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Abstract

Autonomous software agents operating in dynamic environments need to
constantly reason about actions in pursuit of their goals, while taking into
consideration norms which might be imposed on those actions. Normative
practical reasoning supports agents making decisions about what is best for
them to (not) do in a given situation. What makes practical reasoning chal-
lenging is the interplay between goals that agents are pursuing and the norms
that the agents are trying to uphold. We offer a formalisation to allow agents
to plan for multiple goals and norms in the presence of durative actions that
can be executed concurrently. We compare plans based on decision-theoretic
notions (i.e. utility) such that the utility gain of goals and utility loss of norm
violations are the basis for this comparison. The set of optimal plans consists
of plans that maximise the overall utility, each of which can be chosen by the
agent to execute. We provide an implementation of our proposal in Answer
Set Programming, thus allowing us to state the original problem in terms of
a logic program that can be queried for solutions with specific properties.
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1. Introduction

Reasoning about what to do – known as practical reasoning – for an
agent pursuing different goals is a complicated task. When conducting prac-
tical reasoning, the agents might exhibit undesirable behaviour that was not
predicted. The necessity of controlling undesirable behaviour has given rise
to the concept of norms that offer a way to define ideal behaviour for au-
tonomous software agents in open environments. Such norms often define
obligations and prohibitions that express what the agent is obliged to do and
what the agent is prohibited from doing.

Depending on their computational interpretation, norms can be regarded
as soft or hard constraints. When modelled as hard constraints, the agent
subject to the norms is said to be regimented, in which case the agent has no
choice but to blindly follow the norms (Esteva et al., 2001). Although regi-
mentation guarantees norm compliance, it greatly restricts agent autonomy.
Moreover, having individual goals to pursue, self-interested agents might
not want to or might not be able to comply with the norms imposed on
them. Conversely, enforcement approaches, in which norms are modelled as
soft constraints, leave the choice of complying with or violating the norms
to the agent. However, in order to encourage norm compliance, there are
consequences associated, namely a punishment when agents violate a norm
(López y López et al., 2005; Pitt et al., 2013) or a reward when agents comply
with a norm (Aldewereld et al., 2006). In some approaches (e.g., Aldewereld
et al. (2006); Alrawagfeh and Meneguzzi (2014); Oren et al. (2011)) there
is a utility gain/loss associated with respecting norm or not, whereas in the
pressured norm compliance approaches (e.g., López y López et al. (2005)),
the choice to violate a norm or not is determined by how the norm affects
the satisfaction or hindrance of the agent’s goals.

Existing work (e.g. Oren et al. (2011); Panagiotidi et al. (2012a); Criado
et al. (2010); Meneguzzi et al. (2015)) on normative practical reasoning using
enforcement either consider plan generation or plan selection where there is a
set of pre-generated plans available to the agent. In these works, the attitude
agents have toward norms is often one of compliance, meaning that their
plans are often selected or, in some approaches, customised, to ensure norm
compliance (e.g., Kollingbaum (2005); Alechina et al. (2012); Oren et al.
(2011)). We argue that in certain situations, an agent might be better off
violating a norm which, if followed, would make it impossible for the agent
to achieve an important goal or complying with a more important norm.
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In this paper we set out an approach for practical reasoning that considers
norms in both plan generation and plan selection. We extend current work
on normative plan generation such that the agent attempts to satisfy a set of
potentially conflicting goals in the presence of norms, as opposed to conven-
tional planning problems that generate plans for a single goal (Oren et al.,
2011; Panagiotidi et al., 2012a). Such an extension is made on top of STRIPS
(Fikes and Nilsson, 1971), the most established planning domain language
that lays the foundation of many automated planning languages. Addition-
ally, since in reality the actions are often non-atomic, our model allows for
planning with durative actions that can be executed concurrently. Through
our practical reasoning process agents consider all plans (i.e., sequences of
actions), including those leading to norm compliance and violation; each plan
gets an associated overall utility for its sequence of actions, goals satisfied,
and norms followed/violated, and agents can decide which of them to pursue
by comparing the relative importance of goals and norms via their utilities.
The plan an agent chooses to follow is not necessarily norm-compliant; how-
ever, our mechanism guarantees that the decision will maximise the overall
plan utility, and this justifies the occasional violation of norms in a plan.
Both plan generation and plan selection mechanisms proposed in this pa-
per are implemented using Answer Set Programming (ASP) (Gelfond and
Lifschitz, 1988).

ASP is a declarative programming paradigm using logic programs under
Answer Set semantics. In this paradigm the user provides a description of a
problem and ASP works out how to solve the problem by returning answer
sets corresponding to problem solutions. The existence of efficient solvers to
generate the answers to the problems provided has increased the use of ASP
in different domains of autonomous agents and multi-agent systems such
as planning (Lifschitz, 2002) and normative reasoning (Cliffe et al., 2006;
Panagiotidi et al., 2012b). Several action and planning languages such as
event calculus (Kowalski and Sergot, 1986), A (and its descendants B and C
(Gelfond and Lifschitz, 1998), Temporal Action Logics (TAL) (Doherty et al.,
1998), have been implemented in ASP (Lee and Palla, 2012, 2014), indicating
that ASP is appropriate for reasoning about actions. This provides motive
and justification for an implementation of STRIPS (Fikes and Nilsson, 1971)
that serves as the foundation of our model in ASP.

This paper is organised as follows. First we present a scenario in Section 2
which we use to illustrate the applicability of our approach. This is followed
by the formal model and its semantics in Section 3. The computational
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implementation of the model is provided in Section 4. After the discussion
of related work in Section 5, we conclude in Section 6.

2. Illustrative Scenario

To illustrate our approach and motivate the normative practical reasoning
model in the next section, we consider a scenario in which a software agent
acts as a supervisory system in a disaster recovery mission and supports
human decision-making in response to an emergency. The software agent’s
responsibility is to provide humans with different courses of actions available
and to help humans decide on which course of actions to follow. In our
scenario, the agent is to plan for a group of human actors who are in charge
of responding to an emergency caused by an earthquake. The agent monitors
the current situation (e.g., contamination of water, detection of shocks, etc.)
and devises potential plans to satisfy goals set by human actors. In our
scenario we assume the following two goals:

1. Running a hospital to help wounded people: this goal is fulfilled when
medics are present to offer help and they have access to water and
medicines.

2. Organising a survivors’ camp: this is fulfilled when the camp’s area is
secured and a shelter is built.

We also assume the two following norms that the agent has to consider while
devising plans to satisfy the goals above:

1. It is forbidden to built a shelter within 3 time units of detecting shocks.
The cost of violating this norm is 5 units.

2. It is obligatory to stop water distribution for 2 time units once poison
is detected in the water. The cost of violating this norm is 10 units.

The formulation of this scenario is provided in Appendix A.

3. A Model for Normative Practical Reasoning

We use STRIPS (Fikes and Nilsson, 1971) as the basis of our normative
practical reasoning model. In STRIPS, a planning problem is defined in terms
of an initial state, a goal state and a set of operators (e.g. actions). Each
operator has a set of preconditions representing the circumstances/context in
which the operator can be executed, and a set of postconditions that result
from applying the operator. Any sequence of actions that satisfies the goal
is a solution to the planning problem. In order to capture the features of
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the normative practical reasoning problem that we are going to model, we
extend the classical planning problem by:

(i) replacing atomic actions with durative actions: often the nature of the
actions is non-atomic, which means that although executed atomically
in a state, the system state in which they finish executing is not neces-
sarily the same in which they started (Nunes et al., 1997). Refinement
of atomic actions to durative actions reflects the real time that a ma-
chine takes to execute certain actions.

(ii) Allowing a set of potentially inconsistent goals instead of the conven-
tional single goal: the issue of planning for multiple goals distributed
among distinct agents is addressed in collaborative planning. We ad-
dress this issue for a single agent.

(iii) Factoring in norms: having made a case for the importance of norms
in Section 1, we combine normative and practical reasoning. Just like
goals, a set of norms is not necessarily consistent, making it potentially
impossible for an agent to comply with all norms imposed on it.

A solution for a normative practical reasoning problem that features (i), (ii)
and (iii) is any sequence of actions that satisfies at least one goal. The agent
has the choice of violating or complying with norms triggered by execution
of a sequence of actions, while satisfying its goals. However, there may be
consequences either way that the agent has to foresee.

We explain the syntax and semantics of the model in Sections 3.2–3.6.
First we present the architecture of our envisaged system in the next section.

3.1. Architecture

The architecture, depicted in Figure 1, shows how re-planning can be con-
sidered if a plan in progress is interrupted due to a change in circumstances.
This change can be the result of a change in the environment or unexpected
actions of other agents in the system. As is customary in multi-agent sys-
tems, the agent will regularly check the viability of its plan. The frequency
depends on the type of system the agent is operating in, the agent’s com-
mitment to its intentions, and the impact of re-computation on the agent’s
overall performance.

When an agent decides that re-planning is in order, it will take the state
in which the plan is interrupted as the initial state for the new plan and its
current goal set as the goals to plan towards. The current goal set does not
have to be the same as the goal set the original plan was devised for. Goals
can already be achieved in the interrupted plan, previous goals may no longer
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Figure 1: Overview of the System Architecture

be relevant and others may have been added. Even if the goals remain the
same, the resulting new optimal plan might change due to changes in the
state of the system. Similarly, there might be new norms imposed on the
agent that will have to be considered in replanning.

We cater for agents which need to create their own individual plans.
However, in doing so, in multi-agent scenarios agents will inevitably interact
and interfere with each other’s plans. The architecture in Figure 1 will cater
for this in two ways: (i) agents will notice the “States” being changed by
other agents (a way of indirect communication) and (ii) the “Observations”
will contain interactions among agents (direct communication).

3.2. Syntax

We start by describing an extended STRIPS planning problem, defined
in (Shams, 2016), that accommodates (i) durative actions; (ii) multiple goals
and (iii) multiple norms.

Definition 1 (Normative Practical Reasoning Problem). A normative prac-
tical reasoning problem is a tuple P = (FL,∆, A,G,N) where

(i) FL is a set of fluents;
(ii) ∆ is the initial state;

(iii) A is a finite, non-empty set of durative actions for the agent;
(iv) G is the agent’s set of goals;
(v) N is a set of norms.

We describe in the ensuing sections each of the components of a normative
practical reasoning problem.
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3.2.1. Fluents and Initial State

FL is a set of domain fluents describing the domain the agent operates in.
A literal l is a fluent or its negation i.e. l = fl or l = ¬fl for some fl ∈ FL.
For a set of literals L, we define L+ = {fl |fl ∈ L} and L− = {fl | ¬fl ∈ L}
to denote the set of positive and negative fluents in L respectively. L is
well-defined if there exists no fluent fl ∈ FL such that fl ,¬fl ∈ L, i.e., if
L+ ∩ L− = ∅.

The semantics of the normative practical reasoning problem is defined
over a set of states Σ. A state s ⊆ FL is determined by set of fluents that
hold true at a given time, while the other fluents (those that are not present)
are considered to be false. A state s ∈ Σ satisfies fluent fl ∈ FL, denoted
s |= fl , if fl ∈ s. It satisfies its negation s |= ¬fl if fl 6∈ s. This notation
can be extended to a set of literals as follows: set X is satisfied in state s,
s |= X, when ∀x ∈ X, s |= x.

The set of fluents that hold at the initial state is denoted by ∆ ⊆ FL.

3.3. Durative Actions

The component A of our normative practical reasoning problem P =
(FL,∆, A,G,N) is a set of durative actions. A durative action has pre- and
post-conditions. The effects of an action (as captured by its post-conditions)
are not immediate, that is, it takes a non-zero period of time for the effects
of an action to take place.

Definition 2 (Durative Actions). A durative action a is a tuple 〈pr , ps , d〉
where pr and ps are possibly empty and finite sets of well-defined literals
representing respectively the pre- and post-conditions of the action, and d ∈
N, d > 0, is the duration of the action.

Given an action a = 〈pr , ps , d〉 we may also refer to its three components
pr(a), ps(a) and da. Moreover, we use pr(a)+ and pr(a)− to refer to, respec-
tively, the positive and negative literals in pr(a); similarly, we have ps(a)+

and ps(a)− to refer to respectively the positive and negative literals in ps(a).
An action a can be executed in a state s if its preconditions hold in that

state (i.e. s |= pr(a)). When modelling durative actions, there might be
several states between the start and end state of the action, during which
the action is said to be in progress. We assume that the preconditions of
actions have to be preserved during their execution. The postconditions of a
durative action cause changes to the state s in which the action ends. These
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changes are: adding the positive postconditions ps(a)+ to s and deleting the
negative postconditions ps(a)− from s. Thus, for a state s in which action a
ends, we have: s |= ps(a)+ and s 6|= ps(a)−.

Example 1. To build a shelter (action “buildShelter”) the agent has to se-
cure and evacuate the area and there has to be no shock detected – these are
represented as preconditions areaSecured, evacuated and ¬shockDetected, re-
spectively. Once the shelter is built the area does not have to remain evac-
uated. This is represented as the positive postcondition shelterBuilt , while
the negative postcondition of this action is ¬evacuated. In our scenario, we
model this action as taking 4 units of time (that is, if it is executed in state
sk, it will end in state sk+4).

buildShelter =

〈
areaSecured ,
evacuated ,

¬ShockDetected

 ,

{
shelterBuilt ,
¬evacuated

}
, 4

〉

3.4. Goals

Goals identify the state of affairs in the world that an agent wants to
achieve. We define below the elements of the set G of P = (FL,∆, A,G,N).

Definition 3 (Goals). A goal g ∈ G is the pair 〈r, v〉, where r is a possibly
empty and finite set of well-defined literals representing the goal requirements,
and v ∈ N, v > 0, represents the utility/gain for achieving the goal.

Goal g’s requirements and value are denoted as r(g) and v(g), respectively.

Example 2. The goals from our illustrative scenario are formulated as below:

runningHospital =

〈
medicsPresent ,
waterSupplied ,

medicinesSupplied

 , 25

〉

organiseSurvivorCamp =

〈{
areaSecured ,
shelterBuilt

}
, 18

〉
3.5. Norms

In this section we specify what we refer to as a norm in this work. In
order to provide a context for the norm specification we explain how our
norm specification corresponds to the five elements identified by Pacheco
(2012) that distinguish norm specification languages.
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1. Deontic Operators: We model a permissive society in which the agent
has complete knowledge of the domain of actions available. Everything
is permitted unless it is explicitly prohibited. The role of obligation
is to motivate the agent to execute a specific action and the role of
prohibition is to inhibit the agent from executing a particular action.

2. Controls: Controls determine whether the deontic propositions operate
on actions, states or both. In this work we focus on action-based norms.

3. Enforcement Mechanisms: We use the enforcement mechanism pro-
posed by Shams et al. (2015) that is a combination of utility-based
(e.g., Oren et al. (2011); Panagiotidi et al. (2012a)) and pressure-based
(López y López et al., 2005) compliance methods.

4. Conditional Expressions: Similar to the control element, we use actions
as conditional expressions. In other words, the norm condition is an
action that once executed, the agent is obliged to or prohibited from
executing the action that the norm targets.

5. Temporal Constraints: temporal constraints can be used to express
norm activation, termination, deadline, etc. The temporal constraint
we specify here is concerned with the deadline. The agent is expected
to comply with an obligation (execute a certain action) or a prohibition
(refrain from executing a specific action) before some deadline.

We now define the element N of problem P = (FL,∆, A,G,N) that
denotes a set of conditional norms to which the agent is subject:

Definition 4 (Norms). N is a set of norms, each of which is a tuple of the
form n = 〈d o, acon, asub, dl, c〉, where
• d o ∈ {o, f}2 is the deontic operator determining the type of norm,

which can be an obligation or a prohibition;
• acon ∈ A is the durative action (cf. Def. 2) that activates the norm;
• asub ∈ A is the durative action (cf. Def. 2) that is the target of the

obligation or prohibition;
• dl ∈ N is the norm deadline relative to the activation condition, which

is the completion of the execution of the action acon; and
• c ∈ N is the penalty cost that will be applied if the norm is violated.
c(n) denotes the penalty cost of norm n.

2Symbols o and f are normally represented as O and F in the Deontic logic. However
we have used lower case letters to make these consistent with our implementation in the
next section. Capital letters in the implementation language are reserved for variables.
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An obligation norm states that executing action acon obliges the agent to
start/start and end the execution of asub within dl time units of the end of
execution of acon. Such an obligation is complied with if the agent starts or
starts and ends executing asub before the deadline and is violated otherwise.
A prohibition norm expresses that executing action acon prohibits the agent
from starting or starting and ending the execution of asub within dl time
units of the end of execution of acon. Such a prohibition is complied with if
the agent does not start or does not start and end executing asub before the
deadline and is violated otherwise.

Example 3. The norms from the illustrative scenario are:

n1 = 〈f, detectShock , buildShelter , 3, 5〉
n2 = 〈o, detectPoison, stopWater , 2, 10〉

A norm can be activated multiple times in a sequence of action, generating
different instances of the original norm. To make sure different instances
are dealt with uniquely, we define instantiated norms. In each instance the
deadline is updated relative to the end of execution of the action that is the
condition of the norm.

Definition 5 (Instantiated Norm). An instantiation of norm n = 〈d o, acon,
asub, dl, c〉 is denoted as nins = 〈d o, acon, asub, dlins, c〉 where dlins = dl +
tacon + dacon. tacon is when action acon is executed and dacon is the duration of
acon.

We also denote an instantiation of a norm ni as n′i.

Example 4. Assume that in some sequence of action detectShock is executed
at time 3 (i.e. tacon = 3) and that the duration of this action is 1 (i.e. dacon =
1). The instantiated version of norm n1 = 〈f, detectShock , buildShelter , 3, 5〉,
in this sequence of actions is n′1 = 〈f, detectShock , buildShelter , 7, 5〉 Where
dlins is calculated based on Def. 5.

3.6. Semantics

Having explained the syntax of the model, we now focus on the semantics.
To this end, we need to describe:

(i) What the possible courses of action for the agent are and what proper-
ties each course of action has. Properties are defined in terms of goals
that a sequence of action satisfies, norms it complies with and the norms
it violates. This item is discussed in Section 3.6.1.
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(ii) What identifies a sequence of actions as a solution/plan for problem P .
Plans are defined in Section 3.6.2.

3.6.1. Sequences of Actions and their Properties

Let P = (FL,∆, A,G,N) be a normative practical reasoning problem.
Also let π = 〈(a0, 0), · · · , (an, tan)〉 with ai ∈ A and tai ∈ Z+ be a sequence
of actions ai executed at time tai . The pair (ai, tai) reads as action ai is
executed at time tai ∈ Z+ s.t. ∀i < j, tai < taj . The total duration of a
sequence of actions, Makespan(π), is defined in Equation 1.

Makespan(π) = max (tai + dai) (1)

Actions in a sequence can be executed concurrently but they cannot start at
the same time. This is because the planning problem is defined for a single
agent and a single agent is not typically assumed to be able to start two
actions at the exact same instant. Also actions in the sequence should not
have concurrency conflicts, which are defined in Definition 6.

In our presentation we need to check for the occurrence of specific pairs
in a sequence of actions π, and we thus define the operator “∈̂” as

(a, ta) ∈̂ π iff


π = 〈(a, ta), . . . , (an, tn)〉 or
π = 〈(a0, 0), . . . , (a, ta), . . . , (an, tn)〉 or
π = 〈(a0, 0), . . . , (a, ta)〉

Temporary conflicts prevent the agent from executing two actions under
specific constraints, the most common one of which is time. Conflicts caused
by time, known as concurrency conflicts between actions, prevent actions
from being executed in an overlapping period of time. We capture in Defi-
nition 6 the conditions laid out by Blum and Furst (1997) to establish when
two actions cannot be executed concurrently:

Definition 6 (Conflicting Actions). Actions ai and aj have a concurrency
conflict if the pre- or post-conditions of ai contradict the pre- or post-conditions
of aj. The set of conflicting actions is denoted as cf action :

cf action =

(ai, aj)

∣∣∣∣∣∣
∃r ∈ pr(ai) ∪ ps(ai)+,¬r ∈ pr(aj) ∪ ps(aj)−
or
∃¬r ∈ pr(ai) ∪ ps(ai)−, r ∈ pr(aj) ∪ ps(aj)+

 (2)
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Definition 7 (Sequence of States). Let π = 〈(a0, 0), · · · , (an, tan)〉 be a
sequence of actions such that @(ai, tai), (aj, taj) ∈ π s.t. tai ≤ taj < tai +
dai , (ai, aj) ∈ cf action and let m = Makespan(π). The execution of a sequence
of actions π from a given starting state s0 = ∆ brings about a sequence of
states S(π) = 〈s0, · · · sm〉 for every discrete time interval from 0 to m.

The transition relation between states is given by Def. 8. If action ai ends
at time k, state sk results from removing delete post-conditions and adding
add post-conditions of action ai to state sk−1. If there is no action ending at
sk, the state sk remains the same as sk−1. We first define Ak as the set of
action/time pairs such that the actions end at some specific state sk:

Ak = {(ai, tai) ∈ π | k = tai + dai} (3)

Note that sk is always well-defined since two actions with inconsistent post-
conditions, according to Def. 6 belong to cf action so they cannot be executed
concurrently and thus they cannot end at the same state.

Definition 8 (State Transition). Let π = 〈(a0, 0), · · · , (an, tan)〉 and let
S(π) = 〈s0, · · · sm〉 be the sequence of states brought about by π:

∀k > 0 : sk =

(sk−1 \ (
⋃

a∈Ak
ps(a)−) ∪

⋃
a∈Ak

ps(ai)
+ Ak 6= ∅

sk−1 Ak = ∅
(4)

We now turn our attention to the properties of each sequence of actions.

Definition 9 (Goal Satisfaction). Goal requirements should hold in order to
satisfy the goal. A sequence of actions π = 〈(a0, 0), · · · (an, tan)〉 satisfies
goal g if there is at least one state sk ∈ S(π) that satisfies the goal:

π |= r(g) iff ∃ sk ∈ S(π) s.t. sk |= r(g) (5)

The set of goals satisfied by π is denoted as Gπ:

Gπ = {g | π |= r(g)} (6)

Definition 10 (Activated Norms). A norm n = 〈do, acon, asub, dl, c〉 is in-
stantiated in a sequence of actions π = 〈(a0, 0), · · · , (an, tan)〉 if its activation
condition acon belongs to the sequence of actions. Let Nπ be the set of in-
stantiations of various norms in π defined in Equation 7. Note that dlins is
calculated based on Definition 5.

Nπ = {〈do, acon , asub , dl ins , c〉 | 〈do, acon, asub, dl, c〉 ∈ N, (acon, tacon) ∈̂ π}
(7)
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Definition 11 (Obligation Compliance). A sequence of actions π = 〈(a0, 0),
· · · , (an, tan)〉 complies with an obligation n = 〈o, acon , asub , dl ins , c〉 if acon
is executed in π and asub, starts (cf. Eq. 8) or starts and ends (cf. Eq. 9)
within the period when the condition holds and when the deadline expires:

π |= n iff (acon, tacon), (asub, tasub) ∈̂ π s.t. tasub ∈ [tacon + dacon , dl ins) (8)

π |= n iff (acon, tacon), (asub, tasub) ∈̂ π s.t.

[tasub , tasub + dasub ] ⊆ [tacon + dacon , dlins) (9)

Definition 12 (Obligation Violation). A sequence of actions π = 〈(a0, 0),
· · · , (an, tan)〉 violates obligation nins = 〈o, acon, asub, dlins, c〉 if acon is exe-
cuted in π, but asub does not start (Equation 10), or does not start and end
(Equation 11) in the period between the state when the condition holds and
when the deadline expires.

π 6|= n iff (acon, tacon) ∈̂ π, (asub, tasub) ̂6∈ π s.t.

tasub ∈ [tacon + dacon , dlins) (10)

π 6|= n iff (acon, tacon) ∈̂ π, (asub, tasub) ̂6∈ π s.t.

[tasub , tasub + dasub ] ⊆ [tacon + dacon , dlins) (11)

Example 5. Let n′2 = 〈o, detectPoison, stopWater , 8, 10〉 be the instantiated
version of norm n2 = 〈o, detectPoison, stopWater , 2, 10〉 from Example 3.
The compliance period for this norm in displayed in the figure below. Ac-
cording to Def. 11 in its Eq. 8, if tstopWater belongs to this period, this norm
instance is complied with; otherwise, according to Def. 12 in its Eq. 10, the
norm is violated.

5 6 8
detectPoison compliance period

Definition 13 (Prohibition Compliance). A sequence of actions π = 〈(a0, 0),
· · · , (an, tan)〉 complies with prohibition n = 〈f, acon, asub, dlins, c〉 if acon, is
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executed and asub, does not start (Eq. 12) or does not start and end (Eq. 13)
in the period when the condition holds and the deadline expires. Formally:

π |= n iff (acon, tacon) ∈̂ π, (asub, tasub) ̂6∈ π s.t.

tasub ∈ [tacon + dacon , dlins) (12)

π |= n iff (acon, tacon) ∈̂ π, (asub, tasub) ̂6∈ π s.t.

[tasub , tasub + dasub ] ⊆ [tacon + dacon , dlins) (13)

Definition 14 (Prohibition Violation). A sequence of actions π = 〈(a0, 0),
· · · , (an, tan)〉 violates prohibition n = 〈f, acon, asub, dlins, c〉 iff acon, has oc-
curred and asub starts (Eq. 14) or starts and ends (Eq. 15) in the period
between when the condition holds and when the deadline expires. Formally:

π 6|= n iff (acon, tacon), (asub, tasub) ∈̂ π s.t. tasub ∈ [tacon + dacon , dlins) (14)

π 6|= n iff (acon, tacon), (asub, tasub) ∈̂ π s.t.

[tasub , tasub + dasub ] ⊆ [tacon + dacon , dlins) (15)

Example 6. Let n′4 = 〈f, detectEarthquake, blockMainRoad , 7, 12〉 be an in-
stantiated version of norm n4 = 〈f, detectEarthquake, blockMainRoad , 5, 12〉,
which forbids the agent from blocking the main road within 5 units of time af-
ter detecting an earthquake. Since the postconditions of action blockMainRoad
are brought about at the end of its execution, according to Def. 13 (Eq. 13),
this norm is violated if blockMainRoad starts and ends between time points 2
and 7. Otherwise, according to Def. 14 (Eq. 15) this norm is complied with.

The set of norms complied with and violated in π are denoted as Ncmp(π)

and Nvol(π) respectively, and defined as follows:

Ncmp(π) = {nins ∈ Nπ | π |= nins} (16)

Nvol(π) = {nins ∈ Nπ | π 6|= nins} (17)

To make sure there are no norms pending at m = Makespan(π), we assume
that the norm deadlines are smaller than m. Therefore, all the activated
norms in π are either complied with or violated by time m:

Nπ = Ncmp(π) ∪Nvol(π) (18)

Having defined sequences of actions and their properties, we can now de-
fine which sequences of actions can be identified as plans in the next section.
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3.6.2. Plans

In classical planning a sequence of actions π = 〈(a0, 0), · · · , (an, tn)〉 is
identified as a plan if all the fluents in the initial state, do hold at time 0
and for each i, the preconditions of action ai hold at time tai , and the goal of
planning problem is satisfied in time m, where m = Makespan(π). However,
extending the conventional planning problem by multiple potentially con-
flicting goals and norms requires defining extra conditions in order to make
a sequence of actions a plan and a solution for P . In what follows, we define
what is required to identify a sequence of actions as a plan.

Definition 15 (Plan). A sequence of actions π = 〈(a0, 0), . . . , (an, tan)〉 s.t.@
(ai, tai), (aj, taj) ∈̂ π s.t. tai ≤ taj < tai + dai , (ai, aj) ∈ cf action is a plan
for the normative practical reasoning problem P = (FL,∆, A,G,N) if the
following conditions hold:
• fluents in ∆ (and only those fluents) hold in the initial state: s0 = ∆,
• the preconditions of action ai holds at time tai and throughout the exe-

cution of ai: ∀k ∈ [tai , tai + dai), sk |= pr(ai), and
• plan π satisfies a non-empty subset of goals: Gπ 6= ∅.

The utility of a plan π is defined by deducting the penalty costs of violated
norms from the value gain of satisfying goals (Equation 19). The set of
optimal plans, Opt , are those plans that maximise the utility.

Utility(π) =
∑
gi∈Gπ

v(gi)−
∑

nj∈Nvol(π)

c(nj) (19)

Examples of calculating the utility of plans are in Appendix B.
The set Opt is empty only if there are no plans for the planning prob-

lem. Otherwise, the utility function is guaranteed to terminate and find the
optimal plans and hence populate the set Opt.

4. Implementation

In this section, we demonstrate how a normative practical reasoning prob-
lem P = (FL,∆, A, G,N) (cf. Def. 1), can be implemented. Our implemen-
tation should be seen as a proof of concept that provides a computational re-
alisation of all aspects of the formal model. We use Answer Set Programming
(ASP) (Gelfond and Lifschitz, 1988) to propose such an implementation. Re-
cent work on planning in ASP (To et al., 2015; Lee and Palla, 2012, 2014)
demonstrates that in terms of general planners ASP is a viable competitor.
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In what follows, we provide a brief introduction to ASP in Section 4.1,
followed by the mapping of normative practical reasoning problem P =
(FL,∆, A, G,N) (cf. Def. 1) into ASP in Section 4.2. In the latter sec-
tion we show how P is mapped into an answer set program such that there
is a one to one correspondence between solutions for the problem and the
answer sets of the program. The mapping itself is provided in Figure 2. The
explanation of the mapping is presented in Sections 4.2.1–4.2.6, with cross
references to the code fragments listed in Figure 2.

4.1. Answer Set Programming

ASP is a declarative programming paradigm using logic programs under
Answer Set semantics (Lifschitz, 2008). Like all declarative paradigms it has
the advantage of describing the constraints and the solutions rather than
the writing of an algorithm to find solutions to a problem. A variety of
programming languages for ASP exist, and we use AnsProlog (Baral, 2003).
There are several efficient solvers for AnsProlog, of which Clingo (Gebser
et al., 2011) and DLV (Eiter et al., 1999) are currently the most widely used.

The basic components of AnsProlog are atoms that are constructs to
which one can assign a truth value. An atom can be negated, adopting
negation as failure (naf), which establishes that a negated atom not a is true
if there is no evidence to prove a. Literals are atoms a or negated atoms
not a (referred to as naf-literals). Atoms and literals are used to create rules
of the general form “a :− b1, ..., bm, not c1, ..., not cn.” where a, bi and cj are
atoms. Intuitively, a rule means that if all atoms bi are known/true and no
atom cj is known/true, then a must be known/true. We refer to a as the
head of the rule and b1, ..., bm, not c1, ..., not cn as the body of the rule. A
rule with an empty body is called a fact and a rule with an empty head
is called a constraint, indicating that no solution should be able to satisfy
the body. Another type of rules are called choice rules and are denoted as
l{h0, · · · , hk}u : − l1, · · · , lm, not lm+1, · · · , not ln., in which his and lis are
atoms. l and u are integers and the default values for them are 0 and 1,
respectively. A choice rule is satisfied if the number of atoms belonging to
{h0, · · · , hk} that are true/known is between the lower bound l and upper
bound u. A program is a set of rules representing their conjunction. The
semantics of AnsProlog is defined in terms of answer sets, i.e. assignments of
true and false to all atoms in the program that satisfy the rules in a minimal
and consistent fashion. A program may have zero or more answer sets, each
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corresponding to a solution. We refer to Baral (2003) for a formal treatment
of the semantics of ASP.

4.2. Translating the Normative Practical Reasoning Problem into ASP

The description of the mapping of normative practical reasoning problem
P = (FL,∆, A, G,N) into ASP is presented in the following sections with
references to Figure 2. Note that variables are in capitals and grounded
variables are in small italics.

4.2.1. States

In Section 3.6 we described the semantics P = (FL,∆, A,G,N) over a
set of states. The facts produced by line 1 provide the program with all
available states for plans of maximum length q 3. Line 2 encodes that the
initial fluents, (x ∈ ∆) need to hold at state 0 which is achieved by the
facts holdsat(x, 0). Fluents are inertial, they continue to hold unless they
are terminated. Inertia is encoded in lines 3–4. Termination is modelled
through the predicate terminated(X,S).

4.2.2. Actions

Each durative action is encoded as action(a, d) (line 5), where a is the
name of the action and d is its duration. The preconditions pr(a) of action a
hold in state s if s |= pr(a). This is expressed in line 6 using atom pre(a,S) In
order to make the coding more readable we introduce the shorthand EX(X,S),
where X is a set of fluents that should hold at state S. For all x ∈ X, EX(X,S)
is translated into holdsat(x,S) and for all ¬x ∈ X, EX(¬X,S) is translated
into not EX(x,S) using negation as failure.

The agent has the choice to execute any of its actions in any state. This
is expressed in the choice rule in line 7. Since no lower or upper bound
is given for {executed(A,S)}, the default value of 0{executed(A,S)}1 is
implied, meaning that the agent has the choice of whether or not to execute
an action. Following the approach in Blum and Furst (1997), we assume
that the preconditions of a durative action should be preserved when it is in
progress. We first encode the description of an action in progress, followed
by ruling out the possibility of an action being in progress in the absence of
its preconditions. A durative action is in progress, inprog(A,S), from the

3Currently, the length of the plans needs to be determined experimentally. We plan to
automate this using incremental features of ASP solver clingo4 (Gebser et al., 2011).
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state in which it starts up to the state in which it ends (lines 8–9). Line 10,
rules out the execution of an action, when the preconditions of the action
do not hold during its execution. A further assumption made is that the
agent cannot start two actions at exactly the same time (line 11–12). Once
an action starts, the result of its execution is reflected in the state where the
action ends. This is expressed through (i) lines 13–14 that allow the add
postconditions of the action to hold when the action ends, and (ii) line 15–16
that allow the termination of the delete postconditions. Termination takes
place in the state before the end state of the action: the reason for this is the
inertia of fluents that was expressed in lines 3–4. Thus delete post-conditions
of an action are terminated in the state before the end state of the action, so
that they will not hold in the following state, in which the action ends (i.e.
they are deleted from the state).

4.2.3. Goals and Norms

Line 17 encodes goal g with value v as a fact. Goal g is satisfied in state
s if s |= g. This is expressed in line 18, where g+ and g− are the positive and
negative literals in the set g.

For the norms we note that, following Definitions 11–14, compliance and
violation of a norm can be established based on the start state of action’s
execution that is the subject of the norm, or at the end state of action’s
execution. In the encoding we show an implementation of the former; the
latter can be catered for in a similar fashion.

Lines 19–39 deal with obligations and prohibitions of the form n =
〈d o, acon , asub , dl , c〉. Line 19 encodes norm n with penalty cost c upon vio-
lation. In order to implement the concepts of norm compliance and violation
for instantiated norms, we introduce a normative fluent that holds over the
compliance period. The compliance period begins from the state in which
action acon ’s execution ends. The compliance period then ends within dl
time units of the end of action acon , which is denoted as dl ′ in the normative
fluent. For instance, fluent o(n1, s

′, asub , dl ′) expresses that the instance of
norm n1 that was activated in state s′, obliges the agent to execute action
asub before deadline dl ′. The state in which the norm is activated is a part
of the fluent to distinguish different activations of the same norm from one
another. For example, fluent o(n1, s

′′, asub , dl ′′) refers to a different instance
of norm n1 that was activated in s′′. An obligation fluent denotes that action
asub ’s execution should begin before deadline dl ′ or be subject to violation,
while prohibition fluent f(n2, s

′, asub , dl ′) denotes that action asub should not
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Creating states: ∀ k ∈ [0, q]

1 state(k).

Setting up the initial state: ∀ x ∈ ∆

2 holdsat(x, 0).

Rule for fluent inertia

3 holdsat(X,S2) :- holdsat(X,S1), not terminated(X,S1),

4 state(S1), state(S2), S2=S1+1.

Creating the actions and their preconditions: ∀a ∈ A, a = 〈pr, ps, d〉
5 action(a, d).
6 pre(a,S) :- EX(pr(a)+,S), not EX(pr(a)−,S), state(S).

Common constraints on action execution

7 {executed(A,S)} :- action(A,D), state(S).

8 inprog(A,S2) :- executed(A,S1), action(A,D),

9 state(S1), state(S2), S1 <=S2, S2<S1+D.

10 :- inprog(A,S), action(A,D), state(S), not pre(A,S).

11 :- executed(A1,S), executed(A2,S), A1!=A2,

12 action(A1,D1), action(A2 ,D2), state(S).

Adding positive postconditions of actions: ps(a)+ = X ⇔ ∀x ∈ X·
13 holdsat(x,S2) :- executed(a,S1), action(a, d),
14 state(S1), state(S2), S2=S1+d.

Terminating negative post conditions of actions: ps(a)− = X ⇔ ∀x ∈ X·
15 terminated(x,S2) :- executed(a,S1), action(a, d),
16 state(S1), state(S2), S2=S1+d-1.

Creating the goals: ∀g ∈ G
17 goal(g, v).
18 satisfied(g,S) :- EX(g+,S), not EX(g−,S), state(S).
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Creating the norms: ∀n = 〈o|f, asub, acon, dl, c〉 ∈ N
19 norm(n, c).

∀n = 〈o, asub, acon, dl, c〉 ∈ N
20 holdsat(o(n,S1 ,asub, dl+S2),S2) :- executed(acon,S1),
21 action(acon, d), S2=S1+d,state(S1), state(S2).

22 cmp(o(n,S1,a,DL),S2) :- holdsat(o(n,S1 ,a,DL),S2),
23 executed(a,S2),action(a, d),state(S1),state(S2),S2!=DL.
24 terminated(o(n,S1,a,DL),S2) :- cmp(o(n,S1,a,DL),S2),
25 state(S1), state(S2).

26 vol(o(n,S1,a,DL),S2) :- holdsat(o(n,S1 ,a,DL),S2), DL=S2 ,

27 state(S1), state(S2).

28 terminated(o(n,S1,a,DL),S2) :- vol(o(n,S1,a,DL),S2),
29 state(S1), state(S2).

∀n = 〈f, asub, acon, dl, c〉 ∈ N
30 holdsat(f(n,S1 ,asub, dl+S2),S2) :- executed(acon,S1),
31 action(acon, d),S2=S1+d,state(S1), state(S2).

32 cmp(f(n,S1,a,DL),S2) :- holdsat(f(n,S1 ,a,DL),S2),
33 action(a, d), DL=S2 , state(S1), state(S2).

34 terminated(f(n,S1,a,DL),S2) :- cmp(f(n,S1,a,DL),S2),
35 state(S1), state(S2).

36 vol(f(n,S1,a,DL),S) :- holdsat(f(n,S1,a,DL),S2),
37 executed(a,S2),state(S1) state(S2), S2!=DL.

38 terminated(f(n,S1,a,DL),S2) :- vol(f(n,S1,a,DL),S2),
39 state(S1), state(S2).

Plans need to satisfy at least one goal

40 satisfied(g) :- satisfied(g,S), state(S).

41 :- not satisfied(g1), ... , not satisfied(gm).

Avoiding conflicting actions: ∀ (a1, a2) ∈ cf action

42 :- inprog(a1,S),inprog(a2,S),action(a1, d1), action(a2, d2),
43 state(S).

Figure 2: Mapping P = (FL, I, A,G,N) to its Corresponding Computational Model
ΠPBase
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begin before deadline dl ′ or be subject to violation. Lines 20–21 and 30–31
establish respectively the obligation and prohibition fluents that hold for the
duration of the compliance period.

In terms of compliance, if the obliged action starts during the compliance
period in which the obligation fluent holds, the obligation is complied with
(line 22–23). Compliance is denoted by the atom cmp. The obligation fluent
is terminated in the same state that compliance is detected (lines 24–25).
If the deadline expires and the obligation fluent still holds, it means that
the compliance never occurred during the compliance period and the norm
is therefore violated (lines 26–27). The atom vol denotes violation. The
obligation fluent is terminated when the deadline expires and the norm is
violated (lines 28–29).

On the other hand, a prohibition norm is violated if the forbidden action
begins during the compliance period in which the prohibition fluent holds
(lines 36–37). As with the obligation norms, after being violated, the pro-
hibition fluent is terminated (lines 38–39). If the deadline expires and the
prohibition fluent still holds, that means the prohibited action did not begin
during the compliance period and the norm is therefore complied with (lines
32–33). The obligation fluent is terminated in the same state that compliance
is detected (lines 34–35).

4.2.4. Mapping Answer Sets to Plans

Having implemented the components of P = (FL,∆, A,G,N), we now
encode the criteria for a sequence of actions to be identified as a plan and
a solution to P . The rule in line 41 is responsible for constraining the an-
swer sets to those that fulfill at least one goal. This is done by excluding
answers that do not satisfy any goal. The input for this rule is provided in
line 40, where goals are marked as satisfied if they are satisfied in at least
one state. Prevention of concurrent conflicting actions is achieved via lines
42–43 which establish that two such actions cannot be in progress simulta-
neously. This concludes the mapping of a formal planning problem to its
computational counterpart in AnsProlog. For a problem P we refer to the
program consisting of lines 1–43 as ΠPBase .

4.2.5. Soundness and Completeness of Implementation

The following theorems state the correspondence between the solutions
for problem P and answer sets of program ΠPBase.
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Theorem 1 (Soundness). Let P = (FL, I, A,G,N) be a normative prac-
tical reasoning problem with ΠPBase as its corresponding AnsProlog pro-
gram. Let Ans be an answer set of ΠPBase, then a set of atoms of the form
executed(ai, tai) ∈ Ans encodes a solution to P .

Due to space limitation, we are not able to present the proof of this
theorem here. However, the proof is available in a technical report (Shams
et al., 2017). This is a proof by structure that explains how the structure of
ΠPBase satisfies the conditions that identifies a sequence of actions as a plan.

Theorem 2 (Completeness). Let π = 〈(a0, 0), · · · , (an, tan)〉 be a plan for
P = (FL, I, A,G,N). Then there exists an answer set of ΠPBase containing
atoms executed(ai, tai) that correspond to π.

The proof of this theorem is also presented in (Shams et al., 2017). In this
proof the program is first transformed to a program without any naf-literals
and choice rules. We then take a candidate answer set for the program and
show that it is a minimal model for the transformed program.

4.2.6. Optimal Plans

In order to find optimal plans in Figure 3 we show how to encode the
utility function defined by Eq. 19. The sum of values of goals satisfied in a
plan is calculated in line 44, where we use an ASP built-in aggregate #sum.
This aggregate is an operation on a set of weighted literals that evaluates to
the sum of the weights of the literals. We first assign the value of goals as
the weight of literals satisfied(G) and then use #sum to compute the sum
of value of all goals satisfied.

The sum of costs of norms violated in a plan is calculated in line 47
using the same aggregate. However, the weight of the literal is the cost
of punishment of the norms. The input for this line is given in lines 45
and 46, where violated norms are distinguished based on the combination
of the norm id n and the state s in which they are instantiated. Having
calculated value(TV) and cost(TC), the utility of a plan is computed in line
48, which is subject to a built-in optimisation statement in the final line.
This optimisation statement identifies an answer set as optimal if the sum of
weights of literals that hold is maximal with respect to all answer sets of the
program. By assigning U as the weight of literal utility(U) we compute the
answer set that maximises the utility.
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44 value(TV) :- TV = #sum {V: goal(G,V), satisfied(G)}.

45 violated(N,S1) :- vol(o(N,S1,a,DL),S2), state(S1;S2).

46 violated(N,S1) :- vol(f(N,S1,a,DL),S2), state(S1;S2).

47 cost(TC) :- TC = #sum{C,S:violated(N,S),norm(N,C)}.

48 utility(TV -TC) :- value(TV), cost(TC).

49 #maximize {U:utility(U)}.

Figure 3: Optimal Plans for P = (FL, I, A,G,N)

Let program ΠP = ΠPBase ∪ Π∗P , where Π∗P consists of lines 44–49. The
following theorem states the correspondence between the plans for problem
P and answer sets of program ΠP .

Theorem 3. Given a normative practical reasoning problem P = (FL, I, A,
G,N), for each answer set Ans of Π the set of atoms of the form executed(ai,
tai) in Ans encodes an optimal solution to P . Conversely, each solution to
the problem P corresponds to a single answer set of π.

This theorem follows immediately from Theorem 1 and 2 and the struc-
ture of program Π∗P .

5. Related Work

We consider the approaches to accounting for norms in practical reason-
ing, with the aim of identifying similarities across a variety of architectures.
Much work stems from planning and how to account for norms in the plan
construction and selection process. There are broadly three approaches:

1. Choosing a plan that is norm compliant (e.g., NoA (Kollingbaum,
2005)), which is a one-off process, that may fail delivering the best
(where “best” can be defined in various ways) plan available for the
situation from those available, and which requires starting again when
a plan step fails and the remainder of the plan is invalidated. The
main points of difference between NoA and the work presented here
are that (i) NoA agents are BDI specific, (ii) they do not have inter-
nal motivations such as goals or values that might conflict with norms,
which therefore enables the NoA agent to always comply with norms
(iii) plans are pre-existing rather than generated.
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Table 1: Summary of Related Frameworks

Framework Deontic Operator Activation Condition De-activation Condition

BOID (Broersen et al., 2001) o N/A N/A
NoA (Kollingbaum, 2005) o, f, p state, action state, action
ν-BDI (Meneguzzi et al., 2015) o, f state state
N-2APL (Alechina et al., 2012) o, f state state4

N-Jason (Lee et al., 2014) o, p, w5 N/A temporal constraint
Oren et al. (2011) o, f N/A N/A
Panagiotidi et al. (2012a) o, f state state
Shams et al. (2015) o, f action temporal constraint
This work o, f action temporal constraint

2. Customising a plan to make it norm compliant (e.g., Oren et al. (2011))
is potentially more flexible in making use of available plans (also help-
ing customize existing plans into optimal norm-compliant plans), but
otherwise has the same replanning drawback when a plan step fails. In
common with Oren et al. (2011), we use the utility of the entire plan in
the selection process, but differ in that we generate plans rather than
use a plan library.

3. Generating a plan that is norm compliant (e.g., Panagiotidi et al.
(2012a); Shams et al. (2015)). The former addresses on-going compli-
ance and re-planning, putting a high computational overhead on each
plan step. Of necessity, Panagiotidi et al. (2012a) can only compute
utility on a step-by-step basis, whereas in this work consider the utility
of the whole plan. Shams et al. (2015) attempt to balance compliance
on the part of the agent (where the agent chooses a norm-compliant
action in preference) with enforcement (where the agent is discouraged
from non-norm-compliance via punishments for norm violation), but is
not robust to plan failure. Furthermore, in (Shams et al., 2015), conflict
is formulated in advance by taking a static view about conflicts. For
instance, two goals that are logically inconsistent, cannot be satisfied
in the same plan, regardless of the order or choice of actions in a plan.
In contrast, in the work presented here, conflicts are not formulated
in advance; instead, they can be inferred from plans. Therefore, the
agent might be able to schedule its actions such that two goals that are

4The de-activation condition only applies to obligations.
5The operator w denotes power and indicates the capability to do something in pro-

hibitive societies, where actions are not allowed unless empowered and explicitly permitted.
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logically inconsistent are satisfied in the same plan at different points
in time. Finally, as discussed in Section 3.6, we extend the norm rep-
resentation of (Shams et al., 2015) to accommodate compliance and
violation in the presence of durative actions more flexibly by allowing
compliance to be defined as the start or end of the action that is the
subject of the norm.

Table 1 provides a feature analysis of various related frameworks and
that proposed here. In addition to those discussed in some detail above, we
highlight: (i) BOID (Broersen et al., 2001) which is very expressive, but of
historical interest, since no reference implementation is currently available
(ii) ν-BDI (Meneguzzi et al., 2015) which draws on BOID and NoA, but
emphasizes practicality and computational efficiency (iii) N-2APL (Alechina
et al., 2012), in which norms are either obligations or prohibitions and plans
are not interleaved, and (iv) N-Jason (Lee et al., 2014) that allows agents
to reason about norms deadlines and priorities, and choose between plans
triggered by a particular norm.

The majority of frameworks, including ours, deal with obligations and
prohibitions. The activation condition, however, varies with those that sup-
port conditional norms. An activation condition presented as an action can
be expressed as a state that satisfies the post-conditions of the action. Unlike
the other frameworks, ours exploits the explicit representation of time in the
formal model to encode the norm de-activation condition as a time instant.
Associating a deadline with temporal properties is considered to be realistic
and dynamic, in particular when the norms capture the requirements of real-
world scenarios (Chesani et al., 2013; Kafali et al., 2014; Gasparini et al.,
2015), such as the disaster scenario modelled in this paper. A further key
differentiator between our work and the others discussed here, is the capacity
to handle durative actions and their concurrent execution, as well as dealing
with norm compliance and violation in the presence of durative actions.

6. Conclusions and Future Work

An agent performing practical reasoning in an environment regulated by
norms constantly needs to weigh up the importance of goals to be satisfied
and norms with which to comply. This decision process is only possible when
the agent has access to the set of all possible plans available and the agent can
ascertain the impact of its decision on entire plans. This research offers means
to capture and measure the impact via utility functions, offering numeric
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metrics, so that the decision problem can be reformulated as choosing a plan
from a set of generated plans, which maximises its overall utility. While
the literature we have surveyed contains practical reasoning frameworks that
take into account normative considerations, they are limited in several ways,
and we have contrasted them with our approach in the previous section.

The majority of these frameworks are limited to a specific type of agent ar-
chitecture, mostly BDI, (e.g., Kollingbaum (2005); Meneguzzi et al. (2015)).
We do not assume any specific architecture. Instead, we adopt a realistic view
that agents have capabilities (encoded as the actions they may perform), and
they have internal motivations (encoded as the goals of a planning problem).
This leaves the option of extending current work to a multi-agent setting
where agents might not necessarily have the same architecture.

In the approaches set out in the literature the attitude agents have to-
wards norms is often one of compliance, meaning that their plans are often
selected or, in some approaches, customised, to ensure norm compliance,
(e.g., Kollingbaum (2005); Alechina et al. (2012); Oren et al. (2011)). We
argue that in certain situations an agent might be better off violating a norm
which, if followed, would make it impossible for the agent to achieve an im-
portant goal or complying with a more important norm; we enable agents
to compare the relative importance of goals and norms via their utilities.
Consequently, through our practical reasoning process agents consider all
plans (i.e., sequences of actions), including those leading to norm compliance
and violation; each plan gets an associated overall utility for its sequences of
actions, and norms followed/violated, and agents can decide which of them
to pursue. The plan an agent chooses to follow is not necessarily norm-
compliant, however, our mechanism guarantees that the decision will max-
imise the overall plan/norm utility, which justifies the occasional violation of
norms as the plan is followed.

We see several interesting avenues for future work. Our research currently
addresses normative practical reasoning in a single-agent setting, extending
to a multi-agent setting seems a natural next step. This idea can be explored
both when the agents are collaborating to fulfill common goals, as well as
when they are competing to use resources to fulfill their individual goals.
In the former case, the best course of action can be identified as one that
maximises the overall utility of the system. In the latter, game-theoretic ap-
proaches can be utilised to identify a solution that ensure relative optimality
for the individuals (e.g. Ågotnes et al. (2007)).
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We note the relative limitations of our norm representation. Although
our approach addressed action-based norms, we envisage how it can be ex-
tended and adapted to handle state-based norms. Our Def. 4 needs to cater
for formulae to represent both the norm activation condition, acon, and the
norm subject, asub, instead of actions. A combination of action- and state-
based norms (e.g. De Vos et al. (2013)) enriches the norm representation
as well as normative reasoning. Also, the norm representation language can
be extended to cater for deadlines that are expressed as reaching a state –
In such cases the deadline is referred to as a norm termination condition –
rather than a time instance. For instance, an obligation to open a dam on
a river can come in force when the water level is above a certain point, and
subsequently terminated when the water level drops below a certain level,
regardless of how long it takes for that to happen. We would also like to
include permission norms in addition to obligations and prohibitions. The
modelling of permissions as exceptions to obligations and prohibitions has
been used to justify violations under specific circumstances, (e.g. Oren et al.
(2010); Pacheco (2012)). Last interesting point to consider is to factor in
variant penalty cost for norm violation. For instance, if an agent violates the
same norm repeatedly the penalty cost can be increased to enforce the agent
to devise another plan.

Finally, our implementation should be seen as a proof-of-concept that,
apart from replanning, provides a provable computational realisation of all
aspects of the formal model. In future, we aim at extending the implemen-
tation to accommodate replanning when a plan in progress is interrupted for
any reason. The formal model is implementation language neutral so other
implementation languages could be used.

Appendix A. Formulation of the Disaster Scenario

We provide a formalisation of the scenario set out in Section 2. Let
P = (FL,∆, A,G,N) be the normative practical reasoning problem for the
disaster scenario such that:

• FL =


shockDetected , poisonDetected ,waterSupplied ,

areaSecured , evacuated , shockDetected ,
shelterBuilt , populated ,wounded ,

earthquakeDetected ,medicineSupplied ,
noAccess ,medicsPresent
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• ∆ =

{
earthquakeDetected ,medicsPresent ,
wounded , populated ,waterSupplied

}

• A =

{
detectShock , detectPoison, stopWater ,

buildShelter , evacuate, getMedicine, secure

}
where

detectShock = 〈{}, {shockDetected}, 1〉.
detectPoison = 〈{}, {poisonDetected}, 1〉.

stopWater =

〈{
poisonDetected ,
waterSupplied

}
, {¬waterSupplied}, 1

〉

buildShelter =

〈
areaSecured ,
evacuated ,

¬shockDetected

 ,

{
shelterBuilt ,
¬evacuated

}
, 4

〉

evacuate =

〈{
shockDetected ,

populated

}
,

{
evacuated ,
¬populated

}
, 5

〉
getMedicine =

〈{
earthquakeDetected ,

wounded

}
, {medicine}, 3

〉
secure =

〈
{evacuated},

{
areaSecured ,

noAccess

}
, 3

〉
• G = {runningHospital , organiseSurvivorCamp}, where:

runningHospital =

〈
medicsPresent ,
waterSupplied ,

medicineSupplied

 , 25

〉

organiseSurvivorCamp =

〈{
areaSecured ,
shelterBuilt

}
, 18

〉
• N = {n1, n2}, where:

n1 = 〈f, detectShock , buildShelter , 3, 5〉
n2 = 〈o, detectPoison, stopWater , 2, 10〉

Appendix B. Mapping of Our Disaster Scenario

The formal specification of our disaster scenario (Section2) as provided in
the previous section can be mapped to its corresponding AnsProlog program
following the rules given in Figure 2 on page 20. Optimisation conditions are

28



similarly mapped to their corresponding AnsProlog program following the
rules given in Figure 3 on page 23. We refer the readers to (Shams et al., 2017)
for the AnsProlog program of this scenario. The graphic representation
of the three answer sets of the program is given in Figs. B.4–B.6, where
arcs show the actions in progress and the boxes below each state, show the
fluents that hold in that state. The fluents in bold are the fluents that are
added to the state, while the crossed fluents are the terminated ones. Norms
violated in a state are highlighted in red and goals satisfied are highlighted
in green. Applying the optimisation statements in Fig. 3, the utility of each
plan presented by each answer set is calculated as below, making the plan
presented by answer set 3 the optimal plan:

• Utility of plan given by answer set 1 shown in Fig. B.4:
Utility(πAns1 ) = v(runningHospital) = 25

• Utility of plan given by answer set 2 shown in Fig. B.5:
Utility(πAns2 ) = v(runningHospital) + v(organiseSurvivorCamp) −
c(n1)− c(n1) = 25 + 18− 5− 5 = 33

• Utility of plan given by answer set 3 shown in Fig. B.6:
Utility(πAns3 ) = v(runningHospital) + v(organiseSurvivorCamp) = 43
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Kafali, Ö., Günay, A., Yolum, P., 2014. GOSU: computing goal support
with commitments in multiagent systems. In: Schaub, T., Friedrich, G.,
O’Sullivan, B. (Eds.), European Conference on Artificial Intelligence. Vol.
263 of Frontiers in Artificial Intelligence and Applications. IOS Press, pp.
477–482.

Kollingbaum, M., 2005. Norm-governed practical reasonig agents. Ph.D. the-
sis, University of Aberdeen.

Kowalski, R., Sergot, M., Jan. 1986. A logic-based calculus of events. New
Generation Computing. 4(1), 67–95.

Lee, J., Padget, J., Logan, B., Dybalova, D., Alechina, N., 2014. N-Jason:
Run-time norm compliance in AgentSpeak(L). In: Dalpiaz, F., Dix, J., van
Riemsdijk, M. B. (Eds.), International Workshop in Engineering Multi-
Agent Systems. Vol. 8758 of Lecture Notes in Computer Science. Springer,
pp. 367–387.

Lee, J., Palla, R., 2012. Reformulating temporal action logics in answer set
programming. In: Hoffmann, J., Selman, B. (Eds.), Conference on Artifi-
cial Intelligence. AAAI Press, 786–792.

Lee, J., Palla, R., 2014. Reformulating the situation calculus and the event
calculus in the general theory of stable models and in answer set program-
ming. CoRR abs/1401.4607.

Lifschitz, V., 2002. Answer set programming and plan generation. Artificial
Intelligence 138(1-2), 39–54.

Lifschitz, V., 2008. What is answer set programming? In: Fox, D., Gomes,
C. P. (Eds.), International Conference on Artificial Intelligence. AAAI, pp.
1594–1597.

35
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