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Abstract

We present a new approach to deal with visual tracking target tasks. This
method uses a convolutional neural network able to rank a set of patches de-
pending on how well the target is framed (centered). To cover the possible
interferences our proposal is to feed the network with patches located in the
surroundings of the object detected in the previous frame, and with different
sizes, thus taking into account eventual changes of scale. In order to train the
network, we had to create an ad-hoc large dataset with positive and negative ex-
amples of framed objects extracted from the Imagenet detection database. The
positive examples were those containing the object in a correct frame, while the
negative ones were the incorrectly framed. Finally, we select the most promising
patch, using a matching function based on the deep features provided by the
well-known AlexNet network. All the training stage of this method is offline, so
it is fast and useful for real-time visual tracking. Experimental results show that
the method is very competitive with respect to state-of-the-art algorithms, being
also very robust against typical interferences during the visual target tracking
process.

Keywords: Deep convolutional networks, deep learning, target tracking
visualization

1. Introduction

Among all applications of computer vision, visual target tracking is probably
the most challenging problem in recent years, which has also been attracting
more and more attention. A wide range of applications are based on visual
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tracking technology, like vehicle navigation, augmented reality and video safe
surveillance (see more examples in (Wu et al., 2013)). The goal is to locate and
follow the trajectory of a moving target in a video sequence starting with little
a priori knowledge about the object, mainly the bounding box (e.g. location
and size) in the first frame of the sequence. Due to severe visual appearance
changes caused by different reasons such as geometric deformation, illumination
variations, partial and full occlusions, motion blur, scale changes and/or fast
motion, visual target tracking problem is a tough and a challenging task (Wu
et al., 2015). These circumstances make target tracking an active research field
in the last years.

Among the different tasks that must be tackled to accomplish a visual target
tracking system, some authors think that feature extraction and representation
are the most important (Li et al., 2013; Black and Jepson, 1998; Ross et al.,
2008). Based on this idea, many algorithms were proposed (Comaniciu et al.,
2003; Dalal and Triggs, 2005; Tuzel et al., 2006; Wu et al., 2012; Grabner et al.,
2006), and further promoted the development of generative models for target
tracking (Liu et al., 2011; Zhong et al., 2012; Jia et al., 2012; Kwon and Lee,
2010, 2011; Ross et al., 2008). In addition to these traditional and hand-crafted
features, nowadays, deep features are showing a strong ability in image repre-
sentation, in the same way than deep neural networks have been successfully
applied on many computer vision applications recently (Ma et al., 2015; Wang
et al., 2015; Wang and Yeung, 2013; Taigman et al., 2014; Ouyang et al., 2016;
Qi, 2016; Carreira et al., 2016).

On the other hand, other papers payed more attention on the classification
ability of algorithms in order to decide which candidate image patch could be
classified and ranked as the final real target in each frame. This kind of methods
generate a discriminative model. For example, some good discriminative models
can be found in (Babenko et al., 2009; Zhong et al., 2012; Avidan, 2004; Hare
et al., 2011; Henriques et al., 2015). However, all the methods proposed only
address the tracking problem up to a certain extent. Moreover, analyzing the
existing works in this field, we can conclude that i) they usually extract target
features firstly and then find the most similar image patch (called Generative
Model) or ii) they train and fine-tune a classifier to distinguish the positive and
negative image patches (called Discriminative Model).

In this paper, we present a robust visual target tracking approach based on
deep learning, in which we propose a fusion between both discriminative and
generative models.

In our framework, we firstly use a deep learning network to obtain a dis-
criminative object location model. This network will be trained to discriminate
from well framed and poorly framed objects. Then, we construct a matching
score function to verify which object in the current frame matches the target
object set in the first frame. Therefore, the motion object location combined
with target verification is the essence of the visual target tracking proposed in
this paper.

This method improves the performance of the tracking process, its training
is completely offline, and it is able to deal with a large number of disturbing
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interferences.
In order to accurately detect motion objects similar to the original target

established at the beginning of the tracking process, we use a deep learning
network specially tuned to detect correctly framed objects, based on a domain
transferred deep convolutional neural network (DT-DCNN) architecture. We
call it Deep Framer Network (DFN). To train our DFN, we manually built more
than half a million positive (well framed) and negative (poorly framed) object
patches. After training our network, we propose a matching score function based
on deep features to verify whether the objects from next frame are the tracked
target or not. The detailed procedure steps are reported in the next sections.

The major contributions of our work in this paper are:

• we built a large object dataset, with 668404 images, that can be used to
train models to discriminate well framed from poorly framed objects (we
will make this dataset public available when publishing the paper - 10GB),

• we deeply analyzed the essence of visual target tracking from a large object
dataset and construct the Deep Framer Network (DFN) to discover and
frame objects under difficult situations with numerous distracting factors
during the tracking process,

• we developed an adaptive matching score function to verify the tracked
target in the current frame from a group of candidate framed objects, with
no online model update.

2. Related work

In this section, we shortly introduce some works related to our proposed
method, including an overview to visual target tracking, as well as to deep
neural networks.

2.1. Visual target tracking overview

In the past decade, visual target tracking has been extensively studied and
significant progress has also been made in the area of computer vision (Wu et al.,
2015). This section provides an overview for visual target tracking from two
perspectives, which are i) tracking models and ii) target feature representations.

From the point of view of tracking models, most tracking methods fall into
generative or discriminative models. Those generative methods describe the
target appearance by a generative model and search for the candidate with
maximum likelihood with respect to the tracked target in the next frame. LSK
method (Liu et al., 2011) proposed a local sparse appearance model to enhance
visual target tracking robustness by combining with the mean shift algorithm
to locate targets. In (Jia et al., 2012), the authors regarded the target as
the composition of different local image patches with spatial layout based on
sparse codes. To deal with drastic lighting changes and fast motion, Kwon
and Lee (2010) used multiple observation and motion models to construct a
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target tracking decomposition approach, which accounted for a relatively large
appearance variation. In (Kwon and Lee, 2011), the sampling of trackers using
Markov Chain Monte Carlo was proposed to search for more suitable trackers,
which was an extension work based on (Kwon and Lee, 2010). Due to the
ceaseless appearance changes of the tracked target, Ross et al. (2008) developed
a system that incrementally updates the eigenbasis and it adapts to the changes
in the tracking process.

In contrast, discriminative modeling algorithms regard the target tracking
problem as a kind of classification problem using a built model to distinguish the
target from the background. Babenko et al. (2009) proposed an online target
tracking algorithm by constructing the Multiple Instance Learning framework
(MIL). In (Avidan, 2004), a trained Support Vector Machine (SVM) classi-
fier was integrated in an optical flow framework to deal with target appearance
changes. Struck algorithm (Hare et al., 2011) utilized kernelized structured SVM
to design the target tracking model which can exploit the constraints of the pre-
dicted outputs. Henriques et al. (2015) derived a new Kernelized Correlation
Filter (KCF) with Discrete Fourier Transform to reduce both storage and com-
putation by several orders of magnitude for target tracking tasks, which showed
a powerful discriminative capability between the target and the surrounding en-
vironment. In addition, Zhong et al. (2012) tried a fusion target tracking model
between a sparsity appearance generative model and a discriminative classifier.
Generally, those tracking methods by detection and deep learning methods for
target tracking also can be regarded as the special category of discriminative
models.

From the view of feature representations, there are several features which
are used into visual target tracking task. Generally speaking, we can divide
the features into two categories, hand-crafted features and deep features. Hand-
crafted features can be usually regarded as artificial, low-level features. They
were widely used in target tracking process to address the challenging problem
of interferences up to a certain extent. Belonging to this category of features, we
can mention, for instance, color histograms (Comaniciu et al., 2003), histograms
of oriented gradients (HOG) (Dalal and Triggs, 2005), covariance region descrip-
tors (Tuzel et al., 2006; Wu et al., 2012), and Haar-like features (Grabner et al.,
2006).

Hand-crafted features are designed at the pixel-level of the image, which
can be unstable due to the numerous disturbances during the tracking process.
Moreover, the key point is that pixel-level features belong to shallow features
that are not capable to capture deep and semantic information of the target,
which will lead to target tracking drift in some challenging video sequences.

Deep features became more attractive for computer vision tasks, since neu-
ral networks were again in the spotlight. These compact and semantic feature
representations are discovered by a ceaseless iterative training on large image
datasets. Many vision tasks use deep features which also proved to be very
effective at extracting semantic features and classifying objects of various cate-
gories. or visual target tracking, on the one hand, deep features are used as a
black box to represent the tracked target, like SDAE (Wang and Yeung, 2013;
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Hong et al., 2015). On the other hand, several recent visual tracking algorithms
began to directly train their deep model with existing target tracking sequences
for learning real and semantic target features, such as (Nam and Han, 2016;
Bertinetto et al., 2016; Zhang et al., 2016).

2.2. Deep neural networks in computer vision

In recent years, deep neural networks have been developed and applied to
numerous computer vision tasks, for example, image classification and recogni-
tion (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014), object detection
(Girshick et al., 2014; Ouyang et al., 2016), image segmentation (Long et al.,
2015; Qi, 2016), face verification (Taigman et al., 2014), and human pose es-
timation (Toshev and Szegedy, 2014; Yang et al., 2016; Carreira et al., 2016).
The main reasons for deep neural networks to be more popular these days are
their accuracy, efficiency and flexibility. Worth of mention are the advances
in hardware, which make possible for deep neural networks to deal with prob-
lems whose size would prevent us from using such techniques some years ago.
More specifically, the great success of deep neural networks in the field of com-
puter vision is mostly attributed to their hierarchical hidden feature layers that
outperforms hand-crafted features. However, the popularity of deep neural net-
works is still not very extended for visual target tracking task since it is hard
to collect a large number of labeled images to deal with this problem.

To alleviate this data scarceness problem, some authors (Wang and Yeung,
2013; Zhang et al., 2016; Hong et al., 2015) propose to transfer deep features
from a previously (offline) trained deep neural network on a large auxiliary
dataset. For example, Wang and Yeung (2013) chose stacked denoising autoen-
coder (SDAE) as their deep model, which was trained offline using unsupervised
learning, on the large Tiny dataset. Then, a fine-tuning of model parameters
was performed according to the target tracking on different videos, in order to
prevent drift failure. This type of deep networks were widely used, because
unsupervised learning does not need labeled images. However, fully connected
neural networks have millions of parameters to tune and, in addition, they ig-
nore the spatial structure of images. These issues lead the researchers to propose
Convolutional Neural Networks (CNN) (Krizhevsky et al., 2012; Simonyan and
Zisserman, 2014; Szegedy et al., 2015), whose use is spreading in all areas related
to image processing.

CNNs are specially devised to deal with images as input, so certain properties
can be encoded in the architecture, making the forward function more efficient,
as well as reducing the amount of parameters in the network.

As opposed to typical multilayer perceptrons, CNNs have the following char-
acteristic features:

• Layers are arranged in 3 dimensions: width, height and depth, and each
processing unit or neuron of a layer is only connected to a small region of
the previous layer; it is the receptive field of the neuron. In addition, a
CNN is composed of distinct types of layers, some locally and other fully
connected.
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• The local connectivity takes advantage of spatially local correlation in
the images. These subsets of locally connected neurons can create good
representations of small parts of the input image. They act as local filters,
once the network is trained. More complex representations can be achieved
by stacking several locally connected layers.

• The weights of the locally connected regions are shared among all neurons
of the same layer. In other words, the filter learned is the same for each
neuron of a given layer, but since it receives its input from a different
region of the input image, it allows to detect a feature regardless of its
position in the image. This gives the CNN the property of translation
invariance.

Several successful CNN models were presented in the Imagenet Classification
Challenge Match, such as Alexnet (Krizhevsky et al., 2012), VGG (Simonyan
and Zisserman, 2014) and GoogLeNet (Szegedy et al., 2015).

3. Our proposed algorithm

Target tracking in a video sequence requires processing each frame, i.e. each
static image, so we expect to take advantage of the benefits provided by deep
neural networks, and particularly CNNs, in image processing. For this purpose
we need to design a specific convolutional neural network which we will call
Deep Framer Network (DFN).

In this section, we give a detailed explanation of our proposed DFN tracker.
First we justify and explain the use of a domain transferred convolutional neural
network. Then we describe the full architecture of our proposal, how it was
trained and how it works during the tracking process. The end of the section is
devoted to explain our approach to tackle the changes of scale in the target, a
recurrent problem in visual tracking tasks.

3.1. Domain Transferred Deep Convolutional Neural Networks (DT-DCNN)

Training a deep neural network with millions of parameters is difficult and
infeasible in some domains due to the lack of properly labeled training samples.
To tackle this issue, other authors have adopted transfer learning, which consists
in using the obtained parameters (all or part of them) of a network previously
trained on a different, but related, domain (Oquab et al., 2014; Tompson et al.,
2015). Tracking an object in a video sequence can be thought of as locating
the same given object in each frame of the video sequence. Thus, instead of
building from scratch a completely new DCNN mode, we propose to develop
a domain transferred deep convolutional neural network starting from a deep
model pre-trained to identify different objects in a static image. This model
will then be fine-tuned for our specific tracking task, i.e. for correctly frame the
target inside a bounding box.

For this purpose, we tested Alexnet, VGG and GoogLeNet deep models:
all these deep models are pre-trained on millions of images from the Imagenet
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challenge. The classification performance among the three deep models is dif-
ferent, as shown in (Szegedy et al., 2015): VGG and GoogLeNet yield a similar
performance, and they are better than Alexnet. However, we chose Alexnet
despite its lower performance in classification because it was trained on small
size images (227 × 227), which is more appropriate for our purpose; the size
of image patches in target tracking is usually several dozens of pixels, at most.
VGG and GoogLeNet were trained with ≈ 1000 × 1000 sized images, and we
empirically found that the deep features generated from their hidden layers will
become more blurred and difficult to distinguish from their semantic information
in these larger deep models.

Once we have decided to use Alexnet to provide the parameters for our
network we have to fine-tune them. For this purpose our first attempt could have
been to use the target samples of the previous frames, but this approach would
suffer from severe overfitting and would lead to track drift, as stated in (Wang
et al., 2016). During the tracking process the target usually undergo all kinds
of interferences, like changes in its appearance, partial and/or full occlusion.
Therefore, focusing on recently obtained target patches (from previous frames)
would yield a model that would be less likely to fit the changes that the target
will suffer in future frames. As we introduce in next subsection, we will construct
a more general training dataset to fine-tune the domain transferred from Alexnet
and to adjust the pre-trained model to our needs.

3.2. Deep Framer Network (DFN)

The multi-layered architecture of our proposed network is depicted in Fig-
ure 1(b). It takes 227 × 227 × 3 images as input, it has 5 convolutional layers
(conv1-5) to convolute local features with convolutional kernels and 3 fully con-
nected layers (fc6-8) to perform classification operation and represent target
features. Additionally, there are 3 max pooling layers (pool1-2, 5) to reduce
the dimensionality of feature maps and 2 local response normalization layers
(norm1-2) to refine the pooling layers.

We use three different sized convolutional kernels, which are 11 × 11, 5 × 5
and 3 × 3 pixels. In order to transfer the pre-trained parameters from the
image classification domain, the initial weight parameters of all convolutional
layers and the first fully connected layer are identical to the corresponding parts
of Alexnet networks. However, the parameters of the second and third fully
connected layers in our DFN network are randomly initialized and their size is
500 and 2, respectively.

The core technology of CNNs is the convolutional operation applied to the
input images and the feature maps from last layer. The first convolutional
operation in our DFN is performed between the input image (candidate patch)
and the conv1 layer. The number of input channels is C0 = 3, corresponding to
the RGB channels of the input images, and the number of channels in conv1 is
set to C1 = 96, so the c-channel feature map in the conv1 layer is calculated by
convolving the 11×11 kernel with the input image F0(X), which is a 227×227×3
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Figure 1: Our proposed Deep Framer Network (DFN) architecture for visual target tracking.
It comprises two stages: (a) positive and negative image patches were generated as training
dataset to offline train our DFN. (b) once the DFN was fine-tuned to detect correctly framed
objects, it is used to complete online the visual target tracking task.

matrix, as follows

F c
conv1(X) =

C0∑
k=1

wc
k × F k

0 (X) + bc, c = 1 . . . 96, (1)

where wc
k are the parameters of the 11× 11 convolutional kernel connecting the

k-th channel of input image with the c-th channel of the conv1 layer.
In our network, we choose ReLU layers interleaved among these hidden layers

as the nonlinear activation unit, which can vanish the gradient problem and
can improve the learning speed and the classification accuracy more than the
traditional sigmoid and tangent functions.

3.2.1. Training the DFN

Our objective is to use the proposed DFN to learn how to correctly enclose
the target in a bounding box in each frame of a video sequence. For this purpose
we built-up a training dataset from the ILSVRC2013 Validation Dataset in
order to fine-tune the parameters transferred from Alexnet. We used a data
augmentation approach to obtain several patches from each detected object in
the original ILSVRC2013 dataset. Provided that the ground truth is bounded
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by a rectangular frame of width w, height h and center C(xc, yc), these patches
were generated as follows:

• 10 positive patches were generated by repeating two times the original
(correctly framed) patch and adding 8 more patches with the same dimen-
sions of the original but varying their centers ±1 pixel both in X and Y
coordinates.

• 10 negative patches were also generated with centers Ci(xi, yi), where
xi ∼ N (xc, w/6) and yi ∼ N (yc, h/6), and provided Ci does not fall inside
a rectangle of w

5 ×
h
5 pixels, centered in C.

This idea is graphically depicted in Figure 1(a) with an orange pseudo-ring.
Thus, we build 20 positive and negative examples for each object in each

image. Since the ILSVRC2013 Validation Dataset has 20121 images, we gener-
ate 555020 positive and 521360 negative examples with our sampling strategy.
These examples were then filtered to remove those frames that only contained
part of the tracking object. ILSVRC2013 contains many objects which appear
only partially on an edge of the image, but we are not interested in showing
those partial objects to our DFN since detecting only part of an object in target
tracking tasks is suboptimal. Therefore, after carefully analyzing the generated
dataset, we manually removed the undesired examples, leaving a total of 335960
positive and 332444 negative examples.

The DFN was trained using a stochastic gradient descent (SGD) algorithm.
In every training iteration the parameters of the network were updated based
on a minibatch of randomly selected positive and negative examples. We set
the learning rate to 1 · 10−5, momentum to 0.9, weight decay to 5 · 10−4 and
the size of the training minibatch was 128 examples. The stopping criterion in
the training process was based on convergence of the model, but limited to a
predefined number of 36000 maximum iterations.

3.2.2. Using the trained model

In this section we describe how the trained DFN is used to track an object
in a video sequence. This operation is depicted graphically in Figure 1(b). The
starting point is the bounding box of the object to be tracked in the first frame of
the video sequence. The procedure then processes the rest of the video sequence,
starting in the second frame, as follows:

Firstly, we generate 90 candidate patches whose center coordinates, Cp(xp, yp),
are randomly selected as xp ∼ N (xc, w/6) and yp ∼ N (yc, h/6), where C(xc, yc)
is the center of the bounding box of the previous frame. The size of this 90
patches is variable to deal with variations in scale and will be detailed in the
next section.

Each patch is used as input image to feed the DFN, which will rank the
patches according to its probability of being a correct bounding box for the
tracked object.

The top 30 ranked patches go to the next stage, conceived to decide which
one better corresponds to the tracked object. For this purpose, a matching score
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function was devised to compares the feature vector of the tracked object in the
first frame of the video and the feature vectors of the patches, selecting the
patch which yields the minimum Euclidean distance. In symbols,

L
(
T f ,F1

)
= arg min

Ff
i ∈T f

‖Ff
i −F

1‖22 (2)

where T f is the set of 30 top ranked patches obtained from the foregoing DFN
in frame f , F f

i is the feature vector of the i-th patch in T f and F 1 is the feature
vector we extracted from the target in the first frame of the video sequence.

Note that we need a robust feature representation for this last stage. For
this purpose we use AlexNet’s fc6 layer to provide the feature vector for the
first patch (the one in the first frame) of the tracked object as well as those for
the 30 candidate patches of the current frame being processed. These feature
vectors will be used in (2) to select the final patch.

We carried out a visual analysis to support our election of AlexNet as feature
provider instead of our own DFN. Thus, we constructed a t-distributed Stochas-
tic Neighbor Embedding (t-SNE) map to evaluate the representation ability and
classification capability of the deep features for both AlexNet and DFN. T-SNE
maps are used for dimensionality reduction, and they are particularly suited
for the visualization of high-dimensional datasets. We used an implementation
based on the Barnes-Hut algorithm (Van Der Maaten, 2014).

Figure 2(a) shows a t-SNE map made using the feature vectors from our
DFN for the 90 candidate patches taken from the second frame of 50 video
sequences used in our experiments. Correspondingly, Figure 2(b) shows the t-
SNE map made with AlexNet’s feature vectors. Both mappings show that the
deep features obtained from the convolutional networks yield a similar grouping
of patches, in the sense that patches belonging to the same object are usually
closer one each other.

However, the feature representation from our DFN also takes into account
how well positioned is the bounding box, since it was fine-tuned for that purpose.
Thus, we can observe, for instance, that there is a group of close patches belong-
ing to different objects (zoom number 1 in Figure 2). Their similarity relies in
the fact that all those patches are poorly framed. We can also see some patches
of the same object (zoom number 2) which are mapped separately, differencing
the well framed from the poorly framed patches.

This bias on the property of being correctly framed could eventually lead
our method to select an incorrect patch in this last stage, if there is more than
one object in it, and the undesired one is better framed than the true target.
Therefore, we opted for using the representation given by AlexNet’s features.

3.3. Dealing with changes of scale

Changes of scale in the tracked object pose a challenging task in visual
tracking processes. They are due mainly to two different reasons:

• When the change of scale is due to variation of the distance between the
target and the camera, which is the general situation.
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(a) DFN fc6 layer

(b) AlexNet fc6 layer

Figure 2: (a) t-SNE mapping of the 90 patches from the second frame of 50 video sequences
using the deep features given by DFN as input. (b) t-SNE mapping with the same patches but
using AlexNet’s deep features. Although the grouping depends in both cases on the object of
the patch, DFN features also represent the property of being (in)correctly framed.

• When the target object is partially occluded, so the bounding box of the
visible part is smaller than in the frames previous to the occlusion.

Here, we do not adopt neither particle filter nor dense sampling search. These
traditional methods search or sample too many candidate objects to distinguish
which one is the most similar to the target, but these approaches usually increase
the computing burden and reduce the running speed. In turn, our proposal
consists of generating patches of different sizes in each frame f . Thus, the 90
patches mentioned in the previous section to feed the DFN will be of 3 different
sizes (30 of each size):

i) same size, the size of the patch used in the previous frame f − 1;

ii) larger size, expanding the dimensions of the previous patch in 2 pixels; and
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iii) smaller size, shrinking the dimensions of the previous patch in 2 pixels.

(a) Distance variation

(b) Partial occlusion

Figure 3: Target change of scale due to distance variation (a) and to partial occlusion (b)
in a target tracking process over two different videos (Freeman3 and FaceOcc1, respectively)
tracked by our proposed method.

Figure 3 illustrates the results obtained with this approach in two examples
of scale change. In Figure 3(a) the man in the video is approaching to the
camera so that the bounding box tracking his face should become larger as the
video sequence advances. In turn, in Figure 3(b) the size of the bounding box
has variations due to the partial occlusion of the target along the video sequence.
We can observe that, when the occlusion disappears, the size of bounding box
quickly recovers its normal size.

4. Experimental evaluation and results

In the experiments, we evaluate our proposed DFN tracker on a target track-
ing benchmark dataset (Wu et al., 2013, 2015), and compare its performance
with 35 state-of-the-art trackers, including the 29 trackers used in (Wu et al.,
2013) plus another 6 newer trackers: KCF (Henriques et al., 2015), TGPR (Gao
et al., 2014), MEEM (Zhang et al., 2014), CNT (Zhang et al., 2016), CNN-SVM
(Hong et al., 2015) and SCT4(Choi et al., 2016). Our deep network is trained
with Caffe framework (Jia et al., 2014), and the source code for the tracking
system is implemented in Matlab on a computer with 16 GB RAM, Intel(R)
Core(TM) i7-4710HQ CPU @ 2.5GHz.

4.1. Evaluation methology

In order to compare our proposed method among other state-of-the-art visual
trackers we will test all of them on 50 fully annotated video sequences presented
in (Wu et al., 2013, 2015). The quality of the tracking process will be assessed
in terms of precision and success, showing the corresponding plots to evaluate
and compare the behavior of the trackers:
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• Precision plot : describes the percentage of frames where the distance be-
tween the center of the bounding box of the tracked target and the center
of the labeled ground truth is lower than a given amount of pixels. We
used 51 different thresholds, kp ∈ {0, 1, . . . 50}

• Success plot : shows the percentage of frames whose overlap is larger than
a given threshold. Overlap is defined as the intersection area between the
predicted tracking box and the ground truth area divided by the union
area of these two regions. Here, we tested 21 different thresholds, ks ∈
{0, 0.05, 0.1, . . . 1}.

Thus, precision and success rates of a tracker t ∈ {1, . . . 36} on a video se-
quence s ∈ {1, . . . 50} for a given threshold (kp or ks, respectively) are computed
following the equations:

Pt,s,kp =

∑Fs

n=1[Dt,s,f ≤ kp]

Fs
(3)

and

St,s,ks
=

∑Fs

n=1[Ot,s,f > ks]

Fs
, (4)

where the number of frames of the video sequence s is Fs, the distance between
the centers of the ground truth and the tracked target in frame f is Dt,s,f , and
the overlap rate is Ot,s,n.

We can obtain one precision and one success plot for each tracker t and each
sequence s varying the thresholds (kp and ks). To summarize such amount of
graphs we need to aggregate the results. The authors of (Wu et al., 2013, 2015)
propose to compute the average precision and success on all the video sequences
as

AveSqPrecisiont,kp
=

∑50
s=1 Pt,s,kp

50

AveSqSuccesst,ks
=

∑50
s=1 St,s,ks

50

These equations have a main drawback: sequences with more frames have
more importance in the final result. Instead, in this paper we are going to use the
average precision and average success plots over the whole tracking sequences:

AveFrPrecisiont,kp =

∑50
s=1

∑Fs

n=1[Dt,s,f ≤ kp]∑50
s=1 Fs

(5)

AveFrSuccesst,ks =

∑50
s=1

∑Fs

n=1[Ot,s,f > ks]∑50
s=1 Fs

(6)

where the averages are computed at frame level, so the frames of all sequences
have the same importance in the final result. In other words, we consider the
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50 video sequences as a single large sequence with as many frames as the sum
of frames of every original sequence (i.e., 29179 frames).

Another important characteristic of this benchmark dataset is that sequences
are categorized according to 11 different attributes (Wu et al., 2013, 2015). Each
attribute represents a specific challenging factor in object tracking (e.g., occlu-
sion, fast motion, or illumination variation). One sequence may be annotated
with many attributes, and some attributes occur more frequently than others.
In Section 4.3 we will analyze the behavior of our approach dealing with these
11 attributes.

4.2. Overall results

In order to avoid cluttering the graphs, we only represent the results of the
12 algorithms with the best performance over all the 50 video sequences, as it
can be seen in Figure 4.

The proposed algorithm in this paper (DFN) is good in precision, Fig-
ure 4(a): in the 80.5% of the frames, the distance between the center of the
tracked bounding box and the ground truth is at most 20 pixels. It ranks 5
out of 36 state-of-the-art algorithms. In particular, the distance between our
algorithm and the best one is getting lower when the threshold is increased.

(a) (b)

Figure 4: Precision and success plots tested on the 50 sequences of the benchmark. We only
show the top 12 trackers out of the 36 trackers used in the comparison. (a) precision plots
drawn based on center location error; the numbers in the legend are the precision at 20 pixels.
(b) success plots based on bounding box overlap ratio; the legend numbers indicate AUC
scores.

Figure 4(a) shows the success plots. In order to analyze these curves we use
the area under the curve (AUC) score. Our DFN tracker, denoted with the red
line, outperforms all the state-of-the-art trackers, including recently published
trackers as KCF, TGPR, MEEM, and SCT4. It also achieved a higher AUC
than well reputed trackers based on convolutional neural networks, like CNT
and CNN-SVM. Moreover, Figure 4(b) shows that when the overlap threshold
is from 0.50 to 0.65, our DFN tracker is superior to all other trackers (including
those not shown in the graph) with a considerable margin.

Let us recall that precision rate is only to measure the deviation of the center
of the tracked bounding box with respect to the center of the true bounding
box, it does not measure the deviation in size of the tracked bounding from the
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ground truth. On the other hand, success rate measure the overlap that takes
into account both position and size of the bounding box.

Figure 5: Precision (top) and success (bottom) Nemenyi tests

Tables with detailed numerical scores of precision and success rate AUCs
obtained by each tracker over each video sequence are reported in an appendix.
To sum up the results, the average rank position of each tracker is shown in
the last row of each table. in order to provide statistical support to the con-
clusions of this analysis, and following the recommendations of (Demšar, 2006),
we carried out a two-step statistical test procedure. The first step consists of
a Friedman test where the null hypothesis states that all the trackers perform
equally. Such hypothesis is rejected. Then, a Nemenyi test is performed to
compare the methods in a pairwise way. Both tests are based on average ranks.
The comparison includes 36 trackers over 50 videos, so the critical difference
(CD) in the Nemenyi test is 8.085 for significance level of 5%. The results are
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depicted in Figure 5.
In these tests, DFN ranks 7th in precision and 6th in success with no signifi-

cant difference between our method and the best algorithm in both cases. Most
of the differences are not significant due, in part, to the high number of tracking
algorithms used in the experiments. Note that there are some differences with
respect the results in Figure 4. As was explained above, Figure 4 shows results
at frame level (all the frames weight equal) while the scores in the Tables of
the appendix and Figure 5 show results at video sequence level (frames in short
video sequences weight more than in long sequences). However, the top 9 algo-
rithms in the rank are the same: SCT4, CNN-SVM, MEEM, DFN, CNT, KCF,
TGPR, SCM, and Struck.

4.3. Attribute-based Performance

It is acknowledge that there can be many kinds of interferences during a
visual target tracking process, such as occlusion, fast motion, illumination vari-
ation, etc. The 50 video sequences in the benchmark are labeled with different
attributes, as it is explained in (Wu et al., 2013, 2015), depending on the chal-
lenging factors present in the sequence. Moreover, many videos undergo several
kinds of interference at the same time. To gain insight on the performance of our
DFN tracker, we further report the performance of the top 12 trackers grouping
the results with respect to the attributes of the video sequences.

Figure 6 shows precision plots of the trackers on the 11 different attributes.
DFN presents a stable performance, having no particular difficulties with any
specific attribute. Figure 7 shows the success rate plots. In this case, DFN is
the best algorithm in 4 groups of videos, those presenting illumination varia-
tion, in-plane rotation, out-of-plane rotation and scale variation. Scale change is
hard to handle for most trackers, regardless of the cause for the scale variation.
Illumination variation is another tough and common problem in which signif-
icant changes of the illumination in the target region are produced. In-plane
and out-of-plane rotation are the challenging difficulties for building a stable
appearance model, because the target rotates in the image plane and out of the
image plane.

In general, DFN yields good results, being robust to many different chal-
lenging situations as we have shown in this section.

5. Conclusion

We presented in this paper a robust method to perform visual target track-
ing. The main component of our system is a Deep Framer Network (DFN),
a convolutional neural network whose initial parameters are taken from a pre-
trained AlexNet (domain transfer), and then they are fine-tuned to learn how to
identify patches of correctly framed objects. The fine-tuning is carried out using
a dataset created ad hoc, with 668404 positive (correctly framed) and negative
(incorrectly framed) image patches. During the visual target tracking process
the DFN ranks candidate patches which are submitted to a matching process
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against the features representing the original object to be tracked. For a more
robust comparison our method uses deep features from AlexNet fc6 layer.

We have obtained very good results compared to state-of-the-art algorithms,
our proposal does not need model updating and online fine-tuning process, mak-
ing it very fast and, therefore, very useful for online real-time visual target
tracking. In addition, the method has proven to be robust against typical in-
terferences during the visual target tracking process.
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Figure 6: Average Precision rate on all related attribute sequences with the 12 leading trackers
regarding each video attribute.
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Figure 7: Average AUC scores based on success rate on all related attribute sequences with
the 12 leading trackers regarding each video attribute.
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Table A.1: Basic information of the video sequences used as benchmark: Start and End frame,
and total number of frames.

Dataset Start End Total Dataset Start End Total

david2 1 537 537 fleetface 1 707 707
sylvester 1 1345 1345 freeman1 1 326 326
mhyang 1 1490 1490 freeman3 1 460 460
david 300 770 471 david3 1 252 252
trellis 1 569 569 carScale 1 252 252
fish 1 476 476 dog1 1 1350 1350
carDark 1 393 393 suv 1 945 945
matrix 1 100 100 motorRolling 1 164 164
ironman 1 166 166 mountainBike 1 228 228
soccer 1 392 392 faceocc1 1 892 892
deer 1 71 71 football 1 362 362
singer1 1 351 351 subway 1 175 175
singer2 1 366 366 freeman4 1 283 283
skating1 1 400 400 skiing 1 81 81
coke 1 291 291 faceocc2 1 812 812
woman 1 597 597 tiger1 6 354 349
walking 1 412 412 tiger2 1 365 365
couple 1 140 140 lemming 1 1336 1336
football1 1 74 74 liquor 1 1741 1741
doll 1 3872 3872 basketball 1 725 725
girl 1 500 500 jumping 1 313 313
boy 1 602 602 jogging-2 1 307 307
dudek 1 1145 1145 bolt 1 350 350
crossing 1 120 120 car4 1 659 659
walking2 1 500 500 shaking 1 365 365

AppendixA. Detailed results

We include in this appendix detailed information about the experiments
carried out in this work. Table A.1 shows the length of the video sequences
used as benchmark. Tables A.2, A.3 and A.4 show the

Due to the large number of experiments, the scores obtained by all the track-
ers in all the video sequences, both in success and precision, are spread in several
tables. Thus, Tables A.2, A.3 and A.4 contain two columns for each tracker,
showing its score in terms of area under the curve in the success plots, and its
position in the ranking with respect to the rest of trackers in the comparison.
Correspondingly, Tables A.5, A.6 and A.7 display the scores in terms of area
under the curve of precision.
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