
A Novel Island Model Based on Coral Reefs Optimization

Algorithm for Solving the Unequal Area Facility Layout Problem

L. Garcia-Hernandeza, L. Salas-Moreraa, C. Carmona-Muñoza, J.A. Garcia-Hernandeza,
S. Salcedo-Sanzb

e-mail: ir1gahel@uco.es, lsalas@uco.es, i32camuc@uco.es, jagh1977@gmail.com, sancho.salcedo@uah.es

aArea of Project Engineering, University of Cordoba, Spain.
bDepartment of Signal Processing and Communications, Universidad de Alcalá, Alcalá de Henares,
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Abstract

This paper proposes a novel approach to address the Unequal Area Facility Layout Problem
(UA-FLP), based on the combination of both an Island Model and a Coral Reefs Optimiza-
tion (CRO) algorithm. Two different versions of this Island Model based on Coral Reefs
Optimization Algorithm (IMCRO) are proposed and applied to the UA-FLP. The structure
of flexible bays has been selected as effective encoding to represent the facility layouts within
the algorithm. The two versions of the proposed approach have been tested in 22 UA-FLP
cases, considering small, medium and large size categories. The empirical results obtained
are compared with previous state of the art algorithms, in order to show the performance of
the IMCRO. From this comparison, it can be extracted that both versions of the proposed
IMCRO algorithm show an excellent performance, accurately solving the UA-FLP instances
in all the size categories.

Keywords: UA-FLP, Facility Layout, Island Model, Coral Reefs Optimization,
Meta-heuristics

1. Introduction

Nowadays, intelligent industrial design aims at improving both efficiency and productiv-
ity of the industrial resources, trying this way to increase the final product quality (Abraham
et al., 2020). The distribution of the elements that conform an industrial plant has been
considered to be a very relevant issue, since it is known that a good design of a physical
plant can substantially affect the production costs and efficiency in an industry (Singh and
Sharma, 2006). This affirmation was also performed by Drira et al. (2007), who also identi-
fied and described a large number of different Facility Layout Problems (FLPs). Considering
the FLP problem’s taxonomy, the Unequal Area Facility Layout Problem (UA-FLP) pro-
posed by Armour and Buffa (1963) has been identified as one of the most useful and studied
FLPs (Palomo-Romero et al., 2017). In the UA-FLP, the elements to be distributed are
rectangular facilities or departments, within a known area that is also rectangular. Addi-
tionally, overlapping of elements is not allowed. Normally, the main objective to take into
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account in the UA-FLP concerns the minimization of the material flow that exists among
the elements of the production system (Gonçalves and Resende, 2015).

To deal with the UA-FLP, different algorithms have been proposed in the literature,
though meta-heuristics techniques have been the most successful approaches to this kind of
problems by far (Garcia-Hernandez et al., 2013b; Gonçalves and Resende, 2015; Wong and
Komarudin, 2010; Garcia-Hernandez et al., 2019). In order to encode UA-FLP instances
within meta-heuristics, there are basically three main layout representations: Block Layout
(BL), Slicing Trees Structure (STS) and Flexible Bays Structure (FBS). The last one was
suggested by Tong (1991), and it has been the most used in the related literature because of
its simple structure that does not add excessive computational complexity to the approach,
and also because it allows the possibility of incorporating corridors in the design (Wong and
Komarudin, 2010).

In spite of their good performance, meta-heuristics methods have shown some disadvan-
tages, such as local optima stagnation (Kurdi, 2016) and the large amount of computational
time needed to reach satisfactory solutions (Sitkoff, 1995). In this sense, parallel computing
arises to try to solve this issue, because of its capacity to preserve population diversity thanks
to the simultaneous evolution of different populations at the same time (Whitley et al., 1998).
This produces in general better solutions than classical meta-heuristics (Cantu-Paz, 1998)
within less algorithm iterations (Alba and Troya, 1999).

The good performance of parallel meta-heuristics in hard optimization tasks has moti-
vated the creation of a new proposal for addressing UA-FLPs. Specifically, in this paper,
we propose and evaluate two novel Island Model based on Coral Reefs Optimization (IM-
CRO) algorithms for solving the UA-FLP. These algorithms combine the idea of several
independent populations with migrating movements (Island Model) with the exploration
and exploitation strategies of Coral Reefs Optimization (CRO) approaches, which are in-
spired by the way in which corals reproduce and survive in real-world reefs (Salcedo-Sanz
et al., 2014a; Salcedo-Sanz, 2017). Both approaches have been applied separately for solving
UA-FLP with positive results (Palomo-Romero et al., 2017; Garcia-Hernandez et al., 2019).
To the best of our knowledge, there are not previous works that have attempted to combine
both algorithms to create a new technique for the UA-FLP, and therefore the originality of
this research proposal is ensured. Additionally, two different versions of the novel IMCRO
approach have been proposed and implemented in this article.

The remainder of this paper has been structured in the following way: next Section
presents the UA-FLP definition, and describes its associated state-of-art approaches. Sec-
tion 3 details the proposed IMCRO approach and the two IMCRO versions designed in this
work. Section 4 describes the experimental set of this paper, including the testing parame-
ters, experimental methodology, the results obtained and a discussion on their importance.
Section 5 gives some final concluding remarks to close the paper.
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2. The Unequal Area Facility Layout Problem: definition and background

2.1. UA-FLP Problem definition and literature review

The UA-FLP was first suggested by Armour and Buffa (1963), where it was specified
by a rectangular plant of known width and height dimensions (W ×H). Within it, a set of
rectangular installations (facilities) are arranged in the most possible efficient distribution,
while satisfying certain restrictions/constraints: first the overlapping of facilities is not al-
lowed. Second, these facilities must be distributed within the limits of the industrial plant,
in such a way that the sum of their n associated areas Ai is equal o less than the total area
plant (Equation (1)):

n∑
i

Ai ≤ W ×H (1)

The UA-FLP has been tackled before in a large number of research works. Among them,
we can highlight some Deterministic Methods (Montreuil, 1991; Meller et al., 1998; Sherali
et al., 2003; Castillo et al., 2005; Norman and Smith, 2006; Saraswat et al., 2015; Purnomo
and Wiwoho, 2016) that have optimally solved the problem with up to 12 facilities (Chae and
Regan, 2016). However, meta-heuristic proposals (Ramadas and Abraham, 2019) have been
much more used to solve the UA-FLP, especially in problems with a large number of facilities,
where deterministic approaches cannot be applied due to their excessive computational
complexity. Examples of these meta-heuristics are Tabu Search (Scholz et al., 2009; Kulturel-
Konak, 2012), Simulated Annealing (Tam, 1992), Genetic Algorithms (Tate and Smith, 1995;
Azadivar and Wang, 2000; Wu and Appleton, 2002; Gomez et al., 2003; Enea et al., 2005;
Aiello et al., 2006; Liu et al., 2005; Garcia-Hernandez et al., 2013b; Garćıa-Hernández et al.,
2015; Palomo-Romero et al., 2017), Harmony Search (Kang and Chae, 2017), Ant Colonies
(Komarudin and Wong, 2010; Wong and Komarudin, 2010; Kulturel-Konak and Konak,
2011; Liu and Liu, 2019), Coral Reefs Optimization (Garcia-Hernandez et al., 2019) and
also other alternative meta-heuristics (Ulutas and Kulturel-Konak, 2012; Gonçalves and
Resende, 2015; Sikaroudi and Shahanaghi, 2016; Paes et al., 2017).

Traditionally, there are three possible structures in order to represent an industrial plant
within UA-FLP algorithms. The first one is the BL, which has been employed by some
early approaches to the problem, such as Meller and Gau (1996); Castillo et al. (2005);
Gonçalves and Resende (2015). The second structure that is referring to STS has been more
frequently applied to UA-FLP problems than the previous one: (Shayan and Chittilappilly,
2004; Scholz et al., 2009; Azadivar and Wang, 2000; Komarudin and Wong, 2010; Kang
and Chae, 2017). This layout representation has as a main disadvantage: it is the most
complex structure among the three discussed here, and therefore it usually needs a large
amount of computation time to obtain a layout result. Finally, the FBS is the last layout
representation usually considered for UA-FLP problems. It has been the most used for
addressing UA-FLPs ((Shayan and Chittilappilly, 2004; Scholz et al., 2009; Azadivar and
Wang, 2000; Komarudin and Wong, 2010; Kang and Chae, 2017), among others) because it
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is simple and easy to implement, and it requires less resources for solving the UA-FLP than
its counterpart alternatives. An example of FBS layout representation is given in Figure
1. In this example, the plant area has been divided into six rectangles (bays) and facilities
have been inserted in each one of them in consecutive order: for the first bay the facilities I
and C, for the second one facilities J, G and L, etc.

Figure 1: An example of a Flexible Bays Structure solution for the UA-FLP.

Regarding the objective function for UA-FLPs, note that there are many different cri-
teria that can be considered to optimize the industrial plant layout. These criteria can be
both qualitative and/or quantitative type. In the first group, some related works (Garcia-
Hernandez et al., 2013b,a; Garcia-Hernandez et al., 2015) have taken into account qualita-
tive preferences of the Decision Maker as the main consideration by means of interactive
approaches. According to these works, some examples of qualitative optimization goals are
specific placement of certain facilities, location and shape of empty spaces, or other personal
preferences that the designer may have. Later, they also incorporated the expert knowledge
into the UA-FLP using an evolutionary neural system.

Considering quantitative aspects, the vast majority of published works focus on minimiz-
ing the flow of materials as the main objective to be optimized ((Kulturel-Konak and Konak,
2011; Kulturel-Konak, 2012; Gonçalves and Resende, 2015; Kang and Chae, 2017) to name
some of them). This value is equal to the sum of costs associated with the movement of
material between each pair of facilities i and j in the plant (fij) multiplied by the distance
between those facilities’ centers (dij). There are also other works that consider a multi-
objective optimization approach (Abraham and Jain, 2005) to solve this problem (Ripon
et al., 2013; Saraswat et al., 2015; Purnomo and Wiwoho, 2016; Sherali et al., 2003), by
taking into account aspects such as adjacency requirements, distance requests, etc. (Aiello
et al., 2006; Gomez et al., 2003). These objectives are often referred to the closeness or
remoteness between facilities, respectively. For example, it might be necessary to have the
administration offices close to the plant reception.
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Another aspect must be taken into account when designing the plants: a shape constraint
for each facility, which may be its aspect ratio (quotient between the largest and minimum
side measure) or just its minimum side length. This refers to the proportion between the sides
of a facility, which must be reasonable, otherwise, too stretched facilities would appear in
the design, leading to non-feasible plant layouts. For handling this issue, a penalty function
is normally employed. The most frequently used was proposed by Tate and Smith (1995)
and depends on the existence of facilities that do not satisfy the aspect ratio or minimum
side constraint, and also, on the quantity of them that are left in the industrial plant. So,
in the end, the objective function for optimizing the material flow in the UA-FLP, that also
considers aspect ratio constraints, is:

OFz =
n∑
i

n∑
j

fijdij + (Dinf )k(Vfeas − Vall) (2)

where z is associated with a certain facility design, n is the number of departments to be
allocated in the industrial plant layout, fij is the material flow between departments i and
j, dij is the distance measure between them (it can be Manhattan or Rectilinear), Dinf is
the quantity of unfeasible departments, k is a value that allows adjusting the penalization
grade (established to 3 according to Tate and Smith (1995)), Vfeas is the minimum Objective
Function (OF) value from all feasible designs (without unfeasible departments on it) which
have not been penalized and, and Vall is best OF value achieved overall.

2.2. Parallel Evolutionary Algorithms

Given the increasing complexity of some UA-FLPs, a new way to solve these problems is
needed, since the amount of time and computational capabilities necessary for reaching an
acceptable solution becomes prohibitive even with the application of meta-heuristic search.
In this scenario parallelization seems a good way to address large UA-FLP instances. In fact,
there have been previous parallel approaches to the problem, specifically Palomo-Romero
et al. (2017) using an Island Model Genetic algorithm for solving UA-FLPs, which obtained
good results in comparison with other non-parallel meta-heuristic approaches.

According to Cantu-Paz (1998) parallel evolutionary algorithms can be classified into
three groups, depending on the treatment given to the total population and the relationships
established between the computation units:
• Global single-population master-slave: For a single population there are several

processes to compute the individuals’ fitness.

• Single-population fine-grained: The entire population is divided into small regions,
that only relate to other neighbor regions for crossover.

• Multiple-population coarse-grained: In this type of algorithm, there are several
populations that evolve independently from each other, and the only interaction be-
tween them consists in an exchange of individuals (migration) performed with a certain
frequency.
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In this paper, we propose an Island Model with CRO characteristics, which belongs to
the last family of parallel algorithms: those that can improve the population diversity thanks
to their imposed independence.

3. An island model meta-heuristic based on the Coral Reefs Optimization (IM-
CRO) algorithm

This section presents the proposed IMCRO, detailing its characteristics, different compo-
nents and algorithm versions. We first briefly introduce the CRO algorithm, and show how
an island model can be constructed over it for the UA-FLP. Then, an extended version of the
proposed approach, which includes different search procedures in each island, is described.

3.1. Basic CRO
The CRO algorithm Salcedo-Sanz et al. (2014b) is an evolutionary-type algorithm in

which it is defined a surface Λ of size M ×N where different corals Xk (potential solutions
to the problem at hand) can settle down. Initially, the reef is not completely occupied,
but there are holes in the reef. During the evolutionary process, the corals in the reef will
reproduce in two different ways: sexually and asexually. There can be two types of sexual
reproduction: external (broadcast spawning), where two corals exchange genetic information
to create a new individual (larva), or internal (brooding), where the resulting larva is created
with a small alteration of a single parent coral. In turn, asexual reproduction (or budding) is
performed by the reef’s best individuals, which produce larvae by means of self-duplication.
The solutions produced by the reproduction process will try to find a place in the reef to
settle in and survive for the following generations. A larva (new solution to the problem) can
settle down in the reef if the spot it has selected for settling is empty, or if the current coral
in the reef has worse health (fitness function) than the trying larva. If after three attempts a
larva has not found a place to prosper it is discarded. At the end of each generation some of
the worst corals can be also depredated, forming new holes in the reef. Figure 2 illustrates
the evolution process for a generation of the reef.

3.2. Corals encoding for the UA-FLP
According to Gomez et al. (2003), a valid chromosome (coral in this case) to represent

a particular UA-FLP solution with FBS consists of two different parts, or fragments: the
first one refers to the order in which the n facilities appear in the layout and the second
one marks the end of each bay. The order in which the departments appear in the first
chromosome fragment corresponds to a reading of the departments in the layout, from top
to bottom and left to right. The second fragment is a binary-encoded vector where a value
’1’ in a position i represents that the facility placed in the position i in the first fragment is
the last one in the bay. This way, the chromosome below is associated with Figure 1.

Chromosome structure:

1. Fragment 1: {I, C, J, G, L, F, K, E, D, H, B, A}

2. Fragment 2: {0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1}
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(1) Ini�aliza�on (2) Broadcast spawners

(4) Larvae se�ng

(3) Brooding

(5) Budding (6) Preda�on

Figure 2: Evolution process in the CRO algorithm.

3.3. The Island Model CRO

The IMCRO algorithm can be described as a multiple population version of the basic
CRO. Let K = {Λ0,Λ1, · · ·Λr−1} be an array of r independent reefs of dimensions {M0 ×
N0,M1 × N1, · · ·Mr−1 × Nr−1}. Each reef Λ evolves as a basic CRO, and during every
migr freq generation the best num migr corals from each reef are redistributed between
the rest of the reefs, guaranteeing that no coral ends up in its original reef.

The migration scheme followed to corals rearrangement is somewhat like networks’ mesh
topology: each reef is “connected” to every other reef in the sense that a coral Xr

k can move
to any other reef s 6= r; s ∈ K, but corals’ movements are independent from each other.
Figure 3 shows an example of migration for a 5 reefs system with 4 migrating corals. Note
that each coral from a certain reef may (or may not) have different destinations.

In order to better explain the IMCRO proposal, the algorithm’s pseudocode is shown
below, and it is fully explained step by step in the next enumeration.
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Reef 1 Reef 2

Reef 4

Reef 5

Reef 3

Figure 3: Graphical diagram of the migration process of larvae among reefs in the IMCRO algorithm.

Algorithm 1 IMCRO algorithm

Input Algorithm’s control parameters
Output Feasible solution with best fitness

1: procedure imcro(num reefs,m, n, ρ0, fb, fa, fd, pd,migr freq, num migr)
2: r ← 0
3: for num reefs times do
4: initialize reef r with size mr × nr and occupation rate ρr0
5: r ← r + 1
6: end for
7: num it← 0
8: repeat
9: for each reef r do

10: reproduce corals fraction f r
b by broadcast spawning

11: reproduce corals fraction 1− f r
b by brooding

12: larvae evaluation
13: larvae setting
14: reproduce best corals fraction f r

a by asexual reproduction
15: depredation of f r

d worst reef corals with prd probability
16: end for
17: num it← num it+ 1
18: if num it = migr freq then
19: migrate top num migr corals from each reef
20: num it← 0
21: end if
22: until stop condition
23: return best feasible solution
24: end procedure
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1. Initialization: Each reef r is randomly filled with randomly generated corals until an
occupation fraction ρr0 of the total surface is reached.

2. For each reef :

(a) Broadcast spawning: A fraction f r
b of the reef corals are coupled randomly,

avoiding multiple parenting (a coral can reproduce once per generation). Each
couple produces a larva by means of genetic operators.

(b) Brooding: from the remaining corals (1− f r
b ) several larvae are generated by a

small alteration applied to each one of them.

(c) Larvae setting: All the larvae previously created try to find a place in the reef
to settle following the next procedure:

i. Select a random spot.

ii. If the spot is empty: settle down OR

iii. If the larva has better health than the coral occupying the spot: substitute
coral.

iv. Otherwise go to step 2.(c).i.

These steps can be repeated up to three times. After that the larva is discarded.

(d) Asexual reproduction: A fraction f r
a of the healthier reef’s corals duplicate

themselves, mutate and try to settle down as in the previous step (Larvae Setting).
This phase is also called budding.

(e) Predation: The worst f r
d fraction of corals can be predated with a low probability

prd.

3. Migrate best corals: Every migr freq generations the migration process is performed,
where the best num migr corals are displaced to another reef.

4. Go back to step 2 until a stop condition is met. In the present implementation the
algorithm stops after a prefixed number of generations.

3.4. The Extended Island Model CRO

The approach previously described, however, may produce one unintended effect: if
every reef explores the search space in the same way (that is, using the same crossover and
mutation operators), there is a high probability that all the reefs converge to the same search
space, instead of exploiting different zones of that space, as intended. In order to prevent
this, a possible solution would be the implementation of different evolution strategies per
reef (combination of crossover and mutation operators). This way, broadcast spawning and
brooding operators implementation depends on the reef from which the parents are picked
up. This idea has been previously implemented in an advanced version of the CRO algorithm,
the so-called CRO-SL approach (Coral Reefs Optimization with Substrate Layer), which is
a multi-method approach in which different search operators are jointly applied within a
single population (Salcedo-Sanz et al., 2016; Camacho-Gómez et al., 2018; Bermejo et al.,
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2018; Salcedo-Sanz, 2017). In this case, the proposed extended island model brings this idea
and extends it to parallelize the algorithm, by including each search operator into a different
island.

The operators implemented for our approach are enumerated and briefly described in
the following subsections.

3.4.1. Crossover operators

This section describes the crossover operators considered in the Extended IMCRO al-
gorithm, both for facility order (first chromosome fragment) and bay structure (second
fragment).

• Crossover operators for facility order:

1. Partially Mapped Crossover (PMX) (Goldberg and Lingle, 1985). The crossover
operates following the next steps:

(a) Select two cut points randomly.

(b) Copy the segment defined by the cut points from each parent and create an
equivalence map for recombination (the i-th value from a parent corresponds
to the other parent’s i-th value). This map is used to ensure that both
children represent valid permutations.

(c) Copy the remaining elements (not present in the segment) from the other
parent using the equivalence map for those elements which are already present
because they have been copied in the previous step.

2. Order Crossover (OX) (Eiben and Smith, 2003). The recombination performed
by this operator is similar to PMX, but no equivalence map is used. Instead, the
elements outside the cut points appear in the same order as in the other parent
starting from the second cut point.

3. Cycle (Eiben and Smith, 2003). The way to combine parents is the following:

(a) Find cycles aligning parent chromosomes and pairing values in a given posi-
tion.

(b) Select one of the found cycles (if any).

(c) Create children maintaining the elements from the found cycle from one
parent and filling the remaining gaps with the elements from the other parent.

4. Edge (Eiben and Smith, 2003). This operator is based on the idea that the child
obtained must be very different from both parents. In order to accomplish this,
an edge table is constructed which stores what linkages each element has in both
parents. After that a child is built following this procedure:

(a) Pick element elem from the table randomly and add to the offspring.

(b) Remove all elem references from the table.

(c) Examine table content for the entry corresponding to elem and select, in
order of preference:
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i. Common edge.

ii. Table entry with less elements. In case of tie, select randomly from that
set.

iii. In case of empty list of edges, the next entry to be examined will be the
one corresponding to the current last element of the offspring, otherwise
random selection is applied.

(d) Update elem value according to the value selected in the previous step.

(e) Go back to (b) until offspring is complete.

• Crossover operators for bay structure:

1. One-point (Holland, 1992). A cut point is randomly selected, and both segments
created after that are combined alternatively to create two children.

2. N-point (Eiben and Smith, 2003). This operator is a generalization from the
previous one. The number of cut points is chosen randomly and children are
created alternating segment from both parents.

3. Uniform (Eiben and Smith, 2003). Every allele is randomly selected from one
or another parent with the same probability.

3.4.2. Mutation operators

Mutation operators considered in the Extended IMCRO are presented below.

• Mutation operators for facility order:

1. Towers (TWORS) (Eiben and Smith, 2003). Two positions are picked at random
and its content is exchanged.

2. Inversion (Eiben and Smith, 2003). As in the previous operator, two positions
are randomly selected. After that, the section delimited by both positions is
inverted.

3. Scramble (Eiben and Smith, 2003). The elements contained in a section defined
by two random positions are scrambled.

4. Insert (Eiben and Smith, 2003). Two elements are selected at random. The
second one is positioned after the first, and all elements after the first one are
moved to make room.

• Mutation operators for bay structure:

1. Bit-swap (Eiben and Smith, 2003). For each allele, with a certain probability,
changes its value (from 0 to 1 or vice versa).

The algorithm proceeds just like the basic version previously explained (Algorithm 1),
but using different operators in the Broadcast spawning and Brooding phases, depending
on the reef (island) in which these operations are performed.
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4. Computational experiments and results

In this section we evaluate the performance of the proposed IMCRO approach in the
two suggested versions: Basic IMCRO and Extended IMCRO. For that matter, a common
set of well-known UA-FLPs has been selected in order to analyse the results reached by
our proposal. Then, a comparison with alternative approaches and a full discussion on the
results obtained has been carried out.

4.1. Description of UA-FLPs test instances

A large set of well-known UA-FLPs has been chosen considering different problem sizes
(small, medium and large). The description related to each UA-FLP is expressed in Table 1.
The following information is detailed: problem name, number of facilities, layout dimensions
(in squared meters), shape constraint (let it be aspect ratio α or minimum side measure side),
distance measure and problem reference.

Table 1: Characteristics of the tested UA-FLPs.

Problem name Fac. W × H (m2) Shape constr. Dist. Reference
Slaughterhouse 12 51.14 × 30.00 α=4 Eucl. Salas-Morera et al. (1996)
CartonPacks 11 20.00 × 14.50 α=4 Eucl. Garcia-Hernandez et al. (2013a)
ChoppedPlastic 10 10.00 × 30.00 α=4 Eucl. Garcia-Hernandez et al. (2013a)
O7 7 8.54 × 13.00 α=4 Rect. Meller et al. (1998)
O8 8 11.3 × 13.00 α=4 Rect. Meller et al. (1998)
O9 9 12.00 × 13.00 α=5 Rect. Wong and Komarudin (2010)
vC10Ra 10 25.00 × 51.00 α=5 Rect. van Camp et al. (1992)
Vc10Rs 10 25.00 × 51.00 side=5 Rect. van Camp et al. (1992)
vC10Ea 10 25.00 × 51.00 α=5 Eucl. van Camp et al. (1992)
Vc10Es 10 25.00 × 51.00 side=5 Eucl. van Camp et al. (1992)
Ba12 12 6.00 × 10.00 side=1 Rect. Bazaraa (1975)
MB12 12 6.00 × 8.00 α=4 Rect. Bozer and Meller (1997)
Ba14 14 7.00 × 9.00 side={1,0} Rect. Komarudin and Wong (2010)
AB20 ar3 20 2.00 × 3.00 α=3 Rect. Armour and Buffa (1963)
AB20 ar5 20 2.00 × 3.00 α=5 Rect. Armour and Buffa (1963)
AB20 ar7 20 2.00 × 3.00 α=7 Rect. Armour and Buffa (1963)
AB20 ar10 20 2.00 × 3.00 α=10 Rect. Armour and Buffa (1963)
AB20 ar15 20 2.00 × 3.00 α=15 Rect. Armour and Buffa (1963)
AB20 ar50 20 2.00 × 3.00 α=50 Rect. Armour and Buffa (1963)
SC30 30 12.00 × 15.00 α=5 Rect. Liu and Meller (2007)
SC35 35 16.00 × 15.00 α=4 Rect. Liu and Meller (2007)
Du62 62 Arbitrary α=4 Rect. Dunker et al. (2003)
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4.2. Experimental methodology

In order to test the proposed IMCRO approach considering the two proposed versions
(Basic and Extended), a full empirical test has been performed in order to find those tuning
parameters that best fit when solving the UA-FLP, i.e., what combination of parameters
yield the best solutions for a certain problem. Table 2 shows the possible values that
have considered for each algorithm parameter. Not every possible value has been tested,
of course, due to the unattainable number of possible combinations but a set of the most
recommended ones. For example, predation fraction Fd and predation probability Pd should
not take high values, as that would lead to an excessively elitist behavior, so values above
0.1 have not been considered. Parameter tuning has been performed by selecting one of
the three possible values considered for each parameter and using that configuration for a
representative problem of a certain size (O9 for the smaller instances, BA14 for the medium-
sized ones and Du62 for large instances). For small problems, the number of generations
carried out by the algorithm has been 1000, while for medium and large instances this
parameter has been set at 5000. The algorithm can also stop before reaching that number
of generations if after 500 iterations no better solution has been found. The number of
generations has been set that high because during the search we do not want to leave
potential good areas of the search space unexplored, but the second stop condition will
ensure that if the algorithm converges no computation time is wasted. Each one of these
parameter combinations has been cloned 5 times as in the Komarudin and Wong (2010)
proposal. The parameters that best adapt to each UA-FLP category are shown in Table
3, where S stands for small problems (up to 12 facilities), M for medium (13 to 25) and
L for large (26 or more). In the basic IMCRO algorithm, we have used PMX, One-point
crossover, TWORS mutation and bit-swap as search operators. In turn, for the Extended
IMCRO we have defined five combinations of crossover and mutation operators:

a) Crossover: PMX, 1-point | Mutation: TWORS, Bit-swap.

b) Crossover: Cycle, N-point | Mutation: Inversion, Bit-swap.

c) Crossover: OX, Uniform | Mutation: Scramble, Bit-swap.

d) Crossover: PMX, Uniform | Mutation: Insert, Bit-swap.

e) Crossover: Edge, N-point | Mutation: Scramble, Bit-swap.

Our IMCRO proposal has been developed using Python 3. Since a time comparison with
previous basic CRO approaches have been carried out, it is necessary to specify that the
test experimentation has been executed using an Intel Core i5 6200U (2.30 GHz × 4), 8GB
RAM and a Linux operating system.

4.3. Results

This subsection presents the results obtained by both versions (Basic IMCRO and Ex-
tended IMCRO) of the proposed IMCRO approach. Then a comparison and discussion
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Table 2: Tested values for parameter tuning.

Parameter N ×M r ρ0 Fb Fa Fd Pd migr freq num migr

Tested values
10× 10 5 0.6 0.7 0.1 0.01 0.01 5 5
15× 15 10 0.7 0.8 0.15 0.05 0.05 10 10
25× 25 20 0.8 0.9 0.2 0.1 0.1 20 20

Table 3: Selected parameter values according to problem size.

Parameter N ×M r ρ0 Fb Fa Fd Pd migr freq num migr
Selected values (S) 10× 10 5 0.7 0.8 0.1 0.1 0.1 5 5
Selected values (M) 15× 15 10 0.7 0.8 0.2 0.1 0.1 5 10
Selected values (L) 25× 25 10 0.7 0.8 0.2 0.1 0.1 5 10

is carried out using alternative previous approaches reported in the literature. Initially, a
summary of the best results (OF Best) and their associated mean (OF mean) reached by
the two versions of IMCRO proposal for each of the tested UA-FLPs are listed in Table 4.
Moreover, this table gives the difference (in percent) between the best solutions obtained
by the two IMCRO versions (100 × (the best known solution found in the literature - the
novel IMCRO best solution) / (the novel IMCRO best solution)) . In addition, this table is
completed offering the time employed by our IMCRO proposal for reaching the best result
in each implemented version, and also, the CPU time needed in the Basic CRO proposal
(Garcia-Hernandez et al., 2019). Looking at Table 4, it is possible to confirm that the two
developed versions of the IMCRO approaches are robust, since the difference between the
best solution’s fitness and the average fitness is very small. This difference becomes larger
as the number of departments in the problem increases. Regarding the time units needed to
achieve the best solutions for each problem, the IMCRO approach is more efficient in terms
of CPU time, since it outperforms the basic CRO approach in all cases tested. However,
CPU time is not considered as something crucial in the UA-FLP (See and Wong, 2008).
Finally, Tables 7 and 8 show the performance of Basic and Extended versions of the IMCRO
approach when solving UA-FLPs. From this analysis, we can state that the Extended ver-
sion reaches better results than the Basic one, since it is able to match the results obtained
by its basic counterpart in 18 of all the tested instances and overcome them in 4 of them
(Slaughterhouse, Carton Packs, AB20 AR5 and AB20 AR7). The solutions achieved for the
previous problems by the Extended IMCRO are illustrated in Figure 4.

14
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In order to show the reached results are used Tables 5 and 7 for the Basic version of
IMCRO, and 6 and 8 for the Extended IMCRO version. On them, it is only shown a com-
parison on them with the other proposals that have also used FBS as layout representation.
Particularly, results obtained by the following works are displayed: Garcia-Hernandez et al.
(2019), Palomo-Romero et al. (2017), Kulturel-Konak and Konak (2011), Kulturel-Konak
(2012), Wong and Komarudin (2010) and Enea et al. (2005). For each UA-FLP, the best
solution value has been highlighted in bold font. Taking a look at the Tables 5 and 6, it
can be seen that our proposal is capable of reaching the best solution in most of the cases
tested. In particular, the both versions of our novel proposal are able to find the best result
in 19 UA-FLPs out of the 22 tested. In the other three UA-FLPs, the both versions of
the IMCRO system are able to obtain results very close to the best solutions obtained by
alternative approaches. Both Basic and Extended versions of the IMCRO approach match
the best known in 10 of the tested problems. These are the cases of the problems Slaugh-
terhouse, Carton Packs, Chopped Plastic, O9, Ba14, AB20 AR3, AB20 AR5, AB20 AR7,
AB20 AR15 and AB20 AR50. For better illustration of their associated facility designs, we
have included the physical layout representation of all of these UA-FLPs where our IMCRO
approach beats the best known solutions (Figures 4, 5 and 6). In all the solutions showed,
the number of infeasible departments is zero, so the value of OF is the same as the flow
term, which is the minimum found accomplishing the aspect ratio restrictions. Moreover,
both Basic and Extended versions of the IMCRO are able to reach the best known solutions
in the following UA-FLPs: O7, O8, Vc10Ra, Vc10Rs, Vc10Ea, Vc10Es, Ba12, MB12, and
AB20 AR10.

Comparing both versions of the IMCRO approach with the basic CRO (Garcia-Hernandez
et al., 2019), it is possible to state that the new algorithm based on an Island Model per-
forms better in the UA-FLP, because of its ability to improve the basic CRO approach in 7
UA-FLP cases and also reaching the best UA-FLP solution in other 5 instances. Focusing
on Palomo-Romero et al. (2017) approach, the IMCRO in its two versions (Basic and Ex-
tended) is able to improve their solutions in 9 UA-FLPs and reaching their best solutions
in other 7 cases. Comparing our proposal against Kulturel-Konak and Konak (2011), the
two developed versions of the novel IMCRO approach exceeded their best solutions in 8
problems and it is able to achieve the best known solution in other 2. The same occurs
when we compare the IMCRO with the approach in Kulturel-Konak (2012). Additionally,
comparing the IMCRO strategy in the two defined versions with the (Wong and Komarudin,
2010) research, our approach surpasses their results in all the UA-FLPs, reaching in one of
them their best solution. Finally, our IMCRO approach beats Enea et al. (2005)’s approach
in all the tested cases.

Table 7 and 8 add additional relevant information by comparing the solutions achieved
by the Basic and Extended version of the IMCRO and the best-known solutions reached by
previous approaches, respectively. Thus, for each UA-FLP tested, the best result achieved
for the each version of the proposed IMCRO is displayed, and also their associated layout
structure, and the percentage of difference between the best result value obtained by our
approach and the best solution found in previous works in the literature.
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Figure 4: Best solutions obtained by Extended IMCRO for some of the tested UA-FLP instances.

After analyzing the information shown above, we can say that the proposed IMCRO
algorithm is effective when addressing UA-FLPs of different categories according to their
size. So, the IMCRO algorithm is able to win or reach the best known solutions in all small
UA-FLPs. These are the cases of Slaughterhouse, Carton Packs, Chopped Plastic, O7, O8,
O9, Vc10Ra, Vc10Rs, Vc10Ea, Vc10Es, Ba12, MB12, Ba14. By solving medium problems
as AB20 AR3, AB20 AR5, AB20 AR7, AB20 AR10, AB20 AR15, and AB20 AR50, the
proposed IMCRO also demonstrates it effectiveness in achieving the best solutions. In this
size category, referring to SC30, the proposed approach reaches to solutions very close to the
best known results. This happens too in large UA-FLPs as SC35 and DU62, where, again,
our IMCRO is able to approximate to the best known solutions for these instances.

5. Concluding remarks

In this research, a new approach that combines an Island Model and the Coral Reefs
Optimization algorithm has been proposed. This novel IMCRO system has been applied to
the UA-FLP considering FBS as facility layout representation. Two different versions of the

21



(a) Slaughterhouse
(b) CartonPacks

(c) ChoppedPlastic

(d) O9 (e) Ba14

Figure 5: Best solutions obtained by Basic IMCRO for some of the tested UA-FLP instances.

IMCRO algorithm have been proposed and tested: the Basic and Extended IMCRO versions.
To illustrate the effectiveness of both versions, 22 well-known UA-FLPs instances extracted
from the literature have been tested, and a full comparison with the previous related works
has been carried out. From the empirical study and analysis performed, it is evident that
the proposed IMCRO is a robust algorithm, able to reach the best design solutions in most
of the tested problems. Specifically, the IMCRO approach reaches the best solution in 19
instances out of the 22 tested UA-FLPs. In addition, in 10 UA-FLPs, the IMCRO approach
outperforms the results achieved by previous proposals. Analysing the performance of Basic
and Extended versions of the IMCRO approach when solving UA-FLPs, it seems that the
Extended version reaches better results than the Basic one, since it is able to overcome
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Figure 6: Best solutions obtained by the Basic IMCRO for some of the tested UA-FLP instances.

the results achieved by the Basic version of the IMCRO algorithm in 4 UA-FLP instances.
Moreover, in the remaining 18 UA-FLPs, the Extended IMCRO version equals the best
results achieved by the Basic IMCRO version. The IMCRO system has also demonstrated
to be effective for addressing UA-FLPs of different categories according to their size, i.e.,
small, medium and large UA-FLPs. This effectiveness is due to the independence existing
between each reef (or island), that encourages to explore different zones of the search space
in the same amount of time, leading to an efficient use of the computing resources, which
improves in a significant factor the time needed to find an optimal solution. On the other
hand, migration helps increase diversity too, because of the previously mentioned islands
independence.

Given the importance of a correct distribution of spaces in any installation, especially
in industrial ones, the impact of the new proposal is high. The plant layout design affects
substantially the efficiency of production and it is a relevant issue in every new plant con-
struction or in the remodeling of existing ones. Here, the minimization of materials handling
cost is considered to be crucial to the success of the design in terms of the production econ-
omy. Nevertheless, it is also important to take into account the shape of every individual
department, in order to improve the plant performance. These two requirements are op-
posite, in the way that the worse the aspect ratio the better the material handling cost.
So finding the layout which gives the best possible material handling cost while respecting
aspect ratio restrictions is a critical issue that has not been satisfactorily solved yet, espe-
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cially in problems of large size and complex material flow relationships among departments.
In the present approach, a clear improvement has been obtained in most of the problems
tested, so it is a promising line to be further explored.

Regarding future work, this research can be improved by incorporating new extended
CRO versions to the suggested Island Model. Also, other migration strategies could be
created and studied in order to further improve solution diversity between reefs, taken
into account both individual distribution and migrating elements selection. Additionally,
an interesting research line could be to apply these approaches over other facility layout
problems with as, for example, Dynamic Facility Layout Problem that has the characteristic
of varying material flow requirements. Another line to explore could be to use a more
problem-driven initialization of the initial reefs’ population by means of another approach
such a specific heuristic method.
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