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A B S T R A C T

It is a challenge problem how to deal with the uncertainty in fault diagnosis of power systems. To solve the
challenge problem, this paper introduces an interval-valued fuzzy spiking neural P system (IVFSNP system),
where the interval-valued fuzzy logic is integrated into spiking neural P systems to characterize the uncertainty.
Based on the IVFSNP system, a fuzzy reasoning algorithm is presented, and the corresponding fault diagnosis
model is developed. IVFSNP system is capable of describing the incomplete and uncertain fault signals from
a supervisory control and data acquisition system equipped together with electric power systems. In order
to evaluate the availability and effectiveness of the proposed fault diagnosis model, two case studies of fault
diagnosis of a transmission network are discussed and analyzed, including complex and multiple fault situations
with the incomplete and uncertain status signals. The results of the case studies demonstrate that IVFSNP
system can be used to diagnose the faulty sections in power transmission networks accurately and effectively.

1. Introduction

A power system is composed of many system sections, such as
generators, transformers, bus bars, transmission lines, etc. These system
sections are protected by the protective system consisted of protective
relays (PRs), circuit breakers (CBs) and communication equipments.
Power systems have more and more complex system sections due to
their scale extension and increasing structure complexity. When the
faults occur, dispatchers need to isolate the influenced system sections
accurately and take the necessary means to restore the normal power
supply as early as possible. The fault diagnosis of power systems is
such a task that distinguishes the faulty system elements according to
the operating signals of protective relays and circuit breakers. These
operating signals are often retrieved from the supervisor control and
data acquisition (SCADA) system in a dispatch center system, which
provides the data source for fault diagnosis. However, these signals are
usually incomplete and uncertain, especially in complex and multiple
fault situations. Therefore, fault diagnosis of power systems becomes an
important and challenging task in the situation that has the failures of
protective devices, multiple faults, and incomplete and uncertain fault
messages.
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In the recent years, a variety of artificial intelligence approaches
have been developed to deal with fault diagnosis problems of power
systems, for example, expert systems (ES) (Lee et al., 2000; Huang,
2002), artificial neural networks (ANN) (Tan and Lim, 2004; Cardoso
et al., 2004; Thukaram et al., 2005), Petri nets (PN) (Sun et al., 2004;
Luo and Kezunovic, 2008; Chen et al., 2015), heuristic optimization
techniques (such as GAs and HBMO) (Lin et al., 2010; Huang et al.,
2013), fuzzy logic (FL) (Chin, 2003), fuzzy relation (FR) (Cho and Park,
1997; Chen, 2011), fuzzy digraph model (FDM) (Chen, 2012b), cause–
effect network (CEN) (Chen et al., 2011), and so on. ES is an approach
that is suitable for operating logics of protective relays and circuit
breakers as well as the diagnosis experience of operators. However, it
has a slow inference speed and poor tolerance ability. Based on the
concept of fuzzy membership, FL can characterize the imprecision and
uncertainty in fault diagnosis problems of power systems, but it needs
to be combined with other approaches. ANN is an adaptive system that
changes its structure based on external and internal information that
flows through the network during the learning phase, and it has the
advantages of good tolerance and strong learning ability. However, the
disadvantages of ANN are the need for numerous samples and poor
generally interpreting ability. When PN is applied in fault diagnosis
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problems, it may suffer from bad tolerance and the difficulty to identify 
false alarm messages. Moreover, heuristic optimization techniques have 
the weakness of slow diagnosis and fail to diagnose the faults in the 
case of inaccurate and loss information. Although FL, FR, FDM and 
CEN possess a certain degree of advantage when they deal with fault 
diagnosis problems of power systems, their ability for solving fault 
diagnosis problems still needs to be investigated further.

Spiking neural P systems (SNP systems, in short) are a class of 
membrane computing models (Ionescu et al., 2006; Pǎun et al., 2010), 
abstracted from the neurophysiological behavior that biological neu-
rons send out electronic pulses along the synapses. SNP systems are 
distributed and parallel computing models, in which neurons work 
in parallel. In recent years, a various of SNP systems and P systems 
were proposed (Song et al., 2013, 2014; Zeng et al., 2014; Peng et al., 
2017d; Wu et al., 2018; Pan et al., 2017; Song et al., 2017), and they 
have been applied to solve different real-world problems (Peng et al., 
2015a,b, 2016; Wang et al., 2016; Peng et al., 2017a; Zhang et al., 
2018; Liu et al., 2017). Among them, fuzzy spiking neural P systems 
(FSNP systems, in short) as a new kind of variants were developed 
by Wang et al. (2013) and Peng et al. (2013), and they have been 
applied to deal with the fault diagnosis problems of power systems, 
for example, Tu et al. (2014), Wang et al. (2015), Peng et al. (2017c) 
and Peng et al. (2018). However, how to handle the incompleteness 
and uncertainty in fault diagnosis problems of different power systems 
is an interesting challenge problem and is worth to discuss further. 
Nowadays, interval-valued fuzzy number is more flexible in dealing 
with uncertainty, so it has been widely used in risk analysis and 
group multi-criteria decision making (Wei and Chen, 2009; Chen and 
Sanguansat, 2011; Chen, 2012a; Baležentis and Zeng, 2013). Although 
interval-valued fuzzy number seems to be very suited to deal with the 
incompleteness and uncertainty of fault alarm information, there are 
no relevant literatures in the field of fault diagnosis of power systems.

In order to solve the challenge problem in power transmission 
networks, by combining interval-valued fuzzy numbers and logic with 
SNP systems, a new variant is investigated, called interval-valued fuzzy 
spiking neural P systems (IVFSNP systems, in short), involving the defi-
nition, modeling and fuzzy reasoning method. Main contribution of this 
paper stays on proposing the IVFSNP systems and developing a fuzzy 
reasoning algorithm and a fault diagnosis model of power transmission 
networks. The introduction of interval-valued fuzzy numbers is helpful 
to characterize and handle the incompleteness and uncertainty of fault 
alarm messages in power transmission networks. The causality between 
a faulty section and its protective relays and circuit breakers can be 
easily and visually modeled by IVFSNP systems, and fault sections for 
power transmission networks can be quickly diagnosed by their parallel 
computing mechanism.

The remainder of this paper is organized as follows. IVFSN P systems 
is introduced in Section 2, including the definition, modeling and 
reasoning methods. Section 3 describes the fault diagnosis problem, and 
then discusses fault diagnosis model based on IVFSNP systems. Two 
case studies of power transmission networks are provided in Section 4. 
Conclusions are finally drawn in Section 5.

2. Interval-valued fuzzy spiking neural P systems

2.1. Interval-valued fuzzy numbers

Gorzalczany (1987) presented the concept of interval-valued fuzzy 
sets. Some basic concepts of interval-valued fuzzy numbers and their 
arithmetic operations are described as follows. An interval-valued fuzzy
number 𝐴 can be defined as

𝐴 = [𝐴𝐿, 𝐴𝑈 ] = [(𝑎𝐿1 , 𝑎
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where 𝐴𝐿 denotes the lower interval-valued fuzzy number, 𝐴𝑈 denotes
the upper interval-valued fuzzy number, and 𝐴𝐿 ⊂ 𝐴𝑈 . The lower

Fig. 1. An interval-valued fuzzy number.

and upper interval-valued fuzzy numbers can be two generalized trape-
zoidal fuzzy numbers. Fig. 1 shows the membership function curve of
the interval-valued fuzzy number 𝐴, where 𝑎𝐿1 ≤ 𝑎𝐿2 ≤ 𝑎𝐿3 ≤ 𝑎𝐿4 , 𝑎

𝑈
1 ≤

𝑎𝑈2 ≤ 𝑎𝑈3 ≤ 𝑎𝑈4 , and 𝑎1, 𝑎2, 𝑎3, 𝑎4 are real numbers in [0, 1].
Note that if 𝐴𝐿 = 𝐴𝑈 , 𝐴 becomes a generalized fuzzy number;

if 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4, 𝐴 becomes a non-negative real number; if
𝑎1 < 𝑎2 = 𝑎3 < 𝑎4, 𝐴 becomes a triangular interval-valued fuzzy
number.
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numbers. Four arithmetic operations for interval-valued fuzzy numbers
can be defined as follows:
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where for ∀ 𝑎, 𝑏 ∈ [0, 1], we define that 𝑎 ∧ 𝑏 = min{𝑎, 𝑏} and 𝑎 ∨ 𝑏 =
max{𝑎, 𝑏}.

2.2. Proposed IVFSNP systems

The IVFSNP systems are a variant of SNP systems, which integrate
interval-valued fuzzy logic into their mechanism. The extension is
mainly represented in the following aspects:

(1) The context in each neuron is changed from an integer (the num-
ber of spikes) to an interval-valued fuzzy number (the potential
value of spikes).

(2) Each neuron is associated with a fuzzy proposition or a fuzzy pro-
duction rule. For the neuron that describes the fuzzy production
rule, an interval-valued fuzzy number 𝑐 is introduced to express
the confidence factor (CF) of the fuzzy production rule.

(3) There is only an extended spiking (firing) rule, of the form 𝑎𝜃 →

𝑎𝛽 (or 𝑎𝜃 → 𝑎𝜃), where 𝜃, 𝛽 are two interval-valued fuzzy numbers.
If a neuron contains a spike with value 𝜃, then its spiking rule is
enabled, hence, it fires to generate a spike with value 𝛽 (or 𝜃) and
the generated spike is sent to its successor neurons.

The proposed IVFSNP systems are given as follows.

Definition 1. An IVFSNP system of degree 𝑚 is a construct

𝛱 = (𝐴, 𝜎1, 𝜎2,… , 𝜎𝑚, 𝑠𝑦𝑛, 𝐼, 𝑂) (2)

where:



Fig. 2. (a) a proposition neuron, (b) a -type rule neuron and (c) a -type rule
neuron.

(1) 𝐴 = {𝑎} is a singleton alphabet (𝑎 is called spike);
(2) 𝜎1, 𝜎2,… , 𝜎𝑚 are neurons of the form 𝜎𝑖 = (𝜃𝑖, 𝑐𝑖, 𝑟𝑖),

𝑖 ∈ {1, 2,… , 𝑚}, where:

(a) 𝜃𝑖 is an interval-valued fuzzy number representing the
value of spikes initially contained in neuron 𝜎𝑖;

(b) 𝑐𝑖 is an interval-valued fuzzy number, which expresses the
confidence factor for a fuzzy production rule or is omitted
in the case of representing a fuzzy proposition;

(c) 𝑟𝑖 is a firing rule of neuron 𝜎𝑖, with the form 𝑎𝜃 → 𝑎𝜃

or 𝑎𝜃 → 𝑎𝛽 , where 𝜃 and 𝛽 are two interval-valued fuzzy
numbers.

(3) 𝑠𝑦𝑛 ⊆ {1, 2,… , 𝑚} × {1, 2,… , 𝑚}, with (𝑖, 𝑖) ∉ 𝑠𝑦𝑛 for ∀1 ≤ 𝑖 ≤ 𝑚
is a synapse graph, defining the synapses between neurons;

(4) 𝐼 and 𝑂 denote the sets of input neurons and output neurons,
respectively.

To deal with fuzzy logic, the neurons in IVFSNP systems are further
divided into three types: proposition neurons, -type rule neurons and

-type rule neurons. The neurons of three types are defined as follows.

Definition 2. Proposition neuron is the neuron that is associated with
a fuzzy proposition in a fuzzy knowledge base.

Fig. 2(a) shows a proposition neuron 𝜎 denoted by a circular sym-
bol, where symbol 𝑎 denotes the spike contained in the neuron.

Definition 3. -type rule neuron is the neuron that is associated with
an ‘‘and’’-type fuzzy production rule in a fuzzy knowledge base, where
the confidence factor (CF) of the fuzzy production rule is expressed
by 𝑐.

Fig. 2(b) shows a -type rule neuron 𝜎 denoted by a rectangle
symbol with , where symbol 𝑎 denotes the spike, symbol 𝑟 denotes
a firing rule of the form 𝑎𝜃 → 𝑎𝛽 , and symbol 𝑐 is the confidence factor.

Definition 4. -type rule neuron is the neuron that is associated with
an ‘‘or’’-type fuzzy production rule in a fuzzy knowledge base, where
the confidence factor (CF) of the fuzzy production rule is expressed
by 𝑐.

Fig. 2(c) shows a -type rule neuron 𝜎 denoted by a rectangle
symbol with , where symbols 𝑎, 𝑟 and ‘‘c’’ are semantically the same
as that in Fig. 2(b).

2.3. Modeling fuzzy production rules

The fuzzy production rules have been commonly used in knowledge
representation, where ‘‘and‘‘ and ‘‘or’’ operations are used to connect
multiple propositions respectively. There are two main types of fuzzy
production rules:

Type 1: if 𝑝1 and 𝑝2 and ... and 𝑝𝑘−1 then 𝑝𝑘 (CF = 𝑐)
Type 2: if 𝑝1 or 𝑝2 or ... or 𝑝𝑘−1 then 𝑝𝑘 (CF = 𝑐) where

𝑝1, 𝑝2,… , 𝑝𝑘−1, 𝑝𝑘 are 𝑘 propositions, and 𝑐 is an interval-valued fuzzy
number used to denote the confidence factor (CF) of the fuzzy produc-
tion rule.

Fig. 3. Modeling (a) type 1-fuzzy production rule and (b) type 2-fuzzy production rule
using IVFSN P systems, respectively.

A fuzzy production rule of type 1 can be denoted by a -type rule
neuron, shown in Fig. 3(a). The 𝑘 − 1 antecedent propositions of the
rule correspond to 𝑘 − 1 proposition neurons, while the consequent
proposition is associated with a proposition neuron. If the -type
rule neuron receives 𝑘 − 1 spikes with values 𝜃1, 𝜃2,… , 𝜃𝑘−1 from its
antecedent proposition neurons, then the spike value of the rule neuron
is 𝜃 = 𝜃1 𝜃2 ⋯ 𝜃𝑘−1. Once the rule neuron fires, it can emit a
spike with value 𝛽 = 𝜃⊗𝑐 to the consequent proposition neuron. Thus,
𝛽 = (𝜃1 𝜃2 ⋯ 𝜃𝑘−1)⊗ 𝑐.

Similarly, a fuzzy production rule of type 2 can be denoted by a -
type rule neuron, shown in Fig. 3(b). If the -type rule neuron receives
𝑘−1 spikes with values 𝜃1, 𝜃2,… , 𝜃𝑘−1 from the antecedent proposition
neurons, then the spike value is 𝜃 = 𝜃1 𝜃2 ⋯ 𝜃𝑘−1. When the rule
neuron fires, it can emit a spike with value 𝛽 = 𝜃⊗𝑐 to the consequent
proposition neuron. Thus, 𝛽 = (𝜃1 𝜃2 ⋯ 𝜃𝑘−1)⊗ 𝑐.

2.4. Fuzzy Reasoning algorithm

A fuzzy reasoning algorithm based on IVSNP systems is introduced.
Suppose that the considered IVFSNP system has 𝑚 proposition neurons
and 𝑛 rule neurons that are one of -type and -type rule neurons,
hence the total number of neurons is 𝑠 = 𝑚+𝑛. To explain the presented
fuzzy reasoning algorithm, some vectors and matrices are described as
follows.

(1) 𝜃 = (𝜃1, 𝜃2,… , 𝜃𝑚)𝑇 is a vector combined by the fuzzy values of
𝑚 proposition neurons. If a proposition neuron has no spike, its
pulse value is given as ‘‘unknown’’ or [(0.0, 0.0, 0.0, 0.0; 0.8), (0.0,
0.0, 0.0, 0.0; 1.0)].

(2) 𝛿 = (𝛿1, 𝛿2,… , 𝛿𝑛)𝑇 is a vector containing the fuzzy values of
𝑛 rule neurons. If a rule neuron has no spike, its pulse value is
given as ‘‘unknown’’ or [(0.0, 0.0, 0.0, 0.0; 0.8), (0.0, 0.0, 0.0, 0.0; 1.0)].

(3) 𝐶 = 𝑑𝑖𝑎𝑔(𝑐1, 𝑐2,… , 𝑐𝑛) is a diagonal matrix consisting of the
certainty factors of 𝑛 fuzzy production rules.

(4) 𝐷1 = (𝑑𝑖𝑗 )𝑚×𝑛 is a matrix representing the synaptic connections
from proposition neurons to -type rule neurons. If there is a
synapse connection from proposition neuron 𝜎𝑖 to rule neuron
𝜎𝑗 , 𝑑𝑖𝑗 = 1; otherwise, 𝑑𝑖𝑗 = 0.

(5) 𝐷2 = (𝑑𝑖𝑗 )𝑚×𝑛 is a matrix representing the synaptic connections
from proposition neurons to -type rule neurons. If there is a
synapse connection from proposition neuron 𝜎𝑖 to rule neuron
𝜎𝑗 , 𝑑𝑖𝑗 = 1; otherwise, 𝑑𝑖𝑗 = 0.

(6) 𝐸 = (𝑒𝑗𝑖)𝑛×𝑚 is a matrix representing the synaptic connections
from rule neurons to proposition neurons. If there is a synapse
connection from rule neuron 𝜎𝑗 to proposition neuron 𝜎𝑖, 𝑒𝑗𝑖 = 1;
otherwise, 𝑒𝑗𝑖 = 0.

Moreover, three multiplication operations are given as follows.

(1) 𝐶 � 𝛿 = (𝑐1 ⊗ 𝛿1, 𝑐2 ⊗ 𝛿2,… , 𝑐𝑛 ⊗ 𝛿𝑛)𝑇 .
(2) 𝐷𝑇 �𝜃 = (𝑑1, 𝑑2,… , 𝑑𝑛)𝑇 , where 𝑑𝑗 = 𝑑1𝑗𝜃1 𝑑2𝑗𝜃2 … 𝑑𝑚𝑗𝜃𝑚,

𝑗 = 1, 2,… , 𝑛.
(3) 𝐸𝑇 ⊛ 𝛿 = (𝑒1, 𝑒2,… , 𝑒𝑚)𝑇 , where 𝑒𝑖 = 𝑒1𝑖𝛿1 𝑒2𝑖𝛿2 … 𝑒𝑛𝑖𝛿𝑛,

𝑗 = 1, 2,… , 𝑚.



Table 1
The proposed fuzzy reasoning algorithm.

Input: 𝐷1 , 𝐷2 , 𝐸, 𝐶, and 𝑂1 = (𝑢𝑛𝑘𝑛𝑜𝑤𝑛,… , 𝑢𝑛𝑘𝑛𝑜𝑤𝑛) (halting condition)
Output: {𝜃𝑡𝑗 ∣ 𝜎𝑗 ∈ 𝑂}
Begin
(1) 𝜃0 ← (𝜃10 , 𝜃20 ,… , 𝜃𝑚0);
(2) 𝛿0 ← (𝛿10 , 𝛿20 ,… , 𝛿𝑛0);
(3) 𝑡 ← 1;
(4) while (𝛿𝑡 ≠ 𝑂1)
(5) 𝛿𝑡 ← (𝐷𝑇

1 � 𝜃𝑡−1) � (𝐷𝑇
2 ⊛ 𝜃𝑡−1);

(6) 𝜃𝑡 ← (𝐸𝑇 ⊛ (𝐶 � 𝛿𝑡));
(7) 𝑡 ← 𝑡 + 1;
(8) end while
End

Table 2
Linguistic values and the corresponding interval-valued fuzzy numbers.

Linguistic terms Interval-valued fuzzy number (IVFN)

Absolutely-low(AL) [(0.0, 0.0, 0.0, 0.0; 0.8), (0.0, 0.0, 0.0, 0.0; 1.0)]
Very-low(VL) [(0.0075, 0.0075, 0.015, 0.0525; 0.8), (0.0, 0.0, 0.02, 0.07; 1.0)]
Low(L) [(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
Fairly-low(FL) [(0.2325, 0.255, 0.325, 0.3575; 0.8), (0.17, 0.22, 0.36, 0.42; 1.0)]
Medium(M) [(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]
Fairly-high(FH) [(0.65, 0.6725, 0.7575, 0.79; 0.8), (0.58, 0.63, 0.80, 0.86; 1.0)]
High(H) [(0.7825, 0.815, 0.885, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]
Very-high(VH) [(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
Absolutely-high(AH) [(1.0, 1.0, 1.0, 1.0; 1.0), (1.0, 1.0, 1.0, 1.0; 1.0)]

Based on the firing mechanism of IVSNP systems, the proposed
fuzzy reasoning algorithm can be described in Table 1. Note that the
inputs of the system are the fuzzy values of the propositions associated
with the input proposition neurons, and when the reasoning is com-
pleted, its outputs are the fuzzy values of the propositions associated
with the output proposition neurons.

3. Fault diagnosis model based on IVFSNP systems

3.1. Problem description

The fault diagnosis of power transmission systems is a process of
identifying faulty components by using the tripping signals of protec-
tion relays and circuit breakers (CBs). Assume that these tripping sig-
nals are from a SCADA system equipped with power transmission sys-
tems. In order to quickly and selectively remove the faulty components,
main measure is a three-section current protection, i.e., main pro-
tection, nearby (first) backup protection and remote (second) backup
protection, when a fault occurs in power transmission network. In this
paper, two types of fault diagnosis are mainly considered: lines and
buses.

Fig. 4 shows a 345 kV power transmission system. This system
consists of 18 system sections, 17 circuit breakers and 60 protective
relays. For the convenience of description, some notations are described
as follows. A bus, line and CB are denoted by 𝐵𝑈𝑆, 𝐿 and 𝐶𝐵,
respectively. The 18 system sections are labeled as 𝐵𝑈𝑆18, 𝐵𝑈𝑆19,
. . . , 𝐵𝑈𝑆25, 𝐵𝑈𝑆27 and 𝐿23, 𝐿24, . . . , 𝐿31. The 17 CBs are labeled
as 𝐶𝐵45, . . . , 𝐶𝐵60 and 𝐶𝐵62. The 60 protective relays are composed
of 26 main relays (𝐵𝑈𝑆18𝑚, . . . , 𝐵𝑈𝑆25𝑚, 𝐵𝑈𝑆27𝑚, 𝐿23 − 𝑥𝑚, . . . ,
𝐿31 − 𝑥𝑚), 17 nearby backup relays (𝐿23 − 𝑥𝑏, . . . , 𝐿31 − 𝑥𝑏), and 17
remote backup relays (𝐿23 − 𝑥𝑠, . . . , 𝐿31 − 𝑥𝑠).

The operational principle of protective relays of power transmission
networks is described as follows.

(1) Protective relays of lines: When a fault occurs on a line, main
protective relays (MPRs) of the line operate, and the correspond-
ing CBs are tripped. For example, if line 𝐿24 fails, MPRs 𝐿24 −
18𝑚 and 𝐿24 − 20𝑚 operate to trip 𝐶𝐵47 and 𝐶𝐵48. Similarly,
when main protections of this line fail to operate, nearby backup
protective relays (NBPRs) operate to trip the CBs connected to

this line. For example, if line 𝐿24 fails and MPR 𝐿24−18𝑚 fails to
operate, NBPR 𝐿24 − 18𝑏 operates to trip 𝐶𝐵47. If line 𝐿24 fails
and MPR 𝐿24 − 20𝑚 fails to operate, NBPR 𝐿24 − 20𝑏 operates
to trip 𝐶𝐵48. In addition, when a section in adjacent region of a
line fails and its protections fail to operate, the remote protective
relays (RBPRs) of the line operate to protect the section. For
example, if section 𝐵𝑈𝑆18 fails and 𝐶𝐵47 fails to trip off, RBPR
𝐿24−18𝑠 operates to trip 𝐶𝐵47. If section 𝐵𝑈𝑆20 fails and 𝐶𝐵48
fails to trip off, RBPR 𝐿24 − 20𝑠 operates to trip 𝐶𝐵48.

(2) Protective relays of buses: When MPRs of a bus operate, all CBs
directly connected to the bus will be tripped. For instance, if bus
𝐵𝑈𝑆22 fails, MPR 𝐵22𝑚 operates to trip 𝐶𝐵51. Note that there
are not any NBPRs for buses. Therefore, when MPRs of a bus fail
to operate, RBPRs of all the adjacent regions, which can protect
the bus, operate to trip off the relevant CBs. For example, if bus
𝐵𝑈𝑆22 fails and MPR 𝐵22𝑚 fails to operate, RBPR 𝐿26 − 22𝑠
operates to trip 𝐶𝐵51 so that the bus can be protected.

3.2. Fault diagnosis model

In this study, IVFSNP systems are used to realize fault diagnosis of
main components (lines and buses) in power systems, in particular, for
the case with incomplete and uncertain signals of protective devices
and CBs. The diagnosis process of IVFSNP systems is described as
follows. Firstly, a fault diagnosis model for each suspicious component
in power transmission system is built by an IVFSNP system. Secondly,
the operational signals of protective devices are retrieved from the
SCADA system; Next, each fault diagnosis model uses the proposed
fuzzy reasoning algorithm to obtain fault confidence levels of suspi-
cious faulty components. Finally, each faulty component is identified
according to its fault confidence level.

The causality between a fault and its protective devices can be
expressed by some fault fuzzy production rules for main components
including lines and buses in power transmission systems. Each fault
fuzzy production rule ha a certainty factor, which represents the degree
of confidence that a fault occurs. Considering the uncertainty in the
knowledge of experts and power dispatchers, linguistic terms are used
to describe the certainty factors, which are denoted by interval-valued
fuzzy numbers and provided in Table 2.

Based on the experience and the levels of protection, some provi-
sions in used in this work can be illustrated as follows. Firstly, the
certainty factors of rule neurons related to both main protections and
nearby backup protections are set to be AH; the certainty factors of
rule neurons related to remote backup protections are set to be VH; if
it involves multiple levels of protections, the certainty factor is set to be
the value corresponding to the highest level of protections. Secondly,
if the confidence level 𝜃 of a section satisfies the condition 𝜃 ≥
[(0.65, 0.6725, 0.7575, 0.79; 0.8), (0.58, 0.63, 0.80, 0.86; 1.0)], the section is
identified as a fault; if 𝜃 ≤ [(0.2325, 0.255, 0.325, 0.3575; 0.8), (0.17, 0.22,
0.36, 0.42; 1.0)], the section is not faulty; otherwise, the section may be
faulty.

In addition, the status signals retrieved from the SCADA system
may include operation failure, mal-operation and misinformation, so
it is necessary to use a confidence level to characterize the operation
accuracy of each section. Therefore, an empirical confidence level is
assigned to each protective device including the protective relays and
its corresponding CBs. Tables 3 and 4 list the confidence levels of the
operated protective devices and the non-operated protective devices
used in this work, respectively.

In practice, a large-scale power transmission system consists of
many system sections. Each system section will correspond to an IVF-
SNP subsystem. Thus, fault diagnosis model of the power transmission
system consists of a lot of IVFSNP subsystems. Note that These IVFSNP
subsystems are parallel. Therefore, fault diagnosis model based on
IVFSNP systems can realize a fast computation.



Fig. 4. A 345 kV transmission system, where symbol ‘‘m’’ refers to the main protective relay, ‘‘b’’ represents the nearby backup relay, and ‘‘s’’ represents the remote backup relay.

Table 3
Confidence levels of the operated protective devices.

Sections Protective devices

Main Nearby Remote

Relays CBs Relays CBs Relays CBs

L VH VH H H FH FH
B VH VH – – FH FH

Table 4
Confidence levels of the non-operated protective devices.

Sections Protective devices

Main Nearby Remote

Relays CBs Relays CBs Relays CBs

L L L L L L L
B FL L – – FL L

4. Case studies

In this section, two case studies of a typical system in power systems
are analyzed to demonstrate the effectiveness and superiority of the
proposed IVFSNP systems: a 345 kV transmission system. These cases
include complex faults and multiple faults with the incomplete and
uncertain status information. The diagnosis results of IVFSNP systems
in the same cases are compared with other diagnosis methods.

4.1. Illustration example: 345 kV transmission system

This example is used to discuss the complex faults and multiple
faults with rejection and incorrect and uncertain information. A 345 kV
power transmission system is studied, shown in Fig. 4, and two cases
are discussed.

4.1.1. Case 1 (complex faults with failure devices and incorrect signals)
Suppose that complex faults occur at transmission lines 𝐿29 and

𝐿30, as shown in Fig. 4. For line section 𝐿29, its MPRs 𝐿29 − 27𝑚 and
𝐿29 − 23𝑚 operate to trip off the corresponding CBs 𝐶𝐵57 and 𝐶𝐵58,
but they fail. Thus, the NFPRs corresponding to line 𝐿29, 𝐿29 − 27𝑏
and 𝐿29 − 23𝑏, operate to trip off the CBs again. Status information

Fig. 5. The fault diagnosis model of line 𝐿30 based on IVFSNP systems.

obtained from the SCADA system are as follows: the operated relays
are 𝐿30 − 23𝑚, 𝐿30 − 24𝑚, 𝐿29 − 27𝑚, 𝐿29 − 23𝑚, 𝐿29 − 27𝑏, 𝐿29 − 23𝑏
and 𝐿25−20𝑠, and the tripped CBs have 𝐶𝐵50, 𝐶𝐵57, 𝐶𝐵58, 𝐶𝐵59 and
𝐶𝐵60.

Firstly, the fault diagnosis models of lines 𝐿29 and 𝐿30, which each
include 25 proposition neurons and 13 rule neurons, are constructed
based on IVFSNP systems. Fig. 5 shows the fault diagnosis model of line
𝐿30. However, the fault diagnosis model of line 𝐿29 is not provided due
to space limitation.

Secondly, since 𝐿29 and 𝐿30 have a similar reasoning process, the
fuzzy reasoning process of 𝐿30 as an example is illustrated as follows.
Initially, interval-valued fuzzy numbers 𝜃0 and 𝛿0 can be obtained
according to the status information of Case 1 and Tables 2–4. In the
case study, 𝜃 is a 25 dimensional vector, and 𝛿 is a 13 dimensional



vector.

𝜃0 =

⎡
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⎢
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⎢
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⎢
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⎢

⎢

⎢

⎣

[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
[(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]

[(0.0, 0.0, 0.0, 0.0; 0.8), (0.0, 0.0, 0.0, 0.0; 1.0)]
[(0.0, 0.0, 0.0, 0.0; 0.8), (0.0, 0.0, 0.0, 0.0; 1.0)]

[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
[(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]

[(0.0, 0.0, 0.0, 0.0; 0.8), (0.0, 0.0, 0.0, 0.0; 1.0)]
[(0.0, 0.0, 0.0, 0.0; 0.8), (0.0, 0.0, 0.0, 0.0; 1.0)]
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𝛿0 =
[

𝑂
]

;

When 𝑔 = 1, we get the results

𝛿1 =

⎡

⎢

⎢

⎢

⎢

⎣

[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
[(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
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𝑂
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
[(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
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;

When 𝑔 = 2, we get the results

𝛿2 =
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𝑂
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
[(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0)]

[(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.0, 0.0, 0.0, 0.0; 0.8), (0.0, 0.0, 0.0, 0.0; 1.0)]
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⎣

𝑂
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0)]

[(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]
[(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]

[(0.0, 0.0, 0.0, 0.0; 0.8), (0.0, 0.0, 0.0, 0.0; 1.0)]

⎤

⎥

⎥

⎥
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⎥
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⎥

⎦

;

When 𝑔 = 3, we get the results

𝛿3 =
[

𝑂
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]

]

𝜃3 =
[

𝑂
[(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]

]

;

When 𝑔 = 4, we get the result

𝛿4 =
[

𝑂
]

.

Thus, the termination condition is satisfied and the reasoning pro-
cess ends. The reasoning result is [(0.9475, 0.985, 0.9925, 0.9925; 0.8),
(0.93, 0.98, 1.0, 1.0; 1.0)] from output neuron 𝜎25. According to the judg-
ment condition in Section 3.2, 𝐿30 is a faulty section with a confidence
level VH. Similarly, we can also obtain that the confidence level of 𝐿25
is [(0.0875, 0.12, 0.16, 0.1825; 0.8)
, (0.04, 0.10, 0.18, 0.23; 1.0)]. Since the confidence level of 𝐿25 is L, 𝐿25 is
not a faulty section. Therefore, 𝐿25−20𝑠 is an incorrect trapping signal.

Likewise, the reasoning result of 𝐿29 is [(0.7825, 0.815, 0.885,
0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)] from output neuron 𝜎25. Accord-
ing to the judgment condition in Section 3.2, 𝐿29 is a faulty section
with a confidence level H. In this situation, the rejection of CBs 𝐶𝐵57

Fig. 6. The fault diagnosis model of line 𝐿24 based on IVFSNP systems.

Fig. 7. The fault diagnosis model of line 𝐵22 based on IVFSNP systems.

and 𝐶𝐵58 after the MPRs 𝐿29 − 27𝑚 and 𝐿29 − 23𝑚 operate results in
the failure diffusion.

The results of Case 1 illustrate that for complex fault problem with
failure devices and incorrect signals, IVFSNP systems not only can
distinguish whether some section is a faulty section with a certain
confidence level, but also determine the incorrect signals.

4.1.2. Case 2 (multiple faults with uncertain information)
The following status information is obtained from the SCADA sys-

tem: the operated relays are 𝐿24−18𝑚, 𝐿24−18𝑠, 𝐿24−20𝑚, 𝐿24−20𝑏,
𝐿25 − 23𝑚, 𝐿26 − 22𝑠, 𝐿27 − 21𝑠 and 𝐵22𝑚, and the tripped CBs have
𝐶𝐵47, 𝐶𝐵48, 𝐶𝐵49, 𝐶𝐵51 and 𝐶𝐵54. It can be seen from the obtained
information that there are two possible information with the faults: one
is that the operating of 𝐿24 − 20𝑚 and the rejection of 𝐶𝐵48 result in
the operating of 𝐿24 − 20𝑏 and the trapping of 𝐶𝐵48 again; another is
that 𝐿24 − 20𝑏 is an incorrect tripping signal.

The fault diagnosis models of lines 𝐿24 and 𝐿25, which each include
34 proposition neurons and 18 rule neurons, are constructed using two
IVFSNP systems respectively. Due to space limitation, fault diagnosis
model of line 𝐿24 is shown in Fig. 6, however, that of line 𝐿25 is
omitted here. Fig. 7 gives the fault diagnosis models of lines 𝐵22 based
on IVFSNP systems, consisting of 3 proposition neurons and a rule
neuron.

Since the fuzzy reasoning process of Case 2 is similar to Case 1, it is
omitted here. After reasoning, we can obtain that lines 𝐿24, 𝐿25 and bus
𝐵22 have the same confidence level, [(0.9475, 0.985, 0.9925, 0.9925; 0.8),
(0.93, 0.98, 1.0, 1.0; 1.0)]. According to the judgment condition in Sec-
tion 3.2, 𝐿24, 𝐿25 and 𝐵22 all are identified as the faulty sections with
the confidence level VH. Similarly, we can also obtain that the con-
fidence levels of lines 𝐿26 and 𝐿27 are [(0.0875, 0.12, 0.16, 0.1825; 0.8),
(0.04, 0.10, 0.18, 0.23; 1.0)]. The confidence levels of 𝐿25 and 𝐿27 are L,
so they both are not the faulty sections.



Table 5
Comparisons between IVFSNP systems and other three fault diagnosis methods.

Cases Diagnosis results

IVFSNP systems FL (Chin, 2003) FR (Cho and Park, 1997) FDM (Chen, 2012b)

1 L29, L30 L30 L30 L29, L30
2 B22, L24, L25 B22 B22 –

4.2. Comparison analysis with other methods

The 345 kV transmission system has been discussed in a number of
literatures, fox example, fuzzy logic (Chin, 2003), fuzzy relation (Cho
and Park, 1997) and fuzzy digraph model (FDM) (Chen, 2012b). The
example is used to compare the abilities of IVFSNP systems and other
three diagnosis methods on diagnosing complex faults and multiple
faults with rejection and incorrect and uncertain information. The
comparison results of the four diagnosis methods in cases 1 and 2 are
provided in Table 5.

4.2.1. Comparison analysis on Case 1
The diagnosis results of IVFSNP systems are the same to that of

FDM (Chen, 2012b): 𝐿30 and 𝐿29 are recognized as the faulty sections.
However, for 𝐿25, the confidence level obtained by IVFSNP systems
is L, while the confidence level obtained by FDM is 0.3. Therefore,
compared with FDM, IVFSNP systems not only can identify that 𝐿25
is not a faulty section with higher confidence level, but also can judge
that 𝐿25 − 20𝑠 is an incorrect tripping signal.

The results in literature (Chin, 2003) showed that FL method can
diagnose only a faulty section 𝐿30 and a non-faulty section 𝐿25.
However, 𝐿29 is not recognized as a faulty section because an error
occurs. The error is caused by some incorrect signals.

In literature Cho and Park (1997), the membership degrees of 𝐿30
and 𝐿29 obtained by FR method are 0.998 and 0.509 respectively.
Therefore, 𝐿30 is distinguished as a faulty section because of its high
membership degree. However, 𝐿29 is not identified as a faulty section
because of its lower membership degree and an error existed in the line.
The error is caused by the incorrect operation of 𝐿25 − 20𝑠 associated
with 𝐿30.

In summary, IVFSNP systems can distinguish all faulty sections,
even if there are the incorrect signals. Therefore, IVFSNP systems are
suitable to deal with complex fault problems with failure devices and
incorrect signals.

4.2.2. Comparison analysis on Case 2
In this paper, lines 𝐿24, 𝐿25 and 𝐵22 are distinguished as the faulty

sections with the confidence level VH. But, lines 𝐿26 and 𝐿27 are
identified as the non-faulty sections because of their lower confidence
levels. Note that Case 3 was not considered in FDM (Chen, 2012b).

In literature (Chin, 2003), it can be distinguished by FL method
that 𝐵22 is a faulty section and 𝐿26, 𝐿27 are the non-faulty sections.
However, FL method cannot identify whether 𝐿24 and 𝐿25 are the
faulty sections because an error occurs.

The membership degree of 𝐵22 obtained by FR method (Cho and
Park, 1997) is 0.937, so it is distinguished as a faulty section. The
membership degrees of 𝐿24 and 𝐿25 are 0.673 and 0.792, respectively.
Since there is the rejection device in the line and the MPRs in lines
𝐿24 and 𝐿25 do not operate, 𝐿24 and 𝐿25 are identified as the faulty
sections even if they have higher membership degrees.

The comparison demonstrates that IVFSNP systems can effectively
deal with multiple fault problems with uncertain information. In addi-
tion, the fault confidence levels represented by interval-valued fuzzy
numbers provide a quantitative description of the fault components
and make the diagnosis results more reliable. Owing to linguistic
terms including uncertainty in certain extent are more flexible than
probability values, the interval-valued fuzzy numbers corresponding
to the linguistic terms provide a more intuitive way for experts and
dispatchers to understand the diagnosis results.

5. Conclusions

In this paper, IVFSNP systems as a novel graphic modeling tool
are proposed to diagnose main faulty sections in power transmission
networks. This approach provides a good diagnosis solution due to its
graphical modeling ability and intelligent reasoning process, and it also
provides a more convenient way for readers to understand the process
and results of fault diagnosis in power transmission systems. IVFSNP
systems have a fast diagnosis process due to their distributed paral-
lel computing feature. Compared with conventional fuzzy numbers,
interval-valued fuzzy numbers contain more uncertainty and can better
reflect fuzziness of subjective judgment. Therefore, IVFSNP systems
can handle incomplete and uncertain tripping signals from the SCADA
system in a more flexible and effective way by using interval-valued
fuzzy numbers, which adequately displays the fault-tolerant capacity of
this proposed method. The case studies on power transmission networks
demonstrate that the proposed diagnosis method can effectively and
accurately deal with complex faults and multiple faults with protection
devices and CBs failure, incorrect and uncertain tripping signals.
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