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Abstract 

Maritime inventory routing problem is addressed in this paper to satisfy the demand at different ports 

during the planning horizon. It explores the possibilities of integrating slow steaming policy as 

mentioned in Kontovas et al. 2011 and Norstad et al. 2011 within ship routing. A mixed integer non-

linear programming model is presented considering various scheduling and routing constraints, 

loading/unloading constraints and vessel capacity constraints. Non-linear equation between fuel 

consumption and vessel speed has been incorporated to capture the sustainability aspects. Several 

time window constraints are inculcated in the mathematical model to enhance the service level at each 

port. Penalty costs are incurred if the ship arrives early before the starting of the time window or if it 

finishes its operation after the ending of the time window. Costs associated with the violation of time 

window helps in maintaining a proper port discipline. Now, owing to the inherent complexity of the 

aforementioned problem, an effective search heuristics named Particle Swarm Optimization for 

Composite Particle (PSO-CP) is employed. Particle Swarm Optimization – Differential Evolution 

(PSO-DE), Basic PSO and Genetic Algorithm (GA) are used to validate the result obtained from 

PSO-CP. Computational results provided for different problem instances shows the superiority of 

PSO-CP over the other algorithms in terms of the solution obtained.  

Keywords: Ship routing and scheduling, Maritime transportation, Mixed integer non-linear 

programming, Maritime inventory routing, Slow steaming, Fuel consumption, Particle swarm 

optimization for composite particle 

1. INTRODUCTION 

Maritime logistics sector is considered to be the most important mode of transportation involving 9.6 

billion tons of world trade in 2013 as reported in UNCTAD 2014. Maritime transportation comprises 

of around 80% of the international trade as mentioned in UNCTAD, 2013. It is estimated that around 

65% to 85% of total global trade is carried using seaborne shipping as mentioned in Christiansen et al. 

2007. Volume of the global seaborne shipments expanded by 3.4% in 2014 as reported in UNCTAD 

2015. Containerized trade contributes about 15% share to the international seaborne trade. 

Containerized trade volume is estimated to have increased by 5.3% in 2014, taking the total to 1.63 

billion tons. Increasing level of international trade using sea-route has led to greater attention in the 

domain of ship routing and scheduling. In this paper, a particular ship routing and scheduling problem 

is studied considering the aspects of containerized trade. Although it is observed that maritime 

transportation leads to a significant consumption of fuel. Hence, it is essential to achieve greater 

sustainability by considering several environmental friendly policies such as slow steaming, speed 

optimization, fuel efficient vessels etc.  



International shipping emitted around 2.7% of carbon di oxide in 2007 on the basis of 2nd 

International Maritime Organisation (IMO) GHG Study 2009 as mentioned in Buhaug et al. 2009. 

ICS 2009 addressed the issue of green-house gas emissions in maritime transportation and estimated 

that short-sea shipping contributes around 25% of GHG emissions. Furthermore, this percentage may 

drastically increase if no possible measures are adopted to curb the emissions. In recent years, 

environmental issues pertaining to seaborne shipping and increasing fuel prices have given vessel 

speed a newer perspective. As stated in UNCTAD 2015, practice of speed optimization in container 

shipping helps to counter high fuel prices. Ship speed has a non-linear relationship with fuel 

consumption as mentioned in Norstad et al. 2011. Therefore, speed optimization or ideally slow 

steaming can be implemented as an operational measure to depict the amount of fuel consumed. The 

research work presented in this paper addresses the sustainability aspects in maritime transportation 

by considering vessel speed optimization strategy.  Slow steaming policy has been adopted to estimate 

the total amount of fuel consumed in sea and port. Fuel cost incurred in sea is computed using the 

relationship between vessel speed and fuel consumption. 

Maritime transportation faces different challenges of lowering the fuel consumption and minimizing 

the transportation cost. Also increased amount of maritime traffic volume requires efficient routing 

and scheduling of ships. Container shipping is concerned with the distribution of multiple containers 

of different types from one port to another using a heterogeneous fleet of ships. Each port has its 

storage capacity or demand on the basis of whether it is a production or consumption port. Designing 

the schedules and routes for the fleet of ships on the basis of number of containers to be loaded or 

unloaded is an important aspect to be taken into account. Reducing the total transportation cost for 

each vessel without interrupting the supply and demand remains one of the primary challenges. The 

work presented in the paper performs efficient routing and scheduling of vessels such that the demand 

and supply of containerised cargo could be met at different ports.   

There is an increasing interest to explore the possible ways for improving the service level at port. 

The issue pertaining to the time spent by a ship at a port can be addressed by considering a time 

window concept. Each ship should carry out its loading/unloading operations within the time window 

of the port. Violation of time window takes place when the ship finishes its operation outside the 

specified time window. Furthermore, the vessel can arrive much before the starting of the time 

window. In such a situation, it will remain idle till the beginning of the time window. There are 

different challenges encountered in implementing the time window concept in a port. Several 

measures need to be taken in order to counter the scenarios of early arrival of a ship as well as 

violation of the time window. The paper incorporates time window concept to enhance the service 

level at the port. Multiple vessels arriving before the allotted time window range may lead to 

congestion at the port. Such scenarios are countered in this paper by imposing penalty cost per hour of 

waiting before the starting of the time window.  Certain vessels may fail to finish its operation within 

the allotted time window range, thereby incurring penalty charges per hour as considered in the paper. 

Now, a shipping company generally operates on heterogeneous fleet of vessels having different 

carrying capacities, speeds, physical dimensions and operating costs.  The ship transports multiple 

types of containers from production ports to consumption ports and ensures a check in the capacity of 

the port. The challenge lies in determining the ideal distribution policies such that scheduling and 

operating costs are minimized. Simultaneously, it is essential to keep a track on the ship’s inventory 

and port’s capacity for maintaining it within a certain limit. Proper inventory management decisions 

are important in the context of maritime transportation as it can be beneficial for port operations.  The 

objective of the paper is to elaborately study a sustainable maritime inventory problem considering 

different shipping operations such as ship routing and scheduling, time window concept at ports, 



multiple ships operating at a port due to the presence of number of available berths, loading unloading 

operations at port, speed optimization strategy for computing the fuel consumed by the ship. In view 

of the objective of the paper, a novel mathematical model addressing sustainable maritime inventory 

routing problem is presented aiming to minimize the fuel cost of the shipping company and penalty 

charges associated with the violation of the time window, docking cost and variable cost pertaining to 

the loading and unloading operation at the port.  

The contributions made in this paper are of interest for other researchers working in the domain of 

sustainable maritime transportation. The novelty of the paper lies in integrating different maritime 

operations such as ship routing and scheduling, loading/unloading of containers at ports, time window 

concept considering penalty costs to deal with violation and fuel consumption associated with 

different vessels. De et al. 2016 considered different shipping operation and presented a generic 

mathematical model for a sustainable ship routing and scheduling problem. They primarily focussed 

on transportation cost, set up cost and penalty cost associated with the violation of time window in 

their objective function and overlooked the fuel cost at port and sea as well as variable cost at the port 

depending upon the number of containers loaded/unloaded. A robust mathematical formulation 

developed in this research work aims to minimize the total cost of the container shipping company 

considering fuel cost at port and sea, fixed and variable cost at port and different penalty cost for 

violating the time window. The model incorporates slow steaming strategy to estimate the fuel 

consumption at sea, routing constraints, time window constraints and ship’s capacity related 

constraints. Time window constraints improves the service level at the port by imposing penalty cost 

for two different scenarios of vessel arriving early before the starting of the time window and the 

vessel finishing its operation outside the specified time window. As slow steaming policy increases 

the total voyage time of a ship, hence it is essential to consider time window concept in the model for 

keeping a check on the arrival and departure time of the vessel. Fixed cost associated with performing 

a loading/unloading operation at a port and variable cost related to the number of containers 

loaded/unloaded are considered in the model to compute the overall operation cost of a vessel. 

Predominantly, Heavy Fuel Oil (HFO) is employed to run the ship’s main engine while sailing in sea 

and at port Marine Diesel Oil (MDO) is used to run vessel’s auxiliary engine. The fuel consumption 

for each vessel is computed keeping this practicality in mind and corresponding average fuel prices 

considered are 463.50 USD/ton and 586 USD/ton for HFO and MDO respectively (Kontovas et al. 

2011). Fuel prices generally keep fluctuating with time but for computational experiment it is 

assumed to be constant in this paper. The study successfully integrates speed optimization policy 

along with fuel prices to estimate the total fuel cost and address the sustainability aspects in maritime 

transportation domain. Fuel cost incurred at a port is computed by taking into account the total 

operating time and the fuel consumed by the vessel at a port per hour. Moreover, the model considers 

the simultaneous operation of multiple numbers of ships in a period as in practicality each port 

contains numerous berths. 

The rest of the paper is organized in following manner: Section 2 provides a brief literature review on 

relevant studies related ship routing and scheduling problem. In Section 3, the problem environment is 

discussed in an elaborate manner. In Section 4, the mathematical formulation and the descriptions of 

the objective function and constraints are presented. The proposed solution approach for the problem 

is mentioned in section 5. The implementation of particle swarm optimization for composite particle 

(PSO-CP) algorithm is illustrated over here. Section 6 is devoted to the results and discussions of the 

extensive computational study carried out. Conclusions are given in section 7. It also includes the 

managerial implications and future scope of the problem.  

 



2. LITERATURE REVIEW 

Maritime inventory routing problems involves transportation of several products between different 

ports and constant monitoring of the inventory level for all the products at the ports. This section 

provides a brief review on the relevant studies in the domain of basic maritime inventory routing 

problem (MIRP). Christiansen et al. 1998 dealt with a MIRP for routing several vessels and 

performing the inventory management at different ports. Their model comprises of inventory pick-up 

and delivery of a single product to different ports using a fleet of ships for short-term planning 

horizon. Christiansen et al. 1999 examined a maritime transportation problem of a single product 

(ammonia) between several production and consumption facilities. The product is produced and 

stored in inventory facilities and later transported using a fleet of ships to several ports. The aim of 

this problem is to design appropriate shipping routes and schedules for minimizing the total costs 

associated with transportation without interruption of operations at the storages. Although, the vessel 

sailing time considered as constant in their formulation could be relaxed as per the realistic scenario. 

In subsequent years several articles are reported considering both inventory and routing taken into 

account. Ronen 2002 investigated a maritime inventory routing problem considering multiple 

products and presented a mathematical model also capturing the intricacies of inventory management 

at the port. The time window concept is ignored in their model that may affect its real life application. 

An optimization approach developed by Bilgen et al. 2007 addressing a problem involving the supply 

of bulk grain products from one loading port to another consumption port using a fleet of ships. The 

approach aims to minimize the total cost, including the blending, loading, transportation and 

inventory costs. Other researcher such as Dauzère-Pérès et al. 2007 dealt with real-life maritime 

inventory routing problem for a Norwegian company Omya Hustadmarmor and developed a decision 

support system on the basis of an optimization model. Their approach saved the production and 

transportation costs close to around US$7 million a year for the company. The subsequent sections 

deal with models associated to complex maritime inventory routing problems, time window concept 

and slow steaming policy. 

 

2.1. COMPLEX MARITIME INVENTORY ROUTING MODELS 

Within the domain of maritime transportation, an increased interest is observed among researcher to 

adopt advanced optimization approach for solving maritime inventory routing problems. Fodstad et al. 

2010 presented a decision support system pertaining to a Liquified Natural Gas (LNG) supply chain 

optimization model integrating ship routing problem along with inventory management. The focus of 

the paper lies in maximizing the profit by considering different trading contracts. In LNG business, 

Grønhaug et al. 2010 dealt with a maritime inventory routing problem considering vessel routing for 

special purpose ships. Mixed integer programming models depicting ship route planning and 

inventory management for LNG supply chain were presented by Andersson et al. 2010. Time window 

concept is overlooked in the aforementioned papers which can be a possible scope of improvement. A 

continuous time mixed integer linear programming (MILP) model addressing a maritime logistics 

problem associated with global chemical companies for maintaining the inventory levels at various 

ports is observed in Li et al. 2010. Voyage time of the ship from one port to another is assumed to be 

constant in their paper, but in reality sailing time keeps varying as it depends upon the vessel speed. 

Andersson 2011 tried to resolve the intricacies associated with maritime pulp distribution problem by 

modelling a mixed integer linear programming model and employing branch and price method for 

solving purpose. This model generates schedules for vessels sailing from different ports to the 

customers as well as direct deliveries from the pulp mills to the ports.  



In recent years, several researchers addressed maritime inventory routing problem and presented 

different advanced models focussing on routing and scheduling of ships as well as different port 

operations. Christiansen et al. 2011 addressed a ship routing and scheduling problem along with the 

inventory management of multiple non-mixable products for a cement company and employed a 

construction heuristic approach for solving purpose. Different ideas pertaining to variable demand and 

supply rates of the products, service speed of the vessel, fuel consumption rates (for sailing and also 

while being idle) are mentioned, yet no mathematical equation are presented in the paper depicting the 

same. Other researchers such as Furman et al. 2011 developed a decision support system on the basis 

of a mixed-integer programming model depicting a real-world ship routing problem for improving the 

performance of a petroleum and natural gas company named ExxonMobil. A single product vacuum 

gas oil (VGO) routing problem between several ports is considered in their paper which can be 

extended to multiple product case. Some of the researchers such as Shen et al. 2011 and Rocha et al. 

2013 focussed on a similar type of problem pertaining to maritime inventory routing associated with 

the transportation of crude oil via heterogeneous fleet of ships. Transportation of crude oil using 

multiple types of tankers includes several supply ports, transhipments harbours with limited inventory 

capacities and customer ports. Multiple product case is again ignored in the research works which can 

be a possible scope of expansion. Engineer et al. 2012 dealt with a single product vessel routing 

problem for a planning horizon considering different supply and demand rates at facilities as well as 

varying storage capacities at ports. Demurrage charges and draft restrictions are incorporated in their 

model to address the realistic scenario. The model can be extended by considering other practical 

considerations such as multiple product case and time window range at port. Goel et al. 2012 and 

Uggen et al. 2013 addressed maritime inventory routing problem for a Liquefied Natural Gas (LNG) 

and developed respective mathematical models to determine an optimal schedule for all the ships by 

specifying the fleet composition and size, terminal storage capacities and berth facilities. Travel time 

is considered as a parameter in both the model, although in practicality voyage time keeps changing 

depending upon the speed of the vessel. Other researchers such as Agra et al. 2013a and Papageorgiou 

et al. 2014a extensively studied ship routing and scheduling problem for a planning horizon and 

integrated inventory management within the problem for addressing varying supply and demand rates 

at ports. Each of the respective problem deals with routing of a heterogeneous fleet of ships between 

multiple ports with limited storage capacity and carrying out loading/unloading operations at ports. 

The models developed in the aforementioned research works overlooked the penalty costs associated 

with ship remaining idle or waiting charges before the starting of the time window. Travelling time of 

the vessel between different ports is assumed to be constant in the models which can be considered as 

a decision variable to make it realistic in nature. Hewitt et al. 2013 dealt with a complex problem of 

single product transportation to multiple sites using a fleet of ships. They focussed on a real-world 

maritime inventory routing problem capturing the various aspects of ship routing. Variable cost 

associated with the number of products loaded/unloaded at the port can also be added in their model 

for addressing service level related costs. Papageorgiou et al. 2014b addressed a single product 

maritime inventory routing problem which can be extended to a multiple product case as observed in 

the practical scenarios. Moreover, it is essential to consider fuel cost as one of the component in the 

objective function as it entirely determines the transportation cost of the vessel. They developed two 

decomposition algorithms to show the superiority over commercial solvers in terms of computational 

efficiency.  

 

 

 



2.2. MODELS WITH TIME WINDOWS CONCEPT 

Each port has a specific time window range for providing service in terms of loading/unloading of 

containers from the vessel. Some of the researcher have considered time window concept in their 

work to reduce the delay in providing the service at the port. Al-khayyal et al. 2007 developed a 

mathematical model focussing on a maritime inventory routing problem considering the concept of 

time window. They assumed different compartments in the ship for storing multiple types of products. 

Penalty costs are considered in their work to deal with the violation pertaining to the time window. 

More robust ship schedules can be designed by the introduction of penalties pertaining to waiting time 

for avoiding the vessel idle times. Their model considered an assumption that only a single vessel can 

operate at a port in a time period, whereas in reality multiple ships carry out their respective operation 

in a period depending upon the number of berths available. Siswanto et al. 2011 studied a similar type 

of problem in the context of multiple products stored in undedicated compartments of the ship. Their 

model considers time window range for performing the loading and unloading operation at the ports. 

The problem aims to minimize the transportation costs and operational cost by focussing on three 

aspects - vessel selection, route optimization and loading/unloading operation. The problem includes 

the transportation of non-mixable products from one port to another using heterogeneous fleet of 

ships. Agra et al. 2015 dealt with a short sea shipping problem in the context of maritime inventory 

routing of oil products between different ports. Although, all the aforementioned papers dealt with 

ship routing problem with known sailing time and service time, they do consider uncertain travelling 

time and measures to cope with port waiting times. It is essential to address ways to counter uncertain 

waiting times of the vessel before the start of service for reducing port congestion. Song et al. 2013 

proposed a new time-space network formulation accommodating several practical features such as 

time window concept in the context of maritime inventory routing problem. Demurrage costs are 

considered in the model when the overall loading/unloading time exceeds the lay-time or the time 

operated at port. Although, travelling time is assumed to constant in their model, but in practicality 

travel time between ports keeps changing as it depends on vessel speed, weather conditions etc. Agra 

et al. 2013b dealt with short sea ship routing problem aiming to supply products from loading ports to 

unloading port via multiple vessels. The provision of time window is considered at different port to 

handle uncertainties associated with port time. A real-world problem of an oil company is presented 

focussing on designing the routes and schedules of vessels for meeting the demand of fuel oil 

products at different ports. Hemmati et al. 2016 studied a maritime inventory routing problem for 

transporting multiple-product using heterogeneous fleet of ships. Time window model is solved to 

generate feasible time window ranges for performing the loading/unloading operations at different 

port. Agra et al. 2014 examined a short sea inventory routing problem and accordingly presented a 

mathematical model considering several real time constraints associated with the time window 

concept. Armas et al. 2015 dealt with a ship routing and scheduling problem and considered 

discretized time windows as it allows the flexibility to incorporate practical constraints in a simpler 

way. 

 

2.3. MODELS CONSIDERING SLOW STEAMING POLICY 

It is well described in the literature about the non-linear relationship between fuel consumption and 

vessel speed. Minimizing the vessel fuel cost is a key factor in maritime transportation domain, as it 

accounts for more than 50% of the total operating costs as mentioned in Fagerholt et al. 2015. Hence, 

several researchers have considered the slow steaming policy in ship routing models to reduce the 

emissions of greenhouse gases and shipping’s impact on the environment. Norstad et al. 2011 dealt 

with a vessel routing problem and developed a formulation considering slow steaming policy, time 



window and vessel capacity constraints and introducing ship speed as a decision variable. Other 

complex port operations such as loading/unloading operation and inventory management at port are 

overlooked in their paper. It is observed in their work that slow steaming strategy enables vessels to 

sail at economic speeds leading to cutting down of the fuel consumption costs. Disadvantages 

associated with slow steaming are deployment of additional vessels to maintain the service level of 

the shipping company. Ronen 2011 extensively studied about the effect of slow steaming may 

increase the number of extra vessels on each route. The main deliverables of their model are sailing 

speed of each ship, total operating cost incurred and number of vessels required. In certain cases, 

incorporating the slow steaming policy not only mitigates the fuel cost savings, it also increases the 

chartering cost. Psaraftis et al. 2010 studied about the trade-offs between reduction in vessel speed 

and change in the number of ships in the fleet. They discussed about the impact of speed reduction 

entails to reconfigure the ship engine so as to perform better under a reduced load. They stressed upon 

the need for building ships with smaller engines, efficient vessel hulls and modifying propeller 

designs for long-term implementation of slow steaming policy. Thus, it is worthwhile to adopt vessel 

speed reduction strategy if the savings in fuel cost exceeds the charter cost or fixed cost for hiring 

additional vessels. Other researchers such as Meng et al. 2011 and Wang et al. 2012a also 

incorporated service frequency, deployment of ships and vessel speed in their formulation and 

presented a Mixed Integer Non-Linear Programming (MINLP) models. They stated that shipping 

companies consider slow steaming strategy only during the high bunker price scenario and availability 

of large number of container ships. Psaraftis et al. 2013 stated about the implementation of slow 

steaming leads to adjustment of the transit time, which in turn should not cause major interruption in 

meeting the demand at different ports. In fact, speed reduction provides essential buffer time to absorb 

delays due to unforeseen events. Most of the existing studies on slow steaming policy dealt with 

different optimization models considering the vessel speed relationship and determining the routes for 

the ships (Wang et al. 2012a, Fagerholt et al. 2015, Andersson et al. 2015). The mathematical models 

developed in aforementioned mentioned papers focussed on minimizing the fuel costs as it comprises 

of a major cost component in most of the maritime operations. Some of the researcher dealt with ship 

routing and scheduling problem considering the uncertainties in port operations and developed a 

MINLP model aiming to minimize the total fuel cost under stochastic condition considering the slow 

steaming policy (Wang et al. 2012b, Wang et al. 2012c). The optimality condition for the vessel speed 

function with respect to fuel consumption is presented in the aforementioned papers. Majority of the 

researchers have solved their respective mathematical model using non-distributed methods. Solving 

such complex mathematical formulations observed in the domain of maritime inventory routing using 

distributed methods can help the shipping companies to obtain feasible results in very less 

computational time. Hence, distributed methods can be adopted in future researches for resolving such 

complicated optimization problems. 

Several researcher have done extensive research work on ship routing and scheduling such as 

Stalhane et al. 2012, Agra et al. 2013b, Agra et al. 2014 and Armas et al. 2015, yet they didn’t address 

the intricacies associated with sustainability in maritime transportation domain. De et al. 2016 

considered sustainability aspects in its mathematical model, yet overlooked the impact of fuel cost on 

the total transportation cost. The current research work aims to bridge this research gap by analysing 

the effect of fuel cost on the total cost of the shipping company. Siswanto et al. 2011, Agra et al. 

2013b, Engineer et al. 2012 and De et al. 2016 considered time window concept in their model and 

focussed on improving the service level at the port by penalizing the violation when the vessel fails to 

finish its operation within the allotted time window range. Most of the earlier researches including the 

work of De et al. overlooked the need to penalize vessels for early arrival at the port as it increases 

congestion. The research work carried out in the paper includes the scenario of vessels arriving before 



the starting of the time window at a port. Multiple vessels arriving before the starting of the time 

window leads to port congestion as all the vessels have to wait before starting their respective 

loading/unloading operations. The contribution presented in this paper aims to address this issue by 

imposing penalty cost on the vessel for waiting before the starting of the time window. Earlier 

research works of Agra et al. 2013 and De et al. 2016 have simplified their respective mathematical 

models by ignoring the berthing capacity of a port as it considered only one vessel arrives at a port in 

a given time period to perform its port operation. The research work presented in this paper addressed 

this issue and incorporated the realistic scenario of multiple vessels arriving at a port in a given time 

period depending upon the number of berths available at the port. Most of the research work 

pertaining to maritime inventory routing only considered the combination of voyage cost and 

operation cost as the main objective function such as Al-khayyal et al. 2007, Agra et al. 2013, 

Engineer et al. 2012, Rocha et al. 2013 and De et al. 2016 have not taken into account the impact of 

fuel cost on the total cost. Transportation cost largely comprises of the fuel cost of the vessel which in 

turn can be reduced by incorporating slow steaming strategy. Hennig et al. 2012 presented a maritime 

inventory routing problem considering the fuel cost when the vessel operates at a port but overlooked 

vessel’s fuel consumption in sea. Norstad et al. 2011, Andersson et al. 2015 and Yao et al. 2012 

developed different ship routing models considering slow steaming strategy to compute the fuel 

consumption. Earlier researches primarily addressed ship routing and scheduling or entirely on vessel 

fuel consumption considering slow steaming strategy. Few researches such as Andersson et al. 2015 

and Yao et al. 2012 incorporated the vessel speed optimization to address sustainability aspects in 

ship routing but fail to apprehend other complex shipping operations such as loading/unloading of 

containers, time window concept. The relationship between ending time of operation, sailing speed 

and vessel arrival time is incorporated in this paper which has been overlooked in majority of the 

earlier research work such as Norstad et al. 2011, Yao et al. 2012, Andersson et al. 2015 and De et al. 

2016. The contribution presented in the paper aims to bridge the aforementioned research gaps by 

developing an optimization approach addressing the maritime operations such as ship routing and 

scheduling, loading/unloading of containers at port, time window concept, vessel speed optimization 

for estimating the fuel consumed and meeting the demand at different ports. A Mixed Integer Non-

Linear Programming (MINLP) model is developed considering all the shipping operations mentioned 

earlier. 

 

3. PROBLEM DESCRIPTION 

Maritime inventory routing problem (MIRP) is considered with an aim to meet the demand at several 

ports. The main characteristic of a MIRP lies in designing the routes and schedules of a fleet of ships 

within an appropriate planning horizon. Each ship starts from an initial port position at the starting of 

the planning horizon and sails from one port to another carrying certain numbers of the containers. 

The planning horizon considered for a maritime inventory routing problem is discretized into set of 

time periods corresponding to days. A vessel visits several ports in different periods within the overall 

planning horizon for performing the loading/unloading operations at the ports. Figure 1 presents an 

example to illustrate the routing and scheduling of three vessels considering seven ports within a 

planning horizon of eight days. The second vessel starts its voyage from port 3 in period 1 and sails 

from port 3 to reach port 4 and performs its operations at port 4 in period 2. The vessel departs from 

port 4 in period 2 and reaches port 5 in period 4 to carry out its loading/unloading operations. Later 

the second vessel visits port 7 in period 5 and finally ends its journey at port 6 in period 7. The routes 

pertaining to first and third vessel can be depicted from the figure. Stock level or inventory level of 



the containerized cargo at each port is continuously monitored throughout the planning horizon. 

MIRP aims to identify the total numbers of containers carried by each ship from one port to another 

for meeting the demand for certain ports. Presence of multiple number of berths allows several ships 

to simultaneously perform their loading/unloading operation at a port in a given time period.   

 

<<Insert Figure 1>> 

 

The problem employs slow steaming policy as a possible measure in order to capture the 

sustainability aspects. As mentioned by Norstad et al. 2011, fuel consumed by the vessel depends 

upon the ship’s sailing speed. The relationship between vessel speed and fuel consumption is 

incorporated to estimate the fuel cost at the sea. And fuel cost at the port is computed based on the 

total time spent by the vessel at a certain port. It is assumed that the vessel operates on heavy fuel oil 

(Low-Sulphur Fuel Oil) when in sea and marine diesel oil while at port. Slow steaming policy leads to 

increase in the travelling time of the vessel from one port to another. Vessel sailing at normal speed 

reaches the port before the starting of the time window, thereby incurring penalty charges for waiting. 

Moreover, multiple vessels arriving before the starting of the time window increases the port 

congestion. Slow steaming helps the ship to avoid congestion as well as early arrival at the port. 

Figures 2 illustrate two scenarios of the vessel travelling from one port to another with normal speed 

and while sailing by employing slow steaming. An example of two ports (distance between the ports 

is 286 nautical miles or 529.67 km) is considered to explain the magnitude of the time windows and 

vessel sailing time with respect to normal speed and slow steaming. Port operations are carried out 

within the specific time window ranging from 8 am to 5 pm and 9 am to 6 pm for port A and port B 

respectively. Suppose, the vessel departs from port A at 6 pm and sails at a normal speed of 22 knots 

taking around 13 hours to reach port B. The vessel arrives at the port B around 7am before the starting 

of the time window, thereby incurring a penalty cost for waiting. Although, if the vessel had 

performed its voyage at 17.875 knots, then it would have arrived at port B by 10am within the time 

window. Moreover, considering slow steaming while sailing from one port to another helps to reduce 

the total amount of fuel consumed by the vessel. 

 

<<Insert Figure 2>> 

 

Multiple vessels performing their operation at a port in a specific time period depends upon the 

number of berths available. This in turn leads to arrival of several ships at a given period and thereby 

increases the port congestion. The consideration of time window concept in the problem helps to 

enhance the service level by reducing the congestion level at the port. As different ports have specific 

restricted operating time (certain ports are closed during night), hence it is essential to incorporate the 

time window concept to smoothly carry out the port operation. Port operation time involves set-up 

time (time required to arrange the quay cranes) and variable time depending upon the number of 

containers loaded/unloaded. A setup cost is incurred, if any loading/unloading operation takes place at 

a port. Generally, a port operation should start with the starting of the time window and ends with the 

ending of the time window. However, there can be two possibilities – the ship may arrive much before 

the starting of the time window and it may arrive well after the starting of the time window. For the 



first case, a penalty cost is charged for waiting outside the time window. In second case, the vessel 

may end up finishing its operation after the ending of the time window. In order to counter such 

violation, a penalty cost is incurred depending upon the number of hours operated outside the time 

window. Such operating measures associated with time window helps in improving the port 

management facilities. Figure 3 depicts the pictorial description of the time window concept.  

 

 

<<Insert Figure 3>> 

 

A Mixed Integer Non-Linear Programming (MINLP) model is developed on the basis of the problem 

described earlier. The mathematical formulation presented in the next section includes different 

variables – dependent, independent, interactive and incorporates several constraints conceiving the 

practical scenarios. Based on the storage capacity of the ships and the ports, different constraints 

related to the loading/unloading operation are considered. Relationship pertaining to the number of 

containers loaded/unloaded on the ship and the maximum capacity of the vessel is taken into account. 

Other constraints consider the connection between the total numbers of containers on-board a certain 

ship while sailing from one port to another and the number of containers loaded/unloaded. Demand 

satisfying constraints and storage capacity constraints for each ports are also presented. Owing to the 

inherent complexity of the problem, an efficient search heuristic named Particle Swarm Optimization 

for Composite Particle is used for solving purpose.  

 

4. MATHEMATICAL MODEL 

In this section, the mathematical formulation for the aforementioned problem is presented. The model 

is a variant of the core maritime inventory routing problem with special addition of fuel consumption 

equations, inventory related constraints and service time related costs. Following assumptions are 

considered for the aforementioned problem: 

1. The model is developed keeping in mind of the number of berths available at each port. 

2. Demand at each port is assumed to be deterministic in nature for every planning horizon. 

3. Ship’s loading/unloading time is constant for each type of container. 

4. Time window range at each port is known beforehand. 

5. Every ship sails from one port to another within a feasible speed range. 

6. Each vessel has a fixed carrying capacity. 

7. Time window can be violated for two scenarios. In first case, the ship arrives before the starting of 

the time window. In second case, the ship finishes its operation after the ending of the time window. 

For both the scenarios, penalty cost is incurred for operating/waiting outside the time window. 

 

Indices 

c  Type of containers 

,p q  Ports 

,t u  Time period 

v  Vessels 



vp  Initial position of vessel v  

 

Sets 

C  Set of type of containers 

P  Set of ports 

V  Set of vessels 

T  Set of time periods 

 

Parameters 

cpR  Fixed cost related to the setup of loading/unloading operation of container of type c  

  at port p  

E

ptR  Penalty cost (per hour) incurred at port p , when the vessel operates after the ending of the 

time window in period t  

S

ptR  Penalty cost incurred per hour if the ship waits at port p  before the starting of the time 

window in period t   

F

ptR  Variable cost (per hour) associated with the loading/unloading operation  

at port p in period t  

pvf  Fuel consumption at port p for vessel v  (in tonnes per hour) 

S

ptB  Beginning of time window at port p  in period t  

E

ptB  End of time window at port p  in period t  

vptA  Expected arrival time at port p for vessel v  in period t  

,vpt vpta a Earliest and latest arrival times at port p for vessel v  in period t  

pc  Time to load/unload a single container of type c at port p  

pc  Set up time required for carrying out a loading/unloading operation for containers of  

  type c at port p  

pqL  Distance between port p and q  

vM  Maximum capacity of vessel v   

cptD  Demand of container type c at port p in period t  

pc  Capacity of container type c at port p  

pcJ  = 1, if port p is a supplier of container type c  

= -1, if the port p has a demand of container type c
 

,pqv pqv  Feasible speed range for every vessel v while travelling from port p to port q  

p  Maximum number of berths at port p  

  Average fuel price for Marine Diesel Oil (MDO) 

  Average fuel price for Heavy Fuel Oil (HFO) 

 

 



Variables 

pqvF  Fuel consumption for vessel v (in tonnes per nautical mile) while travelling from port p to 

port q.  

vpta  Arrival time at port p for vessel v  in period t  

vptb  Time operated by vessel v  after the ending of the time window at port p  for period t   

vpt  Starting time of operation of vessel v  at port p in period t  

E

vpt  Ending time of the operation at port p for vessel v  in period t   

vpctK  Total number of container of type c  loaded/unloaded at port p from vessel v  in period t . 

Assuming 0vpctK  if 0pcJ   or 1t   

vpctN  Total number of container of type c  on vessel v  while leaving port p  in period t Assuming

0vpctN  , if vp p  

cpt  Stock level of container type c at port p in period t  

pqv  Velocity of vessel v  while travelling from port p to port q  

vpts  = 1, if vessel v  terminates its route at port p  after an operation in period t ,  

= 0, otherwise,  

ptquvy  = 1, if vessel v  initiates its operation in period t  at port p  and then travels from port p to q  

and begins its operation in period u  at port q , 

= 0, otherwise. Assuming 0ptquvy  , if t u ; or p q  

vpct  = 1, if container type c  is loaded or unloaded from vessel v  at port p  in period t , 

= 0, otherwise. Assuming 0vpct  , if 0pcJ  ; or 1t   

 

Objective function 

 

Minimize 
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Constraints 
20.0036 0.1015 0.8848,pqv pqv pqvF      , ,  p q P v V       (2) 

,pqv pqv pqv        , ,  p q P v V       (3) 

 

Equation (1) represents the objective function of the formulation depicting the total cost incurred for a 

shipping company operating several vessels on different routes in a planning horizon to meet the 

demand and supply for all the ports.  The first and second term of the objective function is related to 

the fuel cost of the vessel while at port and sea respectively. The third term interprets the total set up 

cost required for the loading/unloading operation. Fourth term is associated with the penalty cost for 

waiting before the start of the time window. Fifth term provides the demurrage charges incurred when 



the vessels fails to finish its operation within the allotted time window. Sixth term calculates the total 

operation cost inside the time window.  

It is assumed that engine of the each vessel works on heavy fuel oil (Low-Sulphur Fuel Oil) when it is 

in sea and marine diesel oil when it is in port. Accordingly, the average fuel prices considered are 

463.50 USD/ton for Heavy Fuel Oil (Low-Sulphur Fuel Oil) and 586 USD/ton for Marine Diesel Oil 

as mentioned in kontovas et al. 2011.  

 

Equation (2) presents the relationship between fuel consumption and vessel speed for a ship with load 

capacity around 150,000 m3. Norstad et al. 2011 studied that for a feasible speed range between 14.1 

knots to 22 knots, the equation holds good for estimating the total fuel consumption of the vessel. 

Equation (3) provides the upper and lower bounds for vessel speed variables.  
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Equations (4) - (8) represent the ship routing constraints. Constraint (4) depicts for a given time 

period, maximum number of ship that can operate at a port, depending upon the number of berths 

available. Constraint (5) ensures that a vessel might travel from its initial port vp  to port q  or it may 

end its route at a certain port. Constraint (6) guarantees that a vessel must end its route at some port. 

Flow conservation constraints are given by equation (7). Constraint (8) relates a scenario where if a 

vessel is being operated at a port in a given time period, then certainly that port must belong to the 

vessel’s route. 
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Equations (9) – (16) represent the time window constraints. Constraint (9) ensures that the vessel must 

start its operation at a port after its expected arrival time. Constraint (10) guarantees that a ship must 

arrive at the port before the starting of its loading/unloading operation for a given time period. The 

time interval within which the ship is expected to arrive is given by constraint (11). The range for the 

time window horizon is mentioned in constraint (12). Constraint (13) states that the arrival time of the 

operation at port q  must be greater than the departure time of the ship from previous port p  plus the 

sailing time between two ports. Constraint (13b) is considered in place of constraint (13), if the ship 

doesn’t travels from port p to q then naturally 
ptquvy  becomes zero ( 0ptquvy  ). Constraint (14) 

means that the ending time of each operation must be equal to the starting time of the operation plus 

the total service time. More precisely, service time comprises of set up time required for the operation 

and loading/unloading time for each type of containers. The penalty cost incurred for operating 

outside the time window is realized using constraint (15). Constraint (16) tackles a specific scenario, 

where the vessel should always start its operation at a certain port only after it finishes its operation at 

the previous period. 
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Equation (17) – (19) represents ship’s inventory related constraints. Constraint (17) states that the 

total number of container loaded/unloaded on the vessel should be less than (or equal to) the 

maximum carrying capacity of the ship. This constraint imposes an upper bound on the total number 

of container loaded/unloaded on the ship. Constraint (18) is related to the total number of containers 

on-board to the number of container loaded/unloaded. It is considered for a scenario where the vessel 

sails from one port to another. Here, the total capacity on-board a ship while departing from the first 

port should be equal to the capacity of the ship while leaving the second port plus/minus the number 

of container loaded/unloaded from the second port. Upper bound on the total capacity carried by a 

ship is imposed by the constraint (19). It states that if the total capacity on-board a certain ship is 

positive, then it must travel from one port to another.  
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Constrain (20) satisfies the demand for each type of container at every port in each time period. 

Storage capacity at each port for each type of container is given by constraint (21). 
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Equations (22) – (24) are the binary variables and equations (25) – (28) represents the non-negativity 

constraints.  

 

 

 

5. SOLUTION APPROACH 

The model presented in the above section considers different types of variables – binary, continuous 

(dependent as well as independent) and incorporates several real time constraints. In view of the 

above modelling approach, the formulation appears to be complex in nature. However, solving such a 

complex problem using exact solution methods requires high computational effort and tremendous 

memory requirements as mentioned by Guan et al 2016. MirHassani et al. 2011, Repoussis et al. 2010 

highlighted the fact about the lack of exact heuristic techniques to deal with MINLP model makes it 

imperative to solve the model with random search heuristics. Exact methods have not yet been well 

researched upon for resolving unconstrained non-linear optimization problems. As a result, such 

complex problem requires intelligent search heuristics or random search techniques and an advanced 

variant of Particle Swarm Optimization algorithm is employed. A new kind of nature-inspired 

algorithm named Particle Swarm Optimization for Composite Particle (PSO-CP) developed by Liu et 

al. 2010 is deployed to resolve the mixed integer non-linear programming model presented earlier. 

Particle swarm optimization algorithm (PSO) is simpler in computer implementation than other 

random search methods such as genetic algorithm (GA), ant colony optimization (ACO) etc. as 

mentioned by Aouay et al. 2013. They highlighted the robustness of PSO algorithm in adapting to 

different domain with their parameters being nearly fixed. Recently a number of researchers have 

considered particle swarm optimization algorithm due to its straightforward and uncomplicated 

concept to resolve combinatorial optimization problems in various fields. PSO is a robust stochastic 

optimization technique based on the movement and intelligence of swarm in a search space. Each 

swarm comprises of multiple number of particles interacting among each other to locate a global 

optimum. During an iteration of PSO, the position of the particle is updated using its best-known 

position and global best position of the solution space. The velocity and position of the particle is 

updated during the iteration using the equation (29) and (30).  

 

1 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))i i l i g it t t p t t p t                  (29) 

( 1) ( ) ( 1)i i ip t p t t             (30) 

Here, the velocity of ith particle is represented by ( )i t , ( 1)i t   for tth and (t+1)th iteration. Position 

of ith particle for tth and (t+1)th iteration is depicted as ( )ip t  and ( 1)ip t  . ( )l t   and ( )g t  are the 

local and global best position of the particle.   is the inertia weight. Acceleration coefficients are 

represented by 1  and 2 .   and   are the random vectors. The basic concept of PSO algorithm lies 

in accelerating each particle of the swarm toward its local best position and the global best position 

for improving the fitness function. 



Several researchers take up the challenge of employing advanced variants of PSO in different 

applications as most of them provide superior performance than other on-par stochastic optimization 

techniques. Zhu et al. 2009 employed a particle swarm optimization algorithm for resolving a 

complex vehicle routing problem in the domain of grain logistics. Other researchers such as Zhang et 

al. 2015 and Haddar et al. 2016 proposed different hybrid PSO algorithms for dealing with feature 

selection and multidimensional knapsack problem respectively and compared the result with other 

state of the art PSO variants, basic genetic algorithm and proving the superiority of hybrid PSO over 

other algorithms. Several other hybrid particle swarm optimization techniques have been proposed in 

the literature and successfully applied to different challenging problems such as hybrid PSO with 

support vector machine (Xu et al. 2015), hybrid PSO with ant colony optimization (Mandloi et al. 

2016) and hybrid algorithm based on PSO and artificial bee colony (Li et al. 2015). Gülcü et al. 2015 

developed a meta-heuristic called parallel comprehensive learning particle swarm optimization 

considering multiple swarms. A novel fuzzy particle swarm optimization algorithm having cross-

mutated operator is proposed by Ling et al. 2016. However, in most of the cases, PSO and their 

variants suffer from immature convergence or entrapment to a local solution. An advanced version of 

PSO named particle swarm optimization for composite particle (PSO-CP) was developed by Liu et al. 

2010 which overcame the problem of premature convergence by incorporating the concept of 

‘composite particle’ derived from physics and proved its superiority over other state of the art 

evolutionary algorithms and PSO variants. They stated about the enhanced performance of PSO-CP 

algorithm in terms of better convergence rate and carrying out an improved exploration and 

exploitation processes. Moreover, there are other reasons supporting the selection of PSO-CP 

algorithm for solving the aforementioned mathematical model. PSO-CP employs effective and 

interactive mechanisms such as construction of composite particles, velocity-anisotropic reflection 

(VAR) scheme and scattering operation to search for better near optimal solutions. The Velocity-

Anisotropic Reflection (VAR) scheme helps to define the interaction between the particles for 

exploring promising region in the search space. The scattering operator used by PSO-CP diversifies 

the current solution by considering better exploration capability and increases the possibility of 

arriving at a new optimum. 

 

 

5.1. PARTICLE SWARM OPTIMIZATION for COMPOSITE PARTICLE ALGORITHM 

The algorithm begins with initialization of the swarm and random initialization of velocity and 

position of each swarm. The local best particle and global best particle are updated according to the 

equation of basic particle swarm optimization algorithm as presented in (29) and (30). Section 5.1.1, 

5.1.2 and 5.1.3 elaborately describes different operators of PSO-CP as mentioned in Liu et al. 2010 

such as composite particle, Scattering operation, and VAR operation. All the operators of PSO-CP are 

performed accordingly before updating the velocity and the position of the swarm. 

 

5.1.1. COMPOSITE PARTICLES 

At first we generate a swarm comprising of all the particles and each particles consists of each type of 

variables of the mathematical model such as routing variables ( ptquvy , vpts ), time window variables  

( vpta , vptb , vpt , 
E

vpt ), loading/unloading variables ( vpctK , vpct ), vessel speed variable ( pqv ), fuel 

consumption variable ( pqvF ), flow variable ( vpctN ) and stock level variables ( cpt ). Figure 8 

demonstrates the schematic representation of the swarm having 100 particles. At first all the particles 



are sorted in order of their increasing fitness function values. The particle with worst fitness value is 

selected as the first particle of the composite particle. Remaining two particles of the composite 

particle is selected from the swarm on the basis of the least Euclidean distance with respect to the first 

particle of the composite particle. So, each composite particle is a combination of three particles 

selected accordingly as mentioned earlier. Total number of composite particles formed depends upon 

the swarm size considered for the algorithm. The largest integer number of [(swarm_size-1)/3] 

determines the number of composite particles. For example, if the swarm size is equal to 50, then the 

number of composite particles formed is 16 (the largest integer number of [(50-1)/3] is 16). For 100 

particles considered in the swarm presented in figure 8, 33 (the largest integer number of [(100-1)/3]) 

composite particles are formed. Number of individual particles not belonging to the composite 

particle are called independent particles which can be calculated using the following equation, 

swarm_size – 3*[(swarm_size-1)/3]. For a swarm size of 50 and 100, the numbers of independent 

particles are 2 (50 – 3*[(50-1)/3] =50 – 3*16 = 2) and 1 (100 – 3*[(100-1)/3] =100 – 3*33 = 1) 

respectively. Figure 4 provides the pseudo code for the construction of the composite particle. The 

independent particles remaining after the formation of all the composite particles are passed on to the 

next iteration. 

 

<<Insert Figure 4>> 

 

5.1.2. SCATTERING OPERATION 

Scattering operation occurs when the composite particle converges. It mainly triggers when the 

Euclidean distance between the worst member and the furthermost member within a composite 

particle is less than a threshold limit ( kD  ). On the basis of the information obtained from the 

worst particle, the scattering operation helps the fittest elementary particle to move towards a 

propitious direction as presented in figure 3. The figure depicts a composite particle in which E 

represents the fittest elementary particle and M1 and M2 are the non-pioneer particles. As the operation 

takes place, the fittest member of the composite particle scatters towards the direction of 
1M E and 

2M E  forming two new members R1 and R2. The new scattering points R1 and R2 are determined using 

the repulsion mechanism formula, 
1 1ER M E   and

2 2ER M E  . Here,  represents a random 

vector generated within a range of maximum and minimum values of stretching step size

_ min _ max,step stepR R   . Now the composite particle comprises of three new members E, R1 and R2 as 

shown in figure 5. 

 

<<Insert Figure 5>> 

 

The position of the two elementary particles of a composite particle is updated using the following 

equations: 

   1 11 pioneer

i i ix x x            (31) 



   2 21 pioneer

i i ix x x            (32) 

Here 
1 2,i ix x  are the updated positions of each elementary particles of a 

thi composite particle. And 

pioneer

ix is the current position of the particle with the best fitness value.  

Scattering operation is employed to address certain scenarios where the local diversity of the 

composite particle declines below a particular level. Here, if a composite particle converges, then the 

particles may form a cluster and it restricts itself from exploring the promising areas. Scatter operation 

helps the algorithm to overcome such challenging situation and leads to better exploration capability. 

 

 

5.1.3. VAR (Velocity-Anisotropic Reflection) OPERATION  

VAR operation is developed to help the elementary particles in cooperating with each other for 

exploring better solution space. The VAR scheme replaces the elementary particle having the worst 

fitness value with a new reflection point aiming to exploit a promising region. The pioneer particle 

amalgamates the whole information obtained from a composite particle. The knowledge gathered is 

shared with the independent and other composite particles. The pioneer particle also distributes the 

essential information among the other two elementary particles. Figure 6 depicts the construction of 

composite particle using VAR operation. 

Position of the worst particle and the other two elementary particles of a new composite particles are 

denoted by V, A and B. N denotes a randomly generated point on the straight line joined between A 

and B. Now, a reflection point R is generated using the formula, 
stepVR VN R VN   . stepR  is the 

reflection size parameter and   denotes a random vector. If the reflection point R is better than V in 

terms of the fitness then the composite particle is reflected towards the point R.  

<<Insert Figure 6>> 

The VAR operation is carried out using the following equation  

 

  ,R n worst n

i i step i ix x R x x           (33) 

Where 
R

ix  represents the position of the reflection point R. 
n

ix is the position of the point N.   The 

position of the worst particle in ith composite particle is 
worst

ix . Figure 7 presents the flowchart 

explaining the relationship between composite particle, scattering operation and VAR operation.  

 

<<Insert Figure 7>> 

 

5.2. INITIAL SOLUTION 

Each algorithm requires an initial feasible solution and the appropriate repair mechanism to provide a 

near optimal solution at the end. In this regard, we wish to mention that a similar procedure is 



employed to perform the repair mechanism within the algorithm which checks the feasibility of the 

solution obtained after the iteration and discards the infeasible solution.  

The formulation has different types of variables such as routing variables (
ptquvy , vpts ), time window 

variables (
vpta , 

vptb , 
vpt , 

E

vpt ), loading/unloading variables (
vpctK , 

vpct ), vessel speed variable  

(
pqv ), fuel consumption variable ( pqvF ), flow variable (

vpctN ) and stock level variables (
cpt ). 

Before starting the searching procedure, every algorithm requires an initial feasible solution 

comprising of all the decision variables of the mathematical model. For a certain problem instance, 

initially the routes are generated for all the ships considering their initial port position. Values of the 

route variables (
ptquvy  and vpts ) are obtained from the generated ship routes and their feasibility 

checking is performed by satisfying equations (4), (6) and (7). The value of the loading variable  

( vpct ) is estimated using the route variable ( ptquvy ) and equation (8). If the loading/unloading 

operation is performed in a port, then surely the value of the time window variables ( vpta , vpt ) 

should be greater than zero. Hence, the values of vpta  and vpt  are computed using the range 

presented in equation (11) and (12) respectively. Feasibility checking of the values obtained is 

checked by satisfying equations (9) and (10) and infeasible values discarded. Considering the binary 

variable vpct , the value of the loading variable vpctK  is computed within a particular range. 

Feasibility of the values of vpctK  is checked using equation (17). Decision variables pertaining to the 

ending time of the operation 
E

vpt  is obtained using the values of vpt , vpct , vpctK  and equation (14). 

The penalty variables vptb  associated with the violation of time window is computed using equation 

(15). The vessel speed variables pqv  are generated within the specific feasible range of 14-22knots. 

Feasibility of the vessel speed variable is checked using the values of the
E

vpt , vpta  , ptquvy and 

equation (13) and (13b). Fuel consumption of the vessel pqvF  is computed using the value of the 

vessel speed variable and equation (2). Stock level variable cpt  is obtained within a particular range 

by satisfying the equation (21). The value of the flow variable vpctN  is obtained within a given range 

and equation (19). Now considering the value of the binary variable ptquvy  and equation (18), the flow 

variable vpctN  is updated. Initialization of the solution is presented in a way as mentioned in the 

literature for different nature of problems such as routing, scheduling etc. The initial solution 

generated is fed into each of the algorithm to start their respective procedures.  

 

5.3. SWARM REPRESENTATION 

 

Every swarm is comprised of each type of variables such as routing variables, time window variables, 

vessel speed variables and container related variables. Table 1 illustrates different types of variables 

presented in a swarm for an example of 3 ports, 2 types of containers, 3 time periods and 2 vessels. 

Figure 8 depicts the schematic representation of the swarm structure for the given example. Figure 9 

presents the flowchart of the particle swarm optimization for composite particle (PSO-CP) algorithm. 

 

<<Insert Figure 8>> 



 

<<Insert Table 1>> 

 

<<Insert Figure 9>> 

 

5.4. PARTICLE SWARM OPTIMIZATION – DIFFERENTIAL EVOLUTION (PSO-DE) 

Epitropakis et al. 2012 presented a hybrid approach combining particle swarm optimization (PSO) 

with differential evolution (DE) algorithm. The algorithm aims to guide towards the global best value 

without compromising the searching capabilities of the swarm in the solution space. PSO-DE exploits 

the best position information using an efficient procedure known as differential evolution. Based on 

the position of the swarm, the evolutionary algorithm will either exploit the already found regions in 

the search space or explore new areas in the solution space. The population present in the swarm 

considers the set of best personal experience is used for the algorithm procedure. PSO-DE has a fast 

converging rate as it keeps on exploring the promising regions in the search space or exploits the 

already discovered areas. Figure 8 depicts the pseudo code of PSO-DE algorithm. At first, the swarm 

undergoes certain changes after the classical particle swarm optimization procedures, and later it 

evolves through a differential evolution algorithm. The classical PSO mainly explores search space 

and focuses on the new encouraging areas in the search space. The DE has a two-fold purpose. In the 

initial generations, it explores the potential areas in the solution space and later it concentrates on the 

promising explored regions. 

The swarm contains the personal best position of each particle at the nth iteration. The swarm structure 

considered for the mathematical model is similar to that of the neighborhood structure presented in the 

earlier section. In a single iteration, the swarm undergoes the updating of the velocity and position 

according to the classical PSO algorithm equations. The fitness of each particle in the current position 

is compared with that of the local best position and accordingly updated. The particle with the best 

fitness in the local best position is considered as the global best position. Each particle undergoes 

certain changes after the differential evolution algorithm (mutation, recombination, and selection) 

steps. In the mutation step, a mutant vector hn(i)  is generated for each particle using the following 

equation (32).  

 1 2 3( ) ( ) ( ) ( )_ _ _n n n nh i r F r rP Best P Best P Best      (34) 

Here, r1, r2 and r3 are the randomly generated numbers between 1 to the total number of particles in 

the swarm. F (binomial crossover) is considered 0.5 as mentioned in Epitropakis et al. 2012. P_Bestn 

is the local best position. 

Now the selection procedure is applied between the previous best position and the new best position 

and the fittest one selected. A detailed algorithm scheme of PSO-DE approach is illustrated in Figure 

10. The value of CR used in the algorithm is considered 0.9 as presented in Epitropakis et al. 2012.  

<<Insert Figure 10>> 

 

6. COMPUTATIONAL RESULT  

The mathematical formulation developed has been tested on different problems to showcase the 

efficiency of the proposed model. Each problem considers different instances based on the demand 



and supply of each type of containers at each port. The test instances for each of the problems are 

mentioned in Table 2. The major computational complexity in resolving such shipping problems are 

observed due to large number of variables and constraints as shown in Table 2. Seven problems sizes 

with three instances each are considered to validate the proposed mathematical model as presented in 

Table 2. Hence, 21 problem instances are solved and some of the problem instances deals with many 

ports and time periods inspired from the real-world problem associated with the shipping services of 

Maersk Line.  

 

<<Insert Table 2>>  

 

6.1. DATA COLLECTION 

Different types of containers are considered over here depending upon their respective sizes. 

Generally, shipping companies uses bulk containers for bulk minerals, tank containers for liquid or 

gases. For transporting organic products requiring ventilation, ventilated containers are used. 

Temperature controlled – refrigerated, insulated and heated containers are employed while dealing 

with perishable goods. Container ships predominantly carry 20-foot and 40-foot containers and 2 

types of containers are considered for each problem sizes. Ship’s speed range is between 14.1 knots to 

22 knots. Data associated with time window information, different types of costs and storage 

capacities of ports and ships are appropriately generated as presented in different sources (Barnhart et 

al. 2007, Cullinane et al. 1999, Chaug et al. 2005, Kontovas et al. 2011 and Agra et al. 2013b). 

Number of berths at each port is assumed according considering the scenario of multiple ships 

operating at a port in a given time period. The complete data set for all the parameters are presented in 

Table 3. Initial ship positions for each problem sizes are mentioned in Table 4. Some of the parameter 

values of the mathematical model such as number of berths available at the port, time window range 

of a port, capacity of the port, penalty charges and other fixed and variable costs of the port etc. are 

known to the port managers. This information needs to be transferred to the shipping company as they 

perform the optimization for finding the suitable route and schedule for their ships. Certain 

information related to the possible ship routes, vessel speed, arrival time of different ships at the port, 

loading/unloading quantity at a port from the vessel etc. are passed on to the terminal managers from 

the shipping companies. Hence, it can be concluded that a high level of information sharing takes 

place between port manager and shipping companies. 

<<Insert Table 3>> 

<<Insert Table 4>> 

6.2. PARAMETER SETTINGS 

The aforementioned experiments scenarios are performed on MATLAB R2014a installed in an Intel 

Core i5 machine having 2.10 GHz processor speed and 8GB RAM.  Each problem instances are 

solved using nature-inspired algorithms such as particle swarm optimization for composite particle 

algorithm (PSO-CP), particle swarm optimization algorithm (PSO), particle swarm optimization-

differential evolution (PSO-DE) and genetic algorithm (GA). The parameters of the PSO-CP 

algorithm are appropriately tuned to obtain near optimal solutions for each of the experiments 

designed. Important parameters pertaining to PSO-CP algorithm are Euclidean distance limit, 

acceleration coefficients, inertia weights, diversification parameters and stretching parameters. 

Diversification parameters and stretching parameters are taken from the sensitivity analysis performed 



by Liu et al. 2010. Repeated test trails have been carried out to predict the most suitable values 

corresponding to other parameters. Table 5 presents the values for each parameter associated with 

PSO-CP algorithm.  

 

<<Insert Table 5>> 

6.3. EFFICACY OF THE ALGORITHMS 

Table 6 depicting the best and worst solutions as well as the mean and standard-deviation obtained 

after carrying out 30 runs on each algorithm for solving the instance 1 of each problem sizes (values 

pertaining to instance 2 and 3 are not presented to avoid the redundancy). Mean and the standard 

deviation of PSO-CP are much better than other algorithms for instance 1 of all the problem sizes 

which automatically proves the hypothesis of the PSO-CP algorithm. PSO-CP outperforms all the 

other algorithms as it has the better exploration capability in terms of effectively carrying out the 

searching procedure to attain promising near optimal solutions. PSO-CP uses different mechanisms 

such as construction of composite particles which prioritizes the particle with worst fitness value and 

replaces them with a particle with better fitness by employing VAR operation. Scattering operation of 

PSO-CP overcomes certain difficult situations where the local diversity of the particles decreases. 

VAR and scattering operations help PSO-CP to overcome many entrapments and perform improved 

exploration by exploiting promising solution spaces where as other benchmark algorithms like PSO 

and GA suffer from premature convergence or getting confined to a local solution. PSO-DE still 

provides better solution than PSO and GA as it employs differential evolution strategy in basic PSO to 

explore potential areas in the search space and later focussing on the promising regions. Although, 

PSO-CP easily outperforms PSO-DE at it employs advanced searching capabilities making it more 

powerful for overcoming many challenging scenarios and attaining better near-optimal solutions. 

Computational time required by all the algorithms for solving each of the problem instances are 

mentioned in Table 7. Computational efficiency of PSO-CP is nearly at par with other benchmark 

algorithms such as PSO and GA. The presence of different operators in PSO-CP such as composite 

particle, scattering operation and VAR operation slightly increases the computational time of the 

algorithm. 

<<Insert Table 6>> 

 

<<Insert Table 7>>  

 

6.4. RESULT ANALYSIS 

Every instance for each problem sizes presented in Table 2 is solved using four algorithms - PSO-CP, 

PSO-DE, PSO and GA. Results pertaining to the total cost associated with each of the problem 

instances and penalty cost for violating the time window are presented in Table 8. The results 

interprets a substantial difference in the values obtained using all the algorithms. The visual 

illustrations of the convergence of the solutions for the second instance of problem size (6, 5, 2, 3) and 

the first instance of problem size (8, 7, 2, 4) are presented in Figure 11 and 12 respectively. The graph 

shows the convergence of all the four algorithms for two different problem instances. From the 

figures, it is amply clear that PSO and GA get trapped in local optima as it converges early for all the 

problem instances. PSO-CP requires more iteration to converge to a near-optimal solution as it 

extensively explores the search space with help of scattering mechanism and VAR operation. Fuel 

cost for all the problem instances while sailing at sea and operating at port is presented in Table 9 



helps to understand the sustainability aspects of the mathematical model. Results obtained for 

different algorithms are compared with each other and presented in the Table 9. Observation from the 

Table 8 and 9 highlights that majority of the cost incurred for the shipping company largely comprises 

of the fuel cost. Hence, the possible measures like slow steaming policy should be considered by the 

shipping companies for minimizing the fuel cost which in turn will reduce their total cost. This fuel 

cost might be higher for shipping companies which are still unfavourable to the environmental aspects 

by not considering sustainable strategies. The result obtained out of this work will help the authorities 

to rethink about their current shipping plans and look to incorporate new measures for maintaining 

sustainable maritime operations and reduce the overall transportation cost. Table 10 presents the ships 

routes, different vessel speed and fuel consumption (tonnes per nautical mile) associated with each 

route and total inventory carried by every vessel on a certain route. The values mentioned in Table 10 

are obtained after performing the computational experiment on instance 1 (values related to instance 2 

and 3 are not presented to avoid the redundancy) for all the problem sizes. This additional information 

clarifies the relevance of the study by giving an idea about the output of the mathematical model.   

 

<<Insert Table 8>> 

<<Insert Table 9>> 

 

<<Insert Table 10>> 

 

<<Insert Figure 11>> 

<<Insert Figure 12>> 

<<Insert Figure 13>> 

 

7. CONCLUSION 

In this paper, a mathematical model is developed to address a maritime inventory routing problem. 

The model integrates non-linear relationship between vessel speed and fuel consumption for capturing 

the sustainability aspects in the formulation. The model is a mixed integer non-linear programming 

(MINLP) problem considering time window concept and incorporating the routing and scheduling 

constraints. The formulation also incorporates constraints associated with the ship’s inventory. The 

formulation is solved using PSO-CP and PSO-DE, PSO and GA algorithms separately. Computational 

results obtained from PSO-CP algorithm for different problem instances are completely dominating 

the solution of other algorithms. There is a further possibility for extending this mathematical model 

by incorporating stochastic demand scenarios. Moreover, it is essential to include vessel draft in the 

formulation to address a new dimension of the port logistics. Also, the model can be made a multi 

objective one by considering service time as another objective. It can further motivate in employing 

multi-objective algorithms for solving such formulation. Distributed methods/approaches can be 

employed in the future researches to solve large size computational problems for improving the 

computational efficiency. Distributed method generally divides the problem into many tasks and each 

of it is solved by different computers. Distributed methods are more reliable as it can easily overcome 

the single point failure faced while performing the same computation on a non-distributed system.  

The insights evolved out of this paper would help the shipping companies in minimizing the overall 

cost and readjust the schedule of each ship in an efficient way. 
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Figure 1. Ship routes within the overall planning horizon  

 

 

 

 



 

Figure 2. Different travelling time of the vessel considering normal speed and slow steaming 

 

 

Figure 3. Time window at port considering the arrival of vessel for different scenarios 

 

 



 

 

Figure 4. Pseudo code for construction of composite particle as presented by Liu et al. 2010 

 

 

 

 



 

Figure 5. The new composite particle is formed through scattering operation 

 

 

 

 

 

Figure 6. Construction of composite particle using VAR operation 

 

 

 



 

Figure 7: Flowchart depicting the relationship between composite particle, scattering operation and 

VAR operation. 

 

 

 

 

Figure 8. Schematic representation of the swam for a given example 

 

 

 



 

 

Figure 9. Depicting the flowchart for Particle Swarm Optimization-Composite Particle 

 

 

 

 

 

 



 

Figure 10: Pseudo code of PSO-DE algorithm 



 

 

Figure 11: Convergence graph for instance 2 of problem size (6, 5, 2, 3) 

 

 

 

 

Figure 12: Convergence graph for instance 1 of problem size (8, 7, 2, 4) 
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Table 1. Swarm representation 

 

Variable Variable Structure Number of Variables 

Considered  

ptquvy  
11111, 21111, 31111,............ 33332

 varbinary iables

y y y y
  3 3 3 3 2

162

p t q u v   

    



  

vpts  
111, 121, 131, 233,

 var

........

binary iables

s s s s  

3 3 2 18

p t v 

  
 

vpta  
111 121 131 233

 vari

, , ,......

continuous ables

a a a a  

 

3 3 2 18    

vpt  
111 121 131 233

 vari

, , ,......

continuous ables

     3 3 2 18    

E

vpt  
111 121 131 233

 vari

, , ,......E E E E

continuous ables

     3 3 2 18    

pqv  
111 211 311 233

 vari

, , ,......

continuous ables

     3 3 2 18    

vptb  
111 121 131 233

 vari

, , ,......

continuous ables

b b b b  3 3 2 18    

vpct  
1111 1211 1311 2323

 var

, , ,......

binary iables

     3 3 2 2 36     

vpctK  
1111 1211 1311 2323

 vari

, , ,......

continuous ables

K K K K  3 3 2 2 36     

vpctN  
1111 1211 1311 2323

 vari

, , ,......

continuous ables

N N N N  3 3 2 2 36     

cpt  
111 121 131 233

 vari

, , ,......

continuous ables

     3 3 2 18    

 

 

 

 

 

 

 

 

 

 



Table 2. Depicting the different problem sizes considered for experimental purpose 

Serial No. Problem Size 

(ports, periods, 

containers, ships) 

Number of 

variables 

Number of 

equality 

constraints 

Number of 

inequality 

constraints 

1 (3, 3, 2, 2) 396 400 405 

2 (4, 4, 2, 2) 928 1156 944 

3 (6, 5, 2, 3) 3888 5754 3888 

4 (8, 7, 2, 4) 15488 25912 15432 

5 (9, 10, 2, 5) 46305 82495 46125 

6 (10, 16, 2, 6) 165720 310052 165240 

7 (10, 22, 2, 6) 306840 584492 306180 

 

 

Table 3. Depicting the data set for the computational purpose 

Parameter or variable Range Units 

cpR  (500, 1000) USD/operation 

E

ptR  (100, 500) USD/hour 

S

ptR  (100, 500) USD/hour 

F

ptR  (50, 100) USD/hour 

pvf  (20, 40) Tonnes/hour 

S

ptB  (6, 9) Hours (real time) 

E

ptB  (18, 20) Hours (real time) 

ptvA  (5, 6) Hours (real time) 

,ptv ptva a  
(4, 8) Hours (real time) 

pc  (0.2, 0.3) Hours per container 

pc  (0.5, 1)  Hours per operation 

pqL  (500, 800) Nautical miles (nm) 

cptD  (400, 800) Units 

pc  (300, 400) Units 

p  (3, 5) Berths 

 

 

 

 



Table 4. Initial ship position for every problem size 

Problem Size 

(ports, periods, 

containers, ships) 

Ship 

number 

Instance 1 Instance 2 Instance 3 

 

(3, 3, 2, 2) 

Ship 1 
11 1quy  

21 1quy  
11 1quy  

Ship 2 
11 2quy  

11 2quy  31 2quy  

 

(4, 4, 2, 2) 

Ship 1 
11 1quy  

11 1quy  
21 1quy  

Ship 2 
21 2quy  

21 2quy  
31 2quy  

 

(6, 5, 2, 3) 

 

Ship 1 
21 1quy  

31 1quy  
11 1quy  

Ship 2 
11 2quy  

51 2quy  
41 2quy  

Ship 3 
11 3quy  31 3quy  11 3quy  

 

 

(8, 7, 2, 4) 

 

Ship 1 
11 1quy  31 1quy  41 1quy  

Ship 2 
21 2quy  41 2quy  51 2quy  

Ship 3 
21 3quy  31 3quy  21 3quy  

Ship 4 
41 4quy  11 4quy  11 4quy  

 

 

(9, 10, 2, 5) 

 

Ship 1 
31 1quy  21 1quy  61 1quy  

Ship 2 
51 2quy  41 2quy  21 2quy  

Ship 3 
41 3quy  

61 3quy  
51 3quy  

Ship 4 
11 4quy  31 4quy  21 4quy  

Ship 5 
11 5quy  51 5quy  31 5quy  

 

 

  

(10, 16, 2, 6) 

Ship 1 
41 1quy  21 1quy  11 1quy  

Ship 2 
11 2quy  31 2quy  21 2quy  

Ship 3 
11 3quy  51 3quy  41 3quy  

Ship 4 
11 4quy  41 4quy  51 4quy  

Ship 5 
21 5quy  11 5quy  41 5quy  

Ship 6 
51 6quy  21 6quy  21 6quy  

 

 

(10, 22, 2, 6) 

Ship 1 
11 1quy  31 1quy  51 1quy  

Ship 2 
51 2quy  41 2quy  41 2quy  

Ship 3 
21 3quy  21 3quy  11 3quy  

Ship 4 
51 4quy  31 4quy  21 4quy  

Ship 5 
31 5quy  11 5quy  41 5quy  

Ship 6 
11 6quy  51 6quy  31 6quy  

 

 

 

 



 

Table 5. Optimal values of the parameters considered for the experiment 

Parameter Inertia 

Weight 

Acceleration 

coefficients 

Diversification 

Parameter used in 

VAR operation 

Stretching parameters Euclidean 

distance 

limit 

Setting 0.9 0.1 0.98 6 2 3 0.5 

 

 

 

 

Table 6. Computational results for instances 1 of all the problem sizes 

Problem size Algorithm Best solution Worst solution  Mean Standard 

deviation 

 

(3, 3, 2, 2) 

Instance 1 

PSO-CP 7.566 x106 8.456 x106 7.961 x106 5.981 x105 

PSO-DE 8.351 x106 9.338 x106 8.974 x106 6.676 x105 

PSO 8.681 x106 1.141 x107 9.435 x106 6.944 x105 

GA 8.859 x106 1.084 x107 9.669 x106 7.173 x105 

 

(4, 4, 2, 2) 

Instance 1  

PSO-CP 1.488 x107 1.579 x107 1.508 x107 6.152 x105 

PSO-DE 1.497 x107 1.808 x107 1.614 x107 7.312 x105 

PSO 1.525 x107 1.821 x107 1.663 x107 8.704 x105 

GA 1.731 x107 2.063 x107 1.797 x107 8.528 x105 

 

(6, 5, 2, 3) 

Instance 1 

PSO-CP 3.661 x107 3.853 x107 3.702 x107 2.457 x106 

PSO-DE 4.216 x107 4.838 x107 4.686 x107 3.112 x106 

PSO 5.061 x107 5.301 x107 5.172 x107 3.354 x106 

GA 5.879 x107 6.193 x107 5.966 x107 3.268 x106 

 

(8, 7, 2, 4) 

Instance 1 

PSO-CP 1.043 x108 1.102 x108 1.095 x108 6.464 x106 

PSO-DE 1.120 x108 1.292 x108 1.188 x108 7.995 x106 

PSO 1.237 x108 1.378 x108 1.322 x108 8.032 x106 

GA 1.321 x108 1.496 x108 1.431 x108 8.436 x106 

 

(9, 10, 2, 5) 

Instance 1 

PSO-CP 4.497 x108 4.639 x108 4.502 x108 2.013 x107 

PSO-DE 4.605 x108 4.871 x108 4.693 x108 2.408 x107 

PSO 5.204 x108 5.630 x108 5.402 x108 2.878 x107 

GA 5.561 x108 6.022 x108 5.897 x108 3.141 x107 

 

(10, 16, 2, 6) 

Instance 1 

PSO-CP 9.483 x108 9.928 x109 9.769 x108 2.955 x107 

PSO-DE 1.026 x109 1.358 x109 1.085 x109 3.794 x107 

PSO 1.061 x109 1.567 x109 1.132 x109 4.106 x107 

GA 1.248 x109 1.831 x109 1.344 x109 4.548 x107 

 

(10, 22, 2, 6) 

Instance 1 

PSO-CP 2.691 x109 3.076 x109 2.805 x109 7.784 x107 

PSO-DE 3.099 x109 3.385 x109 3.231 x109 8.117 x107 

PSO 3.587 x109 3.928 x109 3.696 x109 8.763 x107 

GA 3.737 x109 4.120 x109 3.884 x109 9.291 x107 

 

 

 

 

 

 

 



 

Table 7. Computational time required for solving all the instances of each problem using different 

algorithms 

Problem Size 

(ports, 

periods, 

containers, 

ships) 

Instance 1 Instance 2 Instance 3 

PSO-CP 

(sec) 

PSO-DE 

(sec) 

PSO 

(sec) 

GA 

(sec) 

PSO-CP 

(sec) 

PSO-DE 

(sec) 

PSO 

(sec) 

GA 

(sec) 

PSO-CP 

(sec) 

PSO-DE 

(sec) 

PSO 

(sec) 

GA 

(sec) 

(3, 3, 2, 2) 94.7 87.6 77.8 84.8 94.9 87.0 76.3 84.5 95.1 86.8 74.4 84.2 

(4, 4, 2, 2) 141.7 129.1 111.2 121.8 143.4 131.6 113.9 123.5 142.2 128.1 112.8 121.5 

(6, 5, 2, 3) 175.3 171.6 151.3 168.4 176.68 170.2 148.4 165.2 176.7 173.50 146 164.2 

(8, 7, 2, 4) 253.2 241.3 221.8 236.7 251.4 241.7 218.2 231.3 250.9 239.92 219.1 230.7 

(9, 10, 2, 5) 513.6 508.8 455.4 468.8 514.2 505.3 454.3 463.7 513.8 505.28 456.5 469.2 

(10, 16, 2, 6) 786.8 750.4 627.5 678.2 754.9 736.9 629.1 675.6 756.2 739.5 630.7 668.9 

(10, 22, 2, 6) 1252.7 1248.2 1166.8 1192.3 1244.1 1231.2 1164.2 1198.6 1235.6 1226.5 1157.8 1191.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 8. Table showing the total cost and penalty cost for violating the time window for each instance 

of every problem 

 

 

 

Problem Size 

(ports, periods, 

containers, ships) and 

Algorithm used to solve 

Instance 1 Instance 2 Instance 3 

Total Cost 

(USD) 

Penalty cost for 

violating time 

window (USD) 

Total Cost 

(USD) 

Penalty cost for 

violating time 

window (USD) 

Total Cost 

(USD) 

Penalty cost for 

violating time 

window (USD) 

(3, 3, 2, 2) PSO-CP 7.566 x106 1.467 x103 7.754 x106 1.561 x103 7.747 x106 1.285 x103 

(3, 3, 2, 2) PSO-DE 8.351 x106 3.719 x103 8.943 x106 3.664 x103 8.769 x106 3.256 x103 

(3, 3, 2, 2) PSO 8.681 x106 4.132 x103 9.575 x106 4.176 x103 9.575 x106 3.921 x103 

(3, 3, 2, 2) GA 8.859 x106 4.347 x103 9.971 x106 4.482 x103 9.886 x106 4.336 x103 

(4, 4, 2, 2) PSO-CP 1.488 x107 2.811 x103 1.408 x107 2.963 x103 1.269 x107 2.865 x103 

(4, 4, 2, 2) PSO-DE 1.497 x107 4.853 x103 1.544 x107 5.135 x103 1.498 x107 4.596 x103 

(4, 4, 2, 2) PSO 1.525 x107 6.883 x103 1.612 x107 6.091 x103 1.562 x107 7.336 x103 

(4, 4, 2, 2) GA 1.731 x107 7.042 x103 1.758 x107 6.821 x103 1.693 x107 7.767 x103 

(6, 5, 2, 3) PSO-CP 3.661 x107 5.195 x103 4.488 x107 4.924 x103 3.661 x107 5.738 x103 

(6, 5, 2, 3) PSO-DE 4.216 x107 6.789  x103 4.676 x107 7.931  x103 4.718 x107 7.451  x103 

(6, 5, 2, 3) PSO 5.061 x107 9.643 x103 4.921 x107 9.611 x103 4.957 x107 9.211 x103 

(6, 5, 2, 3) GA 5.879 x107 9.885 x103 5.726 x107 9.542 x103 5.434 x107 9.542 x103 

(8, 7, 2, 4) PSO-CP 1.043 x108 4.752 x103 1.052 x108 4.521 x103 9.931 x107 5.395 x103 

(8, 7, 2, 4) PSO-DE 1.120 x108 7.317 x103 1.120 x108 6.586 x103 1.048 x108 7.452 x103 

(8, 7, 2, 4) PSO 1.237 x108 7.908 x103 1.231 x108 7.425 x103 1.194 x108 8.234 x103 

(8, 7, 2, 4) GA 1.321 x108 8.372 x103 1.346 x108 8.108 x103 1.363 x108 8.890 x103 

(9, 10, 2, 5) PSO-CP 4.497 x108 8.454 x103 4.360 x108 8.798 x103 4.291 x108 8.943 x103 

(9, 10, 2, 5) PSO-DE 4.605 x108 9.795 x103 4.638 x108 1.056 x104 4.960 x108 1.021 x104 

(9, 10, 2, 5) PSO 5.204 x108 1.457 x104 5.174 x108 1.347 x104 5.222 x108 1.481 x104 

(9, 10, 2, 5) GA 5.561 x108 1.623 x104 5.405 x108 1.646 x104 5.619 x108 1.535 x104 

(10, 16, 2, 6) PSO-CP 9.483 x108 1.552 x104 9.375 x108 1.48 x104 1.008 x109 1.467 x104 

(10, 16, 2, 6) PSO-DE 1.026  x109 1.967 x104 1.078 x109 2.010 x104 1.042 x109 1.567 x104 

(10, 16, 2, 6) PSO 1.061 x109 2.348 x104 1.151 x109 2.177 x104 1.097 x109 2.112 x104 

(10, 16, 2, 6) GA 1.248 x109 2.662 x104 1.294 x109 2.410 x104 1.304 x109 2.521 x104 

(10, 22, 2, 6) PSO-CP 2.691 x109 3.784 x104 2.776 x109 3.514 x104 2.829 x109 3.778 x104 

(10, 22, 2, 6) PSO-DE 3.099 x109 4.159 x104 3.118 x109 3.953 x104 3.176 x109 4.063 x104 

(10, 22, 2, 6) PSO 3.587 x109 4.621 x104 3.437 x109 4.428 x104 3.592 x109 4.419 x104 

(10, 22, 2, 6) GA 3.737 x109 4.878 x104 3.683 x109 4.759 x104 3.778 x109 4.685 x104 



Table 9. Fuel cost incurred at port and sea for each problem instances 

 

Problem Size 

(ports, periods, 

containers, 

ships) 

Problem 

instances 

Fuel cost incurred at port (USD) 

Result obtained using different algorithms 

Fuel cost incurred at sea (USD) 

Result obtained using different algorithms 

PSO-CP PSO-DE PSO GA PSO-CP PSO-DE PSO GA 

 

(3, 3, 2, 2)  

Instance 1 2.190 x104 2.890 x104 3.034 x104 3.092 x104 2.826 x106 3.549 x106 4.098 x106 4.274 x106 

Instance 2 1.894 x104 2.285 x104 2.353 x104 2.309x104 3.674 x106 4.970 x106 6.077 x106 6.358 x106 

Instance 3 1.881 x104 2.075 x104 2.347 x104 2.427x104 4.239 x106 5.761 x106 6.077 x106 6.219 x106 

 

(4, 4, 2, 2)  

Instance 1 5.041x104 6.449 x104 7.827 x104 7.489 x104 3.243 x106 4.145 x106 4.991 x106 5.176 x106 

Instance 2 5.033 x104 6.478 x104 7.846 x104 7.273 x104 3.395 x106 3.758 x106 4.663 x106 4.934 x106 

Instance 3 5.003 x104 6.637 x104 7.052 x104 7.474 x104 2.120 x106 3.231 x106 4.239 x106 4.619 x106 

 

(6, 5, 2, 3)  

Instance 1 1.417 x105 2.112 x105 2.874 x105 2.958 x105 2.751 x107 3.043 x107 3.939 x107 4.364 x107 

Instance 2 1.391 x105 1.870 x105 2.682 x105 2.931 x105 2.412 x107 2.859 x107 3.713 x107 4.121 x107 

Instance 3 1.367 x105 1.956 x105 2.732 x105 2.976 x105 2.696 x107 3.124 x107 3.826 x107 4.258 x107 

 

(8, 7, 2, 4) 

Instance 1 3.127 x105 3.831 x105 4.254 x105 4.828 x105 8.048 x107 8.795 x107 9.736 x107 9.945 x107 

Instance 2 3.164 x105 3.632 x105 4.193 x105 4.891 x105 8.126 x107 8.943 x107 9.657 x107 9.928 x107 

Instance 3 3.055 x105 3.799 x105 4.109 x105 4.976 x105 7.538 x107 8.262 x107 9.382 x107 9.815 x107 

 

(9, 10, 2, 5) 

Instance 1 6.153 x105 7.299 x105 8.201 x105 8.876 x105 3.927 x108 4.132 x108 4.605 x108 4.712 x108 

Instance 2 6.187 x105 7.271 x105 7.985 x105 8.639 x105 3.782 x108 4.057 x108 4.575 x108 4.691 x108 

Instance 3 6.164 x105 7.398 x105 7.946 x105 8.740 x105 3.716 x108 4.094 x108 4.610 x108 4.694 x108 

 

(10, 16, 2, 6) 

 

Instance 1 7.014 x105 8.492 x105 9.268 x105 9.784 x105 8.701 x108 9.382 x108 9.777 x108 9.846 x108 

Instance 2 7.347 x105 8.549 x105 9.316 x105 9.846 x105 8.598 x108 9.756 x108 1.068 x109 1.095 x109 

Instance 3 7.264 x105 8.372 x105 9.185 x105 9.922 x105 9.319 x108 9.871 x108 1.016 x109 1.043 x109 

 

(10, 22, 2, 6) 

 

Instance 1 1.778 x106 2.512 x106 2.829 x106 3.651 x106 2.252 x109 2.647 x109 3.047 x109 3.134 x109 

Instance 2 2.126 x106 2.653 x106 3.094 x106 3.860 x106 2.336 x109 2.721 x109 2.982 x109 3.179 x109 

Instance 3 1.837 x106 2.504 x106 2.903 x106 3.504 x106 2.343 x109 2.702 x109 2.931 x109 3.086 x109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 10. Depicting the ship route, vessel speed, fuel consumption and total inventory carried for each 

problem size of instances 1 

Problem size Ship 

number 

Route of the ships  

(ports visited by the 

ship) 

Different vessel 

speed of the vessel on 

the route (knots) 

Fuel consumption on each leg of 

the route (Tonnes per Nautical 

miles) 

Aggregate numbers of 

container carried by 

each ship on its route 

vpct

p P t T c C

N
  

  

(3, 3, 2, 2) Ship 1 1-2-3 20-18 0.29 – 0.22  1100 

Ship 2 1-3-2 18-15 0.22 – 0.17 1150 

(4, 4, 2, 2) Ship 1 1-2-4-3 16-22-17 0.18 – 0.39 – 0.19 2250 

Ship 2 2-1-3-4 15-22-20 0.17 – 0.39 – 0.29 2950 

 

(6, 5, 2, 3) 

Ship 1 2-3-1-5-6 22-20-22-15 0.39 – 0.29 – 0.39 – 0.17 3200 

Ship 2 1-3-2-6 22-14-19 0.39 – 0.16 – 0.25 2733 

Ship 3 1-3-2-5 20-16-20 0.29 – 0.18 – 0.29 2733 

 

(8, 7, 2, 4) 

Ship 1 1-3-2-4-5-6 16-22-17-16-15 0.18 – 0.39 – 0.19 – 0.18 3900 

Ship 2 2-1-3-4-6-8 15-16-22-18-19 0.17 – 0.18 – 0.39 – 0.22 – 0.25 3850 

Ship 3 2-1-3-4-8-6-7 20-14-18-14-21-17 0.29 – 0.16 – 0.22 – 0.169 – 0.34 

– 0.19 

4150 

Ship 4 4-3-1-2-8-6 16-19-22-14-14 0.18 – 0.25 – 0.39 – 0.16 – 0.16 3800 

 

 

(9, 10, 2, 5) 

Ship 1 3-5-1-4-2-9-7-8-6 14-19-19-19-17-18-

20-21 

0.16 – 0.25 – 0.25 – 0.25 – 0.19 – 

0.22 – 0.29 – 0.34 

4880 

Ship 2 5-2-4-3-1-6-9-7-8 14-19-20-22-15-17-

20-17 

0.16 – 0.25 – 0.29 – 0.39 – 0.17 – 

0.19 – 0.29 – 0.19 

4880 

Ship 3 4-2-3-1-5-7-9-6 16-15-20-15-21-20-

17 

0.18 – 0.17 – 0.29 – 0.17 – 0.34 – 

0.29 – 0.19 

4760 

Ship 4 1-5-4-2-3-7-6-8-9 15-16-21-19-16-16-

17-22 

0.17 – 0.18 – 0.34 – 0.25 – 0.18 – 

0.18 – 0.19 – 0.39 

4800 

Ship 5 1-4-2-5-3-9-6-8-7 18-19-20-14-19-14-

17-18 

0.22 – 0.25 – 0.29 – 0.16 – 0.25 – 

0.16 – 0.19 – 0.22 

4800 

 

 

 

(10, 16, 2, 6) 

Ship 1 4-2-1-3-5-6-10-8-9-7 19-22-21-16-20-17-

22-14-16 

0.25 – 0.39 – 0.34 – 0.18 – 0.29 – 

0.19 – 0.39 – 0.16 – 0.18 

5233 

Ship 2 1-2-3-5-4-9-6-7-10-8 14-18-21-20-15-17-

17-18-19 

0.16 – 0.22 – 0.34 – 0.29 – 0.17 – 

0.19 – 0.19 – 0.22 – 0.25 

5300 

Ship 3 1-3-2-4-5-10-7-8-6-9 22-19-15-19-22-21-

20-18-16 

0.39 – 0.25 – 0.17 – 0.25 – 0.39 – 

0.34 – 0.29 – 0.22 – 0.18 

5333 

Ship 4 1-2-4-5-3-8-7-10-6-9 16-16-22-21-21-22-

15-18-19 

0.18 – 0.18 – 0.39 – 0.34 – 0.34 – 

0.39 – 0.17 – 0.22 – 0.25 

5267 

Ship 5 2-1-4-3-5-7-10-8-6-9 19-17-20-21-19-14-

22-14-18 

0.25 – 0.19 – 0.29 – 0.34 – 0.25 – 

0.16 – 0.39 – 0.16 – 0.22 

5130 

Ship 6 5-3-1-2-4-6-9-10-8-7 17-21-16-21-20-17-

16-16-20 

0.19 – 0.34 – 0.18 – 0.34 – 0.29 – 

0.19 – 0.18 – 0.18 – 0.29 

5200 

 

 

 

(10, 22, 2, 6) 

Ship 1 1-3-4-5-2-10-9-7-6-8 22-20-16-20-15-19-

21-22-17 

0.39 – 0.29 – 0.18 – 0.29 – 0.17 – 

0.25 – 0.34 – 0.39 – 0.19 

6233 

Ship 2 5-4-3-2-1-9-6-8-10-7 20-20-18-17-16-14-

18-15-17 

0.29 – 0.29 – 0.22 – 0.19 – 0.18 – 

0.16 – 0.22 – 0.17 – 0.19 

6100 

Ship 3 2-1-4-5-3-8-6-7-9-10 18-22-14-22-14-16-

21-19-18 

0.22 – 0.39 – 0.16 – 0.39 – 0.16 – 

0.18 – 0.34 – 0.25 – 0.22 

6033 

Ship 4 5-4-2-3-1-10-6-8-9-7 15-16-15-16-14-21-

22-15-20 

0.17 – 0.18 – 0.17 – 0.18 – 0.16 – 

0.34 – 0.39 – 0.17 – 0.29 

6100 

Ship 5 3-4-2-1-5-7-9-10-6-8 19-20-14-14-15-21-

16-18-18 

0.25 – 0.29 – 0.16 – 0.16 – 0.17 – 

0.34 – 0.18 – 0.22 – 0.22 

6233 

Ship 6 1-3-4-2-5-8-6-9-10-7 16-17-17-22-14-17-

21-19-16 

0.18 – 0.19 – 0.19 – 0.39 – 0.16 – 

0.19 – 0.34 – 0.25 – 0.18 

6033 

 


