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we study how VP detection results have been reported in literature, pointing

out the main drawbacks of previous approaches. To overcome these drawbacks,
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1. Introduction

In recent years, Computer Vision has been gaining increasing interest within

the huge field of Artificial Intelligence, since its applications in systems used by

the general public continue to grow. The research presented here intends to

provide new tools for this trend to advance in the same direction.

When projecting lines that are parallel in 3D space onto an image plane,

which is two-dimensional, they appear to converge to a point. This point on the

image is referred to as Vanishing Point (VP). Many Computer Vision problems

could benefit from an automatic and accurate VP detector, not only when its

application is obvious, such as in camera calibration, but also in other fields.

For instance, the presence of VPs in an image determine its perspective, which

in turn characterizes it in a wider sense. Perspective is valuable, among other

things, for studying photography composition and aesthetics.

The detection of VPs in an image is a challenging problem that has been

repeatedly tackled, as it has proven to be useful in a wide variety of applications

ranging from 3D reconstruction to road detection. Here, we present a method

for automatically detecting VPs on landscape images. Some natural scenery

images featuring a VP, and taken from the datasets we will later use, can be

seen in Figure 1.

Accurate VP detection requires understanding of how things are arranged

in the image. To do so, different approaches can be undertaken, being the

most typical one the detection of edges in the image. However, methods usu-

ally present limitations that makes them unsuitable for certain type of images.

An example to this are images presenting curves or successions of objects that,

although creating VPs that would be clear for humans, make edge-based algo-

rithms fail. By combining several representations of the same image, obtained

using an scale-invariant contour splitting procedure, we think to have taken one

step forward in solving this issue. This way, our detection algorithm makes less

assumptions on the structure of the image and, additionally, performs a more

relaxed edge grouping.
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Figure 1: Single-point perspective images of natural scenes taken from the databases that are

used in this work.

In literature, VP detection has usually been closely tied to specific appli-

cations. Because of that, previous research tend to report detection results

depending on the application and also on how the dataset is labeled: there is no

consensus on the way of measuring the accuracy of a VP detection algorithm.

Here, we analyze weaknesses in previously proposed methods and present a

novel tunable technique that, in order to ensure a correct modeling of detection

errors, is less permissive than others.

The two main contributions presented in this paper are:

• A novel VP detection algorithm that provides better detection results

on existing datasets by improving edge extraction, edge clustering, and

cluster refinement techniques. It is presented in Section 3.

• A novel method for measuring the accuracy of VP detection results that

encodes better the actual performance of algorithms. It is presented in
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Section 4 .

2. Related Work

The Vanishing Point detection problem has been tackled many times in the

past, featuring different methods for different applications. Accordingly, VP

detection techniques can be classified into several categories depending on the

family of algorithms they use, the assumptions on the image characteristics

they make, or the camera parameters they assume to know. In this section, we

review some of the most recent works and classify them depending on whether

they consider to know or not any intrinsic camera parameter (calibrated vs.

uncalibrated case). Most of the solutions reviewed here, as ours, rely on detected

line segments in the image, which is the most common practice for VP detection.

However, we will also make some comments on novel techniques that make use

of Deep Learning to solve the VP detection problem.

2.1. Calibrated VP Detection

Firstly, VP detection techniques were based on the knowledge of camera

intrinsic parameters. The primary work on VP detection is considered to be

[3], in which edges are mapped onto the Gaussian Sphere, being the camera

focal length known. Image edges are represented by circles on the sphere whose

intersection point denotes the VP location. However, as it was pointed out in

a more recent work [20], this method lacked robustness against texture edges

and weak perspective effects. Since then, researchers have proposed different

solutions for reducing the number of spurious results.

One possibility that leads to better detection results consists in forcing or-

thogonality between the three main real-world vanishing directions. This is

known as the Manhattan-world assumption [7], that limits detection to two

horizontal and one vertical VP. This restriction is used in several publications

in combination with the knowledge of camera parameters [10, 16, 4]. In [16],

they estimate the three VPs by formulating a constrained least-squared opti-
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mization problem and solving it analytically in combination with RANSAC [8],

which is a clustering algorithm.

Another category of estimators use Expectation-Maximization (EM) algo-

rithms for iteratively refining detection results. This was first proposed for the

calibrated case in [1].

2.2. Uncalibrated VP Detection

With respect to the uncalibrated case, certain techniques make some as-

sumptions on the camera parameters —as in [14, 24], where a value for the

focal length is manually selected—, while most of them considers the parame-

ters completely unknown.

Similarly to [1], [13] used EM techniques for the case without knowing the

internal camera parameters.

More Recent works rely on algorithms similar to RANSAC for grouping

edges into clusters, some of them also defining a way of measuring consistency

between edges and VP candidates [21, 26, 24, 23]. In [21], line segment clusters

are created using J-Linkage [22], a model fitting algorithm based on RANSAC.

Similar processes are carried out in [26], but applied to natural scenes and using

a novel contour-based edge extraction method. Also based on J-Linkage there is

[24], where a new consistency error measure and a minimum error VP estimator

are defined. Our work falls into the same category of the last mentioned ones,

although we use a novel RANSAC-based model fitting algorithm and define our

own cluster refinement technique.

Notice that the Manhattan-world assumption can be also applied for the

uncalibrated case. For instance, it is used in [21] for the estimation of the focal

length and in [24, 14] for the estimation of the horizon line, which is a common

application of VP detection.

We conclude mentioning novel methods that perform uncalibrated VP de-

tection that are based on Convolutional Neural Networks, such as [19], in which

they use a regression CNN based on AlexNet; or [11], in which the CNN is

fed with a Gaussian sphere representation of the edges, instead of the image
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itself. State-of-the-art performance on well-known datasets of man-made envi-

ronments was achieved in [25], in which they use a CNN to consider the global

image context when estimating the horizon line and the zenith VP.

3. VP Detection Algorithm

In this section, we explain in detail the complete procedure that allows us

obtaining VP hypothesis from any regular image. First, we detect straight edges

on an image and filter out those which are more likely to be noisy. Then, we

group edges using a clustering method that considers where they point to in the

image. Finally, we refine the obtained clusters, removing outliers and regrouping

the edges that remain, and select the hypothesis which is considered to be the

dominant VP in the image. An illustrative diagram of the whole process can be

seen in Figure 2.

3.1. Edge Detection

As previously stated, VPs are the consequence of the presence of converging

lines in an image. Accordingly, the first logical step will be to obtain these lines

from the image, what can be done employing several different techniques.

Many previous works in VP detection make use of the classical approach for

edges extraction, the Canny Edge Detection algorithm [6], while others use the

more recent detection technique, Line Segment Detector (LSD) [9]. However,

as it was previously pointed out in [26], edge detectors that only consider local

information are not able to distinguish the relevance of edges with respect to

each other and therefore to the whole image. In order to overcome this issue,

in that paper they used the contour detector described in [2], which combines

local and global information to detect contours and generates a hierarchical

representation of the regions within an image. This representation, which is

referred to as Ultrametric Contour Map (UCM), is the one we use for edge

detection.

Having computed the UCM of the image, we proceed to find the connected

pixels presenting the same UCM level. We obtain a set of contours, each one
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Figure 2: Block diagram of the whole VP detection process for an example image, going from

the Ultrametric Contour Map (UCM) to the detected dominant VP.

of them labeled with a probability value. In order to generate straight edges

out of the set of contours, we apply a scale-invariant splitting procedure similar

to that presented in [26]. First, for every contour Cj , and being c1j and c2j its

endpoints, we get the point p̂ that belongs to the contour and whose distance
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to the straight line connecting the endpoints, c1jc2j , is maximal:

p̂ = arg max
p∈Cj

(dist(p, c1jc
2
j ))

where dist is the euclidean distance. Then, Cj will be split at p̂ if that maximal

distance is greater than a certain fraction, α, of the length of c1jc2j :

dist(p̂, c1jc
2
j ) > α · dist(c1j , c

2
j )

While [26] uses a fixed value for α, we consider that different images would

need different values for it depending on the characteristics of its contours.

For instance, there may be images with some kind of building in it, which

mostly produces well-defined, straight contours. On the contrary, other images

may contain big areas of vegetation, which usually lead to shorter and more

irregular contours. In other words, the optimal value for α is likely to have

a strong dependency upon the image content. One of the objectives of this

work is to make the edge extraction process as independent as possible from

the image. For such purpose, we will apply the previously explained method

for every image using a set of values for α and, afterwards, we group together

the resulting edges for all of them. If two or more α values generate the same

exact edge, it is included only once. The detection results obtained with this

combination of edges will be later compared to those obtained with a single

value for α.

3.2. Edge Filtering

Before getting into edges grouping, we filter some of them out to keep only

those that are more likely to be valuable. Edges shorter than certain length l

are removed. Short edges are usually the result of textures, objects, or simply

image noise, thus not giving information about perspective.

We also filter out noisy edges which are likely to be a consequence of a

framed image. In such a case, these edges —which are straight, long, and

sharp, therefore not being split nor filtered out— happen to be among the

longer ones. This would lead to them acquiring an undeserved high relevance,
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as we will see later on. To avoid so, edges whose two endpoints are closer than b

pixels to the same image border are suppressed. Even though this filtering could

remove legitimate relevant edges in unframed images, it is very unlikely that it

affects significantly the detection results, since it is reasonable to assume that

the location of the VP will be defined by several other edges not so close and

parallel to the image border. The presence of a few artificial, long, sharp, and

straight edges would lead to worse results than the absence of some legitimate,

regular edges since, as mentioned, the former would acquire high importance in

our algorithm.

Finally, horizontal edges are also filtered out as, in the 3D scene, they corre-

spond to lines which are parallel to the camera projection plane (image plane)

and, when projected, will not denote the presence of a VP in the image. An

exception to this is the horizon line, which is not a real line in the 3D world but

can appear as an horizontal line in an image. However, as it is not necessarily

present on all images, we find more effective to filter out all horizontal lines,

thus removing many irrelevant edges. We define a parameter φ that establishes

an edge’s minimum angle with respect to the horizontal axis for it to be kept.

3.3. Edge Clustering

After edges extraction and filtering, every image will be represented by a

set of straight edges E = {E1, ..., En}. Having several edges pointing towards

the same area in the image will potentially denote the presence of a VP. Conse-

quently, our goal is now to identify groups of edges fulfilling this requirement.

To do so, many previous approaches [26, 24, 21] have used the multi-model

fitting algorithm J-Linkage [22]. However, we have decided to use T-Linkage

[15], which is a continuous relaxation of J-Linkage that we think could better fit

our problem conditions, as it avoids the need to determine a threshold in order

to convert a continuous problem into a binary one. The rest of this section is

organized as follows: first, we define a way of measuring consistency between an

edge and a VP hypothesis that we will need afterwards to group edges consis-

tent with the same hypothesis; then, we proceed to explain the proper clustering
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algorithm.

3.3.1. Probabilistic Consistency Measure

The consistency measure we use is the one defined in [24], where the authors

state the main drawbacks of other measures and prove theirs to reflect better

the concept of consistency between an edge and a VP. The function considers

both the degree of misalignment, modeled probabilistically, and the distance

between the edge and the VP. To the best of our knowledge, this is the first

time that this consistency measure is used in conjunction with T-Linkage.

For an edge Ej , the true location, ê1j and ê2j , of its endpoints e1j and e2j ,

respectively, is modeled by a Gaussian distribution. By transforming the coordi-

nates, the endpoints of the true edge can be seen as ê1j = [0, ŷ1j ] and ê2j = [L, ŷ2j ],

where L is the edge length, ŷ1j ∼ N (0, σ), and ŷ2j ∼ N (0, σ). Here, σ is the stan-

dard deviation and encodes the edges extraction error. The VP hypothesis is

vi = [xi, yi]. Being xi > L and Êj (the true edge) collinear with vi, then

ŷ2j = xi−L
xi

ŷ1j + yiL
xi

. Finally, after certain parametrization —not included here

for brevity— using an auxiliary variable t, the consistency measure is:

c(Ej ,vi, σ) =

∞∫
−∞

f(ŷ1j (t); 0, σ2)f(ŷ2j (t); 0, σ2)dt =
1√
2πσ

e
− y2i L

2

2σ2(x2
i
+(xi−L)2) (1)

where f(·;µ, σ2) is a Gaussian PDF.

In Figure 3 we can appreciate the influence of the edge length, L, and the

edge extraction error, σ, on the consistency measure. For a given σ, longer edges

produce narrower ridges, while for a given L, smaller edge extraction error also

produces narrower ridges and a higher maximum possible value. This means

that the shorter the edge and the greater the edge extraction error, the higher

the uncertainty we have about the true VP location.

3.3.2. T-Linkage Clustering

In T-Linkage, as in J-Linkage, a Minimal Sample Set (MSS) is defined as

the minimal set of data from which a model hypothesis can be generated. In the

case of Vanishing Point estimation, a MSS is formed by a set of two different
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(a) L = 50, σ = 1 (b) L = 100, σ = 1

(c) L = 50, σ = 2 (d) L = 100, σ = 2

Figure 3: Representation of the probabilistic consistency measure (Eq. 1) for different values

of the edge extraction error, σ, and the edge length, L.

straight edges εi = {Ei1 , Ei2} ⊆ E , which are randomly sampled from the

set of all the edges in an image. Both algorithms start with the generation

of m random model hypothesis from m randomly chosen MSSs. The model

hypothesis they produce is given by vi = li1 × li2 , where li1 and li2 are the lines

(in homogeneous coordinates) corresponding to Ei1 and Ei2 respectively. The

resulting VP hypothesis, vi, is also represented in homogeneous coordinates.

Having computed the set of m VP hypothesis, T-Linkage will define a space

in which each data element, in our case each edge Ej , is represented by the set of

models (VP hypothesis) it matches, which will be referred to as the Preference

Function (PF) of Ej . Thus, we need a way of measuring the degree of fitting

between an edge and a VP hypothesis. For this purpose, we use the previously
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defined function c(Ej ,vi, σ), which measures the consistency between an edge,

Ej , and a point, vi, considering certain edge extraction error encoded by σ.

With this information, we can now build a n×m matrix, being n the number

of edges and m the number of VP hypotheses, in which each row is an edge’s

PF, that is, it represents an edge by the consistency it presents with respect

to every hypothesis. The consistency values within the matrix are normalized

by the maximum so that the greater value is always equal to 1. T-Linkage will

then measure the Tanimoto distance, as it is defined in [15], between every row

(PF), and will merge those two rows presenting the lowest distance into the same

cluster, following a agglomerative clustering procedure. The PF of the union will

have, for each VP hypothesis, the minimum value of consistency between that

of all the edges within the cluster. This means that when a cluster is formed, its

consistency with certain VP candidate will be the minimum consistency with

that candidate of the edges that form the cluster.

Mathematically, suppose that pi = c(Ej ,vi, σ) and qi = c(Ek,vi, σ), with

i = [1,m], are the respective PFs of two edges Ej and Ek. Now, suppose that

no cluster has been formed yet, and that the Tanimoto distance between Ej

and Ek is minimal among those of all possible pairs of edges. This would make

them to be joined together in a cluster, and their PF would be:

ri = min(pi, qi), i = [1,m]

Afterwards, this clustering process will continue for the rest of edges, with pi

and qi being replaced by ri, until all PFs are orthogonal among them.

Some interesting properties of the resulting clusters, which apply both for

J-Linkage and T-Linkage, are that all VP hypothesis are fit by certain cluster

and that there will not be two clusters consistent with the same VP hypoth-

esis (otherwise they would have been merged). Edges within the same cluster

would have expressed consistency for at least one common hypothesis. As a

consequence of T-Linkage fitting all the data, there would be clusters consistent

with bad hypothesis that must be treated afterwards. We refer to this process

as Clusters Refinement, which we proceed to describe.
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3.4. Cluster Refinement

Now, we need to determine which clusters are more relevant than others,

what can be conditioned by the presence of outlier edges that do not show

relevant consistency with any of the VP candidates. Similarly to previous works

[24, 21], we will adopt a EM-like algorithm which will be applied iteratively for

refinement. To be able to carry it out, there is a need that arises: clusters must

be compared somehow and ranked accordingly, as eventually we will have to

choose a dominant VP. For such purpose, we first present a measure that will

be then used in our refinement algorithm.

3.4.1. Cluster Strength Measure

Having obtained a certain number of clusters, each with its associated VP

hypothesis, we need a way to decide which are better candidates than others.

Our assumption is that a cluster formed by more edges than other will probably

be more relevant, and the longer the edges the stronger sense of depth they

convey. Therefore, cluster sorting could be done by simply counting the number

of edges within each cluster, or by adding their lengths. Consequently, the

cluster containing the highest number of edges, or with highest aggregated edge

length, would be chosen as the dominant cluster.

These two mentioned ways of ranking clusters are perfectly valid and work

reasonably well. However, in [26], they came up with a function to measure the

strength of a cluster that was intuitive and wisely defined. It takes into account

both the number of edges in a cluster and their length, but also their distance

to the candidate VP. For a VP hypothesis vi, its strength is defined as:

S(vi) =
∑
E∈Ei

∑
q∈E

1

lq + τ
(2)

where Ei is the set of edges belonging to a certain cluster ki, lq is the distance

in the image from a pixel q to vi, and τ is a constant for enhancing detection

robustness that determines the importance given to the edge’s length versus its

distance to the candidate. This strength measure was proven to perform slightly

better than the others [26], so we have adopted it in our approach.

13



3.4.2. Refinement Algorithm

As already mentioned, once we have the output from T-Linkage, we perform

an iterative process for refining the obtained clusters. Throughout an iteration,

we will first compute the corresponding VP vi for each cluster Ki using the

vanishing point estimation function, V (εi), defined in [21]:

vi = V (εi) = arg min
v

∑
Ej∈εi

dist2(ēj × v, e1j ) (3)

where εi is the set of edges assigned to a cluster ki, ej is the centroid of the

edge Ej , e1j is one of the endpoints of Ej , and dist is the orthogonal distance

from a line to a point. Note that ēj × v is the line that passes through the

centroid of the edge and the VP. Therefore, the resulting VP, vi, will be the

one that minimizes the sum, for all edges in the cluster, of the squared distance

from the edge’s endpoint to the line formed by itself and the centroid of that

edge.

Then, we sort the clusters with respect to their strength S(vi) and remove

the VP hypothesis with minimal strength. This is done in every iteration until

no more than three candidates are left. Besides, if the strength of the weakest

candidate is lower than the 20% of that of the strongest, it will be removed

too, no matter how many candidates are left. We establish the maximum VP

hypothesis number to three for generalization, as it would be the number of VPs

in case the previously explained Manhattan assumption (the image has three

mutually orthogonal VPs) was fulfilled, though we know that in the datasets

we use there is only one VP per image.

Note that we remove a VP hypothesis, but all the edges in its associated

cluster are kept. Hence, the next step is to measure the consistency of every

edge in the image with respect to every remaining VP candidate. Edges will be

reassigned to the cluster whose VP hypothesis they present maximal consistency

to or, alternatively, to a cluster of outliers in case their consistency is below a
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certain threshold η:

Ej ∈

ki, if max(c(Ej ,vi, σ)) > η

outliers, otherwise

where ki is the cluster whose VP candidate is vi. Finally, we merge clusters

whose hypothesis are likely to be the same (less than 2 pixels far from each

other) and start over until all edges remain in the cluster they were assigned to

in the previous iteration. A summary of this refinement algorithm is presented

in Algorithm 1.

3.5. Dominant Vanishing Point Selection

Finally, we have to select, among the clusters resulting from the refinement

procedure, the one we consider to be dominant. It is worth reminding that in

the datasets we use, only images with a single dominant vanishing point have

been included, and that images with two or more vanishing points with the same

visual relevance were excluded. Consequently, the VP hypothesis that will be

selected to be the dominant VP in the image, v̂, will simply be the one that,

after refinement, has maximum strength, S(v̂).

4. Vanishing Point Estimation Error Measure

Typically, the metric or metrics used for reporting an algorithm’s perfor-

mance become a key issue in order to capture its actual behavior, as different

ways of evaluating results may lead to different perceived performance when

comparing algorithms. Thus, a metric must reflect to which extent our problem

is solved as well as clearly indicate possible cases of failure.

Regarding Vanishing Point estimation, given that we want to compare two

points in the image, the detected and the ground truth VP, the most straight-

forward error function could be measuring the euclidean distance between them.

This measure has been used before, and may be suitable for specific cases in

which the images we are benchmarking against present similar perspective, prob-

ably due to the peculiarities of that concrete problem. An example to this is VP
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Algorithm 1 Cluster Refinement
Require: T-Linkage outputs K clusters, being εi the set of edges assigned to

cluster ki, i ∈ [1,K]

Reassignments = true

repeat

for all ki ∈ K do

vi = V (εi) . VP estimation function (Eq. 3)

si = S(vi) . Strength Measure (Eq. 2)

if (min(s) < 0.2×max(s)) or (K > 3) then

Remove v̂i = arg min
vi

(S(vi))

K = K − 1

for all Ej ∈ E do

if max
i∈[1,K]

(c(Ej ,vi, σ)) > η then

i∗ = arg max
i∈[1,K]

(c(Ej ,vi, σ))

Assign Ej to ki∗

else

Assign Ej to outliers

Merge clusters whose hypothesis are closer than 2 pixels

if Every Ej ∈ E belongs to the same cluster than in previous iteration

then

Reassignments = false

until Reassignments = false

detection for road following [12, 17]. In this case, images will always feature a

road —or at least some kind of unstructured path— and will have always been

taken from a vehicle front-camera, what makes them have similar perspective

properties. However, in more general cases, the distance on the image will not

give us a reliable metric on how well our algorithm is performing, as an image is

a projection of a real world 3D scene. All Vanishing Points are caused by lines

which are parallel on the real world, but the camera position with respect to
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Estimation

Ground Truth

(a) Bad VP estimation

Estimation

Ground Truth

(b) Acceptable VP estimation

Figure 4: Comparison of VP estimations whose distance to the ground truth VP is equal to

100 pixels when the VP is: (a) close to or (b) far from the image center

those lines will make them to be projected differently on the image.

In this regard, two extreme opposite situations can be used to clarify the

idea. In one case, when the image plane is parallel to those lines that are

parallel among them in the real world, the VP will be at infinity, as the projected

lines will also be parallel on the image plane. Contrarily, if the image plane is

completely perpendicular to the real-world parallel lines, the VP will appear

at the center of the image (the center of projection). Thus, intuitively, if we

measure the error as a distance in the image, the actually perceived error will

be much greater when estimating a VP which is close to image center compared

to when it is very far away from the center. An example to this can be seen in

Figure 4.

A possible solution to this problem may be mapping the vanishing directions

to a point on the Gaussian Sphere, and then measuring the distance on it

between the points originated from the estimated direction and the ground truth

one [3]. However, for this mapping to be accurate the focal length of the lens

has to be known, so we will not consider this method for solving our problem.

As seen in previous works, a reasonable solution is to define an error metric
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based on the consistency measure between a VP and an edge. Both in [21] and

[26], this kind of solution is used but, although quite similar, their consistency

measures are not exactly the same. First, [21] defined its consistency measure

as the orthogonal distance between an edge’s endpoint and the line passing

through the VP and minimizing the maximal distance to that edge’s endpoints,

which is proven to intersect the centroid of the edge. Note that, using this

measure, the higher the misalignment between the VP and the edge, the higher

values we obtain, so it could be argued that this measure actually encodes the

inconsistency between a point and an edge. However, we will keep referring to

it as "consistency measure," as this is how it is defined by the corresponding

authors.

Afterwards, the consistency measure was defined in [26] as the root mean

square distance of all the points on the edge Ei to a line l̂ that passes through

the VP vj and minimizes the function

DRMS(Ei,vj) = min
l:l×vj=0

 1

N

∑
p∈Ei

dist(p, l)2

 1
2

where N is the number of points on Ei, and dist(p, l) is the perpendicular

distance from a point p to a line l. The same reasoning we did for the previous

measure can be applied here, as again higher measured values means lower actual

consistency between the edge and the VP. Thus, provided that the optimal value

for this consistency measure is 0, the consistency error of an estimated VP with

respect to the ground truth edges, G = {E1, E2}, is defined as the mean of their

consistency measure with that VP:

err(vj) =
1

2

∑
Ei∈G

DRMS(Ei,vj) (4)

However, in our opinion this measure does not accurately reflect the perfor-

mance of the algorithm. VP hypothesis contained in one of the Ground Truth

(GT) edges, or even consistent with only one of them, might obtain little error

if GT edges have different lengths or are placed in certain manners. To help to
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(a) 2D representation (b) 3D representation

Figure 5: Representation for the error measure in [26]. Consistency error for all possible

locations in a 1000× 1000 grid has been computed and minimum error VP has been marked.

For illustrative purposes, we have inverted results so that the minimum error correspond

to the maximum value and the maximum error to 0. Therefore, the plot actually shows

max(err(vj))− err(vj).

understand this fact, in Figure 5 we plot the consistency error for all locations

within a 1000×1000 frame given two ground truth edges. As we can see, the er-

ror along the longest edge is relatively small, which is undoubtedly a deficiency.

Besides, it is common that, in the image, one the edges labeled as GT is clearer,

longer or sharper than the other, thus gaining relevance during the dominant

cluster selection process and leading to situations similar to the one included

here.

To overcome this issue, our error measure is based on the probabilistic con-

sistency measure we have used throughout the algorithm. First, we compute

the Ground Truth VP using the labeled edges and, then, we measure its con-

sistency with respect to each one of them. These are the maximum consistency

values our VP candidate could get, since it would mean that the detected VP

is the same as the one generated by the GT edges. Afterwards, we compute the

consistency of our candidate with respect to the GT edges. Finally, the error

value will be the greatest difference between the consistency values of the GT

and those of our hypothesis. Note that the consistency measures for the two
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GT edges are treated separately: instead of computing the mean consistency

difference, we take the worst case, as we observed that it often happened that

hypothesis were totally consistent with one the the edges and almost nothing

with the other. The difference is normalized by the GT value for it to range

between 0 and 1. Consequently, our estimation error for a candidate VP, v, and

a set of GT edges, G = {E1, E2}, can be written like:

ξ = max
Ei∈G

c(v̂, Ei, σ)− c(v, Ei, σ)

c(v̂, Ei, σ)
(5)

where v̂ is the Ground Truth VP, generated out of G. Here, σ encodes our

tolerance to a deviation from the GT position. Lower values of σ cause that

only a small area around the optimal location is considered as accurate, while

most of the points in the space have an error value of 1. On the contrary, higher

values of σ produce a softer decay of the function when moving away from the

GT position.

In order to compare both error measures, we include in Figure 6 the exact

same case as for the previously introduced measure. We have selected σ = 15,

which, as it can be seen in the plot, we think takes as accurate a reasonable

area around the GT position, given the considered image size. The comparison

between measures shows that ours (Eq. 5) is more realistic and less permissive

than the former (Eq. 4).

4.1. Experimental Validation

The simulations that we have included in Figures 5 and 6 clearly illustrate

the behavior of both measures. However, we have carried out an analysis on the

images of the dataset so as to demonstrate that the differences between these

measures are actually relevant.

VP detection error has been estimated for every image, first by applying

the error measure from [26] (Eq. 4), and then by applying our proposal, thus

obtaining two different rankings for the same set of images sorted by the corre-

sponding error from the lowest to the highest. The idea here is to identify those
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(a) 2D representation (b) 3D representation

Figure 6: Representation for the error measure described by Eq. 5 with σ = 15. Consistency

error for all possible locations in a 1000 × 1000 grid has been computed and minimum error

VP has been marked. For illustrative purposes, we have inverted results, so 1− ξ is actually

plotted.

images for which both evaluation methods particularly differ thus yielding sig-

nificantly different interpretations (i.e. different positions in both rankings) for

the correctness of the detected VP (e.g. the estimated VP for a particular image

could be ranked top in one case but the opposite in the other). The detailed

analysis of such cases will help us to clarify which error measure models VP

detection correctness the best. To derive meaning out of this analysis there is

an effect that needs to be considered: our estimation error (Eq. 5) has an upper

bound of 1, while the measure described in Eq. 4 has no upper bound. This will

cause that the mean difference in the rankings is higher than expected, since

the order of all the bad predictions could vary randomly for our probabilistic

error measure. In this analysis, we have used the VP detected by our best ex-

perimental setup, which we will see in next section. However, it is important to

keep in mind that the position of the VP itself is not important here, but the

error value each measure assigns to it.

In Figure 7, we include a histogram and a box-plot for the rank difference.

There is a mean difference of 958 positions. Having a total of 2245 images

for which we have estimated the VP 10 times corresponding to 10 independent
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(a) Rank difference histogram
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Figure 7: Rank difference when sorting images with respect to our estimation error (Eq. 5)

and to the consistency error in [26] (Eq. 4).

trials (average consistency error is computed over them), we can see that there

are images for which the rank difference is over 6000 positions. We include in

Figure 8 the four images for which the rank difference has been the highest.

In all these cases, for which the estimated VP are objectively wrong, our

estimation error is 1 (i.e. the prediction is considered to be completely wrong),

while the error measure used in [26] was relatively low, thus not representing

accurately the actual performance of the algorithm.

5. Experiments

In this section, we present the experimental setup we have used and we

compare our results to those from previous work. We first present the dataset

we have used for evaluation and then discuss about how different parameters

affect our algorithm’s performance.

5.1. Ground Truth Dataset

The images we use to evaluate our algorithm’s performance belong to two

different datasets, which have been manually labeled and made public in [26].

All the images have been labeled with two Ground Truth lines that can be

used to determine the location of the VP. Only images where these lines are
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(a) err = 1.8410 (Eq. 4); ξ = 1 (Eq. 5) (b) err = 2.5655 (Eq. 4); ξ = 1 (Eq. 5)

(c) err = 4.5347 (Eq. 4); ξ = 1 (Eq. 5) (d) err = 5.2124 (Eq. 4); ξ = 1 (Eq. 5)

Figure 8: Four example images for which the rank difference was particularly large when using

the two different error measures.

visible and with a single dominant VP have been included. This means that

images with VPs formed by succession of objects (not proper lines) or by parallel

curves are excluded, as well as images with two or more vanishing directions.

Images were resized so that their longer side’s length is 500 pixels, and only

images whose VP lie within a 1000× 1000 area frame (with the image centered

on it) are finally considered.

This process has been done for two sets of images: the first is a subset of
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the landscape category in AVA dataset [18], while the second consists in images

retrieved from Flickr website.

Once the images that did not fulfill the requirements were excluded, we end

up with 1316 images in the AVA dataset and 9591 images in the Flickr dataset.

As in [26], we present our results for both datasets separately.

5.2. Experimental Setup

On trying to find the best working point for our algorithm, we have tested

it with different values for the parameters that may influence performance. The

default setup for our experiments is:

• Minimum edge length l is set to 40 pixels. Performance with respect to

variations in this parameter has not been tested, as [26] showed this to be

the optimal value for both databases.

• Minimum distance from both endpoints of an edge to image borders is

b = 20.

• Minimum edge angle with respect to the horizontal axis, in degrees, is

selected to be φ = 0.5, which we find small enough not to lose any valuable

edge.

• T-Linkage clustering is carried out with m = 10000 VP hypothesis.

• For the strength measure (see Eq. 2), we use τ = 1.

• When refining clusters, the outliers consistency threshold is set to η =

1√
2πσ

e−0.5, which is the consistency at one standard deviation away from

the mean (see Eq. 1).

• The edge extraction error for measuring consistency in Eq. 1 is σ = 3.

The reported performance for every experiment is the result of taking the aver-

age consistency error over 10 independent trials.

1Only 929 images were available online when this evaluation was done.
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(a) AVA dataset (b) Flickr dataset

Figure 9: AUC for the CDF obtained our error measure (Eq. 5) for different α values. Please

note that the y-axis is not the same in both plots.

5.2.1. Single-Threshold Contour Splitting

First, we compare results when using different single values for the contour

splitting parameter α. This parameter implies a trade-off between the length

of the extracted edges and their veracity —their similarity with respect to the

actual contours present in the image—: lower values will generate shorter and

more “realistic” edges, as deviation from straight contours will be less tolerated

and will result in more splits. On the contrary, higher α values will create longer

edges that are less representative of the actual contours in the image, as curvy

contours are more likely to be mapped to straight lines. Additionally, note that

short edges are filtered out a posteriori for noise reduction.

In Figure 9, we plot the Area Under the Curve (AUC) for the CDF obtained

with different α values. We can observe that the maximum AUC for AVA

dataset is 68.51 %, while for Flickr dataset we obtain an AUC of 83.65 %. This

shows that, in general, VPs are harder to detect for images in AVA dataset.

Also, the optimal value is αopt = 0.06 for AVA dataset and αopt = 0.07 for

Flickr dataset. It is worth mentioning that the optimal value for both datasets

in [26] was α = 0.05, which, though different, is quite close to ours. In the next

section, we use this information to propose different combinations of α values.
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(a) AVA dataset (b) Flickr dataset

Figure 10: AUC for the CDF obtained using our error measure (Eq. 5) for different combina-

tions of α values which include the optimal single value αopt and a secondary α2. Please note

that the y-axis is not the same in both plots.

5.2.2. Multi-Threshold Contour Splitting

Now, we compare the results when using our multi-threshold approach,

which combines the edges resulting from the contour splitting procedure when

adopting different α values. The combinations that we have tested are based on

the optimal values αopt obtained for the single threshold strategy. Specifically,

for each dataset, we have paired the optimal value αopt with other secondary

values α2 in the range [0.01, 0.1], with a resolution of 0.01.

Results for all these experiments can be seen in Figure 10. For comparison

purposes, we also include the optimal AUC value obtained when relying on a

single threshold (i.e. αopt) for each dataset. It is noticeable that, in both cases,

the best results are obtained for a pair of values formed by the optimal single

value and a lower one. When adding edges extracted with lower α values, we

are including edges that were not previously considered —it is worth reminding

that if the exact edge appears for several α’s we include it only once— but whose

correspondence with the actual contours in the image is higher. Contrarily, as

previously explained, higher α values may tend to produce oversized edges that

are somehow more “artificial” and that tend to oversimplify the actual contour

structure present in the images, what may explain the obtained worse results
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Figure 11: CDFs obtained using our error measure (Eq. 5) for different values of the edge

extraction error σ.

with respect to the single optimal α.

Using values below the optimal single one results in the inclusion of many

contours that were present in the image, but whose conversion into edges did

not represent them in the best way, i.e. edges that should have been split but

were not. Furthermore, as we filter edges by length after extraction, we should

not be afraid of oversplitting contours when using α’s that may be too low. The

better results obtained when combining the optimal with lower α values prove

that the additional edges included, which match the original contours better,

are complementary to those from the single optimal splitting threshold, thus

providing relevant information about the dominant VP location.

5.2.3. Edge extraction error

Here, we compare results with respect to σ, which encodes the uncertainty

of edge extraction in Eq. 1.

For this experiment edges are extracted by adopting the optimal multi-

threshold contour splitting strategy previously identified for each dataset (i.e.

using the optimal pair of α values). Performance results are included in Fig-

ure 11. We can see that the optimal value for both datasets is the default one,

σ = 3 pixels. In [24], where they defined the probabilistic consistency measure,
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AVA dataset Flickr dataset

Zhou et al. [26] 0.655062 ± 0.025683 0.812737 ± 0.025087

Ours 0.708231 ± 0.024560 0.838788 ± 0.023647

Table 1: AUC for the CDF (with a 95 % confidence interval) obtained using our error measure

(Eq. 5) for the method in [26] and ours.

AVA dataset Flickr dataset

Zhou et al. [26] 0.345021 ± 0.022162 0.187300 ± 0.021993

Ours 0.291836 ± 0.020709 0.161252 ± 0.020075

Table 2: Average estimation error (with a 95 % confidence interval) obtained using our error

measure (Eq. 5) for the method in [26] and ours.

they used a value σ = 1 pixel for their experiments. The need for a greater σ

here is a possible consequence of the differences in the content of the photos:

while ours feature natural landscapes, theirs were taken in urban environments.

5.3. Results

In this section, we report our final results for both databases and compare

them with the ones obtained using the method in the already mentioned paper

[26]. To the best of our knowledge, it is the only one where the VP detection

problem for natural landscape images was dealt with before. Some examples of

correctly and incorrectly detected Vanishing Points, generated using our algo-

rithm, can be seen in Figure 13.

In Tables 1 and 2, we include the results that we have obtained using the

best setup for our technique. Our method outperforms, for both datasets, the

previously proposed one in [26]. Regarding the AUC for the CDF, presented

in Table 1, there is an improvement of 5.32 % for AVA dataset and of 2.61 %

for Flickr dataset. The increase is greater for the images in AVA dataset, for

which the detection results are generally worse, so we could conclude that our

algorithm deals better with hard examples. The results for the mean estimation

error, contained in Table 2, confirm the improvement that our method provides.
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It can be observed that the differences between the results from both meth-

ods are statistically significant for the case of AVA dataset, while there exist

some overlap on the confidence intervals for Flickr dataset. From our point of

view, this is probably a consequence of the fewer number of images included in

Flickr dataset (929 images) with respect to those in AVA (1316 images), since

the width of the confidence intervals is inversely proportional to the square root

of the number of images in the sample.

For completeness, we include CDFs for our algorithm in Figure 12. It is

worth noting that, for instance, there are almost 70 % and 85 % of images

in AVA and Flickr, respectively, for which our method present an estimation

error below 0.3. Easier examples are for sure included in that percentiles and

detected accurately by both methods, but it is the correct detection of harder

examples what enables improvement above the level of the previously proposed

technique. Also, in Figure 9, we can see that when using our system with a single

α threshold equal to that found optimal in [26] (α = 0.05), our AUC results for

AVA and Flickr datasets are 68.32 % and 82.66 %, respectively, showing that

even in such situation our method outperforms the reference one.

5.4. Ablation Analysis and Computation Time Measures

Finally, we present an ablation analysis in order to show the influence of

each one of our added modules in the final accuracy improvement. We refer to

our detection method without carrying out the cluster refinement procedure as

Ablated System 1. Furthermore, we have also measured how detection results

are affected by the elimination of our additional edge filtering, i.e. the filtering

of horizontal edges as well as those close to image borders, in addition to the

removal of the cluster refinement procedure. We refer to this second version of

our system as Ablated System 2, which still introduces a novel and improved

clustering procedure (i.e. T-Linkage) compared to the baseline. Results for

AVA and Flickr datasets are included in Figure 12.

In summary, our main contributions to the VP detection algorithm are:

the use of T-Linkage as clustering algorithm, filtering out more edges which are
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(a) AVA (b) Flickr

Figure 12: AUC for the CDF obtained with our complete VP detection system, the two

ablated versions, and the baseline one.

Stage Mean Standard deviation

1. UCM computation 148.26 26.17

2. Edge extraction and filtering 2.84 1.00

3. Clustering and refinement 11.05 4.19

Total 162.14 28.55

Table 3: Computation time (in seconds) for our VP detection algorithm.

likely to be noisy, and carrying out a cluster refinement procedure. This ablation

analysis proves that all of them result in an improvement of the detection results

with respect to the previous reference algorithm.

Additionally, we have measured the computation time 2 of our VP detection

algorithm. Results are detailed in Table 3. It can be observed that the compu-

tation of the Ultrametric Contour Maps takes most of the time (i.e. 91.44% of

the total computation time). For this reason, although our algorithm may be

slightly more complex than others, we consider that the associated increase in

2Reported measures have been obtained when executing all the algorithms in a computer

equipped with an Intel i7 3770K processor and a 32 GB RAM.
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computation time is negligible.

6. Conclusions

In this paper, we present an improved algorithm for Vanishing Point detec-

tion in natural landscape images. Our approach is based on the multi-threshold

extraction of edges in images, combining several representations of the same im-

age, and the grouping of edges using the RANSAC-based clustering algorithm

T-Linkage. Then, a refinement procedure is carried out and a final VP candidate

is chosen to be the dominant one. Our technique has been proven to perform

better than others that previously tried to solve the VP detection problem on

the datasets we use, being all our contributions to the algorithm fruitful.

Additionally, we perform an analysis on the difficulties that arise when re-

porting VP detection results as well as the limitations of some error measures

that have been used for this purpose before. To overcome these limitations,

we present a novel error measure, which is based on a probabilistic consistency

measure, and that can be tuned depending on how strict we want to be when

evaluating our VP detection results. Simulations and experimental validations

are included to support our proposal.

In this work, we have only tested our algorithm on images including a single

VP. In the future, we plan to adapt it to be able to detect whether linear per-

spective is present or not in the image, and if so, how many vanishing directions

are there in the image. As an additional line of research, we are also exploring

the application of VP detection to aesthetics assessment, where our algorithm

could be used to detect VPs and to enable the estimation of different aesthet-

ics related descriptors based on their location. Furthermore, we are currently

experimenting with new detection solutions based on deep learning, which are

undoubtedly promising and challenging. One of the main aspects to be consid-

ered regarding this approach is the identification of the optimal loss function for

the detection problem. Some previous proposals apply a grid to the image and

try to solve a classification problem [5], while others employ a two-dimensional
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regression approach [19]. However, in our work we show why the correctness of

a detection result is not accurately represented by the Euclidean distance, so

the loss function should reflect this complex aspect regarding the evaluation of

the results, which is our main goal nowadays.
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Highlights: 

• Novel methodology for improved vanishing point detection in landscape images 

• Improved edge extraction process by combining different representations of an image 

• New cluster refinement method for discarding weak VP hypothesis 

• New probabilistic error measure for more robust vanishing point detection 

• Qualitative and quantitative analysis validating the reliability of the new measure 

 

Highlights (for review)



*Conflict of Interest Form



A Multi-Threshold Approach and a Realistic Error       
Measure for Vanishing Point Detection in Natural       
Landscapes (EAAI-18-2497) 
Álvaro García-Faura, Fernando Fernández-Martínez, Ricardo Kleinlein, Rubén       
San-Segundo and Fernando Díaz-de-María 

Response sheet 

We thank both anonymous reviewers for their fruitful comments and constructive feedback,            
which have helped us to definitely improve our manuscript. We provide below our answers to               
all the comments. 

Reviewer #1:  

The contributions proposed at the beginning of the article are basically completed. 

The method proposed outperforms previous work to a certain extent. 

The authors would like to thank the reviewer for considering and reviewing our work.              
Besides, we would also like to mention that, for further completeness, we have included in               
section 5.3 more detailed results for a better comparison between our algorithm and the              
main previous approach. 

Reviewer #2:  
The paper contains two main contributions. First, it proposes a novel methodology for             
vanishing point detection in natural landscapes with straight lines. Second, it presents a new              
evaluation metric to calculate the accuracy of a vanishing point with respect to its              
ground-truth position. 

The method is not very innovative since it consists basically of the combination of several               
existing methods to execute the following process: edge detection, edge filtering, edge            
clustering, cluster refinement, and vanishing point selection. Also, the method contains           
several ad hoc parameters such as b in section 3.2, merging cluster distance of 2 pixels i                 
Section 3.4.2 which were set empirically during the experiments. 

We understand the concern of the reviewer about the use of ad hoc parameters, though in                
this case, we honestly consider that both of them are of minor importance. Nevertheless, we               
will try to clarify and justify further their inclusion in our algorithm. 

Parameter ​b ​in Section 3.2 defines the minimum distance in pixels at which both endpoints               
of an edge can be, at the same time, to the same image border. This is, if both endpoints are                    

 

Response to Reviewers



below this distance from the same image border, that edge will be filtered out. This               
parameter was introduced because it was observed that some images were presenting a             
manually added frame. Originally, the motivation to include this parameter was not its             
relevance with respect to the detection results, but rather for correctness, since the edges              
generated by those frames were somehow artificially added to the image instead of             
generated by the image content itself. Even though we could have opted to do a manual                
frame removal by going through all the images in the dataset, we considered that the               
inclusion of an additional edge filtering step in our algorithm would be reliable enough and               
undoubtedly simpler. 

For our experiments, we chose ​b ​= 20 pixels, what supposes only a 4 % of the length of the                    
longest side of an image, which was fixed to 500 pixels while normalizing. This value was                
chosen empirically for simplicity after confirming that it removed artificially generated edges            
in most cases of framed images, while not affecting the rest of them. Although the               
consequences of this filtering procedure was not checked image by image, we consider the              
value of 4 % of the length of the longest side as a reasonable maximum width of a frame that                    
will not affect VP detection in images without a frame. 

Nevertheless, we have amended our manuscript to better justify the inclusion of this             
parameter by adding in section 3.2 the following clarification: “Even though this filtering could              
remove legitimate relevant edges in unframed images, it is very unlikely that it affects              
significantly the detection results, since it is reasonable to assume that the location of the VP                
will be defined by several other edges not so close and parallel to the image border. The                 
presence of a few artificial, long, sharp, and straight edges would lead to worse results than                
the absence of some legitimate, regular edges since, as mentioned, the former would             
acquire high importance in our algorithm.” 

With respect to the cluster merging distance, which we set empirically to 2 pixels, we would                
like to point out that it is a typical practice in similar cluster refinement methods. For instance,                 
in [24], it is stated: "At the end of each EM-like iteration, similar VPs are merged and small                  
outlier VPs are removed." Similarly, in [11], it can be read: "If one resulting vanishing point is                 
too close to another, they will be merged together afterwards." However, in none of this               
works it is specified what does “similar VPs” or “too close to another” refer to. The reason                 
behind the lack of specificity on these works may be the low importance of the actual                
merging value, always given that it is reasonably low enough as to merge only hypothesis               
that most likely actually refer to the same VP. 

Nevertheless, we decided to specify our merging value of 2 pixels for the sake of               
completeness and reproducibility. We consider it to be a quite conservative value, since we              
find reasonable to assume that two VP hypothesis separated by a maximum distance of 2               
pixels would actually represent the same VP on an image whose longest side length is 500                
pixels, thus being just a 0.04 % of the mentioned length. 

The strongest part of the paper is the proposed accuracy metric which seems to be much                
more robust than the previous ones. The new metric appears to be able to evaluate it the                 
detected vanishing point is accurate not just based in the distance between the detected and               
the ground-truth points. 

 



Thank you so much for your appreciation of our work. We agree that this is one of the major                   
contributions of our paper. We have thoroughly reviewed the evaluation process of VP             
detection results, calling into question how accurate and reliable widely adopted           
performance metrics are. As a result, a novel error metric that leads to more meaningful and                
valuable performance evaluation has been suggested and validated. 

With respect to the experiments, why did the authors not compare with the state of the art                 
method [25] , but instead compared with [26]? Even being worse than deep learning based              1

approaches, it would be very important to compare their accuracy with the proposed             
traditional computer vision method. 

Regarding the comparison with the method in [25], it must be noticed that the method in that                 
work is specifically designed for man-made environments, which usually present three           
clearly defined VPs -two horizontal and one zenith VP-, differing substantially from the             
natural landscapes in the images we focus on. In their method, they assume the existence of                
a zenith VP, which is identified in order to use it afterwards as guidance to score horizon                 
candidates consistent with that zenith VP. Consequently, we found the comparison with [25]             
irrelevant, since the nature of the images in which we would like to identify a VP is                 
completely different to that of the images that they designed their method for. 

Apart from that, resources available about deep learning methods applicable to the problem             
of VP detection in natural landscapes that we tackle in our paper are very scarce. They                
cannot be compared to what can be easily found for other computer vision problems such as                
object detection or scene identification. Vanishing point or horizon detection for road            
following is an area in which many researchers have focused because of its interest in               
industry, and is, from our point of view, the only one that could be considered applicable to                 
our problem because of its obvious similarities. However, we face again a significant             
difference in the type of images on which we try to detect a VP, since images to which those                   
methods are applied always feature a road and are usually taken by a camera installed in                
the front part of a vehicle. 

Although it is possible to find some proposals based on deep learning that try to solve similar                 
problems to ours, such as the already mentioned [19], they do not provide specific results               
nor are reproducible enough so as to be considered for a possible comparison. 

Nonetheless, we do share the interest about solutions based on deep learning architectures,             
which have proven a huge potential across a wide variety of research topics and,              
specifically, on computer vision. Because of that, we would like to mention that we have               
already started to experiment with different methods based on deep learning but,            
unfortunately, we have not been able to improve our detection results yet.  

One of the main aspects to be considered regarding the deep learning approach is the               
identification of the optimal loss function for the detection problem. Some previous proposals             
apply a grid to the image and try to solve a classification problem [5], while others employ a                  

1 Because of the inclusion of an additional reference in our bibliography regarding the mentioned               
future lines of work, the numeration for these references that are mentioned in the question has                
slightly changed. For simplicity, we have modified them accordingly in the reviewer’s question so that               
they present coherence with the current numeration in the manuscript. 

 



two-dimensional regression approach [19]. However, in our work we show why the            
correctness of a detection result is not accurately represented by the Euclidean distance, so              
the loss function should reflect this complex aspect regarding the evaluation of the results,              
which is our main goal nowadays. 

In order to get the readers to know the line of work we are currently working on, we have                   
adequately modified our manuscript to include this same information as future work in             
section 6. 

Are the results in Table 1 statistically significant? What is the standard deviation?  

We include in the tables below the values of the Area Under the Curve (AUC) for the                 
Cumulative Distribution Function (CDF), indicating their respective 95 % confidence          
intervals. Furthermore, we provide as well, for each method and dataset, the mean             
estimation error -using our novel error measure described in Eq. 5-, its 95 % confidence               
interval, and the standard deviation of the error. All of them have been included in the                
manuscript (section 5.3), but the standard deviation, which we include only here as we were               
specifically asked for it, but that we consider provides no further information once given the               
confidence intervals. We assume a normal distribution for the computation of all confidence             
intervals. 

 AVA dataset 

 AUC for CDF (C.I. 95 %) Mean error (C.I. 95 %) Error std. 

Zhou et al. [26] 0.655062 ± 0.025683 0.345021 ± 0.022162 0.410188 

Ours 0.708231 ± 0.024560 0.291836 ± 0.020709 0.383288 

 

 Flickr dataset 

 AUC for CDF (C.I. 95 %) Mean error (C.I. 95 %) Error std. 

Zhou et al. 
[26] 

0.812737 ± 0.025087 0.187300 ± 0.021993 0.342005 

Ours 0.838788 ± 0.023647 0.161252 ± 0.020075 0.312184 

 
It can be observed that the differences between the results from both methods are              
statistically significant for the case of AVA dataset, while there exist some overlap on the               
confidence intervals for Flickr dataset. From our point of view, this is probably a              
consequence of the fewer number of images included in Flickr dataset (929 images) with              
respect to those in AVA (1316 images), since the width of the confidence intervals is               
inversely proportional to the square root of the number of images in the sample. In fact,                
when considering the results for the images from both datasets all together, the difference              
between both methods is statistically significant. However, we have decided to present the             
results for both datasets separately for narrative coherence. 

 



The ablation analysis in section 5.4 is very interesting. 

We would like to thank one more time the reviewer for appreciating our work and for the                 
valuable feedback, which has led to undoubted improvements in our manuscript. 

 


