 2.

Definition 3.1. We define A positions as the positions in Py which contain
{A\i} € A. Note that these are same as the non-solid positions in P.



Table 2: [STAGE 1: Substitute] Py obtained from P
P la [bc] d a [bd
P)\ a >\1 d a >\2

STAGE 2: Approximate Pattern Search

The next stage comprises of using modified Landau and Vishkin’s algorithm
to search pattern Py (solid) in text 7" (solid) with at most k mismatches in
each occurrence. First, a suffix tree for the (solid) string T'P, is constructed.
Then, LCA queries on this suffix tree are used to compute Mismatch,; ; for
each 7 and j such that 0 < i <n—-mand 1 < j < k+ 1. As explained
in Remark 3.1, j will vary up to k£ + 1 in P,’s case. Every i, such that
Mismatch; 11 = m + 1, marks the beginning of an occurrence of Py in T
(at i + 1) and thus added to the set ApproxzimateMatch.

Figure 1 demonstrates the suffix tree for the string obtained from concate-
nating 7" from Example 1 and P, from the previous step, i.e T'P, which
is dacdabdadcabdaca\idalo#. Note that each node of the suffix tree is
stored as a pair (start, length) that represents the contiguous substring
Slstart + 1..start + length|. In addition, a leaf node indicates the suffix
it represents. A leaf node showing ¢ denotes a suffix S[i + 1..|S|]. Table 3
shows the resultant Mismatch[0..n —m, 1..k + 1] array . This table provides
the positions in P\, where it mismatches with the corresponding character in
T. For example, Mismatch[7,1] = 2 denotes that the first mismatch between
T[8,12] and Py occurs at position 2 in Py and rightly so as ¢[8 + 2] = ¢[10]
(i.e. ¢) does not match with py[2] (i.e. A1). As Py occurs in 7" with at most 2
mismatches at locations 2,5 and 11 (rows 1,4 and 10 contain 6, i.e. m + 1),
ApproximateMatch = [1,4,10].

Remark 3.1. There will always be a mismatch between Py and T at A posi-
tions as each of the \; € A is unique and does not occur in 3 and hence in
T. As there are k )\ positions, at least k mismatches are bound to be there
for each position i in the text starting at which the pattern is being matched
against. More explicitly, each occurrence recorded in ApproximateMatch has
k mismatches exactly.



Figure 1: [STAGE 2: APPROXIMATE PATTERN MATCH| Suffix Tree for
T P\#
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Table 3: [STAGE 2: Approximate Pattern Search| Mismatch array

jli>]0 1 2 3 45 6 7 8 9 10
1 1 2 11 2 11211 2
2 2 5 2 252 2322 5
3 36 336340533 6

STAGE 3: Filter

An occurrence in ApproximateMatch reports a mismatch at a A position
even if there is a match at the corresponding non-solid position in reality. For
example, if some \; has been substituted at a non-solid position containing,
say [b, ], and the corresponding symbol in 7" is ¢, clearly it is a match but
that position will be recorded as a ‘mismatch’ in array Mismatch because
A; does not match with ¢. Thus, a mismatch of all the k£ mismatches, found
in an occurrence of solid Py in T identified by ApprozimateMatch in the

preceeding step, can be seen as either real or fake when considered with
respect to the match of the degenerate pattern P and T

Definition 3.2. A mismatch at a position, say e = Mismatchli, j], is real
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if the corresponding symbols in the degenerate pattern P and the text 7T
mismatch, i.e. t[i + e] % ple]. Otherwise, the mismatch is fake.

Remark 3.2. A mismatch at a solid position will always be real while one
at a A position can either be real or fake.

Definition 3.3. An approximate occurrence is an occurrence of Py in T with
k mismatches whereas an occurrence of P in T with exact match is called an
exact occurrence.

Remark 3.3. It follows from Remarks 3.1 and 3.2 that if there 1s a mismatch
even at a single solid position, total number of mismatches will exceed k and
such an occurrence will not figure as an approximate occurrence. Conversely,
an appoximate occurence will have mismatches only at A positions.

For each location ¢ in the text where an approximate occurrence of Py has
been found (i € ApprozimateMatch), each position of mismatch (A posi-
tions) in the pattern is checked for whether the mismatch is real or not. If
an approximate occurrence of pattern P, in text T' contains a real mismatch,
it can be observed that it cannot represent an exact occurrence of P whereas
the approximate occurrence containing only fake mismatches will be same as
an exact occurrence. The set of all such exact occurrences is the solution to
our Problem 1. This step, therefore, filters out and discards the approximate
occurrences with real errors.

Table 4 elucidates this stage for the example being considered. With values
given by ApproximateMatch = [1,4,10] from the previous stage, we test
each A position from A = [2,5] to check if the mismatch is real or fake. At
first A position (i.e. 2), t[1 + 2] (i.e. ¢) matches p[2] (i.e. [b,¢]), thus the
mismatch is fake. The mismatch for the second A position (i.e. 5) is also
fake owing to the fact that t[6] ~ p[5]. Therefore, location 2 is recorded as
an occurrence of exact match of P in T. Similar is the case of location 5
(i.e. value 4). But for value 10, even if the first mismatch is fake (£[12] (i.e.
b) =~ p[2] (i.e. [b,¢])), the fact that t[15] (i.e. ¢) % p[5] (i.e. [b,d]) makes
the second mismatch real. Therefore, location 10 is discarded. And thus the
correct solution to Example 1 is obtained.



Table 4: [STAGE 3: Filter] Checking Mismatches in Approximate Occur-
rences of P in T'

7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T d a c d a b d a d c a b d a c
Approximate a A1 d a A2
Ocuurences 1 1
[be] (o]
n n
Fake Fake
a A1 d a Ao
+ 4
[bc] [bd]
U U
Fake Fake
a A1 d a A2
+ 1
[bc] [bd]
y U
Fake Real

4 Agorithm Analysis

Theorem 4.1. Algorithm 1 correctly computes all occurrences of P in T in
O(kn) time complezity.

Proof. Landau and Vishkin’s algorithm correctly finds all occurrences of Py
in 7" with at most k£ mismatches in O(kn) time for a fixed alphabet. P, differs
from P only at the \ positions which are equal to £ in number. In addition,
each of the A\ positions causes a mismatch. Notably, an exact occurrence of P
in 7" will be given by an approximate occurrence of Py in T" with mismatches
only at A\ positions and all of these mismatches must be fake. All such oc-
currences where mismatches occur only at £ A positions are guaranteed to
be captured by the approximate occurrences given in ApproximateMatch.
Also, as a consequence of Remark 3.3, an approximate occurrence (for which
number of mismatches are at most k) will never have a mismatch at any solid
position. The filtering stage checks each of the mismatches in an approxi-
mate occurrence and if all of these mismatches are found to be fake, we have
an exact occurrence. Thus, at the end of the filtering stage, we have all the
occurrences of an exact match only.

The substitution stage can be performed in O(n) time. As mentioned pre-
viously, the approximate pattern-search stage using modified Landau and
Vishkin’s algorithm computes ApproximateMatch in O(kn)) time for a fixed



Algorithm 1 Conservative Degenerate String Matching Algorithm

Input: Pattern P of length m,
Text T of length n,
Number of non-solid symbols k
Output: The set of indices of T' where P occurs in T

> Substitute:

A= {N A g and0<i <k}

. Py ¢string obtained after substituting i*" non-solid symbol in P with \; in A V¥ i
such that 0 <7 <k

N =

> Approximate Pattern Search:
Build Suffix Tree for the string T'Py#
. ApproximateMatch < ()
for i < 0ton—mdo
f+0
for j« 1tok+1do
Mismatchli,j] = f + |LC Ay 5|
f < Mismatchli, j]
10: end for
11: if Mismatchli,k+ 1] =m + 1 then *** approximate occurrence found ***
12: Add i to ApprozimateMatch
13: end if
14: end for

©

> Filter:
15: Oce < 0
16: for each i € ApproximateMatch do
17: flagAllFake < true
18: for each e € A do

19: if t[i + €] # ple] then

20: flagAllFake + false

21: Break *** real mismatch ***

22: end if

23: end for

24: if flagAllFake then *** all fake mismatches ***
25: Add ¢+ 1 to Occ *** exact occurrence found ***
26: end if

27: end for

28: return Occ

sized alphabet as the suffix tree is constructed in linear time with respect to
the size of the input string (n + m) and computation of Mismatch array
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(lines 5 to 14) takes O(kn) time. The filtering stage, in the worst case
(ApproximateMatch contains 0 to n —m), needs to process each location in
T and to check whether mismatch at every A\ position is real or fake. This
check can be performed in constant time after O(k|X|)-time pre-processing
as mentioned earlier, which yields O(kn) time requirements for this stage.
Thus, in O(k|X|+n+kn+kn)) = O(kn) time Algorithm 1 correctly computes
all occurrences of P in 7. O

Corollary. Given degenerate strings P and T of total length n containing k
non-solid symbols in total, one can compute occurrences of P in T in O(nk)
time.

5 Conclusion

In this paper, we studied the matching problem of conservative degenerate
strings and presented an efficient algorithm that can find, for given degenerate
strings P and T of total length n containing k non-solid symbols in total, the
ocurrences of P in T in O(nk) time, i.e. linear to the size of the input. In
particular, we used the novel technique of substituting the non-solid symbols
in the given degenerate strings with unique solid symbols, which let us make
use of the efficient approximate pattern search solution for solid strings to
get an efficient solution for degenerate strings. It would be interesting to
see how well the presented algorithm behaves in practice and to apply it to
solve a vast number of problems like prefix/border array, suffix trees, covers,
repetitions, seeds, decomposition etc.
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