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Abstract

In this paper, a kernel choice method is proposed for domain adaption, referred

to as Optimal Kernel Choice Domain Adaption (OKCDA). It learns a robust

classier and parameters associate with Multiple Kernel Learning side by side.

Domain adaption kernel-based learning strategy has shown outstanding perfor-

mance. It embeds two domains of different distributions, namely, the auxiliary

and the target domains, into Hilbert Space, and exploits the labeled data from

the source domain to train a robust kernel-based SVM classier for the target

domain. We reduce the distributions mismatch by setting up a test statistic

between the two domains based on the Maximum Mean Discrepancy (MMD)

algorithm and minimize the Type II error, given an upper bound on error I. Si-

multaneously, we minimize the structural risk functional. In order to highlight

the advantages of the proposed method, we tackle a text classication problem

on 20 Newsgroups dataset and Email Spam dataset. The results demonstrate

that our method exhibits outstanding performance.
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1. Introduction

Conventional machine learning methods universally assume that the training

data and the test data come from the same distribution. Unfortunately for many

applications, it is difficult to obtain enough labeled data for training classifiers.

Recently, many researchers have been focusing on cross-domain adaption which5

aims at solving a learning problem in the target domain by utilizing training

data in the source domain, while these two domains may have different dis-

tributions [1, 2]. In practice, the domain adaptive learning strategy has been

successfully applied to real-time applications, such as multi-task clustering [3]

,WiFi localization [4], action recognition [5], sentiment classification [6], visual10

event recognition [7, 8], object detection [9, 10] and visual concept classification

[11, 12, 13]. However, compared with non-learning methods [14, 15], adaptive

learning has more extensive applications.

To take the advantage of all labeled patterns for both auxiliary and tar-

get domains, Daume [16] proposes a Feature Replication method to augment15

features for cross-domain learning. The augmented features are then used to

construct a kernel function for Support Vector Machine training. Yang et al.

[12] propose Adaptive SVM for visual concept classification, in which the new

classifier fT (x) is adapted from an existing classifier fA(x) trained from the

source domain. Cross-domain SVM proposed by Jiang et al. [11] uses k-nearest20

neighbors from the target domain to define a weight for each auxiliary pattern,

and then the SVM classifier is trained with the re-weighted auxiliary patterns.

More recently, Jiang et al. [11] proposes a method of mining the relationship

among different visual concepts for video concept detection. They first build a

semantic graph which can be adapted in an online fashion to fit the new knowl-25

edge mined from the test data. However, these methods do not utilize unlabeled

patterns from the target domain. Such unlabeled patterns can also be used to

improve the classification performance.

When there are only a few or even no labeled patterns available in the target

domain, the auxiliary patterns or the unlabeled target patterns can be used to30
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train the target classifier. Several cross-domain learning methods are proposed

to cope with the inconsistency of data distributions. These methods re-weighted

the training samples from the source domain by using unlabeled data from the

target domain so that the statistics of samples from both domains are matched.

Duan et al. [17, 19] propose a cross-domain kernel learning framework, which35

learns a kernel function and classifier by minimizing both the structural risk

functional and the distribution mismatch between the labeled and unlabeled

samples from the auxiliary and target domains. This framework employs a

domain similarity measure based on MMD. More recently, Duan et al. [7] de-

velop a cross-domain learning method, referred to as Adaptive Multiple Kernel40

Learning (A-MKL) that has been successfully used in visual event recognition.

A common insight is that most of those domain adaption learning methods

are either variants of SVM or other kernel methods, which map auxiliary data

and target data into a feature space for obtaining a robust SVM-based classifier,

and simultaneously, minimize the mismatch between two different distribution45

domains. The performance of a classifier strongly depends on the choice of the

kernels. Lanckriet et al. [18] develop a nonparametric kernel matrix, which

involves joint optimization of the coefficients in a conic combination of kernel

matrices. One problem is that its time complexity is too high to be applied to

real applications. In recent years, many effective methods [17, 19, 20, 21, 22]have50

been developed to combine multiple kernels instead of directly learning the

kernel matrix, in which the kernel function is a linear combination of based

kernel functions. However, all those methods suppose that both test and training

data are drawn from the same distribution. Consequently, naked multiple kernel

learning cannot directly solve the problem of cross-domain learning. Because55

the coefficients of combination kernel are parameterized, the training data from

source domain may degrade the performance of the model in the target domain.

In this paper, we propose a new method on kernel choice for cross-domain

learning, which explicitly minimizes the loss due to the bias between the data

distributions of the auxiliary and target domains, as well as the cost function60

of structural risk for all labeled patterns. Type I error is the probability of
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wrongly rejecting null hypothesis when the auxiliary distribution and the target

distribution are drawn from the same distribution. Type II error is the prob-

ability of wrongly accepting null hypothesis when the auxiliary and the target

distributions are different. Given an upper bound on Type I error, our kernel65

choice minimizes Type II error. The main contribution of this paper is that

multiple base kernels are weighted to minimize the loss on the labeled examples

and the bias between the data distributions in the two domains. Meanwhile, we

minimize the bias between the source domain and the target domain by mini-

mizing the Type II error. While multi-kernel method has been widely discussed70

[23, 24, 20] and used [21], our work demonstrates that the kernel choice is pivotal

to cross-domain learning.

The rest of paper is organized as follows: We briefly review the related

works in Section 2. Section 3 introduces kernel choice for domain adaption

learning. We experimentally compare the proposed method with other cross-75

domain learning methods on the 20 Newsgroups dataset and Email Spam dataset

for text classification in Section 4. Finally, conclusion is made in Section 5.

2. Brief Review of Related Work

Let us denote the dataset of labeled and unlabeled patterns from the target

domain as DT
l = (xTi , y

T
i )|nl

i=1 and DT
u = (xTi , y

T
i )|nl+nu

i=nl+1, respectively, where yTi80

is the label of xTi , labeled patterns are numbered 1 to nl, unlabeled patterns are

numbered nl + 1 to nl +nu. We define DT = DT
l

⋃
DT
u as the dataset from the

target domain with the size nt = nl + nu under the marginal data distribution

ρ, and DA = (xAi , y
A
i )|nA

i=1 as the dataset from the source domain under the

marginal data distribution ϑ. We represent the labeled training dataset as85

D = (xi, yi)|ni=1, where n is the total number of labeled patterns. The labeled

training data can be from the target domain(D = DT
l ) or from both domains

(D = DT
l

⋃
DA).
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2.1. Minimize Bias of Distribution Using Test Statistic

It is important to reduce the mismatch between the source domain and the

target domain distributions, and many methods have been proposed to address

this work. A classic criteria is Kullback Leibler divergence[25]. However, most

of them are parametric and need to estimate an intermediate density. To steer

clear of fussy measure, Borgwardt et al. [26] present a novel non-parametric

statistical method, namely, Maximum Mean Discrepancy, which is based on

Reproducing Kernel Hilbert Space [27].

MMD(DA, DT ) = sup
‖f‖H≤1

(ExA∼Q[f(xA)]− ExT∼P [f(xT )])

= sup
‖f‖H≤1

〈f, (ExA∼Q[f(xA)]− ExT∼P [f(xT )])

= ‖ExA∼Q[f(xA)]− ExT∼P [f(xT )]‖H , (1)

where Ex∼µ[·] denotes the expectation operator under the samples distribution

µ and f(x) is any function in H. The second equality holds as f(x) = 〈f, φ(x)〉H
by the property of RKHS, where φ(x) is the nonlinear feature mapping of the

kernel k. Note that the inner product of φ(xi) and φ(xj) equals to the kernel

function k(·, ·) on xi and xj , namely, k(xi, xj) = φ(xi)φ(xj). An expression for

the squared MMD is

ηk(DA, DT ) = ‖φ(DA)− φ(DT )‖2H (2)

= Exx′k(x, x′) + Eyy′k(y, y′)− 2Eyx′k(y, x′), (3)

where x, x
′ ∼i.i.d p and y, y

′ ∼i.i.d q. By introducing hk(x, x′, y, y′) = k(x, x′) +90

k(y, y′)−k(y, x′)−k(x, y′), Eq.(2) can be rewritten as ηk = Exx′yy′hk(x, x′, y, y′).

By introducing hk(x, x′, y, y′) = k(x, x′) + k(y, y′) − k(y, x′) − k(x, y′), Eq.(2)

can be rewritten as ηk = Exx′yy′hk(x, x′, y, y′). In brief, the key point of MMD

is that the distance between distributions of two domains is equivalent to the

distance between the means of the two domains mapped into a RKHS [4]. Huang95

et al. [28] develop a two-step method. The first step is to diminish the mismatch

of means of different distributions in RKHS by reweighting the examples using

5



square MMD. The seconed step is to learn a decision function that separates

patterns from two opposite classes. One difficulty is that the performance of

MMD strongly depends on the choice of kernel. Meanwhile, these methods do100

not ensure that the chosen kernel is optimal. Inspired by [29], we review the

problem of bias between the source domain and the target domain as a two-

sample test problem, which addresses the question of whether two independent

samples are drawn from the same distribution. Consequently, given two example

distributions: q from source (auxiliary) domain and p from target domain, we105

can set up a two-sample test which measures the similarity or bias between the

source domain and the target domain.

We select some kernels for hypothesis testing from a particular family K of

kernels, assuming kernel k(xi, xj) is a linear combination of a set of base kernels

kd =

M∑
m=1

dmkm, (4)

where dm > 0 is a set of positive coefficients ,
M∑
m=1

dm = D > 0. The squared

MMD becomes

ηm(DA, DT ) = ‖φ(DA)− φ(DA)‖2z =

M∑
l=1

dlηl(D
A, DT ). (5)

Here, it is denoted that d = {d1, d2, . . . , dM}T ∈ RM×1, η = {η1, η2, . . . , ηM} ∈

RM×1. Eq.(5) can be written as ηm(DA, DT ) = dT η. ηm is the average of

independent random variables, and its asymptotic distribution is given by the

central limit theorem. Now we set up the construction of a hypothesis test and

define Φ as the Cumulative Distribution Function (CDF) of a standard normal

random variable N(0, 1) , where Φ−1 is the inverse CDF. A test of asymptotic

level α using the statistics will have a threshold t as in [14]. To obtain an

estimate of the variance based on the samples, we use an expression derived

from the U-statistic. The population variance can be written as

σ2 = Exx′yy′h
2
k(x, x′, y, y′)− [Exx′yy′hk(x, x′, y, y′)]2. (6)

The choice of kernel will affect both the test statistic and the asymptotic vari-

ance. Type II error occurs when the random variable ηk falls below the threshold
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t. The asymptotic probability of a Type II error is therefore expressed as:

P (ηm < t) = Φ(Φ−1(1− ϑ)− ηk(DA, DT )
√
n /
√

2σk), (7)

where Φ is a monotonic function, n is the number of all patters and t is the

threshold of the test statistic and is set to
√

2n−1/2σkΦ−1(1 − ϑ). Obviously,

the Type II probability will decrease as the ratio ηm(DA, DT )σ−1k increases.110

2.2. Borrow Knowledge From Ready-Made Classifier

Instead of directly utilizing the source domain data to learn a classifier,

many researchers consider learning a final classifier from a pre-learned classifier

trained by an source domain [17]. Yang et al. [12] develop Adaptive SVM, in

which a new SVM classifier is adapted from a pre-learned auxiliary classifier115

trained with patterns from the source domain. Schweikert et al. [30] propose to

use linear combination of the decision values from an auxiliary SVM classifier

and the target SVM classifier for prediction in the target domain. Besides, Jiang

et al. [13] propose a new cross-domain SVM (CDSVM) algorithm for adapting

previously learned support vectors from the source domain to help classification120

in another domain. Whereas, it should be noted that all of them do not make

use of unlabeled data in the target domain for cross learning. Duan et al. [17]

utilize the unlabeled data in the target domain. The problem is how to minimize

the mismatch of two distribution by MMD, which do not utilize the chance to

select an optimal kernel for the classifier. Recently, some unsupervised kernel125

learning methods [31, 32] are proposed. Pan et al. [4] demonstrate a Maximum

Mean Discrepancy Embedding, which minimizes the square of the Maximum

Mean Discrepancy criterion, and then applies the learned kernel matrix to train

SVM classifier for WiFi localization and text categorization. Different from

these approaches, we propose a kernel choice method for domain adaption, they130

are better in extending the previous work on optimal kernel choice to two-sample

tests. The proposed approaches are described in full details in section 3.
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3. Optimal Kernel Choice for Domain Adaption Learning

Similar to previous methods, we assume the kernel function is a linear com-

bination of a set of base kernels. Our goal is to learn a function of the form

f(x) = wø(x) + b with multiple kernels k(xi, xj) =
d∑
i=1

βik(xi, xj) representing

the inner product in a feature space parameterized by β. At the same time,

we minimize the bias of different distributions between the source domain and

the target domain. The definition of an object function for domain adaption

learning can be formulated as

arg min
d∈D

Φ(P (ηk < t)) + λΥ(d), (8)

where

Υ(d) = min
w,ξ,b

‖w‖2/2 + C

l∑
i=1

ξi + Ω(d) (9)

s.t. 1− ξi ≤ yi(
n∑
i

wiφ(xi) + b), 0 ≥ ξ, 0 ≤ d.

where φ(xi)φ(xj) =

M∑
i=1

diφi(xi)φi(xj) (10)

Note that Φ(·) is a monotonic increasing function, and Ω(d) is constraint func-

tion with d. n is the total number of training samples. Υ(d) is the regularizer

function and can be any differentiable function of d with continuous dervative.

λ is a tradeoff parameter. C> 0 is regularization parameter where the objective

term is near to the standard C-SVM objective term. Given the misclassification

C, the aim is to maximise the margin while minimizing the hinge loss on the

labeled data between the auxiliary and the target domains. The only addition

is an regularisation on the weights d associated with multiple kernels. Recall

in [29] it is shown that minimizing the Type II error, P (ηk < t), is equal to

minimizing d
′
Qd, where Q is the covariance matrix cov(h). The models [29] are

referred to full details. Let us define

J(d) = d
′
Qd/2 + λΩ(d). (11)
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then, the optimization problem can be rewritten as

min
d∈D

T (d) = min
w,b,ξ

J(d) + λ(w′w/2 + C

l∑
i=1

ξi) (12)

s.t. 1− ξi ≤ yi(
d∑
i

wiø(xi) + b)

0 ≤ ξ, 0 ≤ d.

However, the objective function term in the brackets and the constraints are

the standard C-SVM object. λ is set to 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50. It is

straightforward to derive the corresponding dual problem

W (d) = max
α

1Tα− 1/2αTd α+ J(d)

1TY α = 0, 0 ≤ α ≤ C, (13)

where Kd is the kernel matrix for a given d, Y is a diagonal matrix with the

labels on the diagonal. In this paper, we utilize project gradient descent in the

outer loop to obtain d. According to [22], W can be differentiated with respect

to d as if α∗ does not depend on d. We therefore get

∂T/∂d = ∂W/∂d = ∂J/∂d− α
∗TY (∂Kd/∂d)Y α∗/2

∂2T/∂d2 = ∂2W/∂d2 = ∂2J/∂d2. (14)

In our learning method, we employ the reduced gradient descent procedure

proposed by iteratively updating the linear combination coefficient d and the135

dual variable α. There are two stages in this process:

The first stage: d is fixed, thus Ω(d) is a constant. We solve Eq.(14) to

obtain the dual variable α.

The second stage: Based on the first stage, α is fixed. Use the projected

gradient descent process method to obtain d. With respect to d, the objective

function M(d) can be rewritten as

M(d) = d
′
Qd/2 + 1

′
α− αTY KdY α/2 + J(d). (15)
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We adopt the second-order gradient descent method to update the linear com-

bination coefficient d at iteration k + 1 by

dk+1 = dk − εk∇2G, (16)

where εt is the learning rate which can be computed by using a line search

method, in which ∇2G is the updating direction. It is worthwhile to note that140

Q is not a full rank. To avoid numerical instability, we define Q = Q + ςE,

where ς is set to 10−6 in the experiment.

4. Experiment

In this section, we’ll evaluate the effectiveness of our approach. We com-

pare our kernel choice approach for domain adaption, with the baseline SVM,145

and some state-of-the-art domain adaptation learning methods, such as Fea-

ture Replication [16], Adaptive SVM (A-SVM) [12], CDSVM [13], MKL and

DMKLDF [17]. In our experiment, we focus on challenging text classification

problems on 20 Newsgroups dataset 1 and Email Spam dataset.

4.1. Datasets Description150

The 20 Newsgroups dataset is a collection of approximately 20 000 news-

group documents, partitioned (nearly) evenly across six main categories and 20

different newsgroups, each corresponding to a different topic. Some of the news-

groups are very closely related to each other (e.g. comp.sys.ibm.pc.hardware

vs. comp.sys.mac.hardware), while some others are highly unrelated (e.g mis-155

c.forsale vs. soc.religion.christian). The 20 newsgroups collection is a popular

dataset for experiments in text applications of machine learning techniques.

In our experiment, we follow experiment setting of [7]. The four largest main

categories are chosen for evaluation. Specifically, for each main category, the

largest subcategory is selected as the target domain, while the second largest160

subcategory is chosen as the source domain. Table 1 provides the detailed

1Available at http://qwone.com/∼jason/20Newsgroups/
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Setting Source Domain Target Domain

rec vs. sci rec.sport.hockey and sci.crypt rec.motocycles and sci.med

rec vs. talk rec.sport.hockey and talk.politics.mideast rec.motocycles and talk.politics.guns

Table 1: Description of 20 Newsgroups Dataset

information of selected two settings. To build the training dataset, we also use

all labeled samples from the source domain, and at the same time randomly

choose m positive and m negative samples from the target domain. In the

experiment, m is set to 0, 1, 3, 5, 7 and 10. There are three email subsets165

(denoted by User1, User2, and User3, respectively) annotated by three different

users in the email spam dataset. The task is to classify spam and non-spam

emails.

Setting Source Domain Target Domain

User0 vs. User1 User0 User1

User1 vs. User2 User1 User2

User2 vs. User0 User2 User0

Table 2: Description of Email Spam Dataset

Since the spam and non-spam emails in the subsets have been differentiated

by different users, the data distributions of the three subsets are related but170

different. Each subset has 2 500 emails, in which half of the emails are non-

spam (labeled as 1) and the other half of them are spam (labeled as -1). In

this dataset, we consider three settings as in Table 2. For each setting, the

training dataset contains all labeled samples from the source domain as well

as the labeled samples from the target domain, in which five positive and five175

negative samples are randomly chosen, and the remaining samples in the target

domain are used as unlabeled training data and test data as well. We randomly

sample the training data from the target domain for five times and report the

means and the standard deviations of all methods. Again, the word-frequency

feature is used to represent each document.180
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(a) rec vs. talk m = 7 (0.841±0.022)
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(b) rec vs. talk m = 10 (0.883±0.021)
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(c) rec vs. sci m = 7 (0.856±0.011)
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(d) rec vs. sci m = 10 (0.880±0.017)

Figure 1: Performance comparisons of OKCDA with other methods in terms of the means and

standard deviations of classification accuracies on the 20 Newsgroups dataset with different

regularization parameters C ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50}. We set m = 7 or m = 10.

4.2. Experiment Setup

Our base kernels are predetermined for all methods. Specifically, the follow-

ing kernels have been used: Gaussian kernel(i.e., k(xi, xj) = exp(−γ‖xi−xj‖)),

Linear kernel (i.e., k(xi, xj) = xi · xj) and Polynomial kernel (i.e., k(xi, xj) =

(xi ·xj+1)γ), where the kernel parameter γ is set as the default value 0.0005. We185

use 10 kernel parameters 1.5ξ+1γ, ξ ∈ {−2.5,−2, · · · , 2, 2.5}. Motivated by [33],

the regularization term of J(d) is used, which is differentiable and continuous.

l1 regularization with J(d) = d or variations could be used for learning sparse

solutions. Alternatively, l2 regularization of the form J(d) = (d−µ)′Σ−1(d−µ)

can be used only when a small number of relevant kernels are present or if prior190

knowledge in the form µ and Σ is available.

For performance evaluation, we use non-interpolated Average Precision (AP),
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(b) User00 vs. User01 (m = 15)

0.1 0.2 0.5 1 2 5 10 20 50
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Regularization parameter C

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

 

 

MKL
CDSVM
ASVM
FRSVM
DMKLDF
OKCDA

(c) User01 vs. User02 (m = 7)
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(d) User01 vs. User02 (m = 15)
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(e) User02 vs. User00 (m = 7)
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(f) User02 vs. User00 (m = 15)

Figure 2: Performance comparisons of OKCDA with other methods in terms of the means

and standard deviations of classification accuracies on the Email Spam dataset with different

regularization parameters C ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50}. We set m = 7 or m = 10.
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which has been used as the official performance metric in TRECVID since 2001.

AP is related to multipoint Average Precision value of a precision-recall curve

and incorporates the effect of recall when it is computed over the entire classi-195

fication results [34]. Thanks to previous work [7], some Matlab code has been

referenced for this purpose in our experiment. Table 3 shows the classification

accuracies and standard deviations of classification accuracies of different meth-

ods on the real dataset. We obtain that the performance of our model improves

obviously with the increasing of m, and achieves the best result when m is set200

to 10.

Table 4 presents the best among all the results obtained by using different

regularization parameters C ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 50}.

4.3. Results of 20 Newsgroups Dataset

In our experiment, we also compare our proposed method with the com-205

petitive methods on the classification performance, including MKL, ASVM,

CDSVM, SVMFR and DMKLDF. Different regularization parameters are used.

Fig. 1 shows the variation in classification accuracies with varying C over a

range [0.1, 0.2, 0.5,1, 2, 5, 10, 50]. Note that the x-axis in Fig. 1 are in logarith-

mic scale. The results of all methods are obtained by using m positive and m210

negative training samples from the target domain, as well as the training data

from the source domain, where m = 7 and 10 for the 20 Newsgroups dataset.

We have the following observations:

From the Fig. 1, we observe that when C becomes larger, all methods tend

to have better performance. However, our method OKCDA outperforms most215

other methods, only except DMKLDF in terms of mean classification accuracies.

Fig. 1(a) shows that SVMFR has the largest standard deviations of classification

accuracies.

• We observe from Fig. 1(b), Fig. 1(c) and Fig. 1(d) that standard deviations

of classification accuracies of SVMFR severely changes as C from 0.1 to220

2. We also observe that the growth pattern of classification accuracy for
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(a) rec vs. sci

m ASVM CDSVM MKL SVMFR DMKLDF OKCDA

0 0.702±0.000 0.668±0.000 0.725±0.000 0.713±0.000

1 0.687±0.043 0.723±0.020 0.742±0.022 0.674±0.043 0.750±0.021 0.764±0.022

3 0.728±0.039 0.758±0.024 0.755±0.021 0.719±0.056 0.786±0.023 0.799±0.026

5 0.770±0.028 0.799±0.011 0.795±0.013 0.774±0.034 0.822±0.021 0.836±0.013

7 0.795±0.017 0.820±0.011 0.818±0.010 0.814±0.024 0.844±0.010 0.856±0.011

10 0.833±0.023 0.845±0.020 0.842±0.018 0.862±0.027 0.868±0.018 0.880±0.017

(b) rec vs. talk

m ASVM CDSVM MKL SVMFR DMKLDF OKCDA

0 0.716±0.000 0.801±0.000 0.719±0.000 0.702±0.000

1 0.737±0.097 0.742±0.021 0.742±0.022 0.765±0.043 0.755±0.022 0.746±0.027

3 0.801±0.043 0.780±0.020 0.781±0.021 0.776±0.094 0.820±0.017 0.786±0.023

5 0.815±0.047 0.810±0.020 0.809±0.021 0.806±0.081 0.822±0.035 0.818±0.026

7 0.834±0.047 0.832±0.015 0.830±0.017 0.824±0.077 0.851±0.031 0.841±0.022

10 0.857±0.011 0.856±0.013 0.855±0.013 0.861±0.017 0.881±0.027 0.883±0.021

Table 3: Mean and Standard Deviation (in Percentages) of Classification Accuracies for All

Methods with Different Number of Positive and Negative Training Samples from the Target

Domain on the 20 Newsgroups dataset. The best results are marked with bold.

all methods is represented linearly ranged from 0 to 2, while it becomes

steady when C is greater than 2. C=2 seems to be a turning point. The

result shows that the classification accuracy does not depend strongly on

the value of regularization parameter C and the existence of a stable value225

of C. It is interesting to note that our proposed method slightly under-

performs others in terms of classification accuracy as C ranged from 0.1 to

2, but it outperforms the other methods in most cases when C is greater

than 2.

To take a deeper look at Table 3, we analyse the performance of our method230

in comparison with other methods.

• In Fig 2(a), We observe that ASVM performs poorly for all cases. This

may be attributed to the distribution difference between the source domain

and the target domain. When m is set to 0, the performance of our method

is not better than other methods, because the unlabeled patterns are not235
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Figure 3: Performance (i.e, the means of classification accuracies) of OKCDA on the Email

Spam dataset with different balance parameter λ ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50}, and we set

m = 15.

utilized in this case. Note that when m is greater than 0, our proposed

method is consistently better than all other methods in terms of mean

classification accuracies. As m becomes larger, the advantage becomes

more evident.

• In Fig 2(b), we observe that SVMFR have outperforms all other methods240

when m is set to 0, which is unexpected. We can see DMKLDF have a

stable performance in most cases. Our proposed method outperforms all

other case when m is set to 10. From Table 2(a) and Table 2(b), we have

the following conclusions: many cross-domain learning methods generally

achieve similar performances, and our proposed kernel choice method for245

cross-domain learning is better than most other methods in terms of the

means of classification accuracies on datasets.

4.4. Results of Email Spam Dataset

For the Email Spam classification task, we also provide comparisons between

OKCDA and other related methods. For each setting, we report the results of250

all methods by using the training data from the source domain as well as m

positive and m negative training samples randomly selected from the target

domain, where m=0,1,3,7,10,15 for the Email Spam. We randomly sample the
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training data from the target domain for five times. In Table 4, we report the

means and standard deviations of classification accuracies for all methods on255

the Email Spam datasets, respectively. Also noted that for all methods, each

result in Table 4 is the best among all the result obtained by using different

regularization parameters C ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50}. From Table 4, we

have the following observations:

• The performance of these methods has not been changed greatly under the260

change of parameter m. OKCDA and DMKLDF have the similar results

and smallest standard deviation of both are significantly less than other

methods. This fact demonstrates that OKCDA and DMKLDF have a

relatively high stability.

• The experimental performance of our method is better than CDSVM,265

MKL and SVMFR. Compared with DMKLDF, our method has an ap-

proximate performance, which achieves a gap of 0.001 level.

• Since the change of m has not improved the performance of these methods,

we believe that there exists a limit among these cross-domain learning

methods. In other words, when the number of samples exceeds a certain270

threshold, further increasing the training set size does not improve the

performance.

• Our proposed method OKCDA consistently performs better than some

methods in terms of the means classification accuracies on Email Spam

dataset, thanks to the explicit modeling of the data distribution mismatch,275

as well as the successful utilization of the unlabeled data. As shown in

Table 4, when the number of labeled positive and negative training samples

from the target domain increases, OKCDA has similar performance with

DMKLDF but the performance does not improve.

We also compare our proposed method OKCDA with other cross-domain280

learning methods , including ASVM, CDSVM ,SVMFR and DMKLDF, by us-

ing different regularization parameter C ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50}. The
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(a) User00 vs. Use01

m ASVM CDSVM MKL SVMFR DMKLDF OKCDA

0 0.961±0.000 0.957±0.000 0.968±0.000 0.963±0.000

1 0.959±0.006 0.961±0.001 0.962±0.022 0.674±0.043 0.968±0.000 0.963±0.001

3 0.957±0.005 0.962±0.001 0.962±0.001 0.948±0.010 0.968±0.001 0.964±0.002

7 0.959±0.005 0.963±0.001 0.963±0.001 0.947±0.014 0.968±0.001 0.964±0.001

10 0.955±0.009 0.964±0.000 0.964±0.002 0.946±0.019 0.969±0.001 0.965±0.001

15 al1 0.952±0.010 0.966±0.020 0.965±0.002 0.947±0.010 0.969±0.001 0.965±0.001

(b) User01 vs. User02

m ASVM CDSVM MKL SVMFR DMKLDF OKCDA

0 0.969±0.000 0.668±0.000 0.977±0.000 0.972±0.000

1 0.964±0.006 0.969±0.001 0.970±0.022 0.942±0.043 0.977±0.000 0.972±0.000

3 0.960±0.0018 0.970±0.001 0.970±0.021 0.942±0.031 0.977±0.000 0.972±0.001

7 0.963±0.011 0.970±0.001 0.970±0.000 0.949±0.018 0.977±0.000 0.972±0.001

10 0.967±0.005 0.971±0.001 0.970±0.001 0.957±0.004 0.977±0.000 0.973±0.000

15 0.969±0.001 0.972±0.001 0.970±0.000 0.961±0.002 0.977±0.002 0.973±0.001

Table 4: Mean and Standard Deviation (in Percentages) of Classification Accuracies for All

Methods with Different Number of Positive and Negative Training Samples from the Target

Domain on the Email Spam dataset. The best results are marked with bold.

result of all methods are also obtained by using m positive and m negative

training sample from the target domain as well as the training samples from the

source domain. We set m = 7 and m = 15 for Email Spam datasets in Fig. 2.285

From the Fig. 2, we observe that when C becomes larger, all methods tend to

have better performances. However, OKCDA has relatively stable performance

in terms of the standard deviations of classification accuracies.

4.5. An analysis of the λ tradeoff between the structural risk and the bias min-

imization290

In this subsection, we mainly investigate how would the choice of λ affect the

adaptation classification accuracy. Fig. 3 shows the variation in classification

accuracies with varying λ of [0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50], where we set

m=15 and the regularization parameter C =1,7 and 15. Noted that the number

of labeled samples from the two domains and the number of unlabeled samples295

from the target domain are almost the same on the Email Spam dataset. The
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x-axis in Fig. 3 are in logarithmic scale. We have the following observations:

• The performance of OKCDA changes with different λ values. λ is a hyper-

parameter that the model is not sensitive to, and needs to be tuned across

different labeled or unlabeled data sizes.300

• When λ ranges from 0.1 to 50, the classification accuracy changes with a

small scale. When the λ is gradually increasing, the performance decreases

a bit.

• When λ takes the value around 5, the best performance of OKCDA can be

obtained. In this case, both the labeled data and the unlabeled data from305

the target domain can be effectively utilized to learn a robust classifier.

5. Conclusions

In this paper, we propose a method of optimal kernel choice for domain

adaption, namely, OKCDA. The paper extends the previous work on optimal

kernel choice to two-sample tests, with an additional component to minimize the310

structural risk on the labeled data. The method is tested on the 20 Newsgroups

dataset and Email Spam dataset, and compared to several existing methods. In

our experiments, the kernel is set to be a linear combination of some base kernels.

The kernel parameters are chosen to minimize the structural risk functional

and the distribution bias between the samples from the auxiliary and target315

domains. To reduce the distribution mismatch, we minimize the Type II error

based on the MMD and construct a test statistic between source domain and

target domain. We will investigate how to choose the kernel automatically and

explore the relationship between Type II error or Type I error and domain

adaption learning performance in the future.320
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