
n Corr
E-m

karina.g
Understanding effects of cognitive rehabilitation under a knowledge
discovery approach

Alejandro García-Rudolph a, Karina Gibert b,n

a Institut Guttmann – Hospital de Neurorehabilitació, Camí de Can Ruti s/n 08916, Badalona, Barcelona Spain
b Dep. of Statistics and Operations Research, Universitat Politècnica de Catalunya – BarcelonaTech, Jordi Girona 1-3, 08034 Barcelona, Spain
a r t i c l e i n f o

Keywords:
Cognitive rehabilitation
Traumatic brain injury
Knowledge discovery
Motifs
Clustering-based on rules
Post-processing
esponding author.
ail addresses: agarciar@guttmann.com (A. Gar
ibert@upc.edu (K. Gibert).
a b s t r a c t

Traumatic brain injury (TBI) is the leading cause of death and disability in children and young adults
worldwide. Cognitive rehabilitation (CR) plans consist of a sequence of CR tasks targeting main cognitive
functions. There is not enough on-field experience yet regarding which specific intervention (tasks or
exercise assignment) is more appropriate to help therapists to design plans with significant effectiveness
on patient improvement. The selection of specific tasks to be prescribed to the patient and the order in
which they might be executed is currently decided by the therapists based on their experience.

In this paper a new data mining methodology is proposed, combining several tools from Artificial
Intelligence, clustering and post-processing analysis to identify regularities in the sequences of tasks in
such a way that treatment profiles (classes) can be discovered. Due to the cumulative effect of re-
habilitation tasks, small variations within the sequence of tasks performed by the patient do not sig-
nificantly change the final outcomes in rehabilitation and makes it difficult to find discriminant rules by
using the traditional machine learning inductive methods. However, by relaxing the formalization of the
problem to find patterns that might include small variations, and introducing motif discovery techniques
in the proposed methodology, the complexity of the neurorehabilitation phenomenon can be better
captured and a global structure of successful treatment task sequences can be devised.

Following this, the relationship between the discovered patterns and the CR treatment response are
analyzed, offering a richer perspective than that provided by the single task focus traditionally used in
the CR field.

The paper provides a definition of the whole methodological approach proposed from a formal point
of view, and its application to a real dataset. Comparisons with traditional AI approaches are also pre-
sented and the contribution of the proposed methodology to the AI field discussed.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

According to the World Health Organization (WHO), traumatic
brain injury (TBI) is the leading cause of death and disability in
children and young adults worldwide and it is involved in nearly
half of all trauma deaths (Schroeter et al., 2011). In Europe, brain
injuries from trauma are responsible for more years of disability
than any other cause (Maas et al., 2009). The incidence is in-
creasing in lower income countries; the WHO predicts that TBI
and road traffic accidents will be the third cause of disease and
injury worldwide by 2020. Cognitive impairments due to TBI are
substantial sources of morbidity for affected individuals, their fa-
mily members, and society. Disturbances of attention, memory,
cía-Rudolph), 
and executive functioning are the most common consequences of
TBI.

Neurorehabilitation is the process that exploits the cerebral
plasticity to reduce brain deficit. Cognitive rehabilitation (CR) aims
to reduce the impact of disabling conditions and tries to improve
the cognitive deficits caused by TBI. From Luria’s theory back in
1978, there is a common believe that direct retraining of damaged
cognitive processes through repeated stimulation and activation of
the targeted brain areas can help patient recovery. For maximum
activation to occur, the patient must face tasks just barely too dif-
ficult for him (Green and Bavelier, 2005). Designing a CR treatment
for a given patient therefore means determining the correct se-
quence of CR tasks to be asked of the patient in a quite precise
trade-off between enough stimulating and sufficiently achievable
tasks, which is far from intuition, and still is both an empirical and
theoretical open problem in the area. It has been seen that similar
patients respond differently to similar CR treatments. Literature
reports single task approaches to this purpose, analysing the
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associations between the performance of a certain task and the
response to the CR treatment. However, although there is some
empirical knowledge, traditional approaches do not seem to pro-
vide sufficient scientific evidence about the factors determining a
favourable outcome, and there is still a limited scientific base to
support the effectiveness of CR (Cicerone et al., 2011). In fact, most
of the work found in this field adopts traditional pre-post analysis
with intervention studies where a specific treatment is applied to
a sample of patients and contrasted with a control group. But none
of this analysis includes detailed characteristics of different CR
programs in the model. They only use assessment of the patient
before and after the treatment and characteristics of the lesion and
of the patient to predict improvement. These works, although
useful to prove the effectiveness of CR, do not contribute to a
better design of CR programs for a specific patient.

In this work, the underlying structure of the CR phenomenon
has been analyzed in depth and it has been seen that the CR field
has some specific characteristics that make a successful applica-
tion of traditional methods difficult:

� Patients following a CR program are not performing a single
task, neither a single type of task, but a certain complex com-
bination of them that are likely to be interrelated or synergis-
tics. A single task approach cannot take into account the com-
plex interactions among tasks.

� Cognitive tasks, even when specifically designed to target a
particular cognitive function, might also have side-effects on
other cognitive functions (Cicerone et al., 2011). This makes it
difficult to examine the isolated effect of a single task in a
specific cognitive function, and no clear evidence appear when
all tasks are integrated into a traditional model.

� The additional effect of a single task might be affected by the
cumulative effect of the sequence of previous tasks executed
under the treatment, and this might determine that the order of
execution is relevant in the treatment.

� The effect of a single task may be too subtle to be detected,
whereas the effects of the whole CR treatment may be sufficient
to be detectable, taking into account the cumulative effect of
rehabilitation already mentioned.

From a structural point of view, these characteristics resemble
those in nutritional epidemiology, where a global approach has
been adopted in recent years, and all nutrients are analyzed to-
gether due to the high degree of interaction (Hu, 2002). This points
to analyzing the overall CR treatment, by considering all kinds of
interactions among tasks together, instead of using the traditional
single task approach. Therefore, CR treatment in this work will be
considered as a sequence of cognitive tasks and data mining
methods will be used to determine the multivariate associations
between a CR treatment (or relevant subsequences) and the de-
gree of response of the patient, under this new perspective. Ana-
lyzing CR tasks as treatment patterns offers an innovative per-
spective in neurorehabilitation, and describing their relationship
with their clinical outcome provides a practical approach to eval-
uate the effects of rehabilitation treatments. It can also enhance
our conceptual understanding of CR treatments practice, and
might be useful to provide guidance for cognitive treatment
interventions.

To this end, an innovative data mining methodology is pro-
posed to analyze the underlying structure of CR processes and to
better determine the most suitable CR treatment for a given pa-
tient. In a first approach, one would be tempted to identify the task
sequences associated with the improvement of different patients,
by using a traditional classifier to find patterns associated with the
different treatment responses found in different patients. How-
ever, this approach has shown serious limitations in this field,
providing extremely weak patterns that do not really help in
clinical practice, as will be discussed later.

In this particular field, because of the cumulative effect of the
tasks mentioned above, it is reasonable to think that the effect of a
certain sequence of CR tasks can behave robustly to slight varia-
tions of the sequence. Thus, small variations of the sequence of
tasks performed might keep the global effect of the treatment
unaltered. This means that the model to be built should admit a
certain level of variation around every relevant pattern. However,
working with a task’s global profile for treatments is neither
useful, as the order of executions becomes relevant in CR. These
characteristics have already been encountered in the bioinfor-
matics fields, particularly in transcription factor binding sites (TFBS)
field, where slightly different sequences of DNA are associated
with a certain biological function. Motif discovery or motif finding
methods are used in this field, to represent those weak patterns.
Similarly, motif discovery methods will be introduced in our pro-
posed methodology to identify patterns of CR treatments, where
slight variations in the treatment program might be packed into a
single CR motif with a similar therapeutic effect, and might be
associated with a certain response level.

This paper introduces the new Sequence of Activities Improv-
ing Multi-Area Performance (SAIMAP) methodology, as an in-
novative combination of pre-processing tools, clustering, AI
methods, motif discovery and post-processing techniques. SAIMAP
is a hybrid methodological frame where useful patterns can be
found from data. SAIMAP works for domains with high order in-
teractions among variables and sequential information along time
that involves cummulative effects. This provides a complex
structure, for which most of the classical data mining approaches
do not perform very well. The proposed methodology is general
for problems with the structure described before, although in the
paper it is applied to the particular field of finding design guide-
lines for CR treatments. SAIMAP first finds groups of similar
treatments, then makes a local characterization of each group by
using motif discovery methods, and finally analyzes the relation-
ships between those typical treatments and the evaluation of pa-
tients’ improvement after treatment. Statistical tests and multiple
boxplots are used to relate the discovered groups with patient’
characteristics, level of impairment and associated with specific
treatment patterns.

The structure of the paper is the following: Section 2 in-
troduces the state of the art, organized in sections related to the
different research areas involved in this multidisciplinar research,
from both the application and methodological point of view. In
Section 3 methodological issues are provided: first, the for-
malization of the general problem addressed is defined, with a
clear presentation of the structural components of the problem
(our methodological proposal addresses scenarios where in-
dividuals perform sequences of predefined set of activities with
high order interactions among them and cumulative effects). The
main goal is to identify a reduced set of characteristic sequences of
activities profiling groups of individuals who behave similarly. The
second part of Section 3 introduces the SAIMAP methodology as
our proposal to address this problem. SAIMAP is composed by 13
formal steps, where sequential patterns are induced from data
fitting the structure defined in Section 3.1. In Section 4 our
methodology is applied to a specific real case, regarding cognitive
rehabilitation treatments of traumatic brain injury patients; the
inputs are sequences of cognitive rehabilitation tasks performed
by the patients along the CR treatment; preprocessing activities
are detailed and sequential patterns of CR tasks are obtained fol-
lowing the SAIMAP steps. The discovered patterns, are interpreted
through motif discovery tools and associated with several criteria
measuring improvement in a predefined set of impact areas that
might be targeted in parallel by a single task (in the particular case



of application, memory, attention and executive function impact
areas). Section 5 compares the patterns obtained under SAIMAP
approach with traditional data mining methods, like classifiers
(decision trees, neural networks, …) and sequential pattern
mining. Finally, Section 6 provides conclusions and future work.
2. State of the art

2.1. Cognitive rehabilitation

Neurorehabilitation is the process of identifying the residual
deficit and exploiting the cerebral plasticity to reduce it. This is
achieved by elaborating therapeutic plans to favor the establish-
ment of new and appropriate neurological connections, observing
patient responses to the plan and guiding them to the proper re-
sponses (Taly et al., 1998). Cognitive rehabilitation (CR), as part of
neurorehabilitation, aims to reduce the impact of disabling con-
ditions and tries to improve the cognitive deficits caused by TBI. It
aims to reduce functional limitations and increase the individual's
ability in their daily activities. The modern era of CR dates to
Gianutsos’s seminal article, What is cognitive rehabilitation? (Gia-
nutsos, 1980), which laid out an approach based on Alexander
Luria’s theory of cognitive processes (Luria, 1978), based on the
assumption that direct retraining of specific cognitive processes
through multiple repeated trials of stimulation and activation of
the targeted cognitive process can lead to the reorganization of
higher level neurologic and cognitive processes. There is a com-
mon belief that CR is effective for persons with TBI, based on a
large number of studies and extensive clinical experience (Rohling
et al., 2009). However, current knowledge about the factors de-
termining a favourable outcome is mainly empirical, and there is
still a limited scientific basis to support the effectiveness of such
interventions (Cicerone et al., 2011).

According to Gianutsos it is possible to isolate and measure
foundational aspects of cognition—attention, perception, and
memory, among others— to treat them directly with the use of
specifically designed activities, either on tabletops or personal
computers. Repetition is perhaps the hallmark of this approach. A
typical CR program mainly provides specialized tasks, which re-
quire repetitive use of the impaired cognitive subsystem in a
progressively more demanding sequence (Sohlberg, 2001). Each
task targets a principal cognitive function (attention, memory,
reasoning/problem solving, or executive functions) and can be
proposed to the subject at different levels of difficulty. As soon as a
patient has mastered a particular exercise or group of exercises,
higher-level treatment tasks targeting the same cognitive com-
ponent need to be available so that the continued stimulation and
activation of the objective cognitive process can occur.

This paradigm, known as process-specific or skill-specific (Sohl-
berg, 2005), spread quickly, and can impact differentially on
neurocognitive deficits, provided that the proper sequence of tasks
is delivered to the patient. For maximum activation to occur, the
patient must face tasks just barely too difficult for him (Green and
Bavelier, 2005). Thus, finding the correct training schedule for a
given patient requires a quite precise trade-off between enough
stimulating and sufficiently achievable tasks, which is far from in-
tuition, and still is both an empirical and theoretical open problem.
In our previous research (García-Rudolph and Gibert, 2014) the
neurorehabilitation range has been introduced as an objective cri-
terion to determine the proper level of difficulty to be proposed for
a task, but it is still insufficient in terms of managing CR treatment
globally, since cognitive tasks interact among them.

The design of a CR program has become an essential issue.
However, in clinical practice, therapists mainly design CR plans
from scratch, determining clinical settings for specific patients
mainly based on the therapist’s expertise (Jagaroo, 2009; Cicerone
et al., 2011). Each specific plan evolves according to each thera-
pist’s own criteria and evaluation on the patient’s follow-up. There
is not enough on-field experience yet regarding which specific
intervention (task or exercise assignment) is more appropriate to
help CR therapists to design their CR plans (Cicerone et al., 2011).
Therefore finding patterns of cognitive task sequences that pro-
duce significant improvement on affected cognitive functions can
definitely contribute in this area.

Traditionally, neurorehabilitation efforts have been focused on
modelling and quantifying the effect of a single cognitive task on a
patient. These types of analyses have been quite valuable (Cicerone
et al., 2011). They have shown, for instance, that the effect of a task
mainly depends on the ratio between the skills of the treated
patient and the challenges (difficulty) involved by the task (IOM,
2011; Whyte and Hart, 2003). However, the single task approach
may be inadequate for finding global models for the rehabilitation
process in clinical practice. Limitations of single factor approaches
have also been found in other research areas, such as nutritional
epidemiology (Hu, 2002) where research topics recently moved
towards the overall dietary patterns by considering how foods and
nutrients are consumed in combinations towards global nutri-
tional models (Millen et al., 1996). This seems to indicate that the
multivariate approach will be much more convenient in our case
too.

In addition and on account of the cumulative effect of the tasks
mentioned above, it is reasonable to think that the rehabilitative
power of a certain sequence of tasks could remain unaltered, even
when the patient executes other tasks at intermediate points of
the sequence. In fact, improvement in attention of two patients
performing two sequences of tasks (for example Circles-Matching-
DiffDirection-StraightLine ) and (Circles-Matching-Categorizing-Dis-
crimination-DiffDirection-Planif-StraightLine) is expected to be the
same, since Categorizing, Discrimination and Planif are tasks or-
iented mostly to work executive functions and do not mainly in-
teract with attentional skills.

This means that the model to be built should admit a certain
level of variation around every relevant pattern. These character-
istics have already been encountered in bioinformatics, related to
transcription factor binding sites (TFBS), in which regulatory ele-
ments in nucleotide sequences are searched. Certain segments of
the DNA are transcribed into another molecule (RNA), which
serves as a template to make the basic building blocks of cellular
life: proteins (Zambelli et al., 2012). This first step of gene ex-
pression, transcription, is regulated by different factors, among
which transcription factors (TFs) play a key role binding DNA near
the transcription start site of genes. Even though some TFs bind to
DNA in a very unspecific way, most of them bind by recognizing
specific sequence elements (the TFBS) (D’Haeseleer, 2006). Typi-
cally, a TF recognizes not just one particular sequence but a
number of similar sequences that can include small variations
within it. This collection of slightly different sequences and its
diverse set of representations are collectively known as binding
motifs. TF bind the DNA in a specific way forming sequences that
are similar but not necessarily identical, differing among them in a
few nucleotides, but accomplishing the same biological function.
Binding motifs are found using motif discovery or motif finding
methods. These techniques enable us to find short similar se-
quence elements (building the motif) shared by a set of nucleotide
or protein sequences with a common biological function.

Structural similarities involving binding motifs and the prop-
erties of CR treatments are proposed to be exploited in our ap-
proach. The main contact point is that the effect of a certain se-
quence of CR tasks can behave robustly to slight variations of the
sequence, those of introducing other cognitive tasks within the
sequence. A typical CR program targets a limited group of CR



functions (e.g. attention, memory, executive functions). The hy-
pothesis of the cumulative effect of rehabilitation tasks makes it
suitable to model the problem by using motif discovery techniques
over CR task sequences. This way, slight variations in the treat-
ment program might be packed in a single CR motif with a similar
therapeutic effect, in the same way as small variations of nucleo-
tide sequences are packed in a single binding motif if they regulate
in the same way a certain protein. Searching for motifs over CR
treatment programs (sequences of cognitive functions) is expected
to identify basic sequences of CR tasks that produce a certain re-
sponse to treatment pattern, even if they are performed with small
variations.

2.2. Classification

A classification technique (e.g. decision trees, k-nearest neigh-
bors, neural networks, support vector machines, naive bayes) is a
systematic AI approach to build classification models from input
data sets (Tan et al., 2006). The input data of a classification task is
a collection of examples, describing objects by a set of attributes
and a class label. Classification is the task of learning a target
function f that maps each attribute set x to one of the predefined
class labels y. The target function is also known as classification
model and depending on the classification method used, it might
be implicit or explicit and can take the form of a knowledge base,
or a decision tree, or even a black-box, as in the case of neural
networks. In order to evaluate the performance of the specific
classification technique, k-fold cross-validation is used for esti-
mating how accurately a predictive model will perform in practice
(Hall et al., 2009).

A number of studies employ traditional classification techni-
ques for the automatic prognosis of TBI patients, i.e. anticipating
treatment outcome from the usual course of the disease and/or the
peculiarities of each individual case. There is no consensus yet on
an optimal method. Different approaches have therefore been
explored (Garcia et al., 2013). Decision trees are the most common
choice, (Brown et al., 2005); (Rovlias and Kotsou, 2004), but neural
networks (Pang et al., 2007); (Segal et al., 2006) or different re-
gression models (Andrews, 2002) are also used. These studies fo-
cus on determining survival, predicting gross outcome, and/or
identifying predictive factors of a patient’s condition after TBI
(usually acute TBI). Recent studies (Pignolo Pignolo and Lagani,
2011) compare different machine learning classifiers (C4.5, Sup-
port Vector Machine, Naive Bayes, K-NN) in the early prediction of
outcome of the subjects in vegetative state due to TBI. As pre-
viously mentioned, neural networks have also been applied e.g. to
predict in-hospital survival following TBI (Rughani et al., 2010).
When given the same limited clinical information, the ANN sig-
nificantly outperformed regression models and clinicians on
multiple performance measures. Particularly, three layered back-
propagation neural network with an input layer of 10 nodes whose
output provides the inputs to a hidden layer was used. Thirty-two
TBI patients of different age and gender were taken in the study, a
significant relationship between system outputs and neurologists’
decisions was found (Güler et al., 2009).

To the best of our knowledge, no work has been found using
classifiers to learn CR task patterns to determine the degree of
improvement of a patient after a CR treatment.

2.3. Sequential pattern mining

Since the structure of the dataset that we intend to analyze
contains sequences of CR tasks performed by a patient along a CR
treatment, sequential pattern mining (SPM) is also considered. A
sequential pattern is a sequence. Given a sequence of itemsets SA
¼ X1, X2 , … Xk, the sequence SB ¼ Y1 , Y2, … Ym, mrk occurs in
SA if all elements in SB belong to SA and precedences of SB ele-
ments are conserved in SA. The support of an SP is the proportion
of sequences where the pattern occurs in the database. Frequent
SP has a support greater than a certain threshold provided by the
user; subsequences are also considered.

SPM plays an important role in data mining and is essential to a
wide range of applications such as the analysis of web click-streams,
program executions, healthcare data, biological data and e-learning
data (Mabroukeh and Ezeife, 2010). Patterns in the healthcare do-
main include the common patterns in paths followed by patients in
hospitals, patterns observed in symptoms of a particular disease,
patterns in daily activity, and health data (Gupta and Taly, 2012). A
recent example of mining in a medical context is the application of
the sequential pattern mining algorithms on a database known as
the RSU Dr. Soetomo medical database to find disease SP (Yuliana
et al., 2009). However, age and gender were not included in the se-
quential rules and the author only displayed a selection of rules.
Other existing work aims to detect medical SP intended to focus on
time series data (Pradhan and Prabhakaran, 2009) or specific ill-
nesses, such as patterns predicting the onset of thrombosis and
identifying traits leading to atherosclerosis in a database of ap-
proximately 1400 middle aged men (Klema et al., 2008).

To the best of our knowledge the identification of SP where a
TBI rehabilitation treatment is considered as a sequence of CR
tasks has not yet been addressed. And the methodologies used in
related works previously mentioned do not resist sets of variables
with cumulative effects and high-degree interactions, as stated in
the introduction.

Several efficient algorithms have been proposed for SPM such
as ClaSP (Gomariz et al., 2013), CloSpan (Yan et al., 2003) GSP
(Srikant and Agrawal, 1996), PrefixSpan (Pei et al., 2004), SPADE
(Zaki, 2001). and SPAM (Ayres et al., 2002). SPM algorithms can
use a horizontal database format (e.g. CloSpan, GSP and Prefix-
Span) or a vertical database format (e.g. ClaSP, SPADE, SPAM).
Using the vertical format provides the advantage of generating
patterns and computing their supports without performing costly
database scans. This allows vertical algorithms (CM_SPADE, CM-
SPAM) to perform better on datasets having dense or long se-
quences than algorithms using the horizontal format, and to have
excellent overall performance (Fournier-Viger et al., 2014).

Although SPM methods are suitable for our problem, we will
see that they do not provide useful results from a clinical point of
view. Indeed, SPM methods can provide most frequent sub-
sequences in a dataset, and subsequences do not require con-
tinguity of elements to occur. So, this seems to be a suitable fra-
mework to model the slight variations of the patterns required in
our problem. However, the complexity of the solutions space
provided by this kind of method seems to be higher than the one
in the original dataset and this seems to increase complexity in-
stead of providing a better understanding of the underlying
structure of the problem as it will be seen in the application below.

2.4. Motif discovery in sequential data

A motif is a short distinctive sequence pattern shared by a
number of related sequences. The distinctiveness of a motif is
mainly reflected in the over representation of the motif pattern at
certain locations in the related sequences and the under re-
presentation elsewhere.

One of the early origins of motif discovery in the context of
DNA analysis is the Korn algorithm (Korn et al., 1977). Especially
relevant to gene activities are regulatory elements bound by pro-
teins such as TFs identification (D’Haeseleer, 2006). Because a
single protein often recognizes a variety of similar sequences,
motifs are subject to some degree of sequence variation at each
motif position without losing their function.



More than a hundred methods (Klepper and Drabløs, 2010)
have been proposed for motif discovery in recent years, re-
presenting a large variation with respect to both algorithmic ap-
proaches as well as the underlying models of regulatory regions.
Among them, MEME (Multiple Expectation-Maximization for
Motif Elicitation) is one of the best established motif finding tools,
quick and accurate enough and with suitable implementations
available (Das and Dai, 2007; Bailey and Elkan, 1995). MEME
searches motifs by performing Expectation Maximization (EM) on
a motif model of a fixed width and using an initial estimate of the
number of sites.

Few applications are found with motif discovery for relevant
patterns in non genetic sequences. They have been recently ap-
plied to acoustic analysis (Burred, 2012), where sounds are first
transformed into a sequence of discrete states, and these subjected
to the MEME algorithm for motif discovery, searching for re-
petitive patterns The relationship between biological sequences
and mobility mining has also been explored (Jawad et al., 2011),
searching for patterns in traffic sequence data. Specifically in the
medical field, motifs search have been applied to find precursors of
acute clinical events regarding electrocardiographic activity (Syed
et al., 2010).

However, to the best of our knowledge, no work applying
motifs to the identification of patterns in CR treatments has been
conducted. In this work, a novel application of motif discovery
techniques is proposed to find patterns of CR in a context quite far
from genomic datasets and search of DNA sequences that are
conserved across genomes, for which motif discovery techniques
were originally designed. As already stated, our proposal is based
on the fact that cognitive rehabilitation shares some structural
components with the gene behavior, which makes motifs useful in
genetics. Motif discovery methods are also introduced as a piece of
particularly complex methodology that combines with other AI
tools as presented in the next section.
3. Methodology

In this section, the formulation of the problem and the meth-
odological proposal are presented. Section 3.1 provides a generic
formulation of the problem which is not restricted to the parti-
cular application presented in this work.
3.1. 3.1. Problem formulation

Given

� { }= …I i i a set of individualsn1
� T ¼ {Ts s¼1:T } a set of activities (or tasks) that can be executed

by any individuals.
� ¼ {A1, A2,…., Aa} set of areas impacted by each task from T.
� f : T - a function that relates an activity with its area of

impact: f(Ts ) ¼ Aj,

s¼1: , j¼1:a , being Aj the area of impact of activity Ts.
Given a scenario in which each individual i executes a sequence

of t fiactivities, one at a time t = t1. . fi.
Given i, the matrix Ri provides the list of all his executions

(runs): = ( )
⎡⎣ ⎤⎦R i T t, ,i t ,3fi

.

Matrix R represents the total set of activities executed by all
individuals
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being ρ = ∑ = ti
n

f1 i the total number of activities’ executions
performed by all individuals.

On the other hand, the sequence of activities executed by an
individual i on time =t t1. . fiis =( … …s T T T, , , ,i i it if1 i). In fact, si is

= [ ]s R 2i i
T . The longest sequence having length = =M max tt i n f1.. i.

χ = ( )
⎡⎣ ⎤⎦Tit n M, t

with { }{ }= =i n t t1. . , 1. . ,fi is a matrix where
each row indicates the sequence of activities performed by in-
dividual i. Note that this might not be a rectangular table, as each
row has length ≤ ∀ =t M i n, 1. .f ti .

= ( )A f Tit it is the area of impact of activity Tit executed by in-
dividual i in time t.

=( … …s A A A, , , ,i it tfi
a

1 i) is the sequence of areas impacted by the
activities executed by individual i in the period [1,t fi], being ∈Ait

∀ =t 1. . t fi.

χ = ( )
⎡⎣ ⎤⎦Ait n M

a
, t

with { }{ }= =i n t t1. . , 1. . ,fi is a matrix where
each row indicates the areas of impact of the sequence of activities
performed by individual i.

Y1t….Yat a set of numerical indicators of performance for in-
dividuals in each area of impact.

Yjt measures the global performance obtained from individual i
in the Area of impact.

∈Aj =j a1. . at a certain time point t.
=( … )E Y Ya0 10 0 evaluates the performance levels of individuals in

the different areas of impact before executing their sequence of
activities.

=( … )E Y Yf f af1 evaluates the performance levels of individuals in
I, in the areas of impact in after executing their corresponding
sequence of activities described in χ .

= −D Y Yj j jf0 evaluates the effect of χ in the performance levels of
activity Aj. Note that a global effect of the whole sequence is
measured, taking into account that several activities in the se-
quence might impact on the same area. Ideally Yjf will be an im-
plicit or explicit function of all those activities impacting Aj in-
dependently of their position in the particular sequence, due to
the cumulative effect of activities discussed above. Assuming that
0 indicates best performance, >D 0j indicates improvement, ≤D 0j

indicates non-improvement. Depending on the particular appli-
cation, other semantics might also be assigned to the values of the
performance indicators as well, and this will require re-
interpretation of values of the Dj variables accordingly.

Δ¼ (D1……Da) provides the effect of χ on each area of impact.
X ¼(X1…XK) additional information about individuals XK might

be either numerical or qualitative.
Being : Boolean expression build over χa , : Label; KB¼{r:

- } is a Knowledge base composed of a set of rules partially
expressing the a priori knowledge in the domain. It is important to
note here that no assumption of completeness is imposed over KB.

Eventually, a binary variable Z might be available for model
assessment, indicating the success of an individual performing
their sequence of activities under a certain criterion of perfor-
mance,

=⎪
⎪⎧⎨
⎩

Z
YES successful performance

NO unsuccessful performance

,

,

Eventually Z might be a multidimensional vector and each
component might be a function of some Δ component.



Under all these premises, it is desirable to find:

� a set of patterns describing the behavior of the individuals
when executing activities ¼ μ μ μ{ … }, , m1 2 ; ∀ μ∈ μ is a se-
quence of impact areas of variable length (always lower than
Mt). Thus, each pattern μ is expressed as:

μ = ( … μa a a, , , n1 2 ) with ∈al l: 1. μn .
Such that

1. ∀ μ μ′∈, μ μ≠ ′:
2. ∀ ∈ ∃ μ∈i I, : μis a subsequence of si

3. μ∀ ′∈ , μ μ′≠ μ, is a not subsequence of si

4. Thus, inducing a partition P over I. Being P¼{ …μ μI I. m1 },

={ μμI i: is a subsequence of }si

� The relationship among the patterns in and the improve-
ments in global and/or individual areas of impact in due to
execution of activities in T and the characteristics of individuals
associated with the pattern (associations between and X) This
means finding associations between and Z. In particular, given
a threshold γ the subset D : ∀ μ∈N ( )| γ= ≥μProb Z I YES1 is
searched.

3.2. The SAIMAP methodology

The SAIMAP (Sequence of Activities Improving Multi-Area
Performance) methodology is our proposal to solve the problem
described in the previous section.

Given the R matrix, SAIMAP consists of the following steps:
1. Preprocessing
1. Build { }∀ = … =( [ ])s i n s R1, , as 2i i i

t; si contains the sequences
of tasks done by i

2. Build χ = ⋮
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

s

sn

1

as the matrix of the sequence of tasks per-

formed by each individual
3. Identify the frequency threshold f to retain a task
4. Recategorize T by using a new category OTHERS grouping all

infrequent tasks
5. Determine l the threshold task length to be considered

(percentile -95 of length of treatments distribution).
Use only first l columns of χ for the whole study and complete

shorter sequences by “NULL” values
6. Build
Δ¼ (D1……Da) effect of χ over each area of impact
Z as a function of a subset of Δ
2. Descriptive analysis
1.Build frequency plot of first l columns and f tasks of χ
2.Build heatmap of first l columns and f tasks of χ
3.Build heatmap of first l columns and f tasks of χa

3. Prior expert knowledge acquisition: Knowledge is re-
presented by means of lf-Then rules in order to provide maximum
flexibility and expressiveness to the expert. Only available knowledge
is collected even if it is a partial description of the domain.

Build KB¼{r: - } from a priori expert knowledge in target
domain

4. Clustering of matrix χ: The idea is to obtain standard pat-
terns of sequences in terms of the areas impacted by the tasks
performed by the users. The methodology might accept any clus-
tering method, but in our approach Clustering based on rules (Gi-
bert and Zonicki, 1999) is strongly recommended, as it will be
justified in the section below.

Let P¼ { }ξC ..C1 be the set of classes found, P being a partition of
I ( ∀ ∈ ⊆ )C P C, I
5. Split of χ per class: Divide the data matrix into submatrices
according to the different classes found in previous step.

∀ ∈ χ =χ | = ⎡⎣ ⎤⎦C P build C AC
a a

it n Mc t
, with i∈{i| i={1,...,n} and i ∈ C},

i¼{i:i:1.n and i ∈ C}, nc ¼card{C}.
χC

a contains only the rows corresponding to individuals in class
C.

6. Visualization of classes: ∀ ∈C Pbuild a heatmap of χC
a

7. Find motifs per class
1. Define an alphabet ζ of a single letters associated with the

areas of impact in such that ∀ ∈A is represented by w ∈ ζ
2. ∀ ∈ χζC P build C by replacing the activities in χC

a by their
corresponding initial in ζ

3. ∀ ∈ χζC P find motifs of C of length l (other methods can be
used as well but MEME method is recommended)

Let { }= …e e el
C1
l

cM
l be the vector with the E-values for all motifs

found
∀motif m ,C

l ∈ ∈ ⎡⎣ ⎤⎦lC P, l , lmin max

Let πC
l be the letter probability matrix indicating the presence of

the letter of alphabet in the position of the motif.
Eventually l might range in a certain interval ⎡⎣ ⎤⎦l , lmin max

8. Determine a level of minimum quality for motifs α( )
Usually α¼0.05 is considered but other values can be con-

sidered as well
9. Pruning motifs: retain the more frequent motifs for

interpretation
1. ∀ ∈C P build { }| α*= ≤M m inM eC C cm

10. Visualize motifs
1. ∀ C visualize MC on the basis of πC

l using the SeqLogo re-
presentation, and interpret the motifs.

2. The characteristics of the sequences associated with each
class might be easily identified via the motifs visualization.

3. Describe which areas of impact are addressed at which
points of the sequences in each class

11. Analyze the effect of executing activities over the dif-
ferent areas of impact

1.Build multiple boxplot of Dj vs P, ∀ ∈Dj Δ
2. Kruskal-Wallis between Dj and P
Identify which areas improve the most in which classes.
12. Project all other illustrative variables over the clusters:

1.∀ Xk in X
If Xk is numerical

Build the multiple boxplot Xk vs P;
Perform Kruskal-Wallis test

If Xk is qualitative
Build the Stacked Barchart of Xk vs P;

Perform χ2 test
2. Retain all significant variables in X and build the description
of additional characteristics of each cluster

13. Build final interpretation: Associate the descriptions of
motifs with the profile of performance and the characteristics of
the individuals in each class, and constitute the final character-
ization of P.

Although SAIMAP is available for any clustering or motif dis-
covery method, this work proposes a particular implementation
using Clustering Based on Rules (ClBR) and MEME method. A brief
description of this method is provided below, together with the
specific approach proposed for pattern interpretation.

3.2.1. Clustering phase (ClBR)
Clustering Based on Rules (ClBR) combines inductive learning

elements with statistical methods to enhance clustering results
(Gibert et al., 1998). In our previous research ClBR was applied for
knowledge discovery on the response to neurorehabilitation
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treatment of TBI patients where CR tasks have not been considered
(Gibert et al., 2008). The main idea of ClBR is to allow the user to
introduce semantic constraints on the formation of clusters
(classes), providing them in a declarative way. This condition im-
posed by experts formalizes the apriori domain knowledge and
induces a sort of super-structure on the domain; clustering is
performed within this structure and providing clusters is easier to
be interpreted than traditional algorithms. In the present analysis
ClBR is applied to sequential data to identify meaningful classes.
Prior domain knowledge is considered, like the length of the
prescribed treatment.

3.2.2. Motif discovery (MEME)
The resulting clusters are then treated with the MEME algo-

rithm for motif discovery. MEME takes as input a group of se-
quences and the length of the searched motif and outputs as many
motifs for the group as requested by the user. MEME then calcu-
lates the E-values of the motifs and ranks them by decreasing
E-values (estimate of the number of motifs, with the same width
and number of occurrences, having equal or higher log-likelihood
ratio; accepted threshold is 0.005 (Bailey and Elkan, 1995). The
position-specific probability matrix (PSPM) is also provided, re-
presenting the importance of each letter in each position of the
motif. The PSPM matrix is input into the sequence logos (Schnei-
der and Stephens, 1990) (SEQ_LOGOS tool), providing the graphical
representation for the discovered motif. The most representative
motif for each of the classes is obtained together with its logo by
using different motif lengths.

3.2.3. Pattern interpretation
The logos summarizes the characteristics of treatments fol-

lowed in each class and are used to understand regularities in the
treatments of different classes. Then the relationships between
those typical treatments and evaluations of patient performance
might be analyzed. In our application, performance is evaluated
through standardized neuropsychological assessment battery
(NAB) and effect of treatment might be computed as pre-post
differences over these batteries.

Statistical tests and multiple boxplots (Tukey, 1977) are used to
relate the discovered groups with patient characteristics, level of
impairment and associated with specific treatment patterns. The
proposal includes ANOVA or Kruskal-Wallis test (denoted as K_W
in the proposed algorithm) for numerical variables depending on
the characteristics of the variable itself and χ2 independence test
(Tukey, 1977) or two-tailored exact Fisher test (Agresti and
Franklin, 2012).
4. Application to a real case

4.1. Effects of cognitive rehabilitation on traumatic brain injury
patients

This section presents the clinical context of application: The
Neuropsychology Department of the Acquired Brain Injury Unit at
Institut Guttmann Neurorehabilitation hospital (IG) where TBI
patients undergo CR treatments.

The Information Technology framework for CR treatments in this
clinical setting is the PREVIRNEC© platform (Tormos et al., 2009). A
J2EE client-server architecture specifically designed and developed
to manage CR plans assigned by therapists to patients, as well as
follow-up information about the process (i.e. CR session dates, task
executions in each session, performance, involved therapists, pa-
tients, task results, task time, detailed in Section 2.1.1).

There are three main cognitive functions to be rehabilitated in a
CR program (Sohlberg and Mateer, 2001): attention, memory and
executive functions; all of them can profoundly affect an in-
dividual’s daily functioning. Even mild changes in the ability to
attend, process, recall and act upon information can have sig-
nificant effects in the quality of life of the patient. Consider the
cognitive skills required for successful meal preparation as an
example: the individual must plan a menu, identify required in-
gredients, develop a shopping list for required items and schedule
sufficient time for shopping and preparing the meal; then the
individual must sequence many food preparation activities in an
organized way so that everything is ready at dinner time. Even a
mild attention or executive function deficit can render this diffi-
cult, ineffective or even impossible.

The main hypothesis framing our proposal is:

) Some CR rehabilitation tasks are designed to improve particular
cognitive functions, although attention, memory and executive
functions are related and interdependent (Sohlberg and Mateer,
2001). Their close interdependence stems from both a func-
tional association and their shared neurocircuitry. This means
that performing a task targeting memory can also have collat-
eral effects on other cognitive functions like attention or
executive functions.

) The additional effect of a single task might be affected by the
cumulated effect of the sequence of previous tasks executed
under the treatment, this might determine that order of ex-
ecution is relevant in the treatment outcome.

4.2. Cognitive rehabilitation tasks

For each patient the therapist creates a specific CR treatment
i.e. an ordered sequence of tasks. At IG a typical CR program in the
PREVIRNEC© platform ranges from 2–4 sessions/weeks for 2–5
months, with no constraints on task order, therefore leading to
different task sequences in a different order from patient to
patient.

At the time of this analysis the PREVIRNEC© platform supports
96 different CR tasks targeting the three main cognitive functions
mentioned above (17 concern attention, 59 memory, and 20 ex-
ecutive functions). Each task is defined by some parameters that
determine its level of difficulty. The therapist creates a CR treat-
ment as a set of sessions in the PREVIRNEC© platform, each one
consisting of a certain sequence of computerized tasks for a certain
day. For each task, the therapist configures the suitable combina-
tion of input parameters, including the one for the automatic ad-
justment of the difficulty level introduced above. This dynamic
adjustment of the difficulty level is performed (if necessary) twice
for each task, meaning that if the patient experiences a task that is
too difficult or too easy in the first execution, PREVIRNEC© auto-
matically re-generates the task with an adjusted difficulty level.
The therapist designs the sequences for every patient based on the
therapist’s expertise and the sequence of tasks assigned to every
patient may have variable length. This work aims to generate some
guidelines that can help the therapist in this design.

4.3. Assessment of the effect of the treatment

Before starting the CR program every patient undergoes a
Neuropsychological Assessment Battery (NAB). This battery in-
cludes 28 items covering the major cognitive domains (attention,
memory and executive functions) measured using standardized
cognitive tests. NAB consists of a selection of some items from
seven assessment instruments, associated with the different
cognitive functions, which in turn are evaluated under some
specific sub-functions. Being aware that conventional neu-
ropsychological instruments are notorious for amalgamating
cognitive operations (Jagaroo, 2009; Sabb et al., 2009), a subset



Fig. 1. Representation of individuals executing sequences of tasks impacting areas
that are evaluated before and after the period of executions.

Table 1
Basic descriptive statistics for numerical variables.

Variable N N* Mean Std Dev Min Q1 Median Q3 Max

AGE 123 0 36.56 6.50 18 25 32 40 68
GCS 89 34 6.45 3.15 0 4 6.5 40 14
PTA 40 83 131.6 140.5 34 79 103 136 947

Table 2
Basic descriptive statistics for gender and educational level.

GENDER Count Percentage EDU Count Percentage

Female 32 26.02 Elementary 60 48.78
Male 91 73.98 Intermediate 40 32.52

High 23 18.70
of NAB items with highest levels of specificity has been selected
in collaboration with domain experts for the proposed approach.
The final items considered in this work are the following 14 non
redundant items:

� Memory:

○ Visual and Verbal Memory: The Rey Auditory Verbal Learning
Test ] (Rey,1964) (RAV075, RAV015 and RAV015R items)

● Attention:

○ Sustained Attention: *Continuous Performance Task Test (Con-
ners, 2002) (OMI, COMI and CPT items) and *Trail Making Test-A
(Reitan and Wolfson, 1993) (TMTA item)

○ Selective Attention: the WAIS-III Selective Attention (Wechsler,
1999) (VWAIS item)

○ Divided Attention: the Trail Making Test-B (Reitan and Wolfson,
1993) (TMTB item).

� Executive Functions:

○ Planification: the WAIS-III Visuo Construction (Wechsler, 1999)
(CUBES item)

○ Inhibition: the Stroop Test (Golden, 1994) (INTER item)
○ Flexibility : * the Wisconsin Card Sorting Test (Heaton et al.,

1997) (TERR item) and * the Letter Fluency Test (Artiola i Fortuny
et al., 1999) (PMR item)

○ Categorization: The Wisconsin Card Sorting Test (Heaton et al.,
1997) (CAT item)

All NAB items are normalized to a 0 to 4 scale (where 0¼No
affectation, 1¼mild affectation, 2¼moderate affectation,
3¼severe affectation and 4¼acute affectation).

After this initial evaluation patients start PREVIRNEC© sessions
(for 2 to 5 months, depending on the patient) and after treatment
every patient undergoes the same NAB to evaluate the cognitive
outcome status.

Information obtained in the NAB before and after treatment is
the source to understand patient improvement, and, in con-
sequence, the response level to the treatment itself. Measuring
global improvement in a specific cognitive function (e.g. Attention)
implies studying response to treatment in each of the NAB tests’
subfunctions (e.g. Sustained, Selective, Divided Attention). Differ-
ent criteria can be adopted (subfunctions’ average, maximum
difference, etc). To the best of our knowledge no standardized
approach is universally accepted in the clinical CR therapists
community to determine the improvement of the patient from a
systematic point of view.

This work tries to contribute to this issue by breaking the
problem down into several steps. As a first approach we will in-
itially focus on the identification of CR patterns (through clustering
and motif discovery), flexible enough to catch the most effective
sequences of tasks, even if interrupted by others. Once the pat-
terns have been identified, the dominant effect of the treatment
associated with each pattern will be analyzed. With this in-
formation, well-founded improvement criteria will be defined at a
later stage (Fig. 1).

4.4. The dataset

One hundred and twenty-three TBI adults following a 3–5
months CR treatment at IG Neuropsychological Rehabilitation Unit
are analyzed in this study. For every patient the demographic and
clinical variables considered are: age, gender, educational level,
Glasgow Comma Scale (GCS) and Post Traumatic Amnesia (PTA)
duration. Table 1 shows the basic statistics for numerical variables
while frequency distribution of qualitative ones are shown in
Table 2.

Initial assessment of the TBI severity is reported according to
GCS levels. A GCS score of eight or less after resuscitation from the
initial injury is classified as a severe brain injury. The GCS score for
a moderate brain injury ranges between 9 and 13 and a score of 13
or greater indicates a mild brain injury, or concussion. As detailed
in Fig. 2 most GCS scores (86,17%) show severe brain injury level
(mean value 6,4573.15). It is known that those whose length of
PTA is less than two months have a very good chance of at least
being able to live on their own (even if they are unable to return to
work or school). On the other hand, patients whose length of PTA
is longer than three months are unlikely to be able to return to
work or school (although they might be able to live on their own).
As N* shows in Table 1, PTA measures were not available for 67% of
the participants; considered values show very severe conditions as
indicated by the median (103), which is more reliable than the
mean because of the outlier visualized in Fig. 2 (right).

Demographic qualitative (Table 2) indicates 91 men (73.98%)
and 32 women (26.02%) participating in the analysis. Each parti-
cipant’s educational background is categorized in three groups,
with Elementary school predominant.

All participants signed informed consent to the neuropsycho-
logical procedure, which was approved by IG’s Ethical Committee.
All met criteria to initiate IG neuropsychological rehabilitation
treatment.

After NAB initial evaluation all patients initiated a three to five
months’ program (November 2007 to November 2009) based on
personalized interventions in the PREVIRNEC© platform where
patients worked in each of the specific cognitive domains, con-
sidering the degree of the deficit and the residual functional ca-
pacity. All patients were administered the same NAB neu-
ropsychological assessment at the end of the rehabilitation



Fig. 2. Numerical variables histograms: Age (left), Glasgow Comma Scale scores (center) and Post Traumatic Amnesia days (right).
program. A total of 39412 task executions were initially included in
this analysis, involving the 96 different CR tasks included in the
PREVIRNEC© platform.

4.5. Structure of database

Originally, the system records the execution of every task as a
single row in a log file, which additionally records the following
information:

Date is the date of the execution of the Ts task (date yyyymmdd)
TaskName is a descriptive name assigned to identify the task Ts
Score is the result obtained in that execution (0 to 100 real
number)
NumTask is the automatic task generation number assigned to
the task (0,1,2)
Difficulty is the difficulty level of the task (0,1,2,3,4)
Function: cognitive function addressed by the task: Attention,
Memory, Executive func.
Subfunction is the specific cognitive subfunction addressed by
the task (as described below, for the Attention function the
addressed subfunctions are visual attention, sustained atten-
tion, selective attention, etc).
Original data structure (S1):

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

i T Date TaskName Score NumTask Dificulty Function Subfunction
. . . . . . . . .
. . . . . . . .
. . . . . . . . .
. . . . . . . . .

4.6. Instantiation of the formal problem

The presented dataset approaches the formal problem presented in
Section 2 as a particular case where a CR treatment is the scenario in
which each patient i executes a sequence of activities, one at a time

� I is the set of TBI patients undergoing CR treatment at IG
� T¼{Ts s¼1: } is a set of 96 CR tasks that patients execute

during treatment:
T¼{GlobalLocal, MathMazeComp, MathMazeExer, ConcOps, Sub-
marine, Matching,BagOfCoins, Differences, Figures,PuzzComp, Puz-
zExer, LetterSoup,Bingo, DiffDirection,StraightLine, SameDirection,
GroupWords, CategorizationTwo, CategorizationThree, SameCat-
Words, Circle, Platforms, Zigurat, GoNoGoEst, GoNoGoGame, Go-
NoGoPos, Hanging, SinkFleet, Maze, FourInRow, Fourth, JigSaw,
BuildSentence, Fragments, Serie, CyclicSerie, SameCat, TempOrder,
Position, Sequential, Simoultaneous, WordSeqDec, WordSeqSel,
WordSeqDifCat, WordSeqSameCat, WordSimDec, WordSimSel,
WordSimDifCat, WordSimSameCat, WordTempOrder, PairsSeqDec,
PairsSeqRel, PairsSeqSel, PairsSeqSameOrder, PairsSeqRandOrder,
PairsSimDec, PairsSimRel, PairsSimSel, PairsSimSameOrder, Pairs-
SimRandOrder, SentSecOrder, SentSecTest, SentSecWrite, SentSec-
Question, SentSecTrueFalse, SentSimOrder, SentSimTest, SentSim-
Write, SentSimQuestion, SentSimTrueFalse, RecSeqNumbers,
RecSimNumbers, RemSecNumbers, RemSimNumbers, TextSort,
TextQuestion, TextWrite, TextTrueFalse, ImgWordTempOrder, Im-
gWordSeqDecide, ImgWordSeqRel, ImgWordSeqSel, Im-
gWordSeqSameOrder, ImgWordSeqRandOrder, ImgWordSimDecide,
ImgWordSimRel, ImgWordSimSel, ImgWordSimSameOrder, Im-
gWordSimRandOrder, DrawTemporalOrder, DrawRecognition, Sce-
neRecognition, SceneRecall, VisualMemory, VisualSimon}

� is the set of areas of impact. In this particular case it matches
with the family of cognitive functions targeted by the CR tasks.
¼{Attention, Memory, Executive functions} are the main

cognitive functions involved in daily activities (Sohlberg and
Mateer, 2001); these are therefore treated in PREVIRNEC too.

� f (T)¼a provides the main cognitive function a, (a ∈ ) targeted
by task T.

� Given a patient i, the matrix Ri provides the list of all tasks
executed by the patient i with its corresponding execution
times throughout his CR treatment.

� Row i of matrix χ gives the sequence of CR tasks done by i
during treatment.

� The set Yjt , t¼1.14 of numerical indicators of performance is, in
this work, the selection of 14 relevant and non redundant items
from NAB, used in IG for evaluating the degree of impairment of
each cognitive function.

� Dj, is the difference between the scores obtained by the patient
before and after the prescribed CR treatment in the corre-
sponding NAB item.

� Δ¼ ( D1…… Da) represents the effect of CR treatment in all
cognitive functions.

� X ¼(X1…XK) additional information about patients. XK might be
either numerical (like age or GCS) or qualitative (like Sex or
Educational level).

� Z indicates a global improvement of the patient after treatment.

The execution of each task by a patient occurs at different peri-
odicities for every patient; the length of treatment is variable in both
number of task executions and total treatment time for the different
patients; the sequence of task executions changes from one patient
to another; the result obtained in an execution determines both the
task and difficulty of the next task proposed by the system; the effect
of a task in terms of cognitive functions of the patient is accumulative
and the effect of a certain sequence of tasks might not be affected by
small variations of the sequence itself, i.e. the introduction of small
additional tasks in intermediate positions of the sequence. For these
reasons, our problem may be treated under SAIMAP methodology.

4.7. The Sequence of Activities Improving Multi-Area Performance
(SAIMAP) methodology

4.7.1. Preprocessing
As a first hypothesis it is assumed (after consulting with ex-

perts) that the time interval (delay) between the execution of two
consecutive tasks is irrelevant for rehabilitation purposes, since



the cognitive functions of each patient is sensitive to the task ex-
ecution and not so much to the time period between consecutive
tasks. Thus, the sequence of tasks followed by each patient is the
main target, independently of the time interval in which the tasks
have been performed. This enables a simplification of the problem
into a new structure in which the order of tasks is maintained, but
dates are omitted.First step of preprocessing is building the si se-
quence of tasks performed by each patient.

i¼ {1,…123} on the basis of R matrix by building =( [ ])s R 2i i
t

R being a matrix that for every task executed by the patient
provides the

patientid Name of task Time stamp of execution, ,

All tasks performed by patient i are collected in Ri

= ⋮ = ⋮

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

R

TemporalOrder

StraightLine

DiffDirection

NumMaze
MatchMaking

FourInRow

R

PositionalStimuli
FourInRow

MatchMaking

GoNoGo
GoNoGo

Platforms

1 1
1 2
1 3

1 632
1 633
1 634

.....

123 1
123 2
123 3

123 621
123 622
123 623

1 123
Table 3
Number of executions for the 12 most frequent Tasks.

IdTask Task name Number of
executions

Percentatge (tot) Percentatge
(selection)

151 Memory 3369 8.20 11.51
146 StraightLine 3329 8.10 11.37
153 TemporalOrder 3226 7.85 11.02
148 FourInRow 3170 7.71 10.83
161 Matching 2978 7.25 10.17
145 Exercise 2951 7.18 10.08
149 Competition 2589 6.30 8.84
144 Cercles 1780 4.33 6.08
147 Serie 1671 4.06 5.71
150 DiffDirection 1531 3.72 5.23
182 GoNoGoGame 1411 3.43 4.82
210 Platforms 1251 3.04 4.27

29256 71.17 99.99
Thus:

( )= …s TemporalOrder StraightLine DiffDirection NumMaze MatchMaking FourInRow1

( )= …s PositonalStimuli FourInRow MatchMaking GoNoGoPlatforms123

The lengths are also variable: tf1 ¼ 634; tf123¼ 623.
Next, χ matrix is built by combining all si in the rows. Even-

tually the tasks are identified by shorter alias, for simplicity

χ =
…

… … …

…

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

T T T T T T

T T T T T T

127 145 034 256 045 145

123 065 134 011 032 035

Next step is to determine the minimum f to retain a task. Re-
garding the number of task executions, as shown in Fig. 3, a pack
of 12 tasks is shown from left to right as idTask 151 to IdTask 210,
which are executed more frequently than the rest and there is a
high number of available tasks, only exceptionally included in CR
treatment programs.
Fig. 3. Frequencies of task executions. X axis shows the identifier of the task. Y axis sh
For our purposes the subset of most frequently executed tasks
will be the focus and all remaining tasks will be recorded into an
OTHERS category.

Table 3 details the percentage of the total number of executed
tasks for each idTask showing that the 12 more frequently occur-
ring tasks exceed 70% of the total activity in the considered period.
Thus taking f¼1000 means to retain only tasks executed more
than 1000 times, and this points to the 12 more frequently oc-
curring tasks identified above. We will therefore focus on this pack
of tasks since this percentage is close to the Pareto Principle.

Patients also exceptionally perform very large sequences of
tasks. It is often possible to identify a threshold length l.,which can
be considered as most usual. Patterns of sequences are searched
for only in the first l task executions of the patient’s sequences to
avoid dealing with the sparseness of the final part of the data
matrix. According to the Pareto principle, l threshold is determined
in such a way that no more than 20% of patients perform larger
tasks. Those data rows are completed with a special idTask label
(e.g. “NULL”). As each patient’s activities are different, each se-
quence of tasks shows a different length, with the shortest one
being length 9 and the longest one length 1391.

As shown in Fig. 4, most of the execution lengths are less than
600. Longer sequences represent less than 17% of the patients. 83%
ows number of executions. Only tasks with more than 100 executions are shown.



Fig. 4. Histogram of the treatment length. X axis shows the lengths of the treat-
ments. Y axis shows the observed frequency of treatments for a certain range.

Table 4
Selected tests and items targeting specific cognitive functions.

Test Item Cognitive Function

Continuous performance test OMI A
COMI
CPT

Trial making test TMTA
WAIS-III selective VWAIS
Trial making test TMTB

Rey auditory verbal learning test RAV075 M
RAV015
RAV015R

WAIS-III-Visuo-spatial CUBES EF
Stroop test INTER
Wisconsin card sorting test TERR
Letter fluency test PMR
Wisconsin card sorting test CAT
of patients have followed CR treatment programs shorter than 600
task executions per patient. This includes 103 patients from the
123 initial ones. Therefore in our model we propose an equally
sized rectangular data matrix considering l¼600 executions, 83%
of those patients followed shorter sequences of CR treatments.
This transforms our originally variable length matrix into a rec-
tangular matrix χ, which is easier to process.
Fig. 5. Frequency of the 12 selected tasks during the treatments. X axis provides the tim
according to legend and circular pantone.
Next the matrices to evaluate the effect of the treatment are built:
In our particular application, Δ¼(ΔA, ΔM, ΔEF) is composed of three

normalized effect indexes, evaluating improvement in each cognitive
function. As already stated, the IG uses the NAB battery to assess im-
provement. Together with the experts, the main cognitive function
targeted by each of the 14 selected items from NAB is shown in Table 4.

As all items evaluate in the interval [0,4], simple mean is used
as a measure of the cognitive function performance of the patient
either before or after the treatment. Thus the Δ components are
built as the post – pre difference, using those indicators. As all
items indicate higher impairment with higher values and as it is
expected that patients improve during treatment, differences be-
tween scoring after and before the treatment are expected to be
positive. For this reason the components of Δ are defined as:
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+ + + + +

− ( + + + + + )

OMI COMI CPT TMTA VWAIS TMTB

OMI COMI CPT TMTA VWAIS TMTB
6

6

A
f f f f f f

0 0 0 0 0 0

Δ =
+ +

− ( + + )

RAV RAV RAV R

RAV RAV RAV R

075 015 015
3

075 015 15
3

M
f f f

0 0 0

Δ =
+ + + +

− ( + + + + )

CUBES INTER TERR PMR CAT

CUBES INTER TERR PMR CAT
5

5

EF
f f f f f

0 0 0 0 0

4.7.2. Descriptive analysis
As a first step in this phase, the construction of the frequency

plot of the first l columns and f frequency of tasks for χ is per-
formed. In Fig. 5 it can be noticed that less frequent tasks (shown
in grey and labelled as OTHER) are more frequently executed at the
beginning of the treatments, but as the treatment progresses their
frequency decreases.

Next, the construction of the heatmap of the first l columns and
f frequency of tasks for χ is performed. Fig. 6 suggests the need for
a method to group tasks to allow identification of execution pat-
terns. Each task is represented with the colour gradient as in Fig. 5
but no structure can be identified, neither in the Figure nor per-
muting patients on the vertical axis.
e in the CR program where the task was executed. The tasks are identified by colors



Fig. 6. Heatmap for individual treatments representing the 12 selected frequent tasks. Y axis represents patients (identified 1 to 123) and X axis shows position of the task
during the treatment. First 600 tasks are represented. Task colors are the same as in Fig. 5. Treatment lengths are variable. Apparent lack of any recognizable structure or
pattern in the tasks.

Fig. 7. Heatmap of individual treatments representing the cognitive function addressed by each executed task. X axis represents the position of the task along the treatment
sequence. Y axis represents the individual patients.
Next, the construction of the heatmap of the first l columns and
f frequency of tasks for χa is performed. Fig. 7 provides a heatmap
with a lower granularity level of information. Tasks are grouped
per cognitive function and a color is assigned to every group
(green is used for memory tasks, red for attention tasks, and yel-
low for executive function tasks, grey points to other non-frequent
tasks, which are not considered at this stage of the analysis). As in
Fig. 5 even grouping by targeted functions, execution patterns
cannot be identified from this figure.

4.7.3. Prior expert knowledge acquisition
Domain knowledge is represented by means of IF-THEN rules.

Experts expressed knowledge regarding what is considered a long
or short treatment in terms of the number of tasks it comprises.
KB ¼ { r1: if SeqLength o 450 then SHORT,
r2: if SeqLength 4480 then LONG}
4.7.4. Clustering phase
The software KLASS v86 was the data mining platform for the

ClBR algorithm executions (Gibert et al., 1998). ClBR was run with
Ward’s method, Gibert’s mixed distance (Gibert et al., 1998), and KB
as referred knowledge base. Resulting dendrogram is shown in Fig. 8.

Calisnki-Harabasz criterion (Calinski and Harabasz, 1974) sug-
gests a cut in 29 classes for which 26 are singleton and 3 main
groups are conformed. One contains most of the patients satisfying
r2 and the other 2 subdivide patients satisfying r1 in 2 subgroups.
Obtained classes are shown in Table 5.
4.7.5. Split into classes
According to experts, singletons were disregarded as excep-

tional cases to be carefully analyzed one by one. Data matrix is
then divided into 3 submatrices according to the three identified
classes: SHORT70, SHORT86 and LONG6



Fig. 8. Dendrogram from the ClBR. Leaves represent patients; internal nodes represent the intermediate clusters; the height of nodes is proportional to the homogeneity of
the class. The dashed line shows a partition of the dataset in a set of classes (highlighted in different colors). Singletons at the right are patients that remain isolated.

Table 5
Number of pa-
tients in each
identified class.

Class label Nc

SHORT70 40
SHOT86 49
LONG6 8
4.7.6. Visualization per classes
Local heatmaps are built for every class and shown in Figs. 9 to

11. SHORT70 (Fig. 9) class contains patients with shorter treat-
ments, less than 150 tasks; SHORT86 class (Fig. 10) contains pa-
tients with intermediate length treatments, between 150 and 460
tasks; and LONG6 catches patients following treatments longer
than 460 tasks.

4.7.7. Find motifs per class
Toolbox for Motif Discovery (TMOD) version 1.1.1 is the fra-

mework for motif discovery (Hanchang et al., 2010) run on a
3.4 GHz Pentium IV computer with 2 GB of RAM.

MEME (Bailey and Elkan, 1995) implementation was executed
in TMOD with the following input parameters:

� Sequences (in FASTA format) of cognitive functions targeting the
different task executions, therefore input data to MEME is the
same as for sequential pattern mining.
� Alphabet: Run with DNA sequences, which must contain only
ACGT letters: A is used for attention tasks, C for memory, and T
for executive functions.

� Distribution: how the occurrences of motifs are distributed in
the input sequences. Run with Any Number of Repetitions
(ANR): in this case MEME assumes each sequence may contain
any number of non-overlapping occurrences of each motif. This



Fig. 9. Heatmap representing SHORT70 class executions.

Fig. 10. Heatmap representing SHORT86 class executions.

Fig. 11. Heatmap representing LONG6 class executions.
option is useful because we suspect that motifs repeat multiple
times within a single sequence.

� Motif width: run with motif length parameter ranging from l¼
[6,20] (larger motifs are visually difficult to analyze and shorter
than 6 were discarded by domain experts because a CR session
rarely includes less than 6 task executions).

� EM Algorithm: Iterations of EM to run from any starting point
(default¼ 50).

� Performance measure: MEME searches for the motif with the
smallest E-value.
MEME is then run with the parameters specified above for each
identified cluster sequence and Fig. 12 shows the obtained se-
quence of logos for { }= … ζM M MC C1

∀ ∈ ={ … … …

}

C P, M m m m m m

m

C SHORT70
6

SHORT70,
20

SHORT86
6

SHORT86,
20

LONG6
6

LONG6
20

With a total of 14 motifs for each of the 3 analyzed classes.

4.7.7.1. Determine a level of minimum quality for motifs. For con-
vention α¼0.05 is taken



Fig. 12. Logos by motif lengths per class. Motif length ranges from 6 to 20 tasks.
4.7.7.2. Pruning motifs: retain more frequent motifs for interpreta-
tion. For each motif πC

l and l length, a weighted median of the
E-values of the three classes is calculated, being the weighting
factor the number of patients nc of each class as shown in Table 5.
The matrix with the E-values is shown in Table 6.

For each motif a πC
l matrix is given, which is input into the motif

viewer. The obtained πSHORT86
20 is shown in Table 7.

4.7.8. Visualize motifs per class
Motif analysis leads to the following descriptions:

� SHORT70 class shows mainly executions of tasks oriented to
executive functions (shown as T) and some memory tasks (C),
mainly in the first part of the sequences.

� SHORT86 class includes less executive functions and memory
tasks than the other classes but shows a higher number of at-
tention tasks (A), mainly at the beginning.

� In class LONG6 the number of memory tasks clearly increases
and is often combined with executive function tasks. Eventually
some attention tasks are performed at the end of the identified
motifs.

4.7.9. Project illustrative variables over the clusters
There are no significant differences in the characteristics of the

patients for the three identified classes (GCS, age, PTA, gender and
educational level), see Tables 8 and 9 where p-values for numer-
ical and categorical variables are shown. Possible differences in
response to the treatments might therefore be attributable to the
task patterns followed.

However, one can get clear criteria to decide whether to assign
a long or short treatment to a patient by analysing behaviour of
NAB items pre-treatment (Table 10). It is observed that patients
with low RAV015R (highly impaired recognizing memory) require
long treatments, whereas patients with high RAV015 (mild im-
pairment in short term memory) can successfully follow short
treatments (other NAB items are insignificant).

4.7.10. Analyze the effect of executing activities over the different
areas of impact

According to related previous work (Hart et al., 2005) a global
index for each cognitive function is created as the average score for
all items referring to that cognitive function. The effect of the
treatment on a certain cognitive function is measured as the post-
pre value observed in the corresponding index. As already stated,
lower values in differences indicate higher deficit reduction or, in
other words, a positive response to the CR treatment.

Fig. 13 shows the multiple boxplots with the conditional dis-
tributions of effect indexes versus the classes. Each graph re-
presents the different effects of treatment on a certain cognitive



Table 6
E-values ranking for different lenghts.

eC
l Length/Class SHORT86

eC
14 14 2.8e-055

eC
15 15 5.6e-051

eC
16 16 2.6e-049

eC
12 12 4.3e-049

eC
13 13 2.4e-048

eC
11 11 3.2e-046

eC
18 18 3.0e-045

eC
17 17 2.5e-045

eC
10 10 7.7e-039

eC
20 20 1.9e-039

eC
19 19 3.1e-034

eC
9 9 2.3e-032

eC
8 8 1.8e-028

eC
7 7 2.7e-026

eC
6 6 2.5e-018

Table 7
Tabular representation of πSHORT86

20 matrix.

A C G T

0.435897 0.000000 0.000000 0.564103

0.769231 0.025641 0.000000 0.205128

0.384615 0.051282 0.000000 0.564103

0.000000 0.000000 0.000000 1.000000

0.000000 0.410256 0.000000 0.589744

0.000000 0.794872 0.000000 0.205128

0.102564 0.128205 0.000000 0.769231

0.102564 0.230769 0.000000 0.666667

0.025641 0.230769 0.000000 0.743590

0.025641 0.179487 0.000000 0.794872

0.000000 0.000000 0.000000 1.000000

0.000000 0.153846 0.000000 0.846154

0.000000 0.256410 0.000000 0.743590

0.025641 0.179487 0.000000 0.794872

0.000000 0.384615 0.000000 0.615385

0.153846 0.358974 0.000000 0.487179

0.256410 0.282051 0.000000 0.461538

0.102564 0.512821 0.000000 0.384615

0.230769 0.461538 0.000000 0.307692

0.307692 0.205128 0.000000 0.487179

Table 9
Categorical variables number of occurrences and p-values (χ2 test) per class.

GENDER EDU LEVEL

Female Male Elemen Interm. High Total

SHORT70 13 27 19 14 7 40
SHORT86 12 37 27 14 8 49
LONG6 2 6 4 3 1 8
χ2 p-value 0.691 0.949
function in each class. The first interesting observation is that all
groups improve (deficit decreases) after treatment and the effects
are all below 0 on average. The dimension tending to more ne-
gative values is attention, while memory seems to be the one with
less improvement for all groups. In contrast, it can be seen that
SHORT86 class is the one with better treatment results regarding
attention, while it behaves very similarly to class SHORT70 in
terms of memory and executive functions. It also appears that
Table 8
Mean, standard deviation and p-values (Kruskal-Wallis) of numerical variables per clas

GCS AGE

Mean StD Media Mean

SHORT70 6.27 2.91 6 32.80
SHORT86 6.04 2.63 6 31.65
LONG6 6.88 3.09 7 35.13
KW p-value 0.667 0.433
class LONG6 is more resistant to treatment than others, especially
regarding memory.

4.7.11. Build final interpretation
Crossing the obtained profiles with the motifs and the effects of

therapy it appears that:
SHORT70 represents short term treatments, no more than 150

task executions mainly oriented to executive functions, preceded
in some cases by memory tasks, mainly in the initial part of the
sequences. These persons show better response to treatment
mainly in attention and executive functions than in memory,
having an intermediate level of attention improvement compared
with other classes.

SHORT86 represents intermediate duration treatments, with
no more than 460 task executions including a higher number of
attention tasks executed mainly at the beginning of the sequences.
Persons in this class show a higher recovery in attention than in
other functions, being the group with better results for treatment
regarding attention.

LONG6 represents long term programs including more than
460 task executions with a higher proportion of memory tasks,
often combined with executive functions tasks and possibly some
attention tasks at the end of the sequences. However the persons
in this class are more resistant to treatment than other classes in
memory and attention.
5. Comparison with traditional approaches

Under a traditional approach, one would be tempted to reduce
our problem to building a predictive model for the improvement
of the patient and to solve it by using some machine learning
classifier.

Preliminary analysis and problem representation provided ap-
propriate data structures, data transformations, and domain
knowledge for pattern discovery. Traditional classification techni-
ques are proposed to study response to CR treatment.

Matrix χ is used for the classifier with a response variable Z
(see Section 2):

=
′⎪

⎪⎧⎨
⎩

Z
YES patient improved after treatment

NO patient didn t improve after treatment

,

,

s.

PTA

StD Median Mean StD Median

8.20 32.8 84.3 36.9 84.3
7.99 31.65 156.7 209.7 156.7
9.57 35.13 117.67 13.65 117.67

0.176



Table 10
NAB selected items vs classes.

RAV075 RAV015 RAV015R

Mean StD Media Mean StD Median Mean StD Median

SHORT70 2.75 1.37 3.00 2.72 1.56 4.00 2.15 1.77 2.00
SHORT86 3.20 1.06 4.00 3.38 1.09 4.00 2.91 1.45 4.00
LONG6 2.37 1.50 3.00 2.25 1.90 3.00 1.87 1.80 1.00
KW p-value 0.136 0.042 0.056

Fig. 13. Multiple boxplots of improvement versus class and cognitive function. For
each cognitive function, a multiple boxplot of the corresponding improvement
index Δ versus classes is visualized. Every boxplot displays the range between the
minimum and maximum value of each Δ, the box indicates the interval between
first and third quartile, horizontal mark in box indicates the median.
In this work traditional classification algorithms and some
sequential pattern mining algorithms have been used.

5.1. Pattern discovery with classifiers

Algorithms that exploit four different machine learning prin-
ciples have been used on our real application and compared with
the proposed approach: decision tree learning (j48), instance-
based learning (IBk), probabilistic learning (Naive Bayes), and RBF
neural networks.

Waikato Environment for Knowledge Analysis (WEKA) (Hall
et al. 2009), v 3.6.5 was the data mining platform for running
classifiers. All of them were run with default parameters on a
3.4 GHz Pentium IV PC with 2 GB of RAM. The classifiers run in this
application were:

� J48 is the WEKA implementation of the C4.5 decision tree
(Quinlan, 1993).

� Naive Bayes implements the probabilistic Naive Bayes classifier
(John and Langley, 1995).

� IBk is the implementation of KNN (Aha and Kibler, 1991) the
k-nearest-neighbor classifier; parameter (k set in our tests to
1,2,3, and 5) setting the neighborhood size.

� RBFNetworks implements a popular type of feed-forward net-
work, radial basis function (RBF) network (Witten, 2011).

The prediction performance of the models was measured by
ten-fold cross validation and several parameter configurations
were tested. In this study the data set was split into 9 subsets with
12 records and 1 subset with 15. Each classifier is trained 10 times,
each time using a version of the data in which one of the subsets is
omitted (testing data). Each trained classifier is then tested on the
data from the subset, which was not used during training. The
results are averaged to obtain an overall accuracy (Table 11).

Our solution proposes a set of motifs to be followed. The pro-
portion of patients following the proposed motifs who improve
after treatment is 81.33%, which can be used as an equivalent to
accuracy and is noticeably higher than the predictive models ob-
tained by all assessed machine learning methods.

5.2. Sequential pattern analysis

As presented in Section 1.1.2. sequential pattern mining (SPM)
techniques are also suitable to find patterns of executions of CR
tasks targeting cognitive functions, identified patterns might help
to understand responses to treatment. The input is matrix χ and
SPM algorithms were tested: CM-SPAM and CM-PREFIXSPAM as
well as CM-SPADE.

Sequential Pattern Mining Framework (SPMF) version v0.96q
was the data mining platform for the SPM algorithm executions.
(Fournier-Viger et al., 2014). All of them were run with default
parameters on a 3.4 GHz Pentium IV computer with 2 GB of RAM.

SPADE and SPAM are very efficient for datasets having dense or
long sequences and have excellent overall performance, since
performing joint operations to calculate the support of candidates
does not require scanning the original database unlike algorithms
using the horizontal format. For example, the well-known Prefix-
Span algorithm, which uses the horizontal format, performs a
database projection for each item of each frequent sequential
pattern, in the worst case, which is extremely costly.

CM-SPADE is the SPMF implementation of SPADE algorithm
(Fournier-Viger et al., 2014). The support of a sequential pattern is



Table 11
Accuracy for each classifier after 10-fold cross validation, first column shows the
number of CR task executions considered.

Attributes C4.5 (J48) Naive
bayes

KNN (IBk) RBFnetworks

IB1 IB2 IB3 IB5

10 57.72 54.47 52.84 50.40 53.65 57.62 56.91
20 56.09 52.84 56.09 54.47 58.53 56.91 47.15
30 57.72 58.53 56.91 58.53 64.22 58.53 56.09
40 57.72 56.91 53.65 51.21 56.91 61.78 59.34
50 53.65 58.53 57.72 57.72 62.60 58.53 59.34
60 51.21 57.72 57.72 56.91 57.72 56.09 58.53
70 60.97 57.72 57.72 56.91 60.16 59.34 52.84
80 59.34 59.34 56.09 54.47 62.60 63.41 54.47

100 63.41 55.28 56.09 52.03 60.97 61.78 49.59
600 64.41 61.78 59.34 55.28 60.16 60.16 46.34
1391 60.16 58.53 60.16 56.09 60.16 62.60 46.22
the number of sequences where the pattern occurs divided by the
total number of sequences in the database (see Section 2).

Table 12 shows pattern found with support 4¼0.88. A total of
31501 patterns of length 15 are found (almost the size of the ori-
ginal dataset).

5.3. Sequential pattern mining on each class

An analysis local to each class is also performed to see if local
analysis provides a more constrained set of solutions. SM-SPADE is
applied on each of the identified classes, but as shown in Table 13
the number (N) of identified patterns in each class does not
decrease.

5.4. Comparison

Table 11 shows results obtained with by-default parameters
and other configurations, like j48 being tested with three different
confidence factors (0.25, 0.30, 0.40) decreasing post-pruning, and
varying the minimum number of objects per leaf. For Ibk,
Table 12
Sequential patterns identified by CM-SPADE for a minsupport¼0.88. First column show
each pattern length. Then mean and median support are shown together with other su

CM-SPADE

LEN N Media St Dev Min

0.88 1 3 0.9675 0.0422 0.91

2 9 0.9431 0.0407 0.90

3 27 0.92442 0.03785 0.88

4 64 0.91527 0.03536 0.88

5 118 0.91264 0.03440 0.88

6 172 0.91591 0.03373 0.88

7 238 0.92150 0.03073 0.88

8 354 0.92609 0.02451 0.88

9 589 0.92715 0.01716 0.88

10 1064 0.92408 0.01164 0.88

11 2060 0.91756 0.00976 0.88

12 4097 0.91035 0.00907 0.88

13 8192 0.90385 0.00834 0.88

14 16339 0.89834 0.00760 0.88

15 31501 0.89391 0.00665 0.88

16 53247 0.89084 0.00549 0.88

17 69573 0.88902 0.00438 0.88

18 64130 0.88794 0.00348 0.88

19 38554 0.88730 0.00281 0.88

20 14341 0.88689 0.00230 0.88

21 3159 0.88651 0.00161 0.88

22 401 0.88618 0.000000 0.88

23 32 0.88618 0.000000 0.88

24 1 0.88618 * 0.88
Euclidean distance (with and without weighting) was used and
different window sizes were tested, also varying the number of
neighbours (k parameter). For about 80% of the tests the obtained
performance is below 60% and none of them reached 65% of ac-
curacy after 10-fold cross validation. These results persist irre-
spective of the number of features (CR task executions) introduced
into the different models. Table 11 shows results for models in-
cluding only initial CR sessions (10 or 20 first tasks of the treat-
ment) up to 600 or 1300 tasks. Intermediate values (e.g. 700, 800,
900 CR task sequences) were also tested with similar results in
performance, which are not reliable enough to be used in real
clinical practice. This contrasts with the 81.33% accuracy obtained
under the proposed approach.

Regarding SPM algorithms, they show acceptable performance
regarding support (e.g. 0.8 or 0.9), even better than the one ob-
tained under our proposal in some cases. But as detailed in
Table 13, the number of frequent sequences discovered is greater
than the original dataset (i.e. with support 4¼ 0.8 CM-SPADE
identifies 44690 frequent sequences of length 9; 16853 sequences
of length 10 and 2415 of length 11), This increases problem com-
plexity instead of decreasing it, since we originally had about
39000 task executions. SPM algorithms were also tested locally to
classes after performing a ClBR clustering phase, but the results
obtained were similar, i.e. shorter sequence clusters did not de-
crease the number of identified frequent sequential patterns,
therefore did not lead to an easier process to understand how to
build new CR plans.
6. Conclusions and future work

In this work a first application of motif discovery is integrated
in the generic SAIMAP method used to find promising treatment
patterns in cognitive rehabilitation. This provides further knowl-
edge to that obtained in previous analysis where isolated tasks
were analyzed.

The use of motifs is relevant because the cumulative effect of
CR task execution is robust to the time period intervals occurring
s the length of the patterns and N column the number of identified sequences for
pport statistics.

Max Q1 Mediana Q3

87 0.9919 0.9187 0.9919 0.9919

24 0.9919 0.9106 0.9106 0.9837

618 0.99187 0.89431 0.90244 0.97561

618 0.99187 0.89431 0.90244 0.95325

618 0.99187 0.88618 0.89431 0.95325

618 0.98374 0.88618 0.89431 0.95122

618 0.96748 0.88618 0.93496 0.95122

618 0.96748 0.89431 0.93496 0.94309

618 0.95935 0.92683 0.93496 0.93496

618 0.95122 0.91870 0.92683 0.93496

618 0.94309 0.91057 0.91870 0.92683

618 0.93496 0.90244 0.91057 0.91870

618 0.93496 0.89431 0.90244 0.91057

618 0.92683 0.89431 0.89431 0.90244

618 0.91870 0.88618 0.89431 0.89431

618 0.91870 0.88618 0.88618 0.89431

618 0.91057 0.88618 0.88618 0.89431

618 0.91057 0.88618 0.88618 0.88618

618 0.90244 0.88618 0.88618 0.88618

618 0.89431 0.88618 0.88618 0.88618

618 0.89431 0.88618 0.88618 0.88618

618 0.88618 0.88618 0.88618 0.88618

618 0.88618 0.88618 0.88618 0.88618

618 0.88618 * 0.88618 *



Table 13
Identified sequential patterns on each class.

CLASS SHORT70

LEN N Media St Dev Min Max Q1 Mediana Q3

0.5 1 8 0.7562 0.1223 0.5500 0.8750 0.6312 0.8000 0.8500

2 52 0.6418 0.0977 0.5000 0.8250 0.5500 0.6500 0.7250

3 220 0.58136 0.06786 0.50000 0.77500 0.52500 0.57500 0.62500

4 540 0.54819 0.04859 0.50000 0.72500 0.50000 0.52500 0.57500

5 658 0.53533 0.03937 0.50000 0.67500 0.50000 0.52500 0.55000

6 481 0.52651 0.03073 0.50000 0.62500 0.50000 0.52500 0.55000

7 214 0.51636 0.02314 0.50000 0.60000 0.50000 0.50000 0.52500

8 42 0.51250 0.02084 0.50000 0.57500 0.50000 0.50000 0.52500

9 2 0.50000 0.000000 0.50000 0.50000 * 0.50000 *

0.7 1 6 0.8167 0.0563 0.7250 0.8750 0.7625 0.8375 0.8562

2 19 0.75000 0.04330 0.70000 0.82500 0.70000 0.75000 0.77500

3 17 0.72794 0.02319 0.70000 0.77500 0.70000 0.72500 0.75000

4 6 0.70833 0.01291 0.70000 0.72500 0.70000 0.70000 0.72500

0.8 1 4 0.8500 0.0204 0.8250 0.8750 0.8312 0.8500 0.8688

2 4 0.81250 0.01443 0.80000 0.82500 0.80000 0.81250 0.82500

CLASS SHORT86

LEN N Media St Dev Min Max Q1 Mediana Q3

0.8 1 16 0.8200 0.1455 0.5800 0.9800 0.6800 0.8400 0.9750

2 87 0.8480 0.1120 0.5600 0.9800 0.8200 0.8400 0.9600

3 444 0.86032 0.06557 0.56000 0.9800 0.80000 0.86000 0.92000

4 1827 0.85606 0.05152 0.56000 0.98000 0.82000 0.84000 0.90000

5 6694 0.84476 0.04158 0.80000 0.98000 0.80000 0.84000 0.88000

6 19163 0.83284 0.03304 0.80000 0.96000 0.80000 0.82000 0.86000

7 38639 0.82293 0.02527 0.80000 0.94000 0.80000 0.82000 0.84000

8 53869 0.81440 0.01874 0.80000 0.92000 0.80000 0.80000 0.82000

9 44690 0.80805 0.01362 0.80000 0.90000 0.80000 0.80000 0.82000

10 16853 0.80442 0.00991 0.80000 0.88000 0.80000 0.80000 0.80000

11 2415 0.80206 0.00678 0.80000 0.86000 0.80000 0.80000 0.80000

12 83 0.80289 0.00834 0.80000 0.84000 0.80000 0.80000 0.80000

13 5 0.80000 0.00000 0.80000 0.80000 0.80000 0.80000 0.80000

CLASS LONG6

LEN N Media St Dev Min Max Q1 Mediana Q3

0.8 1 9 0.9583 0.0625 0.8750 1.0000 0.8750 1.0000 1.0000

2 60 0.94375 0.06271 0.87500 1.00000 0.87500 1.00000 1.00000

3 320 0.92852 0.06195 0.87500 1.00000 0.87500 0.87500 1.00000

4 1355 0.91504 0.05835 0.87500 1.00000 0.87500 0.87500 1.00000

5 4489 0.90541 0.05364 0.87500 1.00000 0.87500 0.87500 0.87500

6 11659 0.89830 0.04868 0.87500 1.00000 0.87500 0.87500 0.87500

7 23216 0.89364 0.04453 0.87500 1.00000 0.87500 0.87500 0.87500

8 35347 0.88998 0.04059 0.87500 1.00000 0.87500 0.87500 0.87500

9 39390 0.88649 0.03611 0.87500 1.00000 0.87500 0.87500 0.87500

10 29588 0.88307 0.03072 0.87500 1.00000 0.87500 0.87500 0.87500

11 13003 0.88003 0.02456 0.87500 1.00000 0.87500 0.87500 0.87500

12 2860 0.87732 0.01686 0.87500 1.00000 0.87500 0.87500 0.87500

13 250 0.87600 0.01116 0.87500 1.00000 0.87500 0.87500 0.87500

14 7 0.87500 0.000000 0.87500 0.87500 0.87500 0.87500 0.87500
between task execution and small interferences in a certain se-
quence do not decrease their rehabilitative effect.

In the proposed methodology, a previous clustering process is
performed in such a way that three CR program profiles are
identified. Later, motif discovery local to each profile is performed
to understand the structure of the task sequences associated with
the classes and it has been seen that length of treatment seems to
be a main class characteristic. Associated with length, specific
sequence patterns appear and motifs for each class have dis-
tinctive characteristics, which provides the therapists a first con-
ceptual framework to compose CR programs under long, short or
intermediate lengths.

Statistical tests seem to indicate that basic demographic and
clinical characteristics of the patients (GCS, PTA, gender,
educational level, age) do not show significant differences vs the
classes, thus indicating that differences among groups are due to
the structure of the treatment itself. However, it has been seen
that short treatments are associated with patients with mild im-
pairment in short term memory (RAV015 NAB item), while long
ones are associated with patients with high impairment on re-
cognizing memory, this providing clear clinical guidelines to the
therapist. It is also interesting to note that patients in class
SHORT70 follow treatments shorter than 150 tasks, which, in fact,
is much less than the current prescriptions (this providing also
relevant information for future CR personalized treatment design).
Indeed, currently, the hospital is prescribing a treatment of
3 months to all patients and intermediate evaluations are used to
decide advanced end of treatment, or subsequent prolongation for



a second period of three months. Till now, this has been observed
in real time during the treatments. With the proposed metho-
dology, one can get clear criteria to recommend short or long
treatment from the beginning, before starting it.

Afterwards, improvements of the patients for the different
classes were studied by means of conditional distributions of im-
provement indicators (effect indexes) versus the classes. This
seems to confirm that all groups improve in all cognitive functions,
but different response patterns are associated with the classes,
thus providing a better understanding of the CR effects to the
therapists. Patients following intermediate length treatments im-
prove their attention functions more than other groups; those
following short treatments perform more executive functions and
some memory tasks preceding them, show smaller improvement;
those for long treatments show higher resistance to improve.

Thus, the proposed methodology provides useful tools to help
therapists to both better understand effects of CR treatments on
patients and to better design personalized CR treatment plans.
These answers could not be provided using a traditional machine
learning approach, as shown in Section 5, where the proposed
method was compared with both traditional machine learning
classifiers and sequential pattern mining methods. The former
provided noticeably worse accuracies, whereas the latter im-
proved it in regards to our results, but the results provided by the
methods, far from helping experts, increased the complexity of the
information to be analyzed and were proven to be unuseful for our
purposes.

This is one of the first studies providing guidelines on the
performance of the CR programs. The results presented here are
eliciting some clinical hypothesis, which are currently being tested
on a larger sample of patients. Research is also in progress to
provide more detailed information regarding task executions (re-
sults, level of difficulty) and to identify specific tasks associated
with higher improvements within profiles. Finally, the findings
provided by SAIMAP are currently being related with the neuror-
ehabilitation range of the tasks introduced in previous work
(Garcia-Rudolph and Gibert et al., 2008) to enrich the current
model with the number of repetitions required for each re-
commended task to maximize the expected improvement of the
patient.
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