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Abstract

Principal component analysis (PCA)1 is one of the main un-supervised pre-

processing methods for dimension reduction. When the training labels are avail-

able, it is worth using a supervised PCA strategy. In cases that both dimension

reduction and variable selection are required, sparse PCA (SPCA) methods are

preferred. In this paper, a sparse supervised PCA (SSPCA) method is proposed

for pre-processing. This method is appropriate especially in problems where, a

high dimensional input necessitates the use of a sparse method and a target label

is also available to guide the variable selection strategy. Such a method is valu-

able in many Engineering and scientific problems, when the number of training

samples is also limited. The Hilbert Schmit Independence Criteria (HSIC) is used

to form an objective based on minimization of a loss function and an L1 norm is

used for regularization of the Eigen vectors. While the proposed objective func-

tion allows a sparse low rank solution for both linear and non-linear relationships

between the input and response matrices, other similar methods in this case are

1PCA:principal component analysis, SPCA: sparse PCA, SSPCA: sparse supervised PCA,

SPLS: sparse partial least squares, PMD: penalized matrix decomposition, SVD: singular value de-

composition, HSIC: Hilbert Schmidt independence criterion, RKHS: reproducing kernel Hilbert

space, SIMPLS: statistically inspired modification of PLS, SVM: support vector machine, CV:

cross validation, RBF: radial basis function, RMSE: root mean square error, ROI:region of inter-

est, NIR: near infrared, SSC: solvable solid content, KNN: K nearest neighbour
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only based on a linear model. The objective is solved based on penalized matrix

decomposition (PMD) algorithm. We compare the proposed method with PCA,

PMD-based SPCA and supervised PCA. In addition, SSPCA is also compared

with sparse partial least squares (SPLS), due to the similarity between the two

objective functions. Experimental results from the simulated as well as real data

sets show that, SSPCA provides an appropriate trade-off between accuracy and

sparsity. Comparisons show that, in terms of sparsity, SSPCA performs the high-

est level of variable reduction and also, in terms of accuracy it is one of the most

successful methods. Therefore, the Eigen vectors found by SSPCA can be used

for feature selection in various high dimensional problems.

Keywords: Variable selection, Dimension reduction, Sparse PCA, Supervised

PCA, Sparse supervised PCA, Penalized matrix decomposition

1. Introduction

Principal component analysis (PCA) is a well known dimension reduction

technique that is used in many data mining and machine learning problems such

as genetics, image and signal processing, chemistry, etc. Given a data matrix Xn×p
with n data points and p features, it maps data into an orthogonal space based on

the sorted variance of the input data. In the new space, each principal component

(PC) is a linear combination of all the original variables. The first PC corre-

sponds to the highest variance and the second to the second highest variance and

in the same way all PCs are estimated based on the subsequent orders of variances

(Hastie et al., 2009).

However, based on the type of problem, two main limitations can be consid-

ered for PCA; First, PCA is not sparse, while in many applications, especially

those with a high number of variables, it is important to reduce the number of

variables and remove any irrelevant or noisy variable. For example, in spectral

imaging applications, each variable might be a wavelength and sparse PCs result

in a simpler vision set-up or in biology, each variable might correspond to a spe-

cific gene and interpretation of the sparse PCs is easier (Zou et al., 2004). Second,

PCA is un-supervised. Although this can be considered as an advantage in many

cases, it can also be a limitation when a label or response vector is available (Bar-

shan et al., 2011; Chen et al., 2008). In such cases, it is more efficient to guide

the low rank approximation algorithm based on the available target response. This

is especially important when the task is regression or classification and it is pre-

ferred to map data into a low-rank space based on its maximum dependency on
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the response than maximum variance.

To address the first limitation, many researchers have proposed methods and

algorithms for sparse PCA (SPCA). Such as simple thresholding of the loadings

(Cadima and Jolliffe, 1995), non-negative sparse PCA (Sigg and Buhmann, 2008;

Zass and Shashua, 2007; Asteris et al., 2014), greedy algorithms (Moghaddam

et al., 2006; A. d’Aspremont and El Ghaoui, 2008), the SCoTLASS method (Jol-

liffe et al., 2003), an Elastic-Net framework based on the L1-norm (Zou et al.,

2004), SPCA based on the penalized matrix decomposition (PMD) (Witten et al.,

2009), an augmented Lagrangian method (ALSPCA) (Lu and Zhang, 2009), a

regularized singular value decomposition (SVD) (Shen and Huang, 2008), a gen-

eralized power method (Journée et al., 2010) and optimized sparse encoding by

column subset selection (Magdon-Ismail and Boutsidis, 2016). Most of the solu-

tions to SPCA are non-convex optimization procedures that find a solution close

to the optimal point. Some of them such as DSPCA based on semi-definite pro-

gramming (SD) (d’Aspremont et al., 2007) also guarantee a global convergence.

In addition, several supervised PCA methods have been proposed in the lit-

erature (Bair et al., 2006; Barshan et al., 2011). In (Bair et al., 2006), an initial

regression step is used to find the features corresponding to high values of regres-

sion coefficients. Then, those features were used for PCA. The supervised PCA

method proposed in (Barshan et al., 2011) is a generalization of PCA which aims

at finding the PCs with maximum dependency to the response variables. In that

work, the Hilbert Schmidt independence criterion (HSIC) (Gretton et al., 2005)

was used as a dependency function between data and target response.

This work is focused on developing a sparse supervised PCA (SSPCA) algo-

rithm. Such an algorithm is appropriate for pre-processing of high dimensional

data sets with an available target response. Such condition necessitates the use

of a sparse solution for variable selection or interpretation. In order to handle

any type of dependency between input and response matrices, similar to (Barshan

et al., 2011), the initial objective function is formed based on the HSIC criterion.

In addition, an L1 constraint is applied on the Eigen vectors in order to find sparse

solutions. The resulting optimization problem is bi-convex and can be solved us-

ing the PMD algorithm (Witten et al., 2009). The sparse Eigen vectors found by

the SSPCA algorithm can be used either for projection of a data set or for feature

selection.

The most similar work to our work is the SPLS algorithm that is based on a

latent decomposition of both response vector Y and the predictor matrix X (Chun

and Keles, 2010). In that work, an L1 norm was imposed to achieve a sparse

solution and the objective was solved iteratively as a biconvex problem. However,
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only a linear relationship between the input matrix and the response vector was

considered. We will demonstrate that the proposed objective function is a general

form of the SPLS objective function and the solution can handle data sets with

linear as well as non-linear behaviour.

In this paper, SSPCA is compared with PCA, the SPCA based on the PMD

algorithm (Witten et al., 2009) and the supervised PCA based on HSIC (Barshan

et al., 2011). Due to the reasons explained above, it is also compared with SPLS

(Chun and Keles, 2010). The experiments were conducted on both simulated and

real data sets.

A version of this work has been presented in a PhD thesis previously (Shar-

ifzadeh, 2015).

The rest of this paper is organized as follows; Section 2 describes the PCA

and HSIC criterion. Section 3 introduces the SSPCA method and its connection

to PMD-based SPCA, supervised PCA and SPLS. Then, experimental results are

presented in section 4. Finally, discussion and conclusion are given in sections 5

and 6 respectively.

2. Background

Considering a data matrix Xn×p that has n data points and p features, and also

a target vector Yn×1, in a PCA problem, the centred data matrix Xc is projected

into a new space with orthogonal directions. The projection of a data vectors xi
along a direction vk, k = 1,2, ..., p, is xi.vk. Then, the variance is:

σ2
vk
=

1

n ∑
i
(xivk)

2 =
1

n
(Xvk)

T (Xvk) = vT
k (

XT X
n

)vk = vT
k Σxvk. (1)

In a PCA problem, this direction has the maximum variance and unit length:

argmax
vk

σ2
vk
= argmax

vk
vT

k Σxvks.t.vT
k vk = 1, (2)

which can be re-formulated based on a Lagrange multiplier λ and be solved by

setting the derivatives to zero:

L(vk,λ ) = argmax
vk,α

vT
k Σxvk−λ (vT

k vk−1), (3)

∂L
∂vk

= 0,
∂L
∂λ

= 0, (4)
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vT
k .vk = 1,Σxvk = λvk. (5)

The Eigen decomposition of the covariance matrix Σx results in the Eigen vectors

that maximize the variation of the projected data Xvk.

However, as mentioned in the previous section, in the presence of a response

vector, Y , finding a subspace that maximizes the dependency between the pro-

jected data Xvk and the outcome Y is preferred.

A linear dependency between two variables can be measured based on a corre-

lation criterion. However, to handle any linear or non-linear dependency, a more

general criterion is required.

2.1. HSIC
HSIC is an independence criterion, introduced in (Gretton et al., 2005). Ac-

cording to HSIC, the independence of the variables X and Y is possible, if and

only if any bounded continuous function of them is uncorrelated. Therefore, de-

pendency is a more general criterion than correlation. If two random variables are

independent, their HSIC value will be zero.

HSIC was used previously for a supervised PCA technique in (Barshan et al.,

2011). It can be expressed in terms of kernel functions. Let Z =(x1,y1), ...,(xn,yn)
⊂ (X×Y ) be a series of n independent observations drawn from PX ,Y , an empirical

practical form of HSIC for independence testing between X and Y is:

HSIC(Z,F,G) = (n−1)−2tr(KHLH) = (n−1)−2tr(HKHL), (6)

where F and G are separable reproducing kernel Hilbert space (RKHS), contain-

ing all continuous bounded real-valued functions of x and y respectively (from

X to R and from Y to R), K and L are the corresponding kernels of F and G,

H,K,L ∈ R
n×n,Ki j = k(xi,x j),Li j = l(yi,y j) and Hi j = I−n−1eeT is the centring

matrix (e is a vector of all ones). A high HSIC value shows a high level of depen-

dency between the two kernels.

3. Formulation of SSPCA

We adopt the HSIC criterion to maximize the dependency between the pro-

jected data to the new subspace XV and the responseY . For this aim, the input ker-

nel K is defined based on the projected data in the new subspace, K = XVV T XT .

In addition, two constraints are considered for the Eigen vectors; a constraint for

unit length and an L1 norm penalty constraint for sparsity:
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argmax
V

tr(HXVV T XT HL) = argmax
V

tr(V T XT HLHXV ) s.t. V TV = I, |V | ≤ c.

(7)

Considering Q = XT HLHX , Eq.7 is a penalized Eigen value decomposition prob-

lem. Since Q is a symmetric and real matrix, it can be decomposed as Q = ΨT Ψ,

so that L = ΔΔT , Ψn×p = ΔT HX . Then, the objective function can be rewritten

as follows:

argmax
V

tr(V T QV ) = argmax
V

tr(V T ΨT ΨV ) s.t. V TV = I, |V | ≤ c. (8)

Two different approaches can be considered for solving this optimization prob-

lem. One strategy is penalizing the Eigen vectors matrix and finding all the

Eigen vectors simultaneously. This requires different regularization parameters

(c1,c2, . . .,cp) for Eigen vectors, to avoid a sparse Eigen matrix of rank one. That

means an increase in the number of parameters which makes the problem more

difficult.

Another approach is using the same penalization constraint c for all the Eigen

vectors and finding them individually in separate optimization steps. This is a

more feasible strategy. Therefore, in our work, we consider the same regulariza-

tion parameter for all Eigen vectors and solve the problem for each Eigen vector

separately. Then, there exist a mathematical solution for this simplified problem

based on the PMD algorithm (Witten et al., 2009).

First, the equivalent SVD problem to the objective function is considered for

rank-K approximation of Ψ:

Ψ =UΛV T s.t. UTU = In , VV T = Ip;λ1 ≥ λ2 ≥ . . . ≥ λK ≥ 0. (9)

For r ≤ K, the above SVD problem can be considered as a minimization of a loss

function based on the Frobenius norm:

r

∑
k=1

λkukvT
k = arg minΨ̂∈M(r)

∥∥Ψ− Ψ̂
∥∥2

F = arg minΨ̂∈M(r)

∥∥Ψ−UΛV T∥∥2

F . (10)

Where uk and vk are the column k of U and V and M(r) is the set of rank-r n× p
matrices. In the case of the Frobenius norm, the following has been demonstrated

in (Witten et al., 2009):
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1

2

∥∥Ψ−UΛV T∥∥2

F =
1

2
‖Ψ‖2F −

r

∑
k=1

uT
k Ψvkλk +

1

2

r

∑
k=1

λ 2
k . (11)

Therefore, in the next step, the minimization in Eq. 10 is written as a max-

imization form for k = 1 and the constant terms are ignored. In addition, an L1

constraint is added on vk besides the unite length L2 constraints on uk and vk. This

makes the vk sparse. Furthermore, an orthogonality constraint is considered.

arg maxukvk
uT

k Ψkvk s.t. ‖uk‖2 ≤ 1,‖vk‖2 ≤ 1,‖vk‖1 ≤ c,uk ⊥ u1,u2, . . .,uk−1.
(12)

The equality constraints are changed into inequality to avoid a non-convex prob-

lem. This objective function is bi-convex in uk and vk. That is, with uk fixed, it is

linear in vk, and vice versa. As planned before, the same regularization parameter

c controls the sparsity of the individual Eigen vectors vk, k = 1,2, . . .,r. This opti-
mization problem can be solved based on the PMD(.,L1) algorithm (Witten et al.,

2009) that was used previously for SPCA problem. It is explained in more details

in the appendix.

The step by step procedures for SSPCA are shown in Algorithm 1. As can

be seen, the row and column vectors uk and vk are computed separately. The up-

date equation for uk, forces orthogonality. U⊥
k−1 is an orthogonal basis to Uk−1 =

1,2, . . .,k−1. This update step yields orthogonal factors. It cannot be used di-

rectly for vk, since it does not result in a sparse solution. However, the vks, are

not very correlated, since they are associated with orthogonal uks, (Witten et al.,

2009). The update equation for vk, utilizes the soft thresholding operator S, so that

for τ > 0:

S(a,τ) =

{
sgn(a)(|a|− τ) |a|> τ,
0 |a| ≤ τ.

(13)

The solution to the above equation, satisfies vk =
S(a,τ)
‖S(a,τ)‖2 with τ = 0, if this results

in ‖vk‖1≤ c; otherwise, τ is chosen so that ‖vk‖1 = c. the range of possible values
for c is 1≤ c≤√p, (Witten et al., 2009). Further demonstrations for these update

formula can be found in (Witten et al., 2009) and also provided in the Appendix.

In fact, the use of soft thresholding inside the convergence loop, reduces the

absolute value of the Eigen vector elements so that, some of them will become

zero or close to zero. The features that, the kernel is dependent on (relevant fea-

tures), remain among the non-zero elements and the zero or small elements cor-

respond to the irrelevant and noisy input variables. Especially for the first Eigen
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Algorithm 1 Procedures for SSPCA

Input: training data matrix X, test data x, kernel matrix of target variable L and

training data size n.
Output: Dimension reduced training and test data using sparse Eigen vectors, Z
and z.
1. Decompose L such that L = ΔT Δ
2: H ← I−n−1eeT

3: Ψ← ΔT HX

4: Compute the sparse basis based on the PMD method:

Let Ψ1←Ψ

For k ∈ 1, ...,K :

Find uk,vk and λk by applying the following single-factor PMD algorithm to Ψk:

Initialize vk to have L2-norm equal to one.

Repeat (a) and (b) until convergence:

(a) uk =
U⊥K−1U

⊥T
k−1Ψkvk

‖U⊥T
k−1Ψkvk‖2

(b) vk =
S(a,τ)
‖S(a,τ)‖2 , where a = ψkuk, τ = 0 if ‖vk‖1 ≤ c, otherwise an appropriate

τ is found so that, the condition is fulfilled.

λk ← uT
k Ψkvk.

Ψk+1←Ψk−λkukvT
k

5:Encode training data: Z ← XV
6:Encode test data: z← xV

vector when the original Ψ1 is used. Because the second Eigen vector is orthogo-

nal to the first one and consequently, high value elements in the first Eigen vector,

might be down weighted in the second vector due to the orthogonality issue.

An appropriate kernel (L) is the one that has the highest dependency to the

input matrix. Using an appropriate constraint value c, most irrelevant variables

are cancelled out and most relevant ones are remained. Both the kernel and c are

chosen based on CV.

3.1. Relation to SPCA and Supervised PCA
SSPCA is in fact a general form for SPCA based on the PMD method (Witten

et al., 2009) and the supervised PCA (Barshan et al., 2011). If the target kernel
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L = I, the algorithm 1 solves the unsupervised SPCA problem. On the hand, if the

regularization parameter c tend to infinity, the supervised PCA problem is solved.

3.2. Comparison with SPLS
Due to the similarities between the proposed method and SPLS (Chun and

Keles, 2010), their main differences are described here. SPLS is a sparse version

of the well known supervised regression method PLS. In PLS, the response matrix

Yn×q and the predictor matrix Xn×p are decomposed into latent vectors so that,Y =
T QT +F and X = T PT +E. Tn×k is a matrix that produces K linear combinations

(scores), Pp×k and Qq×k are matrices of coefficients (loadings) and En×p and Fn×q
are matrices of random errors. PLS finds the columns of W = (w1,w2, ...,wK) by
successive optimization problems and then, the latent component matrix T = XW
is computed:

wk = argmaxw cor2(Y,Xw)var(Xw) s.t. wT w = 1, wT ΣXX w j = 0 , (14)

for j = 1, ...,k− 1, where ΣXX is the covariance of X . Using the statistically

inspired modification of PLS (SIMPLS), the kth estimated direction vector ŵk is

found by solving the following optimization problem:

ŵk = argmax
w

wT σXY σXY w s.t. wT w = 1, wT ΣXX w j = 0 , (15)

ΣXX and σXY are the populations covariances of X and Y that can be replaced by

the samples covariances (SXX ,SXY ):

wk = argmax
w

wT XTYY T Xw s.t. wT w = 1, wT SXX w j = 0 . (16)

Using W , the latent components T and loadings Q are computed. Finally, β̂PLS is

obtained by β̂PLS = Ŵ Q̂T .

In the sparse version of the PLS algorithm, an L1 penalty is imposed to the

PLS objective function:

wk = argmax
w

wT XTYY T Xw s.t. wT w = 1, |w| ≤ λ . (17)

This optimization problem is solved by a bi-convex procedure that is explained in

more detail in (Chun and Keles, 2010).
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The major difference between the SPLS and SSPCA can be explained by the

definition of the correlation and dependency. Similar to PLS, SPLS aims to max-

imize the covariance between two random variables while SSPCA (similar to su-

pervised PCA) maximizes the dependency between them. In other words, SPLS

can detect linear dependence between two variables while in SSPCA any linear or

non-linear dependency can be detected. This is performed by the choice of an ap-

propriate kernel. In addition, after finding β̂SPLS, a linear regression is performed

to compute Ŷ . However, SSPCA is a pre-processing step and can be followed by

different regression or classification methods.

4. Experimental results

Five methods including PCA, SPCA based on the PMD method, supervised

PCA, SSPCA and SPLS were applied on three simulated and three real data sets

and the results are shown in this section. Both regression and classification sce-

narios exist among these data sets. In data simulations, both linear and non-linear

conditions were generated. In all the experiments and for all the methods, at least

three Eigen vectors were chosen, so that their corresponding Eigen values explain

at least 95% of variance. The models were trained using the cross validation (CV)

model selection technique. In both regression and classification problems, the

support vector machine (SVM) from the LibSVM toolbox (Chang and Lin, 2011)

was used in training over the CV loops and the final tests. For classification prob-

lems, the K nearest neighbour (KNN) was also applied using CV for the choice of

K and the results are compared with SVM. We have also employed CV loops for

selection of the SVM parameters such as kernel type, spread parameter of radial

basis function (RBF), degrees of the polynomial kernels etc. For each data set,

based on its dimension, an appropriate number of folds was determined. Since in

many real problems, the number of data points is less than the number of features,

such condition was considered. For example, in cases where the number of sam-

ples was much less than the number of variables (n� p), larger number of folds

(e.g. 10 folds) were used to avoid over-fitting.

No model parameters are required for PCA. As mentioned above, at least three

components are selected explaining at least 95% of variance. However, for all the

other methods, CV loops were used for model selection; In SPCA, CV was used

for the choice of the restriction parameter c. As mentioned in section 3, c can be

chosen in the range of 1≤ c≤√p. In supervised PCA, CVwas used for the choice

of the kernel type. The tested kernels were RBF, adaptive (RBF) (Zelnik-manor

and Perona, 2004), quadratic and sinusoid kernels. For RBF and quadratic kernels,
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the spread parameter σ and degree parameters were respectively chosen based on

iterations over a list of candidate values. For the proposed SSPCA method, both

c and kernel were found based on CV. The required parameters for SPLS such as

λ are also found using a CV loop.

Root Mean Square Error (RMSE) was used as an evaluation criterion for all

the methods in the regression problems for both the training (over the CV loops)

and final tests. In the case of classification, the percentage of classification perfor-

mance was considered. In addition, the average number of non-zero rows in the

selected Eigen vectors are reported. All analyses were performed using MATLAB

(R2013a).

4.1. Simulation results
The first sets of experiments were performed on simulated data sets to evaluate

the performance of the proposed SSPCA method and compare it with the other

methods. The major difference between the three simulated cases is the type of

dependency between the input matrix X and target Y . So that, both linear as

well as non-linear dependencies, such as polynomial and exponential relations,

are considered. In addition, the number of training samples ntr versus the number

of variables p are different in each case, covering both ntr > p and ntr < p. These
are important factors for evaluation and comparison of the methods based on their

ability in feature selection and extraction for different data conditions.

In these experiments, the first Eigen vector will be plotted. This helps to com-

pare the sparsity level of the tested algorithms as well as their ability to find the

relevant features. As mentioned in section 3, in the case of SSPCA, the Eigen vec-

tors elements corresponding to the irrelevant and noisy variables should be zero or

small in absolute values, while those corresponding to the relevant features should

be higher in absolute values. Specially, when the kernel type and other parame-

ters are chosen appropriately. Generally, a successful method should have small

elements (or zero, if it is an sparse method) for irrelevant and noisy variables and

higher absolute values where the variables are relevant. That is, the principal di-

rections should mostly be formed by the significant contribution of the relevant

features.

In all simulations, the data set was randomly divided into training and test sets

five times and the average results were considered.

4.1.1. Simulation 1
In this example, a data matrix Xsim1(150×120) with n = 150 random samples

and p = 120 variables were generated from a standard normal distribution. Then,
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a linear function of four variables X(5,15,25,35) was defined:

Ysim1 = 6Xsim1(5)+5Xsim1(15)−7Xsim1(25)−3Xsim1(35). (18)

The data set was divided five times randomly into training (100 samples) and

test (50 samples) sets and the training sets were used for finding the Eigen vec-

tors. Fig. 1 shows the first Eigen vector for PCA, SPCA, supervised PCA and

SSPCA methods as well as the regression coefficients of SPLS (βSPLS). In this

example, βSPLS was scaled to be shown on the same plot with the Eigen vectors.

For ease of visualization,each method graph is plotted with an offset relative to the

other methods and the numbers on the vertical axes are reset for each graph. The

big markers with black edges show the relevant features. In the figure, the y axis

shows the numerical value of Eigen vector elements. Based on its sign (positive

or negative), each element is combined with others to form the principal direction

for transforming data into the new space. Table 1 shows the average and standard

deviation of regression results. The last row shows the average and standard de-

viation of number of non-zero rows in the selected Eigen vectors. SPLS obtained

the best result in terms of accuracy and sparsity and then the proposed method is

the next best method for this linear function.

0 20 40 60 80 100 120

0

0

0

0

0

relevant features: [5,15,25,35]

features
PCA Sparse PCA Supervised PCA SSPCA SPLS

Figure 1: Comparison of the first Eigen vector/regression coefficients of the five tested methods

on the first simulated data set. The black edged markers show the relevant features.
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Table 1: Regression results for the first simulated data set. The average and standard deviations

for five training and test sets are presented.

PCA SPCA Sup. PCA SSPCA SPLS

RMSEtr 9.57±0.58 9.76±0.83 5.00±0.17 2.14±0.91 0.00±0.00

RMSEts 9.33±1.00 9.75±1.24 7.69±0.65 2.53±1.42 0.00±0.00

Num. of NZ. 120.00±0.00 43.00±17.46 120.00±0.00 12.8±5.40 10.00±1.00

Table 2: Regression results for the second simulated data set. The average and standard deviations

for five training and test sets are presented.

PCA SPCA Sup. PCA SSPCA SPLS

RMSEtr 1.81±0.22 1.78±0.34 1.38±0.30 1.42±0.20 0.50±0.34

RMSEts 2.05±0.14 2.08±0.13 1.99±0.09 1.79±0.17 2.41±0.42

Num. of NZ. 50.00±0.00 10.80±1.30 50.00±0.00 13.40±4.39 22.60±16.62

4.1.2. Simulation 2
The data matrix is Xsim2(100×50). The non-linear function depends on variables

X(10,40):

Ysim2 = (1+Xsim2(10))◦ (1+Xsim2(10))+Xsim2(40)
 (0.5+
(1.5+Xsim2(10))◦ (1.5+Xsim2(10))).

(19)

The ◦ and 
 show the element-wise multiplication and division respectively.

Five training sets (each consist of 30 samples) and test sets (each consist of 70

samples) were generated randomly. Fig. 2 and table 2 show the results. Each

method graph is plotted with an offset from others, similar to the previous sim-

ulation. As can be seen, for this non-linear function, SSPCA obtained the best

result while the worst result was for the SPLS method. That is, SPLS as a linear

regression method, is not an appropriate method for non-linear data sets.

4.1.3. Simulation 3
The data matrix is Xsim3(400×30). The non-linear function depends on variables

X(5,20):

Ysim3 = exp(Xsim3(5))−2Xsim3(20)◦Xsim3(20). (20)

13
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Figure 2: Comparison of the first Eigen vector/regression coefficients of the five tested methods

on the second simulated data set. The black edged markers show the relevant features.

Table 3: Regression results for the third simulated data set. The average and standard deviations

for five training and test sets are presented.

PCA SPCA Sup. PCA SSPCA SPLS

RMSEtr 3.55±0.44 3.40±0.54 2.54±0.30 2.59±0.25 3.02±0.35

RMSEts 3.61±1.16 3.51±1.13 2.85±0.70 2.75±0.75 3.36±0.97

Num. of NZ. 30.00±0.00 23.00±1.73 30.00±0.00 10.80±1.79 12.80±6.72

The data set was divided five times randomly into training (300 samples) and

test (100 samples) sets. Fig. 3 and table 3 show the results.

4.2. Real data sets results
In this part of the report, three real data sets are considered and the five meth-

ods are tested on them. In all cases, the data sets were divided four times into

training and test sets and the average results are considered.

4.2.1. Prediction of solvable solid content (SSC) of apple using spectroscopic
measurements

The first real data set is the spectroscopic data of an apple type called Rajka.
This is the same data set used in (Sharifzadeh et al., 2013). Spectroscopic mea-
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Figure 3: Comparison of the first Eigen vector/regression coefficients of the five tested methods on

the third simulated data set.Each method graph is shifted up with an offset for better visualization.

The black edged markers show the relevant features.

surements were performed in 825 wavelengths (306 -1130 nm) and there were

185 data points (apple samples) in total. In addition, the SSC (%Brix) value for

each apple was available from laboratory measurements. We divided the data into

training and test sets four times based on a systematic sampling method called a

smooth arrangement or smooth fractionator (Gundersen, 2002). For this aim, the

samples were ranked in ascending order according to the SSC level. Then, from

every four samples, one was chosen as test (unseen data during training) and the

rest as training. By using this method, both training and test sets comprise the

original variation of the data.

In Fig. 4, the first three Eigen vectors of the first four methods are shown on

the same plot together with the SPLS regression coefficients. The graphs are also

shifted relative to each other similar to the previous illustrations. The average and

standard deviation of regression results are presented in table 4. As can be seen,

the proposed method is the best method in terms of accuracy and sparsity. SPLS

and supervised PCA are the second best methods. However their number of used

wavelengths are not comparable with the proposed method. All methods have

a peak in the red colour area of the visible bands that corresponds to the apple

colour.
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Figure 4: Comparison of the first three Eigen vector/regression coefficients of the five tested meth-

ods on the apple data set. Each method graph is shifted up with an offset and the corresponding

vertical axis number is reset.

4.2.2. Prediction of a* colour component for several meat types using multispec-
tral images

This data set consists of multispectral images of different types of meat, e.g.

turkey, chicken, beef, veal and pork. This data was previously used in (Shar-

ifzadeh et al., 2014). Totally, there were spectral images in 20 wavelengths (430-

970 nm) and 52 meat samples. The median of the pixel values in a region of

interest (ROI) was considered at each wavelength, forming a 52× 20 matrix. In

addition, the a* colour component of each sample was available from a Minolta

colorimeter measurement. The data was divided randomly into training and test

sets four times. In each data set, the number of training and test samples were 38

and 14 respectively.

The first three Eigen vectors of the first four methods are shown in the same

plot together with the regression coefficients of SPLS in Fig. 5. βSPLS is scaled in

this plot. Here also, the graphs are visualized with an offset relative to each other.
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Table 4: Regression results for the apple data set. The average and standard deviations for four

training and test sets are presented.

PCA SPCA Sup. PCA SSPCA SPLS

RMSEtr 0.91±0.03 0.92±0.03 0.88±0.02 0.88±0.01 0.79±0.04

RMSEts 0.90±0.07 0.91±0.05 0.88±0.07 0.87±0.06 0.88±0.07

Num. of NZ. 825.00±0.00 439.75±177.86 825.00±0.00 149.00±202.38 778.25±48.93

Table 5: Regression results for the meat data set. The average and standard deviations for four

training and test sets are presented.

PCA SPCA Sup. PCA SSPCA SPLS

RMSEtr 2.32±0.09 2.42±0.51 2.25±0.36 1.93±0.15 1.06±0.07

RMSEts 2.32±0.22 2.36±0.72 2.52±0.14 2.01±0.32 1.60±0.23

Num. of NZ. 20.00±0.00 11.75±6.18 20.00±0.00 9.25±3.20 18.50±1.73

The regression results are presented in table 5. As can be seen, SPLS obtained the

best result in terms of accuracy and SSPCA is the second most accurate method.

However, SSPCA is the best method in terms of sparsity. SPLS uses most of the

20 wavelengths on average. Reducing the number of wavelengths is important for

a vision system design in industrial scale. Both the red colour wavelengths as well

as the near infrared (NIR) bands are among the selected bands by the first three

Eigen vectors of SSPCA. The red area corresponds to the colour of most meat

types and NIR regions are correlated to their chemical characteristics.

4.2.3. Leukemia microarray classification and gene selection
The leukemia data set consist of 7129 genes and 72 samples (Golub et al.,

1999). Previously it was used in (Zou and Hastie, 2005). There are two types of

leukemia (acute lymphoblastic leukemia and acute myeloid leukemia). The goal

is to predict the type of leukemia based on the expression level of those 7219

genes. In microarray analysis, it is important to diagnose the related genes to

the disease. In our experiment, we divided the data into training and test sets four

times based on the smooth fractionator method (Gundersen, 2002), so that, 75% of

samples were chosen for training and the rest were kept for test. The percentages

of classification performances using SVM and KNN as well as the number of

selected genes are shown in table 6. In the case of SPLS, the predicted labels

were assigned to the closest class labels. SVM obtained better results in most

cases compared to KNN. The SVM classifier is built based on maximising the
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Figure 5: Comparison of the first three Eigen vectors/regression coefficients of the five tested

methods on the meat data. Each method graph is shifted up with an offset and the corresponding

vertical axis number is reset.

separating margins at the boundaries of classes, while KNN is based on majority

vote of the K closest neighbours. Then, depending on the boundaries condition,

SVM might be more successful, specially when the samples of classes are close

in the boundary area and there is overlap between their features. PCA obtained

the best classification rate using SVM classifier and all the genes, while the other

methods performances come close to that. However, in terms of gene selection,

the proposed method obtained an excellent result compared to the other methods

and the performance obtained by SVM is comparable with the other techniques.

5. Discussion

The proposed method has been compared to four other techniques using var-

ious simulated and real data sets of different sample and variable sizes including

both N << P and N >> P cases, successfully. A systematic assessment of the
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Table 6: Classification results for the leukemia data set. The average and standard deviations for

four training and test sets are presented.

Num. of NZ PRFtr PRFts

PCA 7129.00±0.00
SVM 98.62±1.77 97.30±3.13

KNN 95.42±4.36 90.42±9.46

SPCA 2618.25±405.38
SVM 100.00±0.00 94.44±7.86

KNN 98.18±2.57 86.33±7.07

Sup. PCA 7129.00±0.00
SVM 98.63±0.91 94.52±7.86

KNN 97.72±0.90 95.98±5.07

SSPCA 30.75±18.34
SVM 98.17±1.48 94.52±4.54

KNN 98.18±3.67 89.04±4.55

SPLS 1630.50±1671.96 - 100.00±0.00 95.91±5.30

techniques performances based on different number of variables for a given sam-

ple size has achieved similar results. Fig. 6 shows such analysis results for the

second simulated dataset; while the number of training samples were kept fixed

at 100, the number of variables were changed as [40,60,100,200,400], forming

(N << P , N = P and N >> P) cases. The relevant features weren’t changed. As

can be seen, the behaviour of techniques remains the same, similar to the results

shown previously in table 2.

In the case of accuracy and sparsity, the experimental results has demonstrated

that the proposed algorithm for SSPCA can make an appropriate trade-off between

these two factors; In the first simulation, SPLS was the best method in terms of

accuracy and sparsity as there was a pure linear relationship between X and Y .

This is due to the linear kernel in its objective function. However, in the case

of non-linear relationships, the second and third simulation results showed that

SSPCA can perform better in terms of accuracy and sparsity.

The choice of kernel type and penalization parameter play an important role

on the accuracy and sparsity of this method. When the kernel is close to data

behaviour, the results can improve more. The sparsity of SSPCA was better than

SPCA in almost all cases and its accuracy was better than supervised PCA in all

experiments due to cancelling the effect of irrelevant and noisy variables. SSPCA

also showed excellent sparsity for high dimensional data sets such as the apple

and microarray data. The reasons for the success of SSPCA compared to SPCA

will be discussed more in section 5.1.

Another important aspect of SSPCA algorithm, is its ability on choosing the
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(a)

(b)

Figure 6: Illustration of the effect of change in the number of variables given a fixed number of

training sample from the second simulation. (a) training RMSE (b) test RMSE.

20



Table 7: SVM analysis results on the selected features of the three real data sets.

output train test Num. of NZ.

apple RMSE 0.87± 0.02 0.87± 0.07 149.00±202.37

meat RMSE 1.66±0.17 2.53±0.74 9.25±3.20

lukemia PRF. 97.68±4.63 93.13±2.83 30.75±18.34

relevant features. This can be used as a criterion to perform feature selection as

a pre-processing step for different applications. To demonstrate this, the corre-

sponding features to the non-zero rows of the first three Eigen vectors found by

SSPCA are considered. Using the selected features (in original space), SVM was

used for the regression and classification problems of the three real data sets. The

training as well as test results are shown in table 7. As can be seen, the results are

close to the obtained results in the orthogonal domain that have been presented in

tables 4,5 and 6. This shows the relevance and dependency of the selected features

to the target.

Regarding the complexity of the algorithms, PCA and Supervised PCA have

closed form solutions and are less complex. Their complexity is O(p3,n3). On the

other hand, SPLS, SPCA and SSPCA are all solved based on iterative solutions

to optimise biconvex objective functions. SPCA and SSPCA both use PMD and

their biconvex optimisation loops are similar.Their complexity can be expressed

as O(K1K2(n2p)). K1 is the number of components and is usually less than 5. K2 is

the number of iterations for convergence. For example, given a known kernel and

c parameter, the number of iterations to achieve convergence in computations of

an Eigen vector for the lukemia data set is 17.71±2.87. This was computed based

on the average and standard deviation of required number of iterations in compu-

tation of 7 Eigen vectors. The biconvex solution of the sparse SIMSPLS objective

function utilises the LARS algorithm at one of the optimisation steps (Chun and

Keles, 2010). Then its complexity can be described as O(K1K2(n2p+ p3+ p2n)).
In addition, the complexity increases when using a loop to find the best sparsity

control parameters in the case of sparse solutions. Besides that, identification of

the best kernel in the case of Supervised PCA and SSPCA is an additional com-

plexity source for these algorithms

5.1. Comparison of sparsity between SSPCA, SPCA and SPLS
The objective function of the proposed SSPCA method is different from the

objective function of SPCA, although both utilize PMD to solve the optimization.

SPCA, is based on the singular value decomposition (SVD) of the input matrix X
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while in SSPCA, Ψ is decomposed. In both cases an L1 norm constraint is applied

on the Eigen vectors and the resulting optimization problem is solved.

However, due to the structure of Ψ, SSPCA results in sparser Eigen vectors

compared to SPCA. Ψ = ΔT HX and Δ =ULΛ
1
2
L where Ln×n = K(Y,Y ) =ULΛLVL.

Based on these relationships, the absolute values of columns of Δ and therefore,

the rows of Ψ decrease in a descending order following the descending order of

the roots of Eigen values at the diagonal of Λ
1
2
L as shown in Fig.7. For ease of visu-

alization, a subset of 50×50 of the first simulation data was used for the pictures.

As can be seen, due to the multiplication of the input matrix X by the supervision

matrix ΔT , the corresponding elements to the relevant features (5,15,25,35) are

enhanced in Ψ and also its covariance matrix as shown in Fig.8(a). Comparison

of the covariance matrices of Ψ and X demonstrates that while most of the cor-

responding elements to the irrelevant features are down weighted in the former,

the latter does not show any discrimination for them. As a result, the relevant

features in the first Eigen vector of Ψ have higher values compared to the other

features. Therefore, the remaining features are numerically closer to zero due to

the fact that the Eigen vectors are constrained to have unit length. This increases

the chance of such low value elements to become zero in the smooth thresholding

step of the PMD algorithm and hence, improves the potential of SSPCA algorithm

in terms of sparsity. However, in the case of X , as can be seen, the distribution of

values is random among the elements of Eigen vectors and the relevant features

are not necessarily among the dominant values.

Besides the numerical values of the Eigen vectors, the sparsity level also de-

pends on the threshold value c which is selected over the CV loops based on

the average validation performance. Therefore, in general, with similar c values,

SSPCA is sparser than SPCA. With unbalanced values of c (lower for SPCA),

SPCA might become closer to SSPCA in terms of sparsity especially when the

number of variables p is not very high, as seen in the second simulation and the

meat data experiment. However, in the case of high number of variables p � n
such as apple or microarray experiments, the sparsity level of the proposed method

dramatically increases and the differences are more prominent as many close to

zero elements fall under the threshold. Fig. 9 illustrates the histogram plots of

the first three Eigen vectors for apple data. As can be seen, the distribution of

the numerical values of vectors is higher around zero for Ψ than X . That shows

the potential of SSPCA Eigen vectors to be sparser than those of X at the smooth

thresholding step of PMD.

In the case of SPLS, the objective function includes a linear kernel and the
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(a) (b)

(c)

Figure 7: Illustration of (a) Λ
1
2 (b) Δ (c) Ψ matrices. In order to make the highest Eigen value

visible, the top left area of the first plot is zoomed in.
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Figure 8: (a) The covariance matrix of Ψ (b) the covariance matrix of X . (c) from left to right the

first three Eigen vectors of Ψ (d) the first three Eigen vectors of X .
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(a) (b)

Figure 9: The histogram plots of the first three Eigen vectors of Ψ (a) , X (b). The spectroscopy

data set of apples was used.

regression is also solved based on a biconvex optimization procedure. The con-

straint parameter λ is also chosen based on a CV loop. Therefore, the sparsity

level is comparable with SSPCA when the relationship between X and Y is linear

such as the first simulation.

6. Conclusion

In this paper, an SSPCA method was proposed for pre-processing of data sets

with available target vectors. It computes sparse Eigen vectors based on the max-

imum dependency of the data to the response. The resulting Eigen vectors are

almost orthogonal. The HSIC independence criterion was minimized between the

input and output and a penalization term was added to make the Eigen vectors

sparse. The objective function was solved based on the PMD algorithm. The

SSPCA Eigen vectors are sparser compared to the PMD-based SPCA. Due to the

use of the HSIC criterion in its objective function, this method can be used for

data sets with linear as well as non-linear behaviour. Experimental results showed

that SSPCA can make an appropriate compromise between accuracy and spar-

sity. Comparison of the results from PCA, PMD-based SPCA, supervised PCA,

SSPCA and SPLS on both simulated and real data sets showed that SSPCA works

best in terms of sparsity. The accuracy was also among one of the two best in all

the experiments. In addition, the sparse Eigen vectors can be used as a means of

feature selection, since the relevant features are among the non-zero rows.
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Appendices
Considering the PMD(.,L1) problem for finding the individual sparse Eigen vec-

tors vk for SPCA:

argmaxuk,vkuT
k Xvk,s.t.‖uk‖22 ≤ 1,‖vk‖22 ≤ 1,‖vk‖1 ≤ c,uk ⊥ u1, . . .,uk−1, (A.1)

a bi- convex optimization procedure can be used to solve this problem. Algorithm

A.1 shows the procedure for finding K number of sparse Eigen vectors based on

PMD(.,L1).

Algorithm A.1 Computation of K-factors of PMD(.,L1)

1. Let X1← X
2. For k ∈ 1, . . .,K :

(a) Find uk,vk and dk by applying the following single-factor PMD algorithm to

Xk:

• Initialize vk to have L2-norm equal to one.

• Iterate until convergence:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uk ← argmaxuk uT
k Xkvk,

s.t.‖uk‖22 ≤ 1

vk ← argmaxvk uT
k Xkvk,

s.t.‖vk‖1 ≤ c and‖vk‖22 ≤ 1

• dk ← uT
k Xkvk

(b) Xk+1← Xk−dkukvT
k

The optimization equations in this algorithm have a closed form solution. The

parameters c is restricted to1≤ c≤√p. The smaller the c value, the more sparse

the vks.

For the first optimization, vk is considered as a fixed constant and a = Xkvk, uk
is calculated based on the following steps:

argmaxuk

∥∥uT
k a

∥∥s.t.‖uk‖22 ≤ 1,uk ⊥ u1, . . .,uk−1. (A.2)

Then uk =U⊥
k−1θ , so that U⊥

k−1 is an orthogonal basis to Uk−1 = {u1,u2, . . .,uk−1}
and ‖u‖2 = ‖θ‖2:
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argmaxθ θ TU⊥T
k−1Xkvk,s.t.‖θ‖22 ≤ 1, (A.3)

and the optimal θ is:

θopt. =
U⊥T

k−1Xkvk∥∥U⊥T
k−1Xkvk

∥∥
2

. (A.4)

Therefore, uk is found as:

uk =
U⊥

K−1U
⊥T
k−1Xkvk∥∥U⊥T

k−1Xkvk
∥∥
2

=
(I−Uk−1UT

k−1)X
kvk∥∥U⊥T

k−1Xkvk
∥∥
2

. (A.5)

This update step yields orthogonal factors for uk. Similarly, in the second opti-

mization step of the Algorithm A.1, uk is considered as a fixed constant so that,

a = (Xk)T uk. Then, we have:

argmax vkvT
k a subject to, ‖vk‖22 ≤ 1,‖vk‖1 ≤ c , (A.6)

or the equivalent minimization:

argmin vk − vT
k a s.t. ‖vk‖22 ≤ 1,‖vk‖1 ≤ c . (A.7)

The problem can be rewritten based on Lagrange multipliers:

−vT
k a+λ ‖vk‖22+ τ ‖vk‖1 , (A.8)

and by setting the derivatives to zero and considering the Karush–Kuhn–Tucker

conditions for optimality:

0= −a+2λvk + τΓk,

λ (‖vk‖22 −1) = 0,
τ(‖vk‖1 −c) = 0,

(A.9)

where Γk = sgn(vk) if vk �= 0; otherwise, Γk ∈ [−1,1]. If λ > 0, then from the first

equation:

vk =
S(a,τ)
2λ

, (A.10)

where S is the soft thresholding operator as described in Eq. 13. Generally, λ = 0

(if this results in a feasible solution) or it must be chosen so that, ‖vk‖2 = 1:
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vk =
S(a,τ)
‖S(a,τ)‖2

. (A.11)

Again by the Karush–Kuhn–Tucker conditions, τ = 0 (if this results in a feasible

solution) or it must be chosen such that ‖vk‖1 = c. Then, τ = 0 if this results in

‖vk‖1 ≤ c; otherwise, it is chosen such that ‖vk‖1 = c.
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