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Abstract

The quality of meat products is traditionally assessed by chemical or sensorial analysis,

which are time consuming, need specialized technicians and destroy the products. The de-

velopment of new techologies to monitor meat pieces using non-destructive methods in order

to establish their quality is earning importance in the last years. An increasing number of

studies have been carried out on meat pieces combining Magnetic Resonance Imaging (MRI),

texture descriptors and regression techniques to predict several physico-chemical or sensorial

attributes of the meat, mainly different types of pig ham and loins. In spite of the importance

of the problem, the conclusions of these works are still preliminary because they only use the

most classical texture descriptors and regressors instead of stronger methods, and because

the methodology used to measure the performance is optimistic. In this work, we test a wide

range of texture analysis techniques and regression methods using a realistic methodology to

predict several physico-chemical and sensorial attributes of different meat pieces of Iberian
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pigs. The texture descriptors include statistical techniques, like Haralick descriptors, local bi-

nary patterns, fractal features and frequencial descriptors, like Gabor or wavelet features. The

regression techniques include linear regressors, neural networks, deep learning, support vector

machines, regression trees, ensembles, boosting machines and random forests, among others.

We developed experiments using 15 texture feature vectors, 28 regressors over 4 datasets of

Iberian pig meat pieces to predict 39 physico-chemical and sensorial attributes, summarising

16,380 experiments. There is not any combination of texture vector and regressor which pro-

vides the best result for all attributes tested. Nevertheless, all these experiments provided

the following conclusions: 1) the regressor performance, measured using the squared correla-

tion (R2), is from good to excellent (above 0.5625) for 29 out of 39 attributes tested; 2) the

WAPE (Weighted Absolute Percent Error) is lower than 2% for 32 out of 37 attributes; 3)

the dispersion in computer predictions around the true attributes is lower or similar than the

dispersion in the labelling expert’s for the majority of attributes (85%); and 4) differences

between predicted and true values are not statistically significant for 29 out of 37 attributes

using the Wilcoxon ranksum statistical test. We can conclude that these results provide a

high reliability for an automatic system to predict the quality of meat pieces, which may

operate on-line in the meat industries in the future.

1 Introduction

Hams and loins from Iberian pig, which is an autochthonous porcine breed developed traditionally

in the SouthWest of Spain, are one of the most valuable meat products in this country. This

is mainly ascribed to their exceptional sensorial attributes that depend on characteristics of raw

material and processing conditions. Thus, not only characteristics of fresh pieces but also their

modifications during the processing are important parameters to control the technological process

of dry-cured hams and loins [1]. Temperature and relative humidity conditions during the pro-

cessing lead to dehydration and, hence, to weight loss and a water activity decrease. Meat from

Iberian pigs should contain plenty of intramuscular fat, which is an important characteristic, due

to its positive influence on quality parameters on the final product, such as marbling, juiciness,

odor, and aroma [2]. The determination of salt content is important from a microbiological point

of view, but it also influences on the texture and flavor of the final product [3]. Color is also

one of the most interesting characteristics of meat products [4], and for dry cured meat products

it is the most relevant appearance property [5]. It is also important to study the final sensory

quality of Iberian meat products, considering their most distinguished sensorial attributes, such

as appearance, odor, taste and flavor [6]. Scientific studies on these meat products have carried

out the sensory analysis objectively, with trained panellists and following standardised conditions.

Techniques usually carried out for determining these parameters related to the quality of meat
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products are laborious and time consuming, they require the destruction of the pieces and a

trained staff panel in the case of the sensory analysis. In this sense, MRI and computer vision

techniques have been proposed as an alternative, since they are non-destructive, non-invasive,

non-intrusive, non-ionizing and innocuous. The majority of works, that used MRI to determine

quality characteristics of dry-cured products, are focused on hams, allowing to monitor the ripening

process of Iberian [7], Parma [8], and S. Daniele hams [9] and to study Iberian hams as a function

of pig feeding background [10, 11]. To our knowledge, only Cernadas et al. [12] and Caballero

[13] analyzed loins by MRI, allowing: 1) an adequate product classification as a function of pig

breeding; and 2) the prediction of sensory traits.

The general procedure in most of these studies takes three main steps: image acquisition, image

analysis and data analysis. For image acquisition, high field MRI scanners have been used, which

provide high quality images but they are expensive. A cheaper alternative are low field scanners,

whose capability to acquire images of loin with predictive aims in food analysis, despite its low

signal to noise ratio, has been demonstrated in recent works [13, 14].

Regarding the image analysis, most works [15, 13, 16, 17] have only used classical second order

statistics like grey-level coocurrence, grey-level run-length and neighboring gray-level dependence

descriptors to extract texture information from the MRI slices. In relation to data analysis usual

statistical tools, such as Pearson correlation coefficients or principal components analysis, have

been used to process data from MRI and to determine quality parameters of products [8, 7, 9].

Perez-Palacios et al. [18, 15, 13] tested common regression techniques such as linear and iso-

tonic regression to predict quality characteristics. However, these studies evaluated the regression

methods following the well-known cross-validation methodology [19], including slices belonging

to the same meat piece both in the training and testing sets. This metholodoly may provide

optimistic results because the training set includes data from the same meat piece whose quality

characteristics must be predicted.

Taking in mind these considerations, the current work is aimed to test: i) a wide variety of

texture extraction techniques to analyse MRI; ii) a large amount of regression methods using a

realistic evaluation methodology, with the final purpose of predicting different physico-chemical

characteristics and sensorial attributes of meat products with high accuracy in a non-destructive

way; and iii) a study focused on minimizing the needed images for a good prediction in order to

improve the acquisition time.

The paper is organised as follows: Section 2 describes the materials used to obtain the MRI

sequences and to develop the physico-chemical and sensory analysis on the meat pieces; Section

3 briefly explains the texture features extraction techniques and regression methods used; Section

4 shows the experimental setup (datasets and statistical validation) and Section 5 presents and

discusses the results; and finally Section 6 summarises the main conclusions and proposes the
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future work.

Figure 1: Examples of MRI images of hams at different stages of the processing: raw hams (upper

left), end of post-salting (upper right), end of drying (lower left) and dry-cured hams (lower right).

2 Materials

Before describing the image acquisition technology and available data, it is important to emphasize

that the physico-chemical and sensory analyses provide only one attribute value per loin/ham piece,

although the MRI scanners give several images of each loin/ham piece.

2.1 MRI acquisition

Images of hams were firstly obtained using a medical purpose MRI scanner (Philips Gyroscan NT

Intera 1.5 T) in the Infanta Cristina Hospital in Badajoz (Spain). This scanner was used with

the quadrature whole-body coil, and sequences of T1 were applied with the following parameters:

120 × 85 cm field-of view (FOV), 20 ms for echo time (TE), 500 ms for repetition time (TR), 2

mm thick slices, 90o for flip angle, i.e. a T1-weighted spin echo (SE), and 0.23 × 0.20 mm per

pixel resolution. Sixty slices per ham piece were obtained. The MRI acquisition was done at a

temperature of 20o C and it tood approximately 28 minutes for each ham. All the images have
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512 × 512 pixels and 256 grey levels. Figure 1 shows examples of Iberian ham at different stages

of processing.

In relation to loins, they were scanned by using a low-field MRI scanner (ESAOTE VET-

MR E-SCAN XQ 0.18 T) with a hand/wrist coil at the Animal Source Foodstuffs Innovation

Services (SiPA) in the Faculty of Veterinary Science at University of Extremadura (Cáceres, Spain).

The Iberian loins images were acquired with the spin echo (SE) T1-weighted sequence using the

following default values: FOV, 150 × 150 mm; TE, 26 ms; slice thickness, 4 mm; TR, 630 ms;

three acquisitions per sample. Twenty-nine slices per loin with 631×631 pixels and 256 grey levels

were obtained. The MRI acquisition approximately took 50 minutes for each loin. Figure 2 shows

examples of MRI images of loin.

Figure 2: Examples of MRI images of Iberian fresh loin (upper images) and dry-cured loin (lower

images).

This study has been carried out with four batches of different Iberian meat products: i) five

fresh loins; ii) five dry-cured loins; iii) three hams at each stage of the processing: raw hams (0

days), end of post-salting (90 days), end of drying (270 days) and dry-cured hams (660 days); and

iv) ten dry-cured hams.
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Figure 3: The upper and lower panels show, respectively, the box plots of the physico-chemical

attributes of fresh and dry-cured loins (dataset LPC) and the sensorial attributes of dry-cured

loins (dataset LSA).

2.2 Physico-chemical and sensory data

After the MR scanning, all the meat pieces have been destroyed, in order to calculate the true

physico-chemical and sensorial attributes (which represent the ground truth) for each meat piece,

which are used to validate the prediction methods. Fresh and dry cured loins were physico-

chemically analysed by means of 7 attributes whose box plots, labeled as dataset LPC (Loin

Physico-Chemical attributes), can be observed in the upper panel of Figure 3. The lower and

upper ends of the box define the 25% and 75% quantiles, respectively, the red line is the median of
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the values and the wiskers are the 0% and 100% quantiles. These 7 attributes are: moisture, water

activity, instrumental color (boxes “luminance”, “red color” and “yellow color”, which correspond

to L, a* and b* coordinates in the Lab color space) and lipid content (boxes “lipid percentage” and

“lipid dryness”). The moisture was determined at 102±2 oC by the official method (AOAC, 2000;

reference 118 935.29). Water activity was measured in the system Lab Master-aw (NOVASINA

AG, Switzerland) after calibration at 20-22 oC. Instrumental colors were measured using a Minolta

CR−300 colorimeter (Minolta Camera 125 Corp., Meter Division. Ramsey, NJ). The lipid content

of loins was determined gravimetrically with chloroform:methanol (2 : 1, v/v), according to the

method described in [20]. Lipid content was calculated in wet and dry basis (lipid percentage and

lipid dryness in Figure 3).

In addition, determination of salt content and sensory analysis were also carried out in dry-

cured loins. Salt content was volumetrically analysed by the official method (AOAC, 2000; ref-

erence 971.19). A quantitative-descriptive analysis was applied for the sensory analysis, using a

trained panel of thirteen members. The box plots with the attribute values, labeled as LSA (Loin

Sensorial Attributes), can be observed in the lower panel of Figure 3, including two chemical at-

tributes (salt moisture and dryness) and 11 sensorial attributes (traits) of Iberian dry-cured loins

were assessed in a non-structured scale 0− 10: redness, brightness, marbling, hardness and juici-

ness of lean; odor intensity; salty taste; flavor intensity and persistence; cured and rancid flavor.

Analyses were developed as specified in [13].

The batches of hams at the different stages of processing and the dry-cured hams were analysed

by means of moisture and lipid content, following the methodology previously described for loins

(box plots of the values for the hams, labeled as H2, can be observed in the upper panel of Figure

4). Besides, a sensory analysis was developed, as described in [15], in the batch of dry-cured hams.

In this case, 17 sensorial attributes were analysed: moisture (divided by 10 in the lower panel

of Figure 4, in order to use the same scale as the other attributes); lipid content; lean redness,

luminance (brightness), marbling, hardness, dryness, juiciness and pastiness; odor intensity; salty,

sweet and bitter taste; flavor intensity and persistence; cured and rancid flavor. The box plots of

these sensorial attributes for dry-cured hams (labeled as dataset H3) can be observed in the lower

panel of Figure 4.

It is important to emphasize that although the established methods to assess the quality of

Iberian meat products are the physico-chemical and sensorial analysis, both methods have an

inherent experimental error. In order to give a true value for a physico-chemical or sensorial at-

tribute, the experts repeat the measurement 3 or 13 times, respectively, and then they average

the acquired values. We quantify this experimental error defining the TSTD (true standard de-

viation) as the average over the meat pieces of the standard deviation for each physico-chemical

and sensorial attribute k:
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Figure 4: The upper and lower panels show, respectively, the box plots of the physico-chemical

attributes of hams at different stages of the processing (dataset H2) and sensorial attributes of

dry-cured hams (dataset H3).

TSTDk =
1

N

N
∑

i=1

√

√

√

√

1

Mk − 1

Mk
∑

j=1

(

dijk − dik
)2

(1)

where N is the number of meat pieces, Mk is the number of true measurements for attribute k,

dijk is the j-th true measurement of meat piece i and attribute k, while dik is the average over all

the measurements for meat piece i and attribute k.
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3 Methods

In this Section, we present a brief description of the texture features and regression techniques

used in the experimental work. Many texture extraction methods must be applied to square

regions of interest (ROIs), which must be selected from the original images. In the case of loin, a

ROI of 128× 128 was automatically extracted by thresholding the original image using the Otsu

method [21]. Afterwards, the same combination of mathematical morphological filters are used in

order to fill the holes in the segmented region and the ROI is extracted from the centroid of that

region. For ham, the biceps muscle of each piece was extracted using the active contour algorithm

proposed by Caro et al. [22]. Afterwards, for each slice of the biceps a squared 64 × 64 pixels

ROI was extracted from the centroid. The ROIs were analysed by the different texture feature

methods explained in the following subsection.

3.1 Texture features

We used a collection of 15 texture features included in the comparison developed by Cernadas et

al. [23], which includes statistical techniques, like grey level cooccurrence matrix and sum and

difference histograms (both second-order statistical methods), local binary patterns and fractal

analysis; and spectral methods, like wavelets and Gabor filters. In the following, we describe briefly

the texture feature vectors used:

• Second-order statistical features. The Grey Level Cooccurrence Matrix (GLCM) descri-

bes the probability of finding two pixels with the same value at different scales, or distances,

and orientations, or angles [24, 25]. In many practical applications, the orientations used are

0o, 45o, 90o and 135o, and the scales range from one to eight pixels. The GLCM matrices

are averaged for each scale and all orientations. Normally, some features are derived from

GLCM matrices in order to reduce the high dimensionality and to be adequate as input

patterns for regression methods. For each scale, we compute the contrast, homogeneity, cor-

relation and energy of the GLCM matrix. We construct the vectors: COMS, which includes

the four previous features for scale 1; and MCOMS, with the same four features for scales

{1, 2, 3, 4, 5, 6, 7, 8}, summing 32 features. The Sum and Difference Histograms were intro-

duced by Unser [26] as a faster and eficient alternative to GLCM for texture analysis. We

use two vectors: SDH, which includes five features (energy, correlation, entropy, contrast

and homogeneity) calculated for scale 1; and MSDH (multidimensional SDH), including 40

features, 5 for each scale in the above scale set.

• Local binary patterns (LBP). The LBP operator is a well-known texture analysis tech-

nique proposed by Ojala et. al. [27], which describes each pixel comparing its value with the
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neighboring pixels. The main drawback of original method is the high dimensionality of the

LBP descriptor, which has been partially addressed by some LBP versions [28, 27]. We use

the following variants: 1) LBP uniform pattern [27], implemented in the Matlab language

for scientific computing [29] by the LBPMatlab toolbox1, which provides the following tex-

ture feature vectors: LBPriu (LBP with uniform patterns), which uses P = 8 neighbors

and radius R = 1, containing 10 features; and MLBPriu (multi-resolution LBP riu), which

concatenates the features for (P,R) ∈ {(8, 1), (16, 2), (24, 3)} summing 54 features; 2) the

Local Binary Count (LBC), with the following feature vectors [30]: CLBC (Completed

LBC) and MCLBC (multi-resolution Completed LBC), with 9 and 53 features respectively.

The vector CLBC use P = 8 and radius R = 1, while MCLBC concatenates the features

for (P,R) ∈ {(8, 1), (16, 2), (24, 3)}. We use the publicly available2 LBC implementation.

• Fractal texture features. The fractal dimension is also used for texture analysis [31, 32].

Based on our previous experience [33], we use the probability method [34] computing the

fractal dimension for the box sizes L = {3, 5, 7, 9, 11, 13, 15, 17, 19, 21} pixels, yielding a

vector of 10 features called MFP (MultiFractal Probability). Xu et al. [35] introduced a

texture descriptor called MFS (MultiFractal Spectrum), based on fractal geometry theory

and box-counting methods, with 26 features. We use the publicly available MFS3 code with

its default parameter values.

• Wavelet features. Discrete wavelet transform (DWT) representation is a theory for multi-

dimensional signal decomposition [36, 37] which recursively apply filters to decompose the

image into low-pass and high-pass frequency bands. In order to obtain a compact represen-

tation useful for texture analysis, the mean and variance of the energy distribution for the

transformed coefficients in each sub-band and decomposition level are used. We compute

two feature vectors calculating the mean and variance of the energy over the two analysis

filters used (Haar and Daubechies). In both cases we use 3 levels of decomposition and take

the statistics only over the low-low decomposition sub-band. With Daubechies filters we

use a filter of size 4. The feature vectors are: Haar (Haar filter); and Daub4 (Daubechies

filtering), both vectors with 20 features. For the calculation of wavelet texture features, we

use the Wavelab toolbox4.

Nick G. Kingsbury [38] proposed the dual-tree complex wavelet transform (DT-CWT), which

some authors consider as a special case of Gabor Filters with complex coeficients. Celik et

al. [39] uses as texture features the variance and entropy of the magnitude of the coefficients.

1http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
2http://home.ustc.edu.cn/∼zyknight/CLBC.rar
3http://www.cfar.umd.edu/∼fer/website-texture/texture.htm
4http://www-stat.stanford.edu/∼wavelab/Wavelab 850/index wavelab850.html
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For comparative purposes with the DWT, we use 3 levels of decomposition and compute two

feature vectors: DTCWT (mean and variance statistics for 3 scales and 6 directions, 36

features) and DTCWT-VH (variance and entropy statistics for 3 scales and 6 directions,

36 features). For the calculation of DT-CWT, we use the Matlab toolbox5 provided by the

authors.

• Gabor filters. This is a very popular technique for texture classification [40], which con-

sists of sinusoidal waves modulated by a Gaussian envelope. The Gabor filter parameters

used are: central frequency of the filter at the highest frequency (Fm = 0.327), number of

frequencies (nF = 4), number of orientations (nO = 6), the frequency ratio is half-octave

frequency spacing (Fr =
√
2) and standard deviation of the Gaussian enveloped, i.e. the

smoothing parameters (γ = η = 0.5), as it is recommended by Bianconi and Fernández [41],

asumming uniform angular spacing. We use the Simplegabor toolbox6 for multiresolution

Gabor filtering of 2-D signals (images). Given a bank of digital Gabor filters Gij(x, y) with

i ∈ {1, . . . , nF } and j ∈ {1, . . . , nO}, the Gabor transform of the input image is computed

for each filter of the bank. We use the Gabor with Normalisation for Illumination invari-

ant, GNI texture feature vector with 48 features, which also includes the mean µij and the

standard deviation σij of the magnitude of each transformed image.

3.2 Regression methods

A collection composed by the best 28 regressors achieved in the comparative study of Sirsat [42,

43, 44] was applied in the present work (see the list below). The majority of them (24 regressors)

are implemented in the R language for statistical computing [45], using packages detailed in the list

below. Additionally, we also execute other 4 popular regression methods which are implemented

in other platforms: 1) deep learning neural network (which we name dlkeras in the regressor list

below), using the library Keras with the Theano interface in the Python programming language;

2) support vector regression, using the LibSVM library accessed via its C++ interface (named

svr); 3) generalised regression neural network (named grnn) included in the Matlab neural network

toolbox; and 4) extreme learning machine with Gaussian kernels (named kelm), also programmed

in Matlab.

Most regressors in our collection have tunable hyper-parameters, i.e., parameters which must

be specified previously to training, whose values often have a strong influence on the regressor

performance. In these cases, it is a good practice to try several values for each hyper-parameter

in a trial-and-error procedure, and to select the value which provides the best performance on

5http://eeweb.poly.edu/iselesni/WaveletSoftware/index.html
6http://www2.it.lut.fi/project/simplegabor/downloads/src/simplegabortb
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the available data. In order to optimise this performance for each regressor, its tunable hyper-

parameters and the list of values for each hyper-parameter should be known. For the regressors

which are not implemented in R, we directly specify the list of tunable hyper-parameters and

the values used for tuning, which are specified by the regressor documentation. On the other

hand, for the regressors implemented in R we used the list of hyper-parameter values provided

by the R package “Classification and Regression Training” (caret). Specifically, this package

[46] provides the getModelInfo function, which returns for each regressor and dataset a list of

recommended values which should be used for tuning each hyper-parameter (a list of the available

models and their hyper-parameters can be found in this link7). This utility avoids the need to

analyze the documentation of every regressor in order to know proper values to be used for the

hyper-parameter tuning. The values used for each regressor are specified in the following list. The

notation a:b:c means a list of values from a to c with step b (where the step is missing, its value

is assumed to be 1).

1. lm is the linear regression provided by the stats R package [47], which performs multivariate

linear regression.

2. penalized is the penalized linear regression (penalized package), which is regularized by

weighting two penalties: L1, also called least absolute shrinkage and selection operator

(LASSO), is the sum of the absolute values of the linear regression coefficients; and L2, also

called ridge penalty, is the sum of squared coefficients. The weights of both penalties are

tunable hyper-parameters (λ1 and λ2 arguments in the penalized R function) with values

{2i}40 and {2i}30, respectively [48].

3. krlsRadial is the regularized least squares regression (KRLS package) with Gaussian radial

basis function kernel [49]. The regularization parameter (λ=0.1) specifies the trade-off be-

tween model fit and complexity, and the only tunable hyper-parameter is the kernel spread

(σ), with 10 values in the set {10i}2
−7.

4. foba [50] develops ridge regression with forward, backward and sparse input selection (foba

package). The hyper-parameters are the regularization (λ) for ridge regression, with 10

values in the range 10−5–0.1, and the number of selected inputs (k) for prediction, with

values 2 and the number of inputs.

5. avNNet is the model averaged neural network (caret package), a committee of 5 neural

networks of the same size trained using different random seeds, whose attributes are averaged.

The hyper-parameters are the network size, with 7 values, which depends on the specific data,

and the weight decay, with three values 0, {10−i}42.
7https://topepo.github.io/caret/train-models-by-tag.html
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6. grnn is the generalized regression neural network [51] implemented by the Matlab neural

network toolbox. The Gaussian spread is a hyper-parameter, tuned with 14 values in the

range 0.001–2, which governs the smoothness of the approximation (higher for small spread

values).

7. kelm is the extreme learning machine (ELM) neural network with Gaussian kernel [52] using

the publicly available Matlab code8. The hyper-parameters are the regularization parameter

C and the kernel spread tuned with values {2i}14
−5 and {2i}8

−16, respectively.

8. dlkeras is the deep learning neural network [53, 54] implemented by the Keras module [55],

of the Python programming language. This network has three hidden layers tuned with 25,

50 and 75 neurons for each layer (27 combinations).

9. svr is the epsilon-support vector regression with Gaussian kernel, using the C++ interface

to the LibSVM library [56] . The regularization hyper-parameter C and the kernel spread γ

are tuned with the same values as kelm (see above).

10. M5 is a regression tree [57] implemented by the Weka Data Mining Software9 and accesed

from a R program through the RWeka package, tuning three flags: pruned and smoothed,

with values yes and no each one; and rules/trees, a flag to select between a tree of a rule

set.

11. cubist [58] is a M5 rule-based regressor with corrections based on nearest neighbors in the

training set (Cubist package). Its hyper-parameters are the number of training committees

(5 odd values between 1 and 10) and the number of neighbors for prediction (5 values from

2 to 20).

12. earth [59] is the multivariate adaptive regression spline (MARS), implemented by the earth

package. The maximum number of terms in the model (nprune) is tuned with up to 15 data-

dependent values between 2 and 17.

13. bagEarth is a bagging ensemble of multivariate adaptive regression splines (MARS) base

regressors implemented by the caret and earth packages. The only hyper-parameter is the

maximum number of terms (nprune) in the pruned regression model, with 10 data-dependent

values.

14. gbm is the generalized boosting regression model (gbm package), called stochastic gradient

boosting machine in the caret model list (foonote 7 above). The hyper-parameters are the

8http://www.extreme-learning-machines.org
9https://www.cs.waikato.ac.nz/ml/weka
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maximum depth of input interactions (interaction.depth), with values 1:5, and the num-

ber of trees for prediction (n.trees), with values 50:50:250. We use a Gaussian distribution

and shrinkage=0.1.

15. gamboost (mboost package) is a boosting ensemble of generalized additive models [60]. The

number of initial boosting iterations (mstop) is tuned with 10 linearly spaced values between

50 and 500.

16. rf is the random forest [61] ensemble of averaged random regression trees (randomForest

package). The number of inputs selected at each tree (mtry) is tuned with 10 values between

2 and the number of inputs.

17. Boruta [62] is the random forest ensemble with additional feature selection (Boruta pack-

age). The only hyper-parameter is mtry, tuned as rf.

18. RRF is the regularized random forest (RRF package), which uses regularization to select

inputs in random forest. The hyper-parameters are mtry, with 3 values between 2 and the

number of inputs, and the regularization and importance coefficients (coefReg and CoefImp),

with 2 and 3 values between 0 and 1, respectively.

19. cforest (party package) is a random forest ensemble of conditional inference trees [61], each

one fitting one bootstrap sample. The only hyper-parameter is mtry, tuned as rf.

20. extraTrees [63] is the ensemble of extremely randomized regression trees (extraTrees

package). Its tunable hyper-parameters are mtry (tuned as rf) and the minimum sample

size to split a node (numRandomCuts), with values 1:10.

21. qrf is the quantile regression forest (quantregForest package), a tree-based ensemble

which generalizes random forest in order to estimate conditional quantile functions. The

mtry parameter is tuned as rf. The quantile prediction threshold (what argument in the

predict.quantregForest function) is set to 0.5.

22. rqlasso develops quantile regression with least absolute shrinkage and selector operator

(LASSO) penalty, using the rq.lasso.fit function in the rqPen package. This method

fits a quantile regression model with the LASSO penalty [64], tuning the regularization

hyper-parameter (λ), with 10 values from 0.1 to 10−4.

23. brnn [65] is the Bayesian regularized neural network (brnn package), which uses inference

to determine the weights of the squared error and the squared sum of unnormalized network

weights [66]. The number of hidden neurons is tuned with 15 values from 1 to 15.
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24. bartMachine [67] is the Bayesian additive regression tree (bartMachine package). The

number of trees is set to 50 and the tunable hyper-parameters are the prior boundary (k),

with 3 data-dependent values between 2 and 5, and the base value in tree prior to decide if

a node is terminal or not (α), with values 0.9, 0.945 and 0.99.

25. gaussprPoly develops Gaussian process regression with polynomial kernel (polydot), tun-

ing the kernel hyper-parameters degree and scale, both with three values in the ranges 1:3

and {10−i}31, respectively.

26. lars [68] is the least angle regression (Lars package). The lasso type and fractionmode are

specified for training and prediction respectively, and the fraction hyper-parameter (called

s) is tuned with values from 0.05 to 1.

27. ppr [69] performs the projection pursuit regression (stats package), which iteratively cal-

culates the coefficients that minimize the fraction of unexplained variance which is explained

by each function. The only hyper-parameter is the number of terms to be included in the

final model (nterms), with values 1:10.

28. enet is the elasticnet regression model (elasticnet package), computed using the least

angle regression - elasticnet (LARS-EN) algorithm [70]. There are two hyper-parameters (5

values each one): the quadratic penalty or regularization hyper-parameter (λ, with values 0,

{10−i}41) and the fraction (s) of the L1 norm of the coefficient vector relative to the norm

at the full least squares solution (the fraction mode is used in the predict.enet function,

with values 0.05, 0.28, 0.52, 0.76, 1).

4 Experimental setup

This Section describes the datasets and the evaluation methodology used in the experimental

work.

4.1 Dataset description

Four datasets were formed depending on the physico-chemical and sensorial attributes available

for each meat piece (our ground truth): LPC, LSA, H2 and H3. Each dataset was construted

with computational (from MRI), physico-chemical and/or sensory data. The LPC (Loin Physico-

Chemical) dataset contains 5 fresh loins and 5 dry-cured loins of Iberian pigs, specifically values of

features from 290 images (29 images per loin) and from the following physico-chemical attributes:

moisture; water activity; L, a*, b*; lipid content in wet and dry basis. There are 30 values for each
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physico-chemical characteristic (3 values per loin) and 60 values for color components (6 values

per loin).

The LSA (Loin Sensorial Attributes) dataset contains the five dry-cured loins included in

LPC dataset, including features from 145 images and salt in wet and dry basis (3 values per loin);

redness, brightness, marbling, hardness and juiceness of lean; odor intensity; salty taste; flavor

intensity and persistence; cured and rancid flavor (12 values per loin).

The H2 (ham during maturation process) dataset contains data from 12 tights of Iberian pigs

at four stages of maturation process (three for each stage). The number of slices for each tight

varies with the piece and maturation stage. In order to form a dataset with the same number

of patterns per piece, 16 slices of each piece were considered. So, this dataset contains data of

features from 192 images (12 hams × 16 slices) and from the physico-chemical attributes moisture

and lipid content in wet basis (2 values per ham).

The H3 (cured ham) dataset contains data from 10 dry-cured Iberian ham, specifically data

from 150 images (15 slices × 10 pieces) and from the following physico-chemical characteristics and

sensorial attributes: moisture and lipid content in wet basis (1 value per ham); redness, luminance,

marbling, hardness, dryness, juiciness and pastiness of lean; odor intensity; salty, sweet and bitter

taste; flavor intensity and persistence, cured and rancid flavor (13 values per ham).

Combinations of the 15 texture feature vectors and the 28 regressors were tested in each dataset

in order to predict each quality attribute. Thus, the number of experiments developed for dataset

LPC is 2940, which corresponds to 15 texture vectors times 28 regressors times 7 attributes to be

predicted. For the rest of datasets, we have 15×28×13 attributes = 5460 experiments for dataset

LSA, 840 (=15× 28× 2 attributes) for H2 and 7140 (=15× 28× 17 attributes) for H3.

4.2 Evaluation methodology

In order to evaluate the regressor performance for the prediction of physico-chemical and sensorial

attributes, a variant of the common cross-validation methodology has been used to develop the

tuning of regressor hyper-parameters and to guarantee a realistic evaluation. The main changes

introduced by this experimental methodology are: 1) three data partitions (or sets), for training,

validation and test, are used instead of classical cross-validation, which only uses training and

test sets; and 2) the dataset is created leaving one meat piece out, instead of the usual random

partitioning of the image collection, i.e., the images of one meat piece are used as test set, and

the images of the remaining meat pieces are randomly divided into training and validation sets.

The texture feature vector calculated for each image is used as input pattern for the regressors,

so there are so many patterns as images.

The validation set is used to fix the tunable hyper-parameters. If two datasets (training and

test) were only used, the test set would be the only available to evaluate: 1) the model performance
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with each hyper-parameter value in order to select its best value and 2) the performance of the final

model with the selected hyper-parameter value. However, this methodology would optimistically

bias the performance evaluation, because it would measure the final performance on the same

test set where the model, trained with the selected value of the hyper-parameter, achieved its

best performance. Thus, the performance of the final model for other datasets, different to the

test set, would be expected to be lower. The need to select an “optimal value” for the tunable

hyper-parameters requires to evaluate the model, trained for each hyper-parameter value, in a

dataset different to the test set, where the performance of the final model, trained with the best

hyper-parameter values, will be tested. Hence the need of validation sets.

#Patterns

Dataset Ni ni #images #training #validation #testing #attributes

LPC 10 29 290 188 73 29 7

LSA 5 29 145 94 22 29 13

H2 12 16 192 124 52 16 2

H3 10 15 150 97 38 15 17

Table 1: Second, third and fourth columns are respectively the number of meat pieces (Ni) and

images per piece (ni) and the total number of images of dataset i = {LPC,LSA,H2, H3}. The

following columns are the number of patterns used in the training, validation and test sets, and

the last column is the number of attributes to be predicted for each dataset.

To develop experiments, Ni partitions were created, being Ni the number of meat pieces in the

dataset i, with i = {LPC,LSA,H2, H3}. Therefore, there are Ni training, validation and test

partitions. For each partition j, with j = 1, . . . , Ni, the patterns Pij belonging to the i-th meat

piece are used as test set, and the rest of patterns (which belongs to images of meat pieces l 6= i)

are randomly distributed into the training set (65% of the patterns) and validation set (35%).

All the inputs and attributes are pre-processed (standardized) in order to have zero mean and

standard deviation one. Table 1 summarizes the number of training, validation and test patterns

for each dataset. Each regressor is trained on the Ni training partitions for each combination of its

hyper-parameter values (regressors may have zero, one, two or three tunable hyper-parameters),

and tested on its corresponding validation partitions. For each combination of hyper-parameter

values, we select for testing the combination with the lowest RMSE (Root Mean Squared Error)

defined by:

RMSE =

√

√

√

√

1

NV

NV
∑

k=1

(yk − tk)2 (2)
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where NV is the number of validation patterns, yk is the attribute value predicted by the regressor

and tk is the true value (ground truth) of this attribute for the k-th validation pattern. For each

combination of hyper-parameter values, the average RMSE over theNi validation sets is calculated,

and the combination with the lowest RMSE is selected for testing. Finally, the regressor is trained,

using this selected combination of its hyper-parameter values, on the Ni training partitions, and

the final performance is averaged over the Ni test partitions. Instead of using the RMSE as the

final performance measure, we use the squared correlation coefficient R2 because it provides an

absolute measurement of the regressor quality, since its values are bounded between 0 and 1. The

value of R2 is given by:

R2 =

(

NT
∑

k=1

(yk − ȳ) (tk − t̄)

)2

NT
∑

k=1

(yk − ȳ)
2

NT
∑

k=1

(tk − t̄)
2

(3)

where NT is the number of test patterns, while ȳ and t̄ are the average values of predicted and

true attributes, respectively, over the NT test patterns. However, since all the patterns of the

same test partition share the same output value (because they belong to the same meat piece,

which obviously has only one value for each physico-chemical or sensorial attribute), R2 can not

be computed for each test partition separately, because in eq. 3 we would have tk = t̄, for

k = 1, . . . , NT , so that

NT
∑

k=1

(tk − t̄) = 0 in the denominator. In order to avoid this drawback, we

calculate R2 considering jointly all the test partitions, so that in eq. 3 we set NT = Nini, i. e.

the number Ni (with i = {LPC,LSA,H2, H3}) of test partitions multiplied by the number ni

of patterns in each test partition, while yk and tk are the predicted and true attribute values,

respectively, for all the test patterns in all the test partitions; and ȳ and t̄ are the averages of yk

and tk over all the test partitions. This is the R2 value calculated considering each image as a

pattern, which will be named in the following as “Image R2”.

Additionally, for a practical application we are interested in the prediction of a unique value

for each meat piece, and not for each image of the meat piece. The predicted value for a meat

piece might be calculated from the predicted values for their images taking their average value

or, even better, their median value, which is a more robust statistical descriptor. Therefore, we

additionally calculate the “Piece R2” as the squared correlation coefficient between the true value

for each meat piece and the predicted value, also for each piece, calculated as the median of the

predicted values over all the images of the same meat piece.

The MAE (Mean Absolute Error) and WAPE (Weighted Absolute Percentage Error) can also

measure the accuracy of a prediction. The MAE is the average absolute difference between the

predicted and true values of the attribute, while WAPE measures the same difference but expressed
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as a percentage of the attribute mean. Both measures are defined for each physico-chemical or

sensorial attribute k by:

MAEk =
1

N

N
∑

i=1

|yik − tik| WAPEk(%) =

100

N
∑

i=1

|yik − tik|

N
∑

i=1

tik

(4)

where yik and tik are the predicted and true values for attribute k, while N is the number of

samples. As we mentioned, both MAEk and WAPEk can be calculated at the image level, in

which case N represents the number ni of RMI slices, with i = {LPC,LSA,H2, H3}, or at the

meat piece level, in which case N represents the number Ni of meat pieces.

Dataset Attribute Feature Regresor Image R2 Piece R2

LPC

Moisture mfs RRF 0.97399 0.98321

Water activity lbp brnn 0.98670 0.99319

Luminance sdhc brnn 0.83754 0.89144

Redness mfs Boruta 0.79281 0.82514

Yellowness gni rqlasso 0.49286 0.55110

Lipid content mlbp gamboost 0.63743 0.75074

Lipid dryness gni svr 0.33121 0.39543

LSA

Salt moisture daub4 svr 0.77203 0.96250

Salt dryness msdhc krlsRadial 0.92589 0.97021

Redness mfs M5 0.54318 0.48924

Luminance dtcwtVH RRF 0.70834 0.92933

Marbling dtcwt extraTrees 0.44261 0.61367

Hardness haar earth 0.78153 0.88443

Juiciness dtcwt extraTrees 0.55494 0.66212

Odor intensity mfp bartMachine 0.80395 0.88277

Salty taste dtcwt cubist 0.50672 0.64080

Flavor intensity dtcwt rf 0.87716 0.97233

Flavor persistence mfp bartMachine 0.91344 0.93700

Cured flavor msdhc ppr 0.55838 0.74970

Rancid flavor mfs earth 0.62910 0.68779

Table 2: Best squared correlations (R2) achieved by some combination of texture feature vector

and regressor for the different attributes of datasets LPC and LSA.

The Wilcoxon signed rank-sum test [71] will be used to check whether predicted values and

true measurements of each attribute are different. This test compares two samples and tests

the null hypothesis that both belong to distributions with the same mean. When the p-value

provided by this test is lower than 0.05 the null hypothesis should be rejected, which means that
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both samples do not belong to distributions with the same mean, i.e., difference between them is

statistically significant. When p ≥ 0.05, the null hypothesis can not be rejected, so the difference

is not statistically significant.

5 Results and discussion

Dataset Attribute Feature Regressor Image R2 Piece R2

H2
Moisture msdhc bagEarth 0.87763 0.89956

Lipid content sdhc bagEarth 0.80222 0.82825

H3

Moisture gni gaussprPoly 0.66551 0.82557

Lipid content dtcwtVH bagEarth 0.57891 0.71907

Redness clbc gaussprPoly 0.90337 0.91918

Luminance lbp rqlasso 0.83185 0.84785

Marbling gni brnn 0.54744 0.65563

Odor intensity dtcwt foba 0.46149 0.52423

Hardness mfp dlkeras 0.53792 0.77298

Dryness gni krlsRadial 0.39372 0.54720

Juiciness dtcwtVH krlsRadial 0.12706 0.21411

Pastiness msdhc foba 0.31010 0.38175

Salty taste lbp penalized 0.91023 0.91562

Sweet taste dtcwtVH bartMachine 0.57272 0.67130

Bitter taste mclbc krlsRadial 0.88146 0.88157

Flavor intensity dtcwtVH earth 0.28571 0.22666

Flavor persistence mclbc penalized 0.24586 0.34631

Cured flavor mclbc krlsRadial 0.40708 0.50060

Rancid flavor coms svr 0.78085 0.92066

Table 3: Best squared image and piece correlations (R2) achieved by some feature vector and

regressor for the different attributes of datasets H2 and H3.

Tables 2 and 3 show the combination of texture feature vectors and regressors which achieve the

highest squared correlation (R2) to predict each quality attribute of loin (LPC and LSA datasets)

and ham (H2 y H3 datasets) meat pieces, respectively. Classical definition [72] for the correlation

intervals and their significance considers that a R2 value between 0 and 0.0225 means that the two

vectors under comparison (in our case, these vectors are the true and predicted values, tk and yk,

for each MRI slice) are not correlated at all; R2 between 0.0225 and 0.25 means bad to moderate

correlation between them; R2 between 0.25 and 0.5625 means moderate to good correlation; and

R2 > 0.5625 means very good to excellent correlation. Taking this criterion in mind and analysing

Tables 2 and 3 (column “Image R2”), the values of R2 are very good to excellent for 22 out to 39
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attributes, moderate to good for 15 attributes and bad to moderate for only 2 attributes (juiciness

and flavor persistence of dry-cured ham, H3). Considering meat piece (column “Piece R2”), the

R2 values increase in relation to the image R2 being good to excellent for 29 attributes, moderate

to good for 8 attributes and only bad to moderate for 2 attributes (juiciness and flavor intensity

of H3).

Pos. Regr.-Feat. Rank Pos. Regr.-Feat. Rank Pos. Regr.-Feat. Rank

1 bartMach-mfp 107.55 11 svr-mfs 131.15 21 RRF-mfp 139.55

2 svr-daub4 114.75 12 krlsRad-mfs 131.25 22 Boruta-mfp 139.60

3 extraTrees-dtcwt 121.95 13 svr-mcoms 131.30 23 extraTrees-daub4 140.10

4 krlsRad-daub4 123.10 14 dlkeras-mfp 132.35 24 extraTrees-mfp 140.40

5 rf-dtcwt 123.70 15 extraTrees-clbc 135.15 25 cforest-mfp 140.75

6 Boruta-dtcwt 123.90 16 RRF-dtcwt 135.80 26 RRF-dtcwtVH 141.15

7 extraTrees-dtcwtVH 124.90 17 extraTrees-mlbp 136.35 27 Boruta-dtcwtVH 141.50

8 svr-haar 126.20 18 bartMach-dtcwt 137.10 28 extraTrees-lbp 142.20

9 extraTrees-mclbc 126.80 19 Boruta-mclbc 137.75 29 rf-dtcwtVH 142.50

10 krlsRad-haar 130.80 20 rf-mfp 139.40 30 bartMach-dtcwtVH 144.30

Table 4: Table with the Friedman ranks of the 30 best combinations of texture feature and regressor

for predicting the physico-chemical and sensorial attributes of loin (LPC and LSA).

Since the best combination of texture feature and regressor is not the same for all the attributes,

we use the Friedman ranking [73] of the squared correlation (R2) values over the physico-chemical

and sensorial attributes of loins and hams in a separated way, in order to find the combination

of texture feature and regressor which achieves the best R2 over all the loin or ham attributes.

Table 4 shows, in decreasing order, the 30 best combinations of texture features and regressor for

all the physico-chemical and sensorial attributes of loin.

The regressor bartMachine combined with the multifactral probability texture feature (vector

MFP) is in position 1 with a Friedman rank of 107.55, which means that this regressor is aprox-

imately in the position 107 in average over all the combinations of feature vectors and regressors

(420 combinations). The high value (107.55) of this rank means that this combination regressor

+ feature, which is globally the best, is still far from being the most appropriate combination

for most attributes (which would require a much lower rank, e.g. between 1 and 10). The next

seven positions are for wavelet features (vectors Daub4, dtcwt, dtcwtVH and haar) with different

regressors: svr (ranks 114.75 and 126.20 with vectors Daub4 and dtcwt, respectively), extraTrees

(121.95 with dtcwt), krlsRad (123.10 with dtcwt), rf (123.60 with dtcwt) and Boruta (123.90 with

dtcwt). This conclusion can also be extracted from the upper panel of Figure 5, which compares

the R2 achieved by the best combination of texture feature + regressor for each attribute (in
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Figure 5: Comparison of R2 achieved by the best combination of texture feature + regressor for

each attribute (in blue) and by the globally best combination over all the attributes (in red) for

loin (LPC and LSA datasets, upper panel) and ham (H3 dataset, lower panel).

blue), and the R2 achieved by the combination with the lowest Friedman rank (in red). The best

combination for loin (bartMachine + MFP) is near the best R2 (difference below 0.1) for 8 out

of 20 attributes, and difference is middle (0.1-0.3) for other 6 attributes, overcoming 0.3 for the

remaining 6 attributes. The deep learning network (dlkeras) achieves the 14th position with MFS

feature in this ranking, achieving the best result with MFP feature in the Hardness attribute (see

Table 3).

The datasets of ham meat pieces (H2 and H3) are very different: H2 dataset encloses meat
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Pos. Regr.+Feat. Rank Pos. Regr.+Feat. Rank Pos. Regr.+Feat. Rank

1 bartMach+dtcwtVH 89.41 11 krlsRad+dtcwtVH 128.35 21 Boruta+dtcwt 137.94

2 bartMach+dtcwt 92.94 12 rf+dtcwtVH 130.82 22 grnn+dtcwt 138.94

3 bartMach+gni 106.71 13 cforest+dtcwt 131.12 23 kelm+dtcwt 141.88

4 rf+gni 118.35 14 RRF+dtcwt 131.18 24 krlsRad+daub4 142.12

5 cforest+gni 121.47 15 RRF+dtcwtVH 131.82 25 pnlz+dtcwtVH 143.18

6 RRF+gni 122.76 16 Boruta+gni 132.82 26 gambst+dtcwtVH 143.88

7 extraTrees+gni 123.71 17 svr+dtcwtVH 133.76 27 brnn+dtcwtVH 144.00

8 krlsRad+gni 124.53 18 bartMach+mfp 134.82 28 kelm+gni 144.65

9 extraTrees+dtcwt 128.00 19 cforest+dtcwtVH 134.88 29 gbm+dtcwtVH 145.00

10 rf+dtcwt 128.29 20 kelm+dtcwtVH 136.18 30 grnn+dtcwtVH 146.65

Table 5: Table with the 30 best combinations of textures features and regressor for predicting the

physico-chemical and sensorial attributes of dataset H3 (ham) using the Friedman rank.

pieces during the ripening process, while H3 dataset only includes dry-cured hams. So, these

datasets are not studied together. For dataset H2, bagEarth (bagging ensemble of MARS base

regressors) combined with the textures features Sum and Difference Histograms (vectors SDHC

and MSDHC) achieves the best R2 for both physico-chemical attributes (see column “Image R2”

in Table 3): 0.88 with MSDHC for moisture (0.87 with SDHC, not included in the table) and

0.80 with SDHC for lipid content (0.77 with MSDHC, not included in the table). In consequence,

bagEarth combined with SDHC is useful to predit both attributes.

Table 5 shows the best combinations of texture features and regressor for all the physico-

chemical and sensorial attributes of dry-cured ham (dataset H3) according to the Friedman rank.

The regressor bartMachine combined with wavelet texture features (vectors dtcwtVH and dtcwt)

are the best with ranks of 89.4 and 92.9, respectively. The bartMachine also achieves the third

position combined with another frecuencial texture descriptor, the Gabor texture feature (vector

GNI). The following regressors are different variants of random forest (regressors rf, cforest, RRF

and extraTrees) combined with GNI, whose Friedman ranks are 118, 121, 122 and 123, respectively.

In every case, the first positions are for frequency texture descriptors (vectors DTCWT-VH,

DTCWT and GNI). In the lower panel of Figure 5 the best combination (bartMachine + dtcwt-

VH, in red) is below the best R2 (in blue) by less than 0.1 in only 2 of 17 attributes, between

0.1-0.3 for 9 attributes and above 0.3 for the remaining 6 attributes.

Considering jointly the combination regressor-feature which achieves the best R2 for each

attribute (Tables 2 and 3) and the best position in the Friedman rankings (Tables 4 and 5) for loin

and ham, some regressors outstand: bartMachine (which achieves the best R2 in 3 attributes and

positions 1 and 1-3 in loin and ham rankings), svr (3 attributes, positions 2 and 17), extraTrees
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Figure 6: Upper panel: box plots of the best R2 achieved by some regressor, divided by the globally

best R2 (named R2
max), over the attributes of loin (datasets LPC and LSA) for each feature. Lower

panel: box plots of the best R2 achieved by some feature, divided by R2
max, over the attributes of

loin (same datasets) for each regressor.

(2 attributes, positions 3 and 7), krlsRadial (4 attributes, positions 4 and 8) and rf (1 attribute,

positions 5 and 4). Other well-performing regressors are earth and bagEarth (3 attributes each

one). These regressors also achieve very good results in a recent and very extensive comparison

of regression methods [44], although the globally best regressors in this comparison (cubist and

M5) only win in the current paper for 1 attribute each one. This is not surprising, because we can

not expect that a given method will be the best in all the problems. Similarly, the deep learning

network (dlkeras) only achieves the best R2 in the current study for one attribute (hardness of

cured ham, H3) and it is not ranked in the first positions. This also happens in [44], where dlkeras
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achieves the 18th position in a ranking of 77 regressors, despite of the good performance of deep

networks in many problems.
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Figure 7: Upper panel: box plots of the best R2 achieved by some regressor, divided by the globally

best R2, over the attributes of ham (dataset H3), for each feature. Lower panel: box plots of the

best R2 achieved by some feature, divided by R2
max, over the attributes of ham (dataset H3) for

each regressor.

Figures 6 and 7 show the boxplots of R2/R2
max for texture features and regressors. The upper

panels show one box for each texture feature, labelled in the horizontal axis. For example, the box

of feature mfs shows the values of R2/R2
max achieved by this feature for all the attributes: for each

attribute, R2 is the best squared correlation achieved by this feature with any regressor, and R2
max

is the best R2 achieved by any feature and regressor (also for that attribute). The lower panels

show one box for each of the best 15 regressors, labelled by the horizontal axis. Each box (e.g.,
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for regressor svr) plots the values of R2/R2
max achieved by this regressor over all the attributes.

For each attribute, R2 is the best value achieved by that regressor over all the features, and R2
max

is the best R2 achieved by any regressor and feature for that attribute. In both panels, boxes are

sorted by decreasing upper end of the box, which identifies the 75% quantile of the distribution.

Considering features and loins (upper panel of Figure 6), multi-fractal (mfs and mfp) and wavelet

(dtcwt) exhibit the highest upper ends, very near to one, while the following four features (msdhc,

dtcwtVH, sdhc and gni) are about 0.95 and daub4 and haar are about 0.92. The remaining

features are below 0.9. With respect to regressors (lower panel of Figure 6), the best 15 regressors

exhibit 75% quantile above 0.9, being the best ones svr, cubist (with the narrowest box), kelm,

extraTrees (which has the highest median), rf and RRF. Considering features and ham (upper

panel of Figure 7), only wavelet (dtcwtVH, which exhibits clearly the highest 75% quantile and

the highest median) and Gabor (gni), both frequencial features, have upper ends above 0.9, while

the following four features (mclbc, dtcwt, mfp and clbc) lie between 0.8 and 0.9, and the remaining

ones are below 0.8. Considering regressors (lower panel of Figure 7), krlsRadial exhibits the best

median, 75% quantile and the narrowest box, followed by gaussprPoly, enet and svr (with upper

end above 0.9), while the remaining regressors have upper ends below 0.9.

5.1 Results validation in meat industry

Table 6 shows the quality measures WAPE, MAE and TSTD for the combination of texture

feature vector and regressor which best predicts each physico-chemical and sensorial attribute of

all datasets. Globally, the WAPE is less than 1% for 20 out of 37 attributes, between 1% and 2%

for 12 attributes and higher than 2% for only 5 attributes (2.58% for redness, 4.19% for marbling,

2.64% for hardness and 2.99% for rancid flavor in dataset LSA; and 2.12% for rancid flavor in

dataset H3). The MAE evaluates the mean dispersion of the computer prediction values around

the attribute, which is the average over the true measurements, and the TSTD evaluates the

mean dispersion of the true measurements. We can see in Table 6 that this dispersion is lower

for computer prediction than for true measurements in all sensorial attributes (datasets LSA

and H3), except for marbling in dataset LSA. For most physico-chemical attributes (all the LPC

attributes excepting luminance and redness, and the H2 attributes), the dispersions are higher for

computer predictions than for true values. The dispersion in the true values might be influenced

by the low number of measurements for physico-chemical and sensorial attributes (3 and 13 values,

respectively). The values in column p-value are provided by a Wilcoxon test whose null hypothesis

is that computer predictions and true measurements come from distributions with equal means.

The column Sign shows the statistical significance of difference between predicted and true values:

a value of YES means that this difference is significant, so the null hypothesis is rejected (i.e.,

both values do not come from distributions with equal means), which happens when p <0.05; a
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Set output features regressor WAPE (%) MAE TSTD p-value Sign.

LPC

Moisture mfs RRF 0.35 1.7007 0.9339 0.91171 NO

Water activity lbp brnn 0.04 0.0038 0.0020 0.88826 NO

Luminance sdhc brnn 0.49 2.3478 2.4713 0.99372 NO

Redness mfs Boruta 0.53 0.7373 0.8514 0.31737 NO

Yellowness gni rqlasso 1.34 0.9106 0.6196 0.50672 NO

Lipid content mlbp gamboost 1.57 2.7024 1.1606 0.28378 NO

Lipid dryness gni svr 1.58 5.4370 3.2442 0.00318 YES

LSA

Salt moisture daub4 svr 0.39 0.0521 0.1048 0.90097 NO

Salt dryness sdhc krlsRadial 0.26 0.0519 0.1318 0.74002 NO

Redness mfs M5 2.58 0.9163 1.2729 0.00069 YES

Luminance dtcwtVH RRF 1.09 0.2516 2.2234 0.83695 NO

Marbling dtcwt extraTrees 4.19 1.4118 1.3683 0.01413 YES

Hardness haar earth 2.64 0.6987 2.0244 0.08731 NO

Juiciness dtcwt extraTrees 1.66 0.4867 1.8682 0.50611 NO

Odor intensity mfp bartMachine 1.07 0.3579 1.6413 0.13950 NO

Salty taste dtcwt cubist 1.45 0.3671 1.9371 0.03237 YES

Flavor intensity dtcwt rf 0.52 0.1746 1.8331 0.12398 NO

Flavor persistence mfp bartMachine 0.59 0.1648 2.4031 0.54743 NO

Cured flavor msdhc ppr 1.44 0.4411 2.1485 0.00159 YES

Rancid flavor mfs earth 2.99 0.2785 2.1733 0.00000 YES

H2
Moisture msdhc bagEarth 0.41 2.8218 0.6924 0.87710 NO

Lipid content sdhc bagEarth 0.85 1.2208 0.6170 0.71819 NO

H3

Redness clbc gaussprPoly 0.76 0.4046 1.5916 0.25505 NO

Luminance lbp rqlasso 0.75 0.1587 1.3805 0.55594 NO

Marbling gni brnn 0.98 0.4412 1.8699 0.78878 NO

Odor intensity dtcwt foba 0.43 0.1777 1.8850 0.66347 NO

Hardness mfp dlkeras 0.88 0.2212 1.6833 0.16533 NO

Dryness gni krlsRadial 0.98 0.2871 2.1488 0.01651 YES

Juiciness dtcwtVH krlsRadial 0.71 0.3318 2.2363 0.93065 NO

Pastiness msdhc foba 1.20 0.4985 2.3763 0.87929 NO

Salty taste lbp penalized 0.47 0.2682 1.2453 0.74699 NO

Sweet taste dtcwtVH bartMachine 1.06 0.1134 1.0339 0.04791 YES

Bitter taste mclbc krlsRadial 1.09 0.1255 1.3411 0.00634 YES

Flavor intensity dtcwtVH earth 0.40 0.2308 1.4931 0.93879 NO

Flavor persistence mclbc penalized 0.43 0.2251 2.1561 0.09481 NO

Cured flavor mclbc krlsRadial 1.09 0.3135 1.7110 0.33841 NO

Rancid flavor coms svr 2.12 0.2328 0.8870 0.20846 NO

Table 6: The quality measures WAPE (%), MAE, TSTD, p-value and significance of the Wilcoxon

test for all datasets and attributes (see details in the text).
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value of NO means that the null hypothesis can not be rejected (i.e., difference is not statistically

significant) because p ≥0.05. In order to apply the test, both vectors must be of the same length,

but the number of true measurements depends on the attribute and varies from 3 until 13, so we

select the same number of predicted values from the slices located in the center of MRI sequences.

The physico-chemical attributes (moisture and lipid content) of dataset H3 are not considered

in this analysis because there is only one true measurement of each attribute, so the number of

attributes is 39-2=37. According to these p-values, difference between computer predictions and

true values (column Sign. in Table) is not significant for 28 out of 37 attributes. For 6 of the

remaining 9 attributes (salty taste, cured flavor and rancid flavor in dataset LSA; dryness, sweet

taste and bitter taste in dataset H3), difference is statistically significant, but MAE is lower than

TSTD, which means that the dispersion of predictions around the true value is lower than the

dispersion of the expert’s scores.
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Figure 8: Predicted and true values (red and blue points, respectively) of all MRI slices for the

attributes: water activity (left) and moisture (right) of dataset LPC. Yellow rectangles show the

dispersion of the true measurements.

Figures 8 and 9 show the predicted and true values for the best combination of texture vector

and regressor for the physico-chemical attributes water activity (for which the best texture feature

vector is LBP and the best regressor is brnn) and moisture (mfs vector and RRF regressor)

of dataset LPC (Figure 8) and the sensorial attribute marbling for datasets LSA (dtcwt and

extraTrees) and H3 (gni and brnn) in Figure 9, to illustrate the meaning of the results showed in

Table 6. The blue and red points are respectively the true and predicted values for each attribute.

As mentioned, the blue points are constants within each interval, because they are the mean of

values over the expert board for sensorial attributes, and over different trails for physico-chemical

attributes. The vertical limits of each yellow rectangles show the interval of the true measurements

for that meat piece. For the physico-chemical attributes of LPC (water activity and moisture, see
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Figure 8), the R2 is very high (0.986 for water activity and 0.973 for moisture, see the panel titles),

the WAPE is very low (0.04% and 0.35%, see the first two lines of Table 6) and the predicted and

true distributions are not statistically differents (p-value > 0.05), so the prediction is very good.

Nevertheless, the MAE is always higher than TSTD for both attributes (0.0038-0.0020 for water

activity, and 1.70-0.93 for moisture), which means that the dispersion of predicted values is higher

than for the true measurements, so many red points in Figure 8 are outside the yellow squares.

This situation is repeated in other physico-chemical attributes.
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Figure 9: Predicted and true values (red and blue points, respectively) of all MRI slices for the

attribute marbling of datasets: LSA (left) and H3 (right). Yellow rectangles show the dispersion

of the true measurements.

As examples of the opposite case are the sensorial output marbling in datasets LSA and H3

(Figure 9), with lower image R2 (0.44 and 0.55, respectively, see the panel titles), which means

good to moderate correlation. Nevertheless, the WAPE of marbling is much higher for dataset

LSA (4.19%) than for H3 (0.98%), see Table 6, and difference between predicted and true values is

statistically significant in LSA, but not in H3. Consequently, the red points are always inside the

yellow squares for dataset H3 (right panel in Figure 9), while many predictions (red points) fall

outside the yellow squares for dataset LSA (left panel in Figure 9). The case of marbling in dataset

H3 is very frequent for all sensorial attributes, in which there are high variability among experts

and then, the predicted value is always within the limits of expert’s scores (i.e., the red points are

inside yellow squares for all meat pieces). So, in spite of the R2 is not so high in some cases (e.g.

cured flavor in dataset H3, with R2 = 0.40 and juiciness, with R2 = 0.12), sometimes with p-value

< 0.05, the computer prediction is reliable enough. For the majority of cases, the WAPE is lower

than 2% (see Table 6), the MAE is lower than TSTD and difference between predicted and true

values is not statistically significant. The situation of marbling for dataset LSA (low image and

piece R2 but MAE < TSTD with p < 0.05) only happens for redness in dataset LSA.
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Figure 10: Image R2 and piece R2 using one, three and all images of a MRI sequence to predict

all physico-chemical and sensorial attributes of the datasets LPC (upper panel) and LSA (lower

panel).

In summary, the use of the best combination of texture feature and regression technique for

each quality characteristic provides the following quality measures: i) the R2 is from good to

excellent for 29 out of 39 attributes tested, as reported by the last column of Tables 2 and 3; ii)

the WAPE is below 2% for 32 out of 37 attributes, as reported by Table 6; iii) the dispersions

in computer predictions around the true value and the dispersion in true measurements (columns

MAE and TSTD in Table 6) are comparable, or even lower, for the majority of attributes; and iv)

according to a Wilcoxon test, the dispersion (MAE) of the computer predictions is statistically
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lower or equal than the variability of the measurement (TSTD) for 34 out of 37 attributes (see

the last two columns in Table 6), being MAE > TSTD for only 3 of 37 atributtes.
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Figure 11: Image R2 and piece R2 using one, three and all images of a MRI sequence to predict all

physico-chemical and sensorial attributes of the datasets H2 (upper panel) and H3 (lower panel).

These results confirm the high reliability of the use of MRI, texture analysis and regressors

to predict physico-chemical and sensorial atributtes of loins and hams pieces. Nevertheless, the

main drawback in order to develop an automatic quality assessment system to operate in a meat

industry is the high scanning time needed to obtain the MRI sequence (about 50 minutes to scan

30 slices). So, it would be desirable that the system develops the prediction based on fewer MR

images, in order to decrease this prediction time. Figures 10 and 11 show: i) the best R2 calculated

at image level (legend “Best image R2”, which corresponds to column Image R2 in Tables 2 and

3); ii) the R2 calculated at piece level using all slices of MRI sequence, with legend “Piece R2 (all

images)”; iii) the three central slices (legend “Three images R2”); and iv) the central slice (legend

31



“One image R2”). The piece R2 (green circle), calculated using all images of its MR sequence,

overcomes the best image R2 (cyan diamond) for all datasets and attributes, except for redness in

LPC dataset and flavor intensity in H3 dataset with differences less than 0.1. If we try to predict

the attributes of the piece using three images R2 (red triangle) or one image R2 (blue square),

they overcome the best image R2 for 31 of 39 attributes, being below the piece R2 (green circle)

for half of attributes. The main conclusion is that the majority of physico-chemical and sensorial

attributes of the meat pieces can be predicted with high fiability using only 3 MR slices (or even

one for some attributes) of a meat piece, which implies a strong decreasing of scanning time. This

fact makes this technology more feasible to implement in the meat industries.

6 Conclusions and future work

The adquisition of Magnetic Resonance Imaging (MRI) sequences of meat pieces allows to monitor

them in a non-destructive and innocuous way, avoiding the use of chemical and sensorial analy-

sis, which is very time consuming, expensive and requires specialized technicians. We develop an

exhaustive comparison of 15 texture feature vectors selected from the statistical and frequency

descriptors (including second order statistics, local binary patterns, Gabor and wavelet filters,

among others) and 28 regression techniques (including most of the state of art methods as the

Gaussian kernel support vector regression and extreme learning machine, deep learning, LASSO,

random forest and elastic net, among others) in order to predict 7 physico-chemical and 17 senso-

rial attributes on four batches (LPC, LSA, H2 and H3) of different Iberian meat pieces (loins and

hams). The physico-chemical attributes predicted are: moisture, water activity, lipid percentage

and dryness, and instrumental color (luminance, red color and yellow color). The sensorial at-

tributes are: lean redness, brightness, marbling, hardness, dryness, juiciness and pastiness; odor

intensity; salty, sweet and bitter taste; flavor intensity and persistence; cured and rancid flavor.

We used the squared correlation (R2), to evaluate the quality of the prediction, calculated for

each MRI slice (image) and for each meat piece. There is no single combination of texture feature

vector and regressor which provides the best R2 for the 39 attributes tested. On the contrary, the

best combination is different for each attribute. However, the R2 at meat piece level is from good

to excellent (R2 > 0.56, which correspond to R > 0.75) for 29 out to 39 attributes, from moderate

to good for 8 attributes (0.25< R2 <0.56) and only bad to moderate (0.02 < R2 < 0.25) for

the remaining 2 attributes (juiceness and flavor intensity in dataset H3). In relation with texture

descriptors, the Gabor features (GNI vector) are the best for 5 attributes, the wavelet features

(daub4, dtcwtVH, dtcwt and haar vectors) in 11 attributes, the fractal features (mfp and mfs

vectors) in 7 atributtes, local binary patterns (lbp, mlbp, mlc and mlbc vectors) in 8 attributes

and second-order statistics (vector coms, mcoms, sdhc, msdhc) in the remaining 8 attributes. In
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relation to regressors, the multivariate adaptive regression splines (earth) and its Bagging ensemble

(bagEarth) achieve the best result for 6 attributes; regularized least square regression (krlsRadial)

is the best for 5 attributes; the support vector regression (svr), Bayesian regularized neural net-

work (brnn), random forest (rf and RRF) and Bayesian additive regression tree (bartMachine),

for 3 attributes each one.

Considering other measurements to evaluate the prediction quality, the WAPE (Weighted

Absolute Percent Error) is lower than 2%, which is widely considered as a threshold of reliability,

for 32 out of 37 attributes, excepting redness, marbling, hardness and rancid flavor of LSA, and

rancid flavor of H3. Besides, difference between computer predictions and true values is not

statistically significant for 28 out of 37 attributes according to a Wilcoxon signed ranksum test,

but for 6 of the remaining 9 attributes with significant difference the dispersion of the computer

predictions around the true values is lower than the variability of the true measurements over trails

or expert’s scores for physico-chemical or sensorial attributes, respectively. At the same time, the

prediction of the majority of physico-chemical and sensorial attributes can be done using only one

or three slices of the MRI sequence of the meat piece, instead of all slices of the sequence, which

implies a strong reduction time of the scanning process. After integrating the proposed procedure

in a software for the MRI computers, the desired analysis of each meat product could be carried out

in real time (no more than 15 min. using 3 images), automatically and non-destructively, which

would suppose an important saving in terms of time and money (one shorter analysis to determine

lots of characteristics and the analysed meat products can be sold). This fact is very important

for the future implementation of an automatic quality assessment system in meat industries.

This analysis leads to the conclusion that the combination of MRI images of meat pieces,

image texture features and regression techniques can be an alternative technique to predict, with

high reliability and in a non-destructive and innocuous way, the physico-chemical and sensorial

attributes of meat. As well, it can be fast enough to operate as a quality assesment system in

the meat industries. The future work will be to develop a software to automatically analyse

MRI of loins and hams, which allows the on-line estimation of their quality characteristics in a

non-destructive way. This software is intended to be included in the production systems of meat

industries.

Acknowledments

The authors wish to acknowledge the funding received from the FEDER-MICCIN Infrastructure

Research Project (UNEX-10-1E-402), Junta de Extremadura economic support for research group

(GRU15173 and GRU15113), from the Xunta de Galicia (Centro singular de investigación de

Galicia accreditation 2016-2019) and from the European Union (European Regional Development

33



Fund - ERDF). We also wish to thank the Animal Source Foodstuffs Innovation Service (SiPA,
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[1] T. Pérez-Palacios, J. Ruiz, D. Mart́ın, J. M. Barat, T. Antequera, Pre-cure freezing effect on

physicochemical, texture and sensory characteristics of Iberian ham, Food Sci. Technol. Int.

17 (2) (2011) 127 – 133.
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[14] D. Caballero, T. Pérez-Palacios, A. Caro, J. M. Amigo, A. B. Dahl, B. K. Ersbll, T. Antequera,

Prediction of pork quality parameters by applying fractals and data mining on MRI, Food

Res. Int. 99 (1) (2017) 739–747.
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