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Abstract

The Industry 4.0 paradigm is being increasingly adopted in the production, distribution and commercialization chains worldwide.
The integration of the cutting-edge techniques behind it entails a deep and complex revolution –changing from scheduled-based
processes to smart, reactive ones– that has to be thoroughly applied at different levels. Aiming to shed some light on the path
towards such evolution, this work presents an Industry 4.0 based approach for facing a key aspect within factories: the health
assessment of critical assets. This work is framed in the context of the innovative project SiMoDiM, which pursues the design
and integration of a predictive maintenance system for the stainless steel industry. As a case of study, it focuses on the machinery
involved in the production of high-quality steel sheets, i.e. the Hot Rolling Process, and concretely on predicting the degradation
of the drums within the heating coilers of Steckel mills (parts with an expensive replacement that work under severe mechanical
and thermal stresses). This paper describes a predictive model based on a Bayesian Filter, a tool from the Machine Learning field,
to estimate and predict the gradual degradation of such machinery, permitting the operators to make informed decisions regarding
maintenance operations. For achieving that, the proposed model iteratively fuses expert knowledge with real time information
coming from the hot rolling processes carried out in the factory. The predictive model has been fitted and evaluated with real data
from ∼118k processes, proving its virtues for promoting the Industry 4.0 era.

Keywords: Industry 4.0, Predictive maintenance, Machine Learning, Data Analysis, Smart manufacturing, Intelligent prognostics
tools

1. Introduction

Initiatives towards Industry 4.0 (e.g. High-Tech Strategy
2020 [1], Advanced Manufacturing Partnership [2], or Facto-
ries of the Future [3]) share all the same goal [4]: to take ad-
vantage of the progresses in Cyber-Physical Systems (CPS) [5],
Internet of Things (IoT) [6], Internet of Services (IoS) [7], and
Big Data [8], for successfully facing the recent changes in eco-
nomic, social, and environmental requirements for the manu-
facturing industries [9, 10, 11]. The recent developments in the
aforementioned technological fields result in companies with
networked assets producing a massive amount of data, coming
in different formats and qualities [12]. A cornerstone inside the
Industry 4.0 paradigm is the exploitation of such data in order to
evolve from scheduled, control-based processes and systems to
smart ones, able to predict the behaviour of the different actors
involved in the industry value chain (e.g. customers, operators,
machines, etc.) and anticipate them by self-adjusting their op-
erations at different levels.
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The key goal behind this paradigm is to boost the pro-
duction efficiency of the modern industry, looking forward to
achieve the commonly referred self-aware, self-predict and self-
maintain abilities [13, 14]. However, an unavoidable fact that
seriously threatens this goal is the occurrence of costly, un-
scheduled downtime and unexpected breakdowns [15, 16, 17].
The task in charge of palliating these situations is such of main-
tenance, which might involve the repair or replacement of com-
ponents or parts and the disposal of damaged products [18].
The most basic maintenance approach is the so called fail-and-
fix or corrective maintenance, which comes into play when the
equipment fails and needs repair. This naive strategy evolved
to the preventive or blindly proactive one, which according to
past experiences, assesses a certain degradation profile for the
machinery parts to plan ahead maintenance or replacing tasks
according to their expected lifetime [19]. Thus, this static ap-
proach could end up with the replacement of parts still in good
operating conditions, or with machine failures due to a faster
degradation than expected, becoming both costly and ineffec-
tive actions.

In networked factories, new maintenance opportunities arise
with the availability of massive data from processes and sys-
tems. This permits operators (or even intelligent scheduling
systems) to monitor the machinery conditions instead of their
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faults, hence anticipating possible failures, and optimizing the
assets utilization. This advanced approach is commonly called
predictive maintenance (PdM), and can be considered as an en-
hancement of preventive maintenance with just-in-time works.
It relies on the assumption that the monitored machine parts go
through a measurable process of degradation, hence enabling
the estimation of temporal windows for carrying out preven-
tive operations [20]. Predictive maintenance exhibits a num-
ber of inherent benefits, namely: optimized parts usage, re-
duced costs, increased machinery lifetime, plant safety, prod-
uct quality (near zero failure manufacturing), reduced number
of accidents, or effortless integration with company scheduling,
among others [21].

Despite the benefits of PdM systems, their implementa-
tion in real factories remains challenging, mainly due to the
required integration of different Industry 4.0-based technolo-
gies [22, 15]. Major challenges are: (i) the processing of large
repositories of time series data from logistics, scheduling, and
production (coming from noisy sensors mounted on the ma-
chinery) in order to be rendered in a usable form for their ex-
ploitation [23], and (ii) the design of a predictive model that,
from such processed data, estimates the machinery condition in
short time in order to perform an agile and informed decision-
making. Such a model must be also able to learn from new data
and to adapt its operation according to different situations [24].
PdM systems could also benefit from the consideration of in-
formation coming from experts regarding machines’ operation,
which is a valuable knowledge traditionally used in artificial
intelligence-based solutions for industry. These issues need to
be faced not only for PdM, but for most Industry 4.0-based so-
lutions [13].

In this work, we contribute our solutions for facing the chal-
lenges of (i) data processing and rendering, and (ii) predic-
tive model design, which have been deployed in a factory of
ACERINOX Europa S.A.U. [25], a world class group in stain-
less steel production. Concretely, we present an intelligent pre-
dictive maintenance model based on the Discrete Bayes Fil-
ter [27, 28], one of the most widespread Machine Learning
(ML) techniques [26]. We opted for Machine Learning as the
tool of choice given the need to learn from unstructured data
to make decisions, while the particular model to use (Sup-
port Vector Machines, Decision Trees, Artificial Neural Net-
works, etc.) depends on the peculiarities of the application at
hand [26, 29, 30]. In this way, DBFs naturally address the
challenges posed by PdM, namely: they (i) seamlessly inte-
grate information coming from experts, configuration variables,
and data from sensors, (ii) handle the uncertainty inherent to
processes and noisy sensor measurements, (iii) fit their internal
parameters to accommodate new information and react to new
working conditions, and (iv) run in short time, enabling an agile
decision making.

In a nutshell, the proposed DBF builds a probability distri-
bution over a random variable x, modelling the part degrada-
tion condition, which can take discrete states whose values are
commonly called beliefs [31]. These beliefs represent the un-
certainty about the actual part degradation state, which can not
be exactly retrieved due to the uncertainty coming from noisy

Figure 1: Top row, pictures of a new coiler drum (left) and a deteriorated one
(right). Bottom row, pictures of a coiler drum while working within the Steckel
mill: waiting for the steel sheet (left) and rolling it (right). The goal of the
SiMoDiM project is to design a predictive system for making informed deci-
sions regarding their just-in-time replacement.

sensors and processes, inaccurate models, etc. For example, if
the part lifetime is discretized with values between 1 (new) and
10 (totally degraded), a computed belief of Bel(x = 1) = 0.1
indicates that it is unlikely that the part is new, while Bel(x =
7) = 0.8 means that it is quite probable that the part is seriously
degraded. Every time that new process-related data are avail-
able, a new probability distribution is estimated and provided
to the operators, along with a prediction of the part degradation
after hypothetically carrying out certain process in the factory,
enabling them to make informed decisions about the right time
to replace the parts, or even to adapt the production. It is worth
mentioning that our proposal goes beyond the usual operational
limits of a laboratory-fitted model [24], since it is also able to
learn from new data and to adapt its operation according to dif-
ferent conditions.

This paper also addresses the challenge of rendering the mas-
sive data produced in the factory from logistics, scheduling and
production into an usable form for their exploitation by the pre-
dictive model. For that, we provide recipes for analyzing and
pre-processing these data, which were initially explored in our
previous work [32], including: the acquisition of expert knowl-
edge, descriptive and bivariate analyses of data, and a study of
the influence of configuration variables.

Our work is carried out in the scope of the SiMoDiM
project [33], which highlights a critical procedure within the
stainless steel production: the multipass Hot Rolling, a mill pro-
cess that involves rolling the steel at a high temperature to shape
it. Specifically, the parts under degradation study are the drums
within the coilers, which work under severe mechanical and
thermal stresses and have an expensive replacement process.
The top row of Fig. 1 shows two of these drums with differ-
ent degradation states, while the bottom one shows the drums
in action. The potential of the proposed PdM model has been
assessed employing historical data from the hot rolling process
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carried out in the ACERINOX factory located in Cadiz, Spain.
In that evaluation, its output is compared with the one from
a preventive maintenance system, as well as with those from
a number of traditional and state-of-the-art regression models,
reporting more accurate predictions of the parts’ degradation.

The next section puts our work in the context of the Indus-
try 4.0 paradigm. Section 3 provides an overview of the full
predictive maintenance system developed at SiMoDiM. Then,
Section 5 introduces the proposed Bayes filter for predicting
the machinery degradation, including a description of the avail-
able data as well as the proposed recipes for their processing.
Section 6 reports the techniques used for validating the model
and the obtained results. The paper concludes with a discussion
about the work done in Section 7.

2. Related Work

This section starts presenting an overview of the main com-
ponents and applications of Industry 4.0, including the mainte-
nance of assets (see Section 2.1), to later describe the most com-
mon and widespread maintenance approaches, discuss popular
frameworks for the implementation of predictive maintenance,
and conclude relating our contribution to them.

2.1. Industry 4.0

A key principle of the Industry 4.0 paradigm is that processes
and machinery must be networked as a collaborating commu-
nity for the collection, exchange and analysis of data in order to
predict future behaviours and pursue optimal solutions to pos-
sible problems [9, 11]. Nowadays, this principle is beginning to
be achievable thanks to the development of a number of promis-
ing technologies. One of these technologies is the so-called
Cyber-Physical Systems [5], which refers to systems with inte-
grated computational and physical capabilities that can be inter-
faced in different ways [34, 35]. These systems are enhanced
with features from the Internet of Things (IoT) [6] technology,
providing them with the ability to continuously obtain informa-
tion from sensors or processes across the factory, and securely
forward it to (generally cloud-based) data centers [36]. This
massive data production implies the development of new tools
based on Big Data techniques [8, 14, 12], for storing, manag-
ing, and processing it. This set of technologies is completed
with the Internet of Services (IoS) one, which takes the pro-
cessed information from Big Data tools and deploys it at the
right place and in the right form [7].

Within the Industry 4.0 paradigm, the number of works pre-
senting models, frameworks, applications, use cases, etc., is
rapidly growing, as reported by recent surveys [4, 10, 37, 38].
The aforementioned techniques enable a wide range of applica-
tions in different areas, e.g. process and planning (waste reduc-
tion and value increment), supply chain, transport and logistics,
health and safety, product design, or the one addressed in this
paper, maintenance and diagnosis. As an example, in the rec-
ommendations given in [1] the authors discuss their usage for:
energy consumption reduction, end-to-end system engineering
across the entire value chain, supporting custom manufacturing,

telepresence, and sudden change of supplier during production.
Energy management was also the application of discussion in
the work by Shrouf et al. [39]. In the same way, Tamás and
Illés [40] studied the trends in processes improvement that arose
from this industrial revolution. Another interesting application
is the creation of virtual worlds with augmented reality that,
as described in [41], can be exploited for assisting operators in
a dynamic production environment. This idea was further ex-
plored in the work by Simonis et al. [42]. Among this wide
range of opportunities, this work tackles the application of In-
dustry 4.0 principles for the predictive maintenance of assets,
a critical aspect of companies’ efficiency and products qual-
ity [43, 44, 45].

2.2. Predictive Maintenance
The maintenance of machinery in production lines is a task

entailing significant factories’ resources (budgets, operators,
time, etc.) [13, 17]. The simplest maintenance option is fail-
and-fix or corrective maintenance (also known as fire fighting),
which essentially consists of repairing a machine when a failure
is detected. This approach is prohibitive for modern factories,
since unexpected breakdowns have a strong impact on compa-
nies’ costs [21]. Preventive maintenance (PM) aims to avoid
these breakdowns by scheduling periodical maintenance opera-
tions according to the elapsed time or machine usage. Although
more appropriate, this approach has two disadvantages: it is
also expensive to maintain (even more if the operation intervals
are tight), and there is no learning about the machine degra-
dation profile for future design improvements [46]. Precisely,
the goal of the last evolution of this task, namely predictive
maintenance (PdM), is to monitor the machinery status in order
to decide when a repairment/replacement operation is needed
given its degradation level. This approach has consensual ben-
efits: cost reduction, operational efficiency, product quality im-
provement and increased flexibility [13]. Although the PdM
paradigm is not new (it was introduced in late 1940s [22]), the
emerging CPS, IoT, Big Data and IoS technologies have en-
abled its seamless application to modern industries [15].

A term closely related to PdM is such of Prognostics and
Health Management (PHM), a discipline that pursuits the as-
sessment of the machinery health and the prediction of its re-
liability and remaining useful lifetime (RUL) to carry out an
informed system lifecycle management [47, 48]. As discussed
in [49], PHM should not be considered a type of maintenance,
but a set of techniques and methods that can be employed as
maintenance inputs. Indeed, the predictive model proposed in
this work could be considered a prognostic method.

There exist frameworks that pursue the formal definition of
PdM systems. That is the case of the OSA-CBM architec-
ture [50], which defines a standard for information flow to help
to realize an end-to-end PdM system. A more practical example
is SIMAP [51], a general tool that defines an architecture for the
diagnosis and maintenance of industrial processes, which was
applied to the retrieval of the health condition of a windturbine
gearbox. Another popular framework is the Watchdog Agent R©,
of which [52] showed some implementation examples for on-
line performance assessment: a commercial elevator door, a
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Figure 2: Scheme of the Steckel hot rolling mill. The stainless steel sheet (in red) is heated and worked in the mill through one or multiple passes, until desired
thickness is obtained.

gear box in a material handling device, and different machine
tools across a car manufacturing floor. The work by Gregor
et al. [53] proposed a model to integrate PdM into the enter-
prise framework. Despite the OSA-CBM case, which defines
an standard, the rest of proposals requires a significant effort
for being adapted to each particular company requirements.

With the progressive application of PdM, the number of case
studies that can be found in the literature is also increasing. For
example, Lee et al. [21] described a cloud-based tool for the
condition monitoring of a cutting machine, where its healthy
status is reported through a web GUI to the operators. More
related to our work we find that of Yang [54], where a Kalman
filter is used to estimate the state of a DC motor for PdM pur-
poses. As discussed in [22], this approach has the drawbacks
of being complicated and computationally expensive, so it is
not suitable for critical systems. The interested reader can find
more case studies in the articles by Li et al. [16], Shin and
Jun [55], Kesheng [56], and Prajapati et al. [22].

Those works rely on different techniques for determining the
machinery state, most of them coming from the Artificial In-
telligence (AI) or Machine Learning (ML) fields [57]. ML
techniques are data-driven approaches able to find complex and
non-linear patterns in data, and to build models from them that
can be applied for prediction, detection, classification, or re-
gression [29, 30, 17]. Among those techniques we can find
Support Vector Machines, Decision Trees, Neural Networks,
etc., being the selection of the model a matter of the: kind of
data it has to work with, operational requirements, and type of
results that it has to provide [52]. In the present paper we pro-
pose a PdM model that relies on a ML technique, a Discrete
Bayes Filter [27] (DBF), for converting information from sen-
sors, processes, and domain experts into knowledge about the
machinery degradation state and its future behaviour. The in-
formation latent in this type of systems is naturally modelled
by the filter, also providing a valuable measure of belief about
its outcome. Another clear advantage of DBFs over other ML
alternatives is their robustness against fluctuating and noisiy
data. The proposed filter can also learn from experience, hence

overcoming the tight test of time demanded by industrial set-
tings [24]. Other filters like the Kalman filter [58] and its ex-
tensions [59] could be also considered, but they either rely on
linearity assumptions of the underlying system, or require the
calculus of complex Jacobians to linearly approximate its dy-
namics and to propagate uncertainty [60]. This work is carried
out in the scope of the SiMoDiM project [33], with focus on
the Steckel mills in the Hot Rolling process for the production
of stainless steel [61]. To the best of our knowledge, this is the
first work addressing the predictive maintenance of parts from
a Steckel Mill.

3. Overview of the Predictive Maintenance System

Within the metallurgy industry, the purpose of the rolling
process is to reduce and uniform the thickness of large pieces of
metal (like semi-finished casting products, often called plates).
These pieces are first heated over its recrystallization tempera-
ture (over 1700 ◦F [62]), and are then worked to reduce their
thickness by passing one or several times through the mill.
Fig. 2 shows a scheme of the Steckel hot rolling mill employed
by ACERINOX Europa S.A.U. In it, the steel sheets run along
the roller conveyors to be worked in the roll stand. If more
than one pass is necessary, the metal sheets are coiled around
the drum, and the process is repeated in the inverse direction
(left-to-right, right-to-left). Due to the high temperatures of the
process (the coilers contain a furnace to keep the steel temper-
ature high) and the friction against the material, degradation
of the machinery is common and a proper maintenance plan
is mandatory to avoid costly and long production downtimes.
This is the case of the coiler drums, the critical machinery parts
we focus on, to assist in the decision of when they should be
replaced/repaired [61].

Fig. 3 shows the proposed system for the predictive main-
tenance of those drums in the context of SiMoDiM. It starts
by mounting on the mill a number of smart (embedded) sen-
sors. These sensors are connected to a local network, convert-
ing the mill into a Cyber-Physical System (CPS), and are in
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Figure 3: Logical components of the predictive maintenance system developed in SiMoDiM, using technologies from Cyber-Physical Systems, Internet of Things,
Big data and Internet of Services. The Cyber-Physical Systems area shows, in addition to the hot-rolling-mill, the other components of the hot rolling pipeline.

charge of measuring parameters that change according to mod-
ifications and disturbances in the mill process. For each hot
rolling process carried out in the mill, Internet of Things tech-
niques are used to retrieve the collected information from the
sensors, and to securely forward it to a centralized server. Re-
cent advances in Big Data are then used to transform this net-
worked data into a valid format for its storing into a NoSQL
database, providing high capacity and fast query execution [63].
These data are analyzed and summarized by means of statisti-
cal tools (this is the data-to-information bridge [53]), and then a
Machine Learning technique, concretely a Bayes Filter, is used
to infer the degradation state of the coiler drums (information-
to-knowledge bridge) as well as its future behaviour. Finally,
through Internet of Services utilities, this knowledge is graph-
ically shown to the operators in order to carry out an informed
maintenance scheduling. This work focuses on two critical
components within this system: (i) the analysis and process-
ing of massive data, (ii) and the ML tool for predicting the ma-
chinery state, to which we refer as the predictive model. Next
sections further describe these components. It is worth men-
tioning that, although we focus on the predictive maintenance
of coiler drums, these components could be used on any other
machinery part which degradation state can be observed, and
with available ground truth information about its health over
time.

4. Data analysis and processing

Our goal is to fit a ML model able to predict the evolution of
the machinery degradation. In the ML framework, this can be
achieved by means of a supervised learning process where the
parameters are tuned according to pairs (di,gti) [13], with di
representing the logistics, scheduling and production data from
the hot rolling process pi, and gti being the ground truth asso-
ciated to that process, i.e. , the degradation state of the coilers.
In general, it is better to have as much training data as possible.
However, an excessive amount of them can hinder the detection

of the relevant information and hence have a negative impact in
the performance of ML techniques [24, 29]. Unfortunately, the
massive data collected from CPSs are affected by this problem.
To face this issue, it is required a data processing step in order
to summarize di, which is often called the data-to-information
bridge, making it easier to find behaviour patterns about ma-
chinery degradation. For doing that, such data are characterized
through representative descriptors. In this way, a descriptor can
be defined as a simplified representation of some pieces of data
that clarifies and preserves the relevant information for solving
a certain problem. For example, in our case, a valid descriptor
must carry information about the machinery health status.

Fig. 4 illustrates the design and working phases of the pro-
posed ML model, where we can see how this data processing
is conducted in the first two columns. The data gathered from
each process carried out in the factory (first one) is summarized
by useful descriptors (second column), resulting in a more con-
cise, tractable and profitable information representation for fit-
ting the model and, as described in Section 5, for inferring the
machinery status.

To summarize, the purpose of the data processing step is to
complete the data-to-information bridge, that is, to turn massive
data into representative descriptors. However, how to accom-
plish this conversion is not a trivial task. We partially addressed
this issue in our previous work [32] but, using such experience,
in this section we provide concise recipes for successfully find-
ing the most suited descriptors. Concretely, we propose a four-
steps data analysis process in order to find the variables and de-
scriptors that better summarize the raw data, as shown in Fig. 5.
More formally, this analysis pursuits the design of the function
f (pi) that renders the information coming from the process pi
into a vector of descriptors di = [d1i,d2i, . . . ,dui]. The next sec-
tions introduce the proposed analysis steps, briefly (see Fig. 5):

1. Acquisition of expert knowledge (Section 4.2), which per-
mits us to focus on promising logistics, scheduling or pro-
duction information –also called candidate variables– ac-
cording to the operational experience. It is also useful for
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Figure 4: Diagram showing the information and processes involved in the design and working phases of the proposed predictive maintenance model. In the design
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tune the predictive model. In the working phase, fresh data coming from the factory are summarized in the same way and used to estimate the degradation state of
the machinery and predict its behaviour in the future, information that is shared with the operators in order to schedule maintenance operations.

the identification of other factors that, in addition to the
machinery status, could have influence in the variables val-
ues –called interactions– and have to be considered in the
analysis. This step assists the remaining ones.

2. Descriptive analysis (Section 4.3), which pursues the
study of the behaviour of the candidate variables and
which descriptors could properly characterize them. For
example, if a force is selected as a candidate variable, it
could be characterized by its average, maximum and min-
imum values, its dispersion, amplitudes and frequencies in
the frequency domain, etc.

3. Bivariate analysis (Section 4.4), which, once a number of
descriptors have been proposed, validates them by trying
to find patterns relating those descriptors with the machin-
ery degradation status. If no relation is found for a given
descriptor, then it is discarded.

4. Analysis of the interactions with configuration variables
(Section 4.5), which aims to establish relations between
configuration variables, i.e. those defining the behaviour
of the process to be carried out (desired temperatures, fea-
tures of the produced material, etc.), and the selected de-
scriptors. If any interaction is found, that means that the
descriptors’ values are not only influenced by the machin-
ery degradation, so they have to be considered in the pre-
diction model.

For a better understanding of the analysis steps we exemplify
them in the context of the SiMoDiM project, whose available
data are described next.

4.1. The data

During the period 2013-2016, the data collected from the
smart sensors mounted on the hot rolling machinery in the AC-
ERINOX Europa S.A.U. factory in Cadiz, Spain, have been
stored, building a rich and vast dataset. It contains informa-
tion from the 118,484 hot rolling processes carried out in that
period, each one available in the form of files that contain the
value of 18 different variables measuring the processes’ state at
intervals of 0.5 meters of rolled steel (e.g. steel densities, coiler
temperature, engines power or pressure and forces in the roll
stand). Since the initial and desired thickness of the steel sheets
differ, each file contains a different number of measurements or
rows. This variability also results in hot rolling processes with
different number of passes: 1, 3, 5, 7 and 9. As an illustra-
tive example, the processes with 7 passes have between 5 and 6
thousand rows. In total, the number of provided measurements
goes up to more than 436 millions (an average of ∼3.6k per
process).

Each process is additionally identified by two logistic vari-
ables: number of campaign and steel plate identification, and 18
meta-variables or configuration variables. The latter consist of
8 variables reporting the properties of the steel plate (e.g. steel
type, weight, length and thickness at the entrance, etc.), and
10 more configuring the behaviour of the process itself (work
code, number of passes in the mill, coilers’ temperature etc.).
This sums up a total of 38 variables describing each hot rolling
process. The resultant huge amount of data must be summa-
rized using informative descriptors, process that is described in
the next sections.

In addition to this, information regarding the dates where the
coiler drums were replaced is also available, as well as monthly
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Figure 5: Diagram showing the steps of the proposed data analysis and their outcome, aiming to find the most appropriated features/descriptors to summarize the
initial, raw data.

annotations about their health condition (ground truth). These
replacement dates permit us to split the hot rolling processes
into sequences, where each sequence spans over the lifetime of
a coiler drum, ranging from 6 up to 8 months (∼6.8 months on
average). It is worth mentioning that, in these sequences, both
coiler drums in the Steckel mill (recall Fig. 2) were replaced on
the same date, hence sharing the same degradation profiles.

4.2. Acquisition of expert knowledge

To properly analyze the available data in order to find suit-
able descriptors, and avoiding turning the data analysis into an
improvised and inaccurate process [57], it is necessary to obtain
knowledge about the processes that produced the data [24], spe-
cially from experts on the domain. In the case of the SiMoDiM
project, this knowledge was extracted through human elicita-
tion. Next points summarize the retrieved information:

• Clarification of candidate variables. From the 18 vari-
ables describing the evolution of each hot-rolling process,
two of them refer to the process progress (current pass and
meters of steel processed), and other twelve reflect values
that are consequence of the process configuration (aper-
ture of the roll stand, temperature within the coilers, etc.).
The remaining four are susceptible to being affected by the
drums’ state, hence being candidates to reflect their condi-
tion: input and output-tension, which measure the traction
forces in both coilers, leveling that indicates the slope of
the sheet being processed, and bending that measures its
curvature. These variables are grouped into the vector v.

• Identification of possible interactions. The experts from
the factory pointed out that, in addition to other factors,
the measurements of these variables are heavily influenced
by the number of passes that the steel sheet does in the
mill. To take this into account in the data analysis we used
that parameter to cluster the processes, being the resultant
groups individually studied, drastically reducing the data
dispersion. They also highlighted the importance of look-
ing for additional interactions, which is carried out in the
last step of the proposed analysis (see Section 4.5).

• Definition of parameters affecting the coilers’ degra-
dation. The experts reported the factors that contribute
the most to the parts’ degradation. We make use of this

valuable information for the prediction of the coilers’ state
after completing a hot rolling process, as described in Sec-
tion 5.1.2. Concretely, these factors (coming from the con-
figuration variables) are: the desired length of the steel
sheet, the number of times that the material is rolled over
the coilers, the type of steel, and the initial thickness of the
plates.

This knowledge assists the analyses carried out in the next
sections. At this point it is worth mentioning that the data anal-
ysis must be dynamic and not a one-time process, since the
availability of new knowledge from experts, or evidences ex-
tracted from the data, would require its re-launching in order to
reach more realistic conclusions.

4.3. Descriptive analysis

Analysis goal: to gain insight into the candidate variables v,
how they behave during the hot rolling processes, and which
features or descriptors, represented by the vector d, could be
more suitable for their characterization.
Methods: First, the variables are described through their cen-
tral tendency, dispersion and shape. This analysis is completed
by graphical representations of their behaviour, as it is shown
in Fig. 6. Notice that the measurements gathered by the sensors
can be interpreted as temporal series or signals.
Results: according to the variables’ behaviour, it was decided
to extract features from the time domain for both leveling and
bending variables, while for the case of the tensions they were
also extracted features from the frequency domain (see Table 1).

Additionally, by means of this visual inspection it was also
detected a strong correlation between the observed variables
and the length of the sheets being processed (variable tightly re-
lated to the number of passes of the material in the mill). Fig. 6
illustrates this for the case of the input-tension and output-
tension variables, where we can clearly see that the shorter the
sheet, the higher the tensions, supporting the experts’ intuitions
in this respect.

4.4. Bivariate analysis

Analysis goal: to find patterns relating the behaviour of the
characterized variables by the vector of descriptors d, and the
degradation state of the drums. This permits us to select the
descriptors that best reflect the drums’ condition.
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Figure 6: (a) Measured tensions from the 4th pass in four 5-passes processes, (b) and (c), measured sheets’ leveling and bending for different number of processes,
respectively. The vertical, dotted lines indicate the processes’ ending points.

Table 1: Computed descriptors for the different candidate variables (between
parentheses, the number of total descriptors for each one). The descriptors of
output-tension are the same as the input-tension ones. The check mark symbol
(X) identifies the final descriptors chosen to feed the predictive system.

Leveling (3) Bending (3)
mean 1 mean 1
hits 1 hits 1

hill stdv 1 minimum 1

Input Ten. (12)
mean 1 Max. amp. FFT coefficients [X] 3
stdv 1 Frequencies with max. amp. 3

hill mean 1 Skewness (frec. domain) [X] 1
hill stdv [X] 1 Kurtosis (frec. domain) [X] 1

Methods: to numerically drive the analysis, we computed the
well-known coefficient of determination [64], denoted as R2,
which represents the portion of the variance in a dependent vari-
able (in this case, the descriptions of the candidate variables)
that is predictable from an independent variable (drums degra-
dation). This is a good measure about in which magnitude a
variable influences another one, that is, how the degradation of
the coilers affects the behaviour of the characterized variables.
If there is no relation among them, then it would not be possible
to predict the degradation using those descriptors. To compute
it, first, a linear regression model is built, and then the model
residuals are analyzed. The descriptors with R2 > 0.2 and a
reduced p-value (lower than 0.05) are chosen to comprise the
final set of promising variables and descriptors.

Results: Table 1 shows a check mark next to the descriptors
fulfilling this condition. Therefore, the vector of descriptors d
describing each hot rolling process has 12 components (6 char-
acterizing the input tensions and 6 for the output ones). Fig. 7
graphically illustrates this analysis for two variables: the sheet
bending described through its mean values (per process), and
the coiler input tensions by its hill oscillations (standard devi-
ations). In both cases their values for two sequences (as well
as their trends) are shown, and we can check that although the
behaviour of the input tensions’ oscillations is similar (both in-
crease similarly, which means that the system becomes less sta-
ble with its degradation), it is not the case when analyzing the
bending of the sheets.

4.5. Interaction with configuration variables
Analysis goal: to find out configuration variables correlated
with the previously selected variables and descriptors. This is
important to isolate the effect of the drums’ state [21], and be
able to better model the behaviour of the selected descriptors,
which most probably not only depend on the coilers’ condi-
tions. One of these configuration variables has been already
commented: the number of passes that the steel sheet does in
the mill.
Methods: the coefficients of determination (R2) between the
candidate variables and the configuration ones were computed.
Results: The configuration variables showing a higher coef-
ficient were the pass that the sheet is currently performing in
the mill (first, second, third, etc., R2 = 0.25), the width of
the sheet before the hot rolling process (R2 = 0.20), the tar-
get thickness after completing it (R2 = 0.20), and the type of
steel (R2 = 0.15). This demonstrates the necessity of introduc-
ing these variables in the design step of the predictive model.

5. The Predictive Model

Once the massive data produced in the factory is rendered
into a more concise and informative form, it can be used to fit
a ML predictive model. This process is graphically illustrated
in the third and fourth columns of Fig. 4 (top row). The chosen
model relies on a Discrete Bayes Filter (DBF) [27]. This deci-
sion was made taking into account the challenges posed by pre-
dictive maintenance systems in the Industry 4.0 context, which
are tackled by DBFs thanks to its capabilities for:

• Permitting us to seamlessly integrate data coming from lo-
gistics, scheduling, and production as well as knowledge
from experts.

• Naturally handling the uncertainty inherent to sensor mea-
surements, data transmission, inaccurate models, etc.,
which could lead to faulty systems if disregarded.

• Quickly adapting its behaviour to changes in the factory
by fitting its internal parameters with the new data.

• Running in short time, providing fresh information to op-
erators after each process carried out in the factory.
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Figure 7: (a) and (b) illustrates the (per process) averaged sheets’ bending for
the second and third sequences, respectively, while (c) and (d) shows the oscil-
lations of input tensions for the same sequences. The data have been smoothed
to improve their visualization.

These and other features, like the compactness of DBFs, will
be assessed throughout this section and later in the model eval-
uation one (see Section 6). In the following, Section 5.1 de-
scribes the core of the proposed Bayes Filter, while Section 5.2
discusses how to use it for estimating the machinery status and
predicting its future behaviour, enabling operators to make in-
formed decisions.

5.1. Discrete Bayes Filter Design
The Bayesian Filters seamlessly integrate the uncertain and

limited knowledge about how the system works (in this case,
the coiler drums), with the noisy measurements from the avail-
able sensors, aiming to make an estimation as accurate as pos-
sible of the system current state. In this project, the knowledge
about the system evolution comes from the experts in the fac-
tory (recall the Definition of parameters affecting the coilers
degradation point in Section 4.2), while the measurements are
expressed as the processes’ descriptors introduced in Section 4.

In this way, the Discrete Bayes filter (DBF) pursues the esti-
mation of the degradation state of the coiler drums, considering
for that a discrete range of values. Additionally, this estima-
tion is enhanced with beliefs about the correctness of the in-
ferred results. For example, let us consider that the health of
the drums is discretized between the values 1 and 10 (meaning
1 a fresh drum, and a 10 a totally degraded one). Thereby, the
estimation results in the beliefs about the current drum degra-
dation belonging to each of these values (e.g. Bel(x = 1) = 0.1,
Bel(x = 2) = 0.45, Bel(x = 3) = 0.3, etc.). In order to mathe-
matically express the model, the following definitions are use-
ful:

• Ns: number of values, or states, in which the drums’
health/degradation is discretized.
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Figure 8: (Up) Oscillations of input tensions for the second sequence. (Bottom)
Smoothed oscillations using a Hanning window of 101 processes.

• x: discrete random variable representing the drums’ dete-
rioration, taking values on the set {1, . . . ,Ns}.

• k: represents a time instant, so xk states the drum state at
instant k.

• zk: characterized measurements or observations of the sen-
sors available at time k, that is, a reference to the vector of
descriptors d.

• uk: action taken on the system at time instant k, in this case
a hot rolling process.

• ck: configuration parameters of the process that have in-
fluence on the sensor measurements.

In the addressed problem, each time instant k corresponds to
the instant in which a hot rolling process is completed in the
mill. Thereby, we can retrieve the belief about the coiler drums
having a certain degradation state after completing a process by
computing:

Bel(xk) = η P(zk | xk,ck,zk−w:k−1)
Ns

∑
i=1

P(xk | uk,x
i
k−1)Bel(xi

k−1) (1)

where η is a normalization constant. We can see how the be-
lief computation depends on two probability distributions, as
well as on the belief at the previous instant, Bel(xi

k−1). On
the one hand, the distribution P(zk | xk,ck,zk−w:k−1) models the
probability of having the observation (or descriptors’ values) zk
given a certain drum degradation (xk), the process configuration
variables that have influence on it (ck), and the previous mea-
surements (zk−w:k−1) within a window of processes of length w.
This probability is often called sensor model.

On the other hand, the distribution P(xk | uk,xi
k−1) models

the behaviour or evolution of the system given a certain control
action, that is, performing a hot rolling process. Concretely, it
represents the probability of having a certain degradation state
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Figure 9: Histograms grouping the values of a descriptor (input tension oscillations). In this case, the drum degradation in discretized into 5 states. The top row
includes values with an associated configuration variable target thickness lower than 4.25cm, while the second row includes those with a thickness higher than that
value.

xk given a control action (uk) and a previous degradation state
(xk−1 = i). This distribution also receives the name of action
model. The next sections describe how these models have been
defined (Section 5.1.1 and Section 5.1.2), while Section 5.2 in-
troduces how to use them for estimating the machinery status
and predict its future behaviour.

5.1.1. Sensor model
The sensor model specifies the probability to which sensors’

measurements are generated given a deterioration state of the
drum and a certain value of the configuration variables. Ideally,
the sensors’ observations depend on the current drum state, the
values of such configuration variables, and an additional noise
ξ coming from the sensors themselves, that is:

zk = h(xk,ck)+ξ (2)

Given the noisy sensor readings, and hence noisy descriptors,
(as illustrated in Fig. 8), and the influence that configuration
variables (number of passes in the mill, desired output length,
etc.) have on such readings, it is unfeasible to fit a sensor model
employing only the current measurement zk and ignoring such
variables. Pursuing a more robust behaviour against these fac-
tors, we propose the design of a sensor model employing his-
tograms of measurements.

For doing that, an histogram H is built for each possible
degradation state Ns, and for each possible value of the con-
figuration variables. For that, configuration variables taking
continuous values are discretized. For example, the discretized
values vd for the configuration variable desired thickness, repre-
sented by v, can be retrieved as: vd = 0 if v < 4.25, and vd = 1
otherwise. The number of discretized values and their ranges
are different for each configuration variable, and were set us-
ing expert knowledge and cross-validation. Notice that the total
number of histograms to be built is Ns×∏

|c|
i=1 |vi

d |, being vi
d the

set of values that the configuration variable ci can take, and | · |
an operator returning the number of elements in a set/vector.
Each histogram can be indexed as Hx,c, where x ∈ {1, . . . ,Ns}
represents a degradation state, and c = [v1

d , . . . ,v
|c|
d ] states the

discretized values of the configuration variables. For exam-
ple, Fig. 9 shows the histograms built by discretizing the drum

degradation into 5 states, and considering only the aforemen-
tioned configuration variable: the target thickness after the hot
rolling process. The top row illustrates the 5 histograms group-
ing into 6 bins the measurements (input tension oscillations)
from 4 sequences (see Section 6) that have a target thickness
lower than 4.25, while the bottom row does the same for the
measurements with a higher thickness. It can be clearly seen
how, in each row, the distribution of the measurements differs,
highlighting the need for using configuration variables in the
design of the sensor model.

Thereby, in order to use these histograms within the sensor
model, the last w measurements taken from the factory are used
to build an additional histogram for each possible combination
of configuration variables, Hzk−w:k,c. These histograms group
together measurements that share the same configuration vari-
ables values. In this way, at time instant k, the sensor model
computes the probability of the histogram Hzk−w:k,ck being pro-
duced by a machine with a degradation state xk by comparing
it with those histograms built for that state and configuration
variables’ values. Formally:

P(zk | xk,ck,zk−w:k) = η
(
1−0.5dist(Hxk,ck ,Hzk−w:k,ck)

)
(3)

where η is a normalization constant, and dist(·) ∈ [0,2] com-
putes the Mahalanobis distance between the two histograms. It
can be noticed that, if the two histograms are similar, the com-
puted distance will be low, so the probability for the checked
state will be high. Likewise, if they considerably differ, it would
return a high distance and a low probability.

5.1.2. Action model
This model describes the behaviour or evolution of the sys-

tem after the execution of an action, in this case, a hot rolling
process. Thus, its purpose is to define at what extent the drum
degrades given the execution of a process at instant k, denoted
by uk, which is described through a number of parameters qk
that influence on such degradation, for example, the number
of times that the material is rolled over the coilers, the type of
steel, the initial and desired thickness of the steel sheet, etc.
(recall Section 4.2). This model is defined as follows:
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P(xk | uk,xk−1) =



|q|

∑
i=1

li×qi
k×Ns/q̄i

t p, if xk = xk−1.

1−
|q|

∑
i=1

li×qi
k×Ns/q̄i

t p, if xk = xk−1 +1.

0, otherwise.

(4)

being li the normalized value for the influence of the pro-
cess configuration parameter qi, as given by the experts, so
∑
|q|
i=1 li = 1, and q̄t p the averaged sum of such configuration pa-

rameter in the sequences used to fit the model. For example,
considering the variable number of steps in the mill, q̄t p corre-
sponds to the average of the total number of steps carried out
by all the processes within each sequence.

This model sets that it is neither possible for the drum to
regenerate (xk < xk−1), nor to degrade more than a discretized
state unit (xk > xk−1 + 1). Therefore, for every new action uk,
this model estimates the probability of the drums to stay in the
current degradation state (xk = xk−1), or to advance to the next
discretized state (xk = xk−1 +1).

5.2. The Model in Action

Once the parts of the DBF have been introduced, the next sec-
tions describe how to use them to estimate the degradation state
of the coiler drums (Section 5.2.1), as well as how to predict
its future behaviour (Section 5.2.2). Fig. 4 (bottom row) puts
these steps in context with the working phase of the predictive
maintenance model.

5.2.1. Estimation of Machinery Condition
The DBF principle is that the state of the system at instant

k can be estimated from the state at instant k− 1, the control
action uk carried out, and the taken measurements zk. For that,
two steps are employed: prediction and update.

• In the prediction step the beliefs at the previous instant
Bel(xk−1) are refreshed using the action model. That is,
the filter predicts the new belief about the machinery hav-
ing a certain degradation after carrying out a hot rolling
process. It corresponds with the summation in Eq. (1), and
it adds uncertainty to the inference (it spreads the belief
over the different system states). In this way, only using
the predictions to estimate the drum condition could end
up having no information about it (the higher the number
of predictions, the higher the uncertainty about the state).
That is why it is needed to consider additional information
for achieving a reliable degradation estimation.

• At this point is where the update step comes to play, tak-
ing advantage of the sensor model and the taken measure-
ments. Such an update corresponds with the first part of
Eq. (1), and permits the filter to increase/decrease the be-
lief about the drum being at certain states, decreasing in
this way the uncertainty about the inference results.

INITIAL CONDITIONS Bel(x0)

PREDICTION

STEP

UPDATE

STEP

STATE ESTIMATE Bel(xK)

NEW ACTION (uk)

LAST ESTIMATE Bel(xK-1)

LAST MEASUREMENTS (zk-w:k)

CONFIG. PARAMETERS (ck)

NEW PROCESS

UPDATE

STEP

STATE ESTIMATE Bel(xK)

LAST MEASUREMENTS (zk-w:k)

CONFIG. PARAMETERS (ck)

NEW PROCESS

INITIAL CONDITIONS Bel(x0)

PREDICTION

STEP

NEW ACTION (uk)

LAST ESTIMATE Bel(xK-1)

Figure 10: Diagram of the Discrete Bayes Filter workflow for estimating the
degradation of the machinery each time that a new hot rolling process is carried
out.

Fig. 10 outlines the filter operation each time that a hot
rolling process is completed in the factory, while Alg. 1 pro-
vides a more formal algorithmic description. Before the first
execution of the filter (which is launched each time a hot rolling
process is completed), a number of initial conditions are set,
with Bel(x1 = 1) = 1 and Bel(xi = 1) = 0, ∀i , 1. Such initial
conditions just say that the coiler drums are new (Bel(x1 = 1) =
1). Then, the algorithm starts by entering into a loop, where it
predicts the state at instant k according to the beliefs at instant
k−1, the configuration parameters of the rolling process com-
pleted at the mill, and the action model (lines 2-3 in Alg. 1,
prediction step). After this, another loop updates the previous
prediction with the measurements taken by the sensors and the
sensor model, which computes which state is more probable
that the measurements belong to (lines 4-9, update step). The
result of the update step, after normalization, is some interme-
diate point between the prediction and the previous similarity
computation, hence becoming the estimation Bel(xk) (lines 8-
10).

For a better understanding of the filter outcome, let us discuss
some possible results. Fig. 11 (top row) shows two estimations
of the coiler drums degradation after completing 6k processes,
illustrating two possible scenarios in the factory. In the first one
(left), the output of the model tells the operators that it is fairly
confident about the degradation being at state 9, so the coiler
drums can still be used, while in the second one (right) the esti-
mation is not such confident, so it should be collected additional
information to determine its state, or scheduled a maintenance
task in order to avoid a fail.

5.2.2. Prediction of Future Behaviour
Up to this point we have described a model able to estimate

the health status of the machinery. However, for doing predic-
tive maintenance it can also be useful to provide a prediction
about the system behaviour in the future. For doing so, after
having estimated the degradation of the machinery at a time in-
stant k in the form of beliefs Bel(xk), the DBF can be used to
predict its degradation at time instant t +np, that is, after hypo-
thetically performing np processes. For doing so they are used
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Algorithm 1 Discrete Bayes Filter iteration

1: procedure DBF(
Bel(xk−1), . Belief at previous time instant
uk, . Action taken on the system
zk−w:k, . Measurements (last w processes)
ck, . Process configuration parameters.

)
2: for all xk do . Prediction step
3: Bel(xk) = ∑

Ns
i=1 P(xk | uk,xi

k−1)Bel(xi
k−1)

4: η = 0
5: for all xk do . Update step
6: Bel(xk) = P(zk | xk,ck,zk−w:k−1)Bel(xk)
7: η = η +Bel(xk)

8: for all xk do
9: Bel(xk) = η−1Bel(xk)

10: return (Bel(xk))

the action model as well as the np future control actions of the
hot rolling processes to be completed.

Alg. 2 details how to perform such prediction. Briefly, the
action model is used to iteratively compute the predicted be-
liefs after hypothetically carrying out each hot rolling process
(lines 2-3), then the beliefs after the last process are normalized
to sum up 1 (lines 4-5), retrieving the beliefs Bel(xk+np) that
predict the degradation state of the coiler drums after carrying
out those hot rolling processes (line 6). In this way, factory op-
erators are provided with valuable information for carrying out
just-in-time maintenance operations.

Let us illustrate how these predictions could be used and in-
terpreted by the operators. For example, suppose that a pair of
coiler drums have completed 6k processes, and their degrada-
tion state is estimated by the beliefs provided in Fig. 11 (top-
left). Then, the operators can employ this tool to predict their
degradation after, for example, other additional 500 processes.
For that, they feed the system with the configuration parame-
ters for such uk+1 · · ·uk+500 processes, and execute the model
to obtain the predictions. Fig. 11 exemplifies the model output
in two different scenarios: (bottom-left) after carrying out 500
process not so demanding for the coiler drums (low number
of passes, a favorable steel type, etc.), and (bottom-right) af-
ter completing 500 demanding manufacturing processes. In the
first scenario, the operators can infer that the coiler drums still
have enough health to keep working after performing those pro-
cesses, although in the second one the execution of those pro-
cesses will require the scheduling of maintenance operations
after their completion to prevent undesired breakdowns. The
factory, as a consequence of these results and its production tar-
get, could re-schedule the configuration of the hot rolling pro-
cesses to be carried out in the factory, i.e. to execute processes
with more or less demanding profiles, enabling it to accordingly
lengthen or shorten the life span of the machinery.

Algorithm 2 Discrete Bayes Filter Prediction

1: procedure DBF PREDICTION(
Bel(xk), . Estimated belief at time instant k
u, . Future actions to be executed
np . Number of future actions

)
2: for j ∈ {1 · · ·np} do

3: Bel(xk+ j) =
Ns

∑
i=1

P(xk+ j | uk+ j,xi
k+ j−1)Bel(xi

k+ j−1)

4: for all xk+np do
5: Bel(xk+np) = Bel(xk+np)/∑

Ns
i=1 Bel(xk+np = i)

6: return (Bel(xk+np))
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Figure 11: Top, two examples of estimations of the degradation state of the
coiler drums after carrying out 6k hot rolling processes. Bottom, two exam-
ples of predictions of such degradation after hypothetically completing 500
processes more (having the top-left estimation as the initial belief).

6. Model Evaluation

We have employed the data provided by ACERINOX Europa
S.A.U. , as described in Section 4.1, to evaluate the performance
of the predictive model. The outcome of this study is addressed
in Section 6.1, while Section 6.2 analyses how the decisions
made during the sensor model design (e.g. size of the window
of processes, recall Section 5.1.1) influence such performance,
and Section 6.3 explores the learning capabilities of the model,
an important feature for systems operating in industrial settings.

6.1. Analysis of Model Performance

We have employed the well known cross-validation tech-
nique [65] for carrying out the model evaluation, following a
leave-one-out approach [23]. In a nutshell, from the five avail-
able sequences of processes in the dataset, four of them are
chosen for fitting the model, while the remaining one is used
for evaluation. This process is repeated changing the sequence
used for evaluation, completing in total five training-testing cy-
cles. The model performance is retrieved by averaging the out-
come of each test.
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Table 2: Performance of the proposed DBF-based model (predictive mainte-
nance) versus a solution only employing knowledge from experts (preventive
maintenance), as well as traditional and state-of-the-art ML regression models,
measured according to the reported Root Mean Squared Error (bold numbers
highlight the better results).

Model Total RMSE RMSE avg. RMSE stdv.
Knowledge-based 3.84 0.77 0.47

DBF-based 2.98 0.59 0.10
OLS 3.67 0.73 0.29

Nearest Neighbors 6.41 1.28 0.79
Decision Trees 4.92 0.98 0.28

MLP 3.74 0.75 0.27
AdaBoost 4.15 0.83 0.34

l-SVM 3.64 0.73 0.13

To measure the performance, we have employed the Root
Mean Squared Error (RMSE) reported by the model predic-
tions, that is:

RMSE =

√√√√ 1
Np

Np

∑
i=1

(yi− ŷi)2 (5)

where Np is the total number of hot rolling processes in the
testing sequence, yi is the ground truth drum degradation, and ŷi
is the degradation estimated by the model. While ground truth
information is continuous, the output of the DBF is a vector of
beliefs over discrete states, so for retrieving a continuous value
for such a degradation at each time step we used a weighted
average:

ȳi =
Ns

∑
j=1

j Bel(xi = j) (6)

6.1.1. Comparison with a purely preventive approach
First, the performance of the proposed DBF-model is go-

ing to be compared with the one from a purely preventive ap-
proach, that is, a Knowledge-Based model. Such model only
employs the knowledge acquired from experts to estimate the
drum state, i.e. it only performs prediction steps (recall Sec-
tion 5.1.2 and Section 5.2.1), so it is a form of preventive main-
tenance. In that comparison, shown in the two first rows of
Table 2, the proposed model achieves a high performance, con-
siderably reducing the total (sum of the RMSE reported by each
validation sequence) and averaged RMSE in a ∼22% and a
∼23% respectively, and reaching a reduced standard deviation,
that is, showing a similar behaviour independently of the se-
quence being used for testing. The last point is of special in-
terest, and clearly states the added value of using a predictive
model. Unlike preventive approaches, this model is able to de-
tect the peculiarities of each sequence of processes instead of
performing according to preset profiles.

These numbers have been obtained by discretizing the coiler
drums’ state into 10 values. As commented in Section 4.1,
the coiler drums share degradation profiles, so they also exhibit
similar degradation conditions. There are other parameters of
the proposed model (e.g. the size of the window of processes,
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Figure 12: Evolution of the RMSE for the different degradation states of the
coiler drums for the two compared approaches.

the number of bins in the histograms, etc.) that are fixed to
certain values. These values were not handcrafted, but tuned
following a cross-validation approach. Next sections go deeper
into this fitting.

To further analyze the differences between the models in the
spotlight, Fig. 12 reports their behaviours depending on the
ground truth drum degradation state. We can see how they be-
have similar in the 5 first states, which indicates that the drums’
degradations are similar for all the sequences in that period,
but they clearly differentiate from then on. In the states 6, 7,
8 and 9, the DBF-based model is able to keep low the RMSE,
and even to decrease the standard deviation of the errors, hence
yielding more stable predictions over time. The RMSE in-
creases in the last state, although it is still lower than the one
reported by the Knowledge-based method. However, since the
predictive maintenance operations must be carried out before
the drum totally degrades, in practice this behaviour is not a
drawback.

Another interesting study supporting these conclusions is re-
ported in Fig. 13. This series of figures illustrates the evolution
of the beliefs about the degradation state of a coiler drum when
the ground truth degradation is 2.5, 5, 7.5 and 10, from left to
right. On the one hand, the upper row represents this evolution
for the Knowledge-based model, and we can see how the beliefs
are increasingly spread over the states, that is, each time that
the filter is executed it is less clear which degradation state is
the right one. On the other hand, the bottom row reports the be-
liefs’ evolution for the DBF-based model, and we can see how
the inclusion of the update step and the sensor model helps to
concentrate the beliefs and provide more accurate predictions.

6.1.2. Comparison with ML approaches
Additionally to the previous study, the performance of the

DFB-based model has been also compared with those from
other traditional and state-of-the-art ML regression models,
which pursue the estimation of the machinery status according
to found patterns among variables. Concretely, to conduct this
analysis, we have relied on the scikit-learn [66] implementation
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Figure 13: Evolution of the beliefs reported by the Knowledge-based (top row) and the DBF-based (bottom row) models at four different instants in the lifetime of
a drum. That is, from left to right, a degradation of 25%, 50%, 75%, and 100%.

of Ordinary Least Squares (OLS), Nearest Neighbours, Deci-
sion Trees, Multi-layer Perceptron (MLP), AdaBoost and linear
Support Vector Machines (l-SVM). The internal, configuration
parameters of those models (e.g. number of hidden layers in the
MLP, maximum depth of Decision Trees, etc.) have been set by
cross-validation. The obtained results are reported in Table 2,
where it can be seen that the proposed DBF-model reaches the
highest success both in estimating the coiler drums degradation
state (RMSE average) and in the stability of the results (RMSE
standard deviation). This can be due to the robustness of DBFs
against noisy and fluctuating data, and to how they seamlessly
integrate expert knowledge and production data.

6.2. Influence of the Sensor Model Design
The effect of the window size. As commented in Section 5.1.1,
the characterized measurements coming from the sensors are
noisy [67], so their immediate utilization in the sensor model
would end up with an unstable prediction. To face that, we
proposed the utilization of a time-window to feed the model,
so the descriptions from the last w processes are considered.
To set this parameter, we resorted to cross-validation. In this
way, we also include in this iterative process the window size w
along with the variable specifying the sequence used to test the
predictive model.

Fig. 14 reports the obtained RMSE by employing different
window sizes. We can see how the best results regarding total
and averaged RMSE are obtained for w = 100. Although we
can achieve a more stable model performance by increasing this
size, as shown by the obtained RMSE standard deviation, this
leads to higher prediction errors.
Number of histogram bins. Other important factors when
building the sensor model are the histograms that model its
behaviour. The principal parameter to set in their design is
the number of bins in which the observations are going to be
grouped. Again, this value has been obtained through cross-
validation, as reported by Fig. 15, where we can clearly see that
the best results are obtained using 2 bins to group the measure-
ments descriptors.
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Figure 14: Evolution of the reported RMSE by the DBF-based model using
windows of processes of different length.

6.3. Evaluation of the Model Learning Capabilities

A requirement for predictive maintenance systems working
in industrial settings is to be able to learn from new data, as
well as to show a certain grade of adaptability against changes
in the processes [13, 24]. As discussed in [29]: intelligence is
strongly connected with learning, and learning ability must be
an indispensable feature of Intelligent Manufacturing Systems.
To evaluate this, we have carried out diverse cross-validation
processes changing the number of sequences used for fitting
the model. In doing so, we are emulating a model that has to
work with only one sequence available to train its parameters,
then a new sequence is also available for fitting, and so on.

Table 3 provides the outcome of this study. We can see how
the model is able to learn from new data, increasing its perfor-
mance in a∼29% using 4 training sequences w.r.t. the case with
only one. In fact, each time that a new sequence is available the
averaged RMSE is reduced. Looking at this table we can also
conclude that any DBF-based model with two or more training
sequences has a better performance than the Knowledge-based
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Figure 15: Evolution of the reported RMSE by the DBF-based model using
histograms with different number of bins.

Table 3: Performance of the proposed DBF-based model according to the num-
ber of sequences used for its training.

#Training seq. 1 2 3 4
RMSE avg. 0.83 0.70 0.64 0.59
RMSE stdv. 0.16 0.09 0.07 0.1

one (recall Table 2).
These results suggest that the addition of even more data

from sequences of processes would further improve the perfor-
mance, but it could not be the case if the processes in the factory
change (e.g. they use new materials, the coiler drum manufac-
turer changes, etc.). A way to provide an advanced capacity of
adaptation to the model could be to weight the training data de-
pending on its date of collection, having the newest sequences
a higher relevance.

6.4. Analysis of the Model Complexity
This section analyses the complexity of the model in terms of

the number of parameters needed to define it, and shows how
it is able to run in short time. The parameters of the DBF are
included in the sensor and action models. On the one hand,
the sensor model needs ∏

|c|
i=1 Ns× |vi

d | × bi parameters, being
c the set of configuration variables, Ns the number of possible
degradation states, |vi

d | the number of values in which the con-
figuration variable ci is discretized, and bi the number of bins in
the histograms for that variable. On the other hand, the action
model needs 2×|q|, being q the configuration variables that in-
fluence the coiler drum degradation. In our model instance we
needed 488 parameters in total, 480 for the sensor model and 8
for the action model. If they are represented by floating-point
numbers, with an usual size of 4 bytes, then our model total
size would be of ∼ 2kB, resulting in a lightweight and compact
model that could be deployed even in systems with restrictive
memory-size constraints.

Regarding its execution time, on average, the update step of
the algorithm (recall Alg. 1) needs 1.4ms, while the prediction
step takes 0.05ms. This short execution time enables its utiliza-
tion for predicting the machinery behaviour in the future as, for

example, its state after hypothetically carrying out 1000 process
could be computed in only 50ms. Finally, concerning the time
needed to fit the model, it depends on the number of sequences
used for that, but it is also short. Concretely, the training with
one sequence needed 3.37s, 7.40s for two, 11.46s with three
sequences, and 14.50s for four of them.

7. Conclusions and Future Work

This work has described an Industry 4.0 based solution for
the health assessment of the machinery within factories. Con-
cretely, the machinery under study are the coiler drums within
Steckel mills, critical components in the hot rolling process for
the production of sheets of stainless steel. These parts have
a costly replacement, requiring a smart scheduling of mainte-
nance operations in order to keep the plant efficiency high. For
achieving so, it is proposed a predictive model as part of a prog-
nosis system that takes advantage of the core technologies be-
hind the Industry 4.0 paradigm. The workflow of such system is
as follows: sensors mounted on the machinery (Cyber-Pysical
Systems) produce data that are networked (Internet of Things),
stored and managed (Big Data) to inform the operators about
the machinery state (Internet of Services). Beyond this general
description, the paper has gone into details on how to render
the collected sensory data into an usable form for the predic-
tive model supporting such maintenance. In this way, they have
been provided recipes for processing such data, including the
acquisition of expert knowledge, how to carry out descriptive
and bivariate analyses, and how to find relations among sen-
sor measurements and configuration variables (those setting the
behaviour of the hot rolling processes).

Once the data are in an usable form, we propose its exploita-
tion by a Discrete Bayes Filter (DBF), which plays the role of
a predictive model that estimates the machinery condition and
is able to predict its behaviour after the execution of a num-
ber of processes, assisting operators to make informed deci-
sions regarding scheduling. This model iteratively fuses valu-
able sources of information like expert knowledge, configura-
tion parameters, and real time information coming from sensors
mounted on the machines. The performance of the predictive
model has been assessed with real data from a factory in Cádiz,
Spain, owned by ACERINOX Europa S.A.U. , demonstrating
its virtues. In that evaluation, the DBF-based model was com-
pared with a Knowledge-Based one, typically used for carrying
out a preventive maintenance, as well as with traditional and
state-of-the-art Machine Learning regression models, showing
an improved operation of the proposed model. The model com-
pactness and efficiency have been analyzed, reporting a reduced
size in memory and short execution times. It has been also
shown how to fit the most relevant DBF parameters for obtain-
ing a high performance. Finally, the ability of the model for
learning from new data as been assessed in an emulated on-
going evaluation over time. The obtained results are certainly
promising towards the Industry 4.0 era.

In the future we plan to keep receiving data from the ACERI-
NOX Europa S.A.U. factory, and use them to further evaluate
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the robustness of the method against changes in the manufactur-
ing process (new or different production materials, coiler drums
of different brands, etc.). A promising way to handle this issue
is the weighting of the training data, giving more relevance to
the newest sequences.
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