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ARTICLE INFO ABSTRACT

Keywords: A typical district heating (DH) network consists of hundreds, sometimes thousands, of substa-
district heating substations tions. In the absence of a well-understood prior model or data labels about a substation, the
return temperature overall monitoring of such large number of substations can be challenging. To overcome the
reference-group based operational mon- challenge, an approach based on collective operational monitoring by a local group (i.e., the
itoring reference-group) of other similar substations in the network was formulated. Herein, if a substa-
fault detection tion of interest (i.e., the target) starts to behave differently in comparison to those in its reference-
outlier detection group, then it was designated as an outlier. The approach was demonstrated on the monitoring of

the return temperature variable for atypical' and faulty operational behavior in 778 substations
associated with multi-dwelling buildings. The choice of an appropriate similarity measure along
with its size k were the two important factors that enables a reference-group to detect outliers in
an effective manner. Thus, different similarity measures and size k for the construction of the
reference-group were investigated. This led to the selection of Euclidean distance as a similarity
measure with k = 80. This setup resulted in the detection of 44 target substations that were out-
liers, i.e., the behavior of their return temperature changed in comparison to the majority of those
in their respective reference-groups. In addition, six frequent patterns of deviating behavior in
the return temperature of substations were identified using the reference-group based approach,
which were then further corroborated by the feedback from a DH domain expert.

1. Introduction

The survival of DH industry in the future will rely on its ability to use a wide range of sustainable energy sources
like biomass, geothermal, industrial excess heat and domestic and industrial waste. This would require efficiency in
both the supply and the demand side of energy use. The most potent way to move towards this goal is to reduce the
distribution temperature of the DH networks. However, the current situation in Sweden is that DH networks have
supply temperatures of about 75 — 90°C and return temperatures of about 40 — 50°C as annual averages (Frederiksen
and Werner, 2013). One major reason behind a high supply temperature is that faults, both at the primary and secondary
side of a district heating substation!, are compensated through the supply temperature increase. However, this situation
cannot be sustained if a transition is to be made to the 4/ generation district heating (4GDH) technology (Lund et al.,
2014), where low distribution temperatures of 50/20°C are a key requirement. In a 4GDH regime, DH utilities will
not be able to compensate for faults in their respective DH networks through a high supply temperature, which in turn
will directly affect their customer’s comfort. It has been shown in (Gummérus, 1989) that if all substations work as
designed, the current distribution temperatures of DH networks can be decreased to approximately 70/35°C. Moreover,
according to (Skoldberg and Rydén, 2014), a decrease in the return temperature of the DH networks can result in a
cost saving of up to 1 billion SEK? per year for the DH sector in Sweden. This clearly indicates that monitoring and
fault detection capabilities must be enhanced at the substation level of the DH network.

An adequate way to deal with the monitoring of substations is to identify a physical model for each building’s
thermodynamics in conjunction with its heating system (Bacher and Madsen, 2011), while also taking into account
social factors (Yao et al., 2009). These models can then be used for various purposes, including the control of indoor

Here, "atypical" means that while it does not fit the definition of a normal operation, it is not faulty either and may also have some context.
*Corresponding author
¥4 shiraz. farouq@hh. se (S. Farouq)
ORCID(S):
I'From now on, the word "substation" will be used to refer to a district heating substation.
2150 million USD (1 SEK~0.15USD (annual average exchange rate) in 2014).
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Large-scale monitoring of district heating substations

climate, forecasting of thermal energy consumption, description of building’s energy performance and fault detection.
However, such models can require a lot of details about each building and its heating system, which makes them costly
and difficult to construct. Therefore, construction of such models, especially on large-scale, is mostly infeasible. A
similar observation has been made in (Gustafsson and Sandin, 2016):

A substation and the associated building is a complex physical system that is difficult to model because of the high
number of substations in a DH system.

Due to the aforementioned reasons, no prior benchmark reference models are available in practice for the monitoring
of buildings and their associated heating systems.

The energy policy of Sweden shares a common basis with energy policy developed at the European Union (EU)
level. In 2006, the EU adopted the energy end-use efficiency directive (European Parliament, Council of the European
Union, 2006). It suggests improving billing by taking measures to charge the consumer in a timely manner based
on their actual energy use. It also calls to enable final consumers to make better informed decisions as regards their
individual energy consumption by providing them with further relevant information on energy use. As a result, the
Swedish DH act (Riksdagen, 2008) was changed, requiring that from 1% January 2015, all DH entities to charge
their customers based on their actual monthly thermal heat use. Therefore, substations are now equipped with digital
metering devices on the primary side, measuring hourly heating rate, flow rate, the supply temperature and the return
temperature. These meters are, however, only data acquisition (DAQ) systems. The main use of this data acquisition
for the DH utilities is to bill the customers for heat use.

One can expect that the data available through digital meters enables the use of data-driven approaches to monitor
and study the operational behavior of substations in a DH network. However, the main assumption of a data-driven
approach is that all relevant information about a system is sufficiently well-captured in the data. Most commonly, three
possible schemes exist here: (a) a data-driven model for each substation, (b) a hybrid model for each substation, and
(c) a global model for the entire DH network.

The first scheme has limitations due to the non availability of important information, such as, data related to the
control parameter setting and secondary side operation of the substations. Moreover, the available data lacks labels on
normal, atypical and faulty operational behavior of a substation. One reason why the aforementioned data and details
related to substations are not available to a DH utility is due to the issue of ownership. In most cases in Sweden, it is
the building administration or the house owner that owns a substation and not the DH utility. Right now, DH utilities
in Sweden do not have a procedure in place to obtain details about a substation or its history of fault complaints and
subsequent repairs. Furthermore, the operational behavior of substations in a network can vary depending on various
factors. These include local weather conditions and different characteristics of the buildings, such as, geographical
location, construction year and thermal transmittance value (U-value). Additional factors include the social purpose
of the buildings and its associated control strategy, which then affects its heat load profile (Frederiksen and Werner,
2013; Gadd and Werner, 2013). Details related to these factors are also usually not available. Additionally, tuning for
various hyper-parameters of a selected data-driven model for each substation is required. Hence, a data-driven model
for each substation can be difficult to obtain and scale to all the substations in a large DH network.

The second scheme is based on a hybrid approach which combines physical models with data-driven models, while
also incorporating expert opinion. For instance, in (Cai et al., 2019), a dynamic Bayesian network (DBN) model is
proposed. Herein, when data on certain variables is not available for the construction of a DBN model of a system,
physical models are used to estimate their distribution or the value of their parameters. In some cases, their values
were obtained based on expert opinion. However, buildings and their associated heating systems in a city are quite
diverse. Therefore, input parameter values for even simple physical models may not be readily available.

To mitigate for the non availability of data and various details related to substations to some extent, the third scheme
provides for an alternative approach, which assumes that the operational behavior of substations in a DH network is
homogeneous. This implicitly assumes that substations are affected by the same set of unobservable variables over
time. This approach is referred to as group or fleet based monitoring, and requires a global model for the entire fleet
or network® (Byttner et al., 2011; Oza and Das, 2012). Such a setup would require each substation to be described by
the same set of representative features which are then used as input to an appropriate data-driven model for the DH
network. Any substation that deviates significantly from the network according to this model is considered as atypical
or faulty. Such global models can be inefficient in detecting atypical or faulty substations. This is because, in most
cases, substations exhibit operationally diverse behaviors due to both technical and social factors.

3For referring to large number of substations, the word "network" is more appropriate than the word "fleet".
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In summary, typical data-driven schemes for operational monitoring of substations are constrained by the following
factors:

1. Lack of access to data and information related to the buildings and their heating systems.
2. Absence of labels about atypical and faulty behavior together with their associated contexts.
3. Operational diversity due to social and technical factors.

In general, the most common state of practice in the DH industry is to use thresholds (Mansson et al., 2019). The
main limitation of using such a method is the choice of threshold values. In the presence of operational diversity,
achieving a compromise between efficiency of detecting true outlier substations and false alarms on the basis of a
threshold is mostly unattainable.

The objective of this study is to address the aforementioned constraints on the use of typical data-driven schemes
and the limitations of the state of practice for the operational monitoring of a large network of substations. To achieve
this, a reference-group based monitoring approach was formulated (Bolton and Hand, 2001; Byttner et al., 2011; Lapira,
2012), where the reference operational behavior of a particular substation in a network does not need to be predefined.
Instead, its operational behavior is tracked by a local group of other similar substations within the network. In this
sense, that particular substation is referred to as the target and the local group of other similar substations are referred
to as its reference-group. Thus, the definition of a normal, atypical and faulty operational behavior in a target is now
described relative to its reference-group. Under this setup, if the target is not behaving operationally in consort with
the substations in its reference-group, then either it is due to a fault or because of some atypical operation arising
at the target due to its local peculiarities. In effect, a reference-group acts as a just-in-time local model of a target’s
operational behavior. The reference-group based approach was demonstrated on the operational monitoring of the
return temperature of 778 substations belonging to multi-dwelling buildings located in Helsingborg, Sweden. The
results showed that this approach was able to detect deviations in the return temperature of substations over time by
providing an adequate description of operational behavior for the target. That is, it provided for a comparison based
on what the operational behavior of the target is and how its reference-group describes what it should be. Moreover,
the approach was able to detect deviating targets which can be missed through setting a global threshold or the use of
global models of outlier detection by providing for a more local context. Finally, based on the analysis, we created a
categorization of most frequent deviation patterns observed in the return temperature data of the analyzed substations.
This can be useful for creating a database of atypical and faulty operational behavior for this domain.

The remainder of this paper is organized as follows. Section 2 first gives an overview on the current state of the art
of the data-driven analysis in the DH domain. Next, related work on the reference-group based monitoring approaches
are discussed. Section 3 presents the reference-group based monitoring approach and summarizes it as an algorithm.
Issues related to the reference-group, such as, its size and stability along with its adequacy to detect deviations at a
local level are also addressed here. Section 4 provides a description about the data used in the case study. Details of
setup for the study are then described. In Section 5, the results of the study are presented. Section 6 discusses the main
findings of the study, including the limitations. Finally, the main conclusions of the study are presented in Section 7.

2. Related work

Various approaches have been proposed for the monitoring and fault detection of building related energy systems,
for instance (Cai et al., 2014). For a comprehensive survey related to such approaches, the reader is referred to (Kim
and Katipamula, 2018). However, the focus of this study is specifically on the application of group based monitoring
to the DH domain. Therefore, the state of the art of data-driven analysis and fault detection for this domain is presented
next. This is then followed by the state-of-the-art approaches in group based monitoring.

2.1. The state of the art of data-driven analysis and fault detection in DH

Most data-driven studies in DH have been on the prediction of entire network’s heat demand. For instance, (Gross-
windhager et al., 2011) proposes a model based on seasonal autoregressive integrated moving average (SARIMA) for
short term on-line forecasting of the heat load in the DH network of Tannheim city, which is located in Tyrol in Aus-
tria. This article also studies outliers based on analyzing the model residuals by explicitly incorporating them into the
model. Interestingly, this article also makes an observation about the challenges associated with the construction of
models for individual substations:
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Consumer load forecasting were not treated, due to the highly stochastic nature of the consumer data, which would
make it necessary to build several individual models.

Another such study in (Fang and Lahdelma, 2016) evaluates multiple linear regression models together with a SARIMA
based model for forecasting the heat demand for the DH network of Espoo city in Finland.

Fewer studies have been done on substation meter data compared to electricity meter data as has also been observed
in (Gianniou et al., 2018; Tureczek et al., 2019). The available literature is mostly concentrated on the clustering of
substations based on their thermal energy use profiles. These clusters, in most studies, are then further analyzed for
the purpose of fault detection. Interestingly, there are also not many studies related to heat-load forecast of individual
substations. One such study in (Proti¢ et al., 2015) proposes a multi-step heat-load forecast model for a substation
based on a combination of support vector machine (SVM) and discrete wavelet transform (DWT). The data used in
this study was obtained from one of the 3795 substations located in the DH network of Novi Sad, Serbia.

In a recent article (Mansson et al., 2019), interviews and surveys have been conducted on how DH utilities in
Sweden perform fault detection on substations in their network. Additionally, statistics on commonly occurring faults
as observed by DH utilities in various equipment of a substation have also been reported. It has been observed that
analysis of the return temperature based on thresholds is the most commonly used control check for inefficient sub-
station used by DH utilities. It has been further observed that other reported ways of detecting inefficient substations
also mostly rely on threshold based methods. A study in (J. Pakanen and Ahonen, 1996) has already discussed the
problems associated with a threshold based approach in DH way back in 1996. A later study in (Sandin et al., 2013)
reiterated those results. Using statistical methods, the aforementioned study examines the operational behavior and
conducts fault analysis on 996 substations located in Stockholm. To improve the operational efficiency of the entire
DH networks, (Gadd and Werner, 2015) puts an emphasis on the need of understanding each individual substation
in the network, with focus on fault detection. The aforementioned study performs fault analysis on 135 substations
located in Helsingborg and Angelholm, in Sweden. In particular, it identifies several types of faults and concludes
that 3 out of 4 substations have some kind of faulty behavior. For improving fault detection, it also proposes to use
thresholds for each substation based on the knowledge of customer’s behavior. An approach based on partition around
medoids (PAM) (Ma et al., 2017) uses heat load variation rather than heat load magnitude to group together similarly
behaving buildings. The analysis is based on thermal energy use data collected from 19 higher education buildings
located at Norwegian University of Science and Technology (NTNU) in Trondheim, Norway. One conclusion of the
aforementioned study is that identifying daily heating energy use characteristics can be used to assist in fault detection
and diagnosis strategies. Another study in (Xue et al., 2017) applies different clustering methods to extract heat load
patterns and then uses association analysis to generate a set of association rules. It then uses these to detect faulty and
energy inefficient substations. The data for the aforementioned study came from both the primary and the secondary
side of two substations located in Changchun city, China. A k-means clustering approach is used in (Gianniou et al.,
2018) to group and study the heat load profiles of 8293 single-family households in Aarhus, Denmark. This study finds
that building’s age and its area has a significant influence on its thermal energy use. The effect of autocorrelation on
k-means clustering of the thermal energy use by heat exchange stations has been recently studied in (Tureczek et al.,
2019). The data for this study came from 53 heat exchange stations located in Aarhus, Denmark.

Studies related to the distribution temperature of substations are also rather scarce. One such study in (Gadd and
Werner, 2014) discusses different technical details about how to achieve a low return temperature. It analyzes 140
substations in Sweden, 85 located in Helsingborg and 55 in Angelholm, to examine their temperature difference faults.
The aforementioned study concludes that faults result in the increase of return temperature, which is then followed
by an increase in the supply temperature. Another study in (Nord et al., 2018) analyzes technical possibilities for
transitioning to low temperature district heating (LTDH). It proposes a thermal model with certain assumptions under
which the supply temperature of the DH network, despite the presence of faults, can be reduced to 50°C and thereby
also reducing the return temperature. This conclusion is based on the analysis of data from two DH networks located
in Trondheim, Norway.

2.2. Group based monitoring and outlier detection

The idea of grouping similarly behaving systems in a large-scale deployment, though scarce, has been previously
studied in (Bolton and Hand, 2001; Byttner et al., 2011; Das et al., 2010; Fan et al., 2015; Fontugne et al., 2013; Lapira,
2012; Narayanaswamy et al., 2014; Résédnen et al., 2008; Weston et al., 2012). A peer-group or reference-group based
approach for detecting outliers among systems is proposed in (Bolton and Hand, 2001). The main idea here is to create
a reference-group for each target object based on the k most similar objects criterion using Euclidean as a similarity
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measure. The application area of aforementioned study is credit card fraud detection and its assessment is done on the
basis of visual inspection. Weekly spending data from 858 credit card accounts for a year is analyzed. Target accounts
that moved further away from their respective peer-groups (or reference-groups) based on some externally defined
threshold were considered suspicious. Using the same approach, a subsequent study in (Weston et al., 2012) examines
faulty behavior in 200 weather stations. Another work in the area of fleet monitoring has been conducted by NASA for
enhancing aviation safety (Das et al., 2010). The aforementioned work is based on detecting anomalies in multivariate
flight operations quality assurance (FOQA) data. The study notes that the state-of-the-art approaches of the time were
unable to deal with heterogeneity in the data containing both discrete and continuous variables. To overcome this
limitation, the study proposes a multiple kernel learning (MKL) approach. Here, two kernels, one for discrete data
and the other continuous data are combined linearly. It has been claimed that the MKL based approach is not only
able to detect significant anomalies that were detected by the state-of-the-art approaches, but also other operationally
significant anomalies in the data. Another study in (Fontugne et al., 2013) analyzes data of electrical energy use of
devices in two different buildings with 135 and 70 room sensors. In each case, the data is divided into consecutive time
bins and a pairwise correlation matrix between device’s energy use for each time bin is computed. A constant reference
matrix representing normal behavior is then created by computing the median of these correlation matrices. Faults
are detected by applying a threshold to Minkowski weighted distance between the target and the reference correlation
matrices at each time bin. Assessment of the faults is done on the basis of "known" fault signatures. True/False positive
rates were not evaluated exhaustively due to lack of input from the domain expert. In another study (Narayanaswamy
et al., 2014), parameters of energy use models for heating, ventilation, and air conditioning (HVAC) zones in a building
were computed and then visualized using principal component analysis (PCA). The use of PCA revealed similar zones
to be close to each other. Therefore, these PCA components were grouped together using k-means++ clustering. The
resulting clusters were then examined by introducing three different definitions of fault. Overall, there were 237 HVAC
zones, with 17 sensors each. Faults found in the study were assessed based on manual inspection of sensor data by
a domain expert. Another study in (Lapira, 2012) uses clustering on 34 servo-gun units belonging to 30 industrial
welding robots before the application of a fault detection procedure. Similar analysis is performed on 11 wind turbines
from three wind farms. The aforementioned study (Lapira, 2012) shows that a clustering based approach to group
similar behaving systems before the application of an outlier detection step is more robust to false alarms compared to
individual models for each system. The so-called consensus self organized models (COSMO) (Byttner et al., 2011),
a reference-group based monitoring approach, assumes the systems in a fleet to be operationally similar to each other.
Here, each target system is compared to every other system in the fleet, i.e., its reference-group, and those found to be
deviating the most based on a certain threshold are marked as outliers. This approach is later evaluated on a fleet of
Volvo buses in (Fan et al., 2015) to detect those that behave differently from the group over time. A study in (Résinen
et al., 2008) identifies electricity usage patterns by using self organized maps (SOM) to create groups based on a list
of building characteristics. The purpose, however, is geared towards studying the behavior of the building rather than
fault detection. Nonetheless, the results of the study show the importance of meta-information about a system, which in
most cases is not available. In a recent paper (Iyengar et al., 2018), building’s physical attributes, e.g., its construction
year and type, were used to create peer-groups for analyzing their energy efficiency. Those building groups with less
than 20 houses were discarded on the pretext that this size is not enough for a meaningful analysis.

3. Methodology

Constructing a model for monitoring each system in a large fleet may not always be feasible. An alternative to this
is fleet based monitoring. A fleet, according to (Oza and Das, 2012), is described as follows:
A fleet is a group of systems (e.g., cars, aircraft) that are designed and manufactured the same way and are intended
to be used the same way.
The main assumption of a global model at the fleet level as described in (Oza and Das, 2012) is as follows:
Each system in the fleet is comparable to a sample drawn from some distribution, so that all the systems in the fleet are
independent and identically distributed.
Thus, a global model assumes the operational behavior of all the systems in a fleet to be consistent with each other, i.e.,
homogeneous. Therefore, the behavior of any particular system can be inferred from the behavior of other systems in
the fleet. Any system whose behavior is significantly different from the fleet is considered as an outlier. This is referred
to as group based or fleet based monitoring (Byttner et al., 2011; Oza and Das, 2012). In this context, the entire fleet
or network of systems is the reference-group. However, in many situations, there can be differences in the ambient
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environment, installation and control settings, model type, age and many other factors among the systems in a fleet,
details about which may not be readily available. Under these conditions, a global model based on the homogeneity
assumption will not be very efficient since it leads to the detection of only those systems that are outliers in the global
sense. Therefore, the notion of similarity may need to be relaxed here as described in (Bolton and Hand, 2001; Lapira,
2012), which specifies that similarity among systems does not necessarily imply that they are exactly identical. Hence,
a system in a fleet should be compared to only those systems that are found to be the most similar to it in terms of their
behavior. This context of a peer-group or a reference-group based approach has been described in (Bolton and Hand,
2001):

The distinguishing feature of peer-group analysis lies in its focus of local pattern analysis rather than global models.
In addition, a motivation for the reference-group based approach also comes from quantitative biochemistry (Livak
and Schmittgen, 2001), according to which:

Relative quantification describes the change in expression of the target gene relative to some reference group such as
an untreated control or a sample at time zero in a time-course study.

3.1. A reference-group based approach for detecting outlier systems

In the context of monitoring a large fleet, the main task is to select an appropriate method to construct a reference-
group for each target system. The issue that arises here is that in most cases, the behavior of systems in such a fleet
lies on a spectrum and not necessarily consists of some discrete sets of well separable values. This makes it difficult to
apply a clustering based approach. Moreover, as noted earlier, meta-information about those systems that can be useful
to compare or distinguish them from each other is not always available. In addition, clustering based methods such as
the k-means and the Gaussian mixture model (GMM) impose a certain distributional criterion on the underlying data
distribution of the features selected to represent the systems in a fleet, which may not reflect the ground truth. A k-
nearest neighbor (k-NN) based criterion does not impose such a restriction. From the point of view of outlier detection,
it has been shown in (Goldstein and Uchida, 2016) that an imperfect choice of k tends to give more stable results for a
nearest neighbor based approach than a clustering based approach. Moreover, the basic principle of nearest neighbor as
pointed out in (Cover, 1982) is: things that look alike must be alike, which is a requirement for a reference-group. Due
to these aforementioned factors, the notion of k-nearest systems based on the definition of an appropriate similarity
measure is justified.

Consider a large fleet (or network) of N systems and let z; ; represent the (state of) the i-th system at time # = 1.
The evolution of the fleet’s behavior over time can be represented by a matrix:

21 Z12 e ZLr ZLel e Zlpks e ZLT
Ener = . : - : - : (1)
ZN1 ZN2 - ENg ENg+l T Ziggs o ENT
. ~ / o ~ /
reference-group creation reference-group evaluation
time-period: &,={1....,t} time-period: & ={r+1,....,T"}

Any new data that arrives at a latter time, i.e., T + 1, T + 2, and so on, can be appended to the above matrix. For
simplicity, assume that each system is represented by a single variable. Moreover, let &,_, = [1, ..., ] represent the
0-th episode. Then,

Yig, = [2i15 2] i=1,.,N. 2)

Each particular system in the fleet which is selected for the purpose of its operational monitoring is referred to as a
target. In general, systems in a fleet may differ due to factors, such as, their ambient environment, control settings,
etc. This information, as discussed earlier, may not always be available. However, assume that there exist sufficient
number of systems, which share a similar but unknown underlying data generating mechanism. Further, assume that
there exists an appropriate distance measure that can adequately estimate their similarity. Then based on the definition
of the selected distance measure, the reference-group comprises of those systems whose underlying data generating
mechanism is approximately similar to that of the target. Assume that the data from episode &,,_ is sufficient to
capture the similarity among the systems in a fleet, and that the Euclidean is an appropriate distance measure for this
task. Then, the similarity between systems i and j can be measured as follows:

di.j) = \/(yi,ﬁo ~Yie)Wig, — Vig)™ @)
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The application of d(-, -) to estimate the similarity between N systems results in a D,y distance matrix consisting
of pairwise distances. Each row i of D is then sorted in the decreasing order of similarity (or increasing distance). Let
some k << N be the appropriate size of the reference-group. Then, the indexes of the reference-group for each target
system i sorted in the decreasing order of similarity are given by:

|y = argsort D, . i=1,..,N, )

where ﬂi = i is the index of the target in matrix D. These index vectors are created at the O-th episode, i.e., &,, and then

kept fixed. Let 7; = Yl & represent the target and r; = [yﬂé & Yal gt0] its reference-group. The main assumption

here is that over subsequent episodes &|, &,...., the same set of unobserved variables, say Y, will continue to affect the
target i along with its reference-group. Therefore, the target i will continue to behave in a similar manner compared
to most of the systems in its reference-group. Then under certain algorithmic criteria ®, if the target i is found to be
behaving differently from its reference-group, it is considered an outlier.

The nature and quality of outlier detection will depend of various factors including the choice of the similarity
measure used to create the reference-groups, the notion of stability of the reference-group, the size k of the reference-
group, the adequacy of the reference-group to discover outlier targets at the local level, the representation of the target
and its reference-group along with choice of outlier detection procedure ®. We discus each one of these in the following
sections.

3.2. The choice of the similarity measure, stability and the size k of the reference-group

The first step in the creation of a reference-group is the choice of a similarity measure. This selection can be made

on the notion of stability based on the following criterion: The stable proportion of a particular distance measure for

a given k is the ratio between the systems that were members of the reference-group at the episode of its creation that

continue to remain its members when it is reconstructed in the next subsequent episode, and k. An adequate threshold,

say 6, € [0,1], can be used to select the desired stable proportion. The stable proportion of a reference-group is

usually an increasing function of its size k. The similarity measure which fulfills this threshold criterion with the

least reference-group size k is selected. Hence, using the stability criterion, the size k of the reference-group can be

simultaneously determined. Hence, for each target i, the size of its reference-group is given by k; = k' when the
following approximation holds:
L

2:k +1,¢ ’ . (3)

N
S

k/ N

#[71'" p
2:K +1.8

Here, # is the cardinality of the set and ) is the set intersection operator. Based on the formulation of Eq. (5), a
reference-group for each target i will have a different size k;. A single global k, though not efficient, can be selected
by taking the median of the vector given by:

k = median [k;]Y . (6)

The loss of members in the reference-group over the next episode is usually driven by the changes in the data
distribution of its members. A desirable reference-group should be stable over time.

Concerning the question of minimum k, (Breunig et al., 2000) proposes it to be at least 10 to avoid statistical
fluctuations. Yet another perspective, described in the same paper is based on the definition of a local cluster. It has
been suggested that this cluster must contain at least k objects (the reference-group in our case) so that other objects
(the target, in our case) can be outliers relative to the cluster. In this sense, the choice of minimum k is application
specific. In summary, each member of a reference-group adds to the evidence about a particular behavior that its target
is supposed to follow.

3.3. Adequacy of a reference-group

An adequate reference-group is one which follows its target as closely as possible. In this regard, an adequacy
measure, which estimates the similarity between the target and its reference-group can be useful. Such a measure can
be based on some distributional distance or correlation. For instance, the median distributional distance between the

Shiraz Farouq et al.: Preprint submitted to Engineering Applications of Al Page 7 of 23



331

333

334

341

Large-scale monitoring of district heating substations
target and each member of its reference-group can be estimated by:
7 . . N P
H, = median [Q(y,-,gm,y,,;,gm)]jzz, i=1,.,N. (7)

If the underlying data of each member in the reference-group and the target is assumed to follow a Gaussian distribution,
Q can be described by Hellinger distance via its relation to Bhattacharyya coefficient (BC):

Q(p.q)=V1-BC(p.q). p~ N(uy.01).q~ N(pp.03), ®)
11y — )’

2010, 4 6% +02
—exp 1

where BC = 2 . In case the data distribution of each member in the reference-group and

0'12 + 0'5
the target is not known, Q can be described by the Kolmogorov-Smirnov (KS) two-sample test, used as a distance
measure. KS and Hellinger distance based on BC are bounded in the range [0, 1]. KS measures the maximum distance
between the cumulative density functions of the two distributions. Hellinger distance via its relation to BC measures
the amount of non-overlap between the two distributions. In this sense, an adequate reference-group is one where the
median distributional distance between its members to the target is less some specified threshold.

Let the mean behavior of the members of the reference-group be represented by:

1 k+1
Wie, = % Zy”}’-fm i=1,.,N. ©
Jj=2

Then the correlation between the mean behavior of the reference-group and its target can be estimated by:

pi=pg .y ),  i=1..,N. (10)

Accordingly, an adequate reference-group here is one that strongly follows in the direction of its target over time, based
on some specified threshold.

Let 67 and 6; be the minimum acceptable distance and correlation thresholds, respectively. These are referred
to as the adequacy criteria. When H > &y, it implies that the underlying parameters such as the mean or standard
deviation of the target and/or the majority of the members of its reference-group have changed. Similarly, when p < 6,
it implies the target and its reference-group do not behave in a similar fashion over time.

When j and H violate their respective thresholds at the episode of the creation of a reference-group, it might
indicate that the target already has a fault or it has a unique behavior which is not mirrored by other systems. In the
latter case, a reference-group based approach may not be applicable for the particular target. When a violation occurs
in the next subsequent episodes, it might be due to a fault or due to changes in the target, such as changes in its working
environment or control setting. In the latter case, a new reference-group may be required for the target.

3.4. Representing the target and its reference-group
Once an appropriate similarity measure has been chosen and the reference-group for each target identified, appro-

priate features can be computed to represent the target and its reference-group. For instance, the mean of the target i
along with the mean of each member of its reference-group over some episode &,, = [1, ..., W] is given by:

w
1
Ho_ _ P
u; = § Ezly”}’é’"’ j=1,.,k+1, (11)

where u’]’ is the mean of the target. Similarly, the standard deviation is given by:

w

1
c _ . _ M X _ M\« s
uf = 1 ¢§=1(y”}’§'" u; )(y”}’ém ), j=1,.,k+1, (12)

m

Shiraz Farouq et al.: Preprint submitted to Engineering Applications of Al Page 8 of 23



358

359

382

Large-scale monitoring of district heating substations

where u7 is the standard deviation of the target. The target i along with its reference-group can then be represented by:

7, = [u’f, u‘]’] r; = [uf, u;’]fzzl i=1,..,N. (13)

Other features, such as min, max, skewness, kurtosis can also be added to Eq. (13).

3.5. The outlier detection procedure ®

The choice of an outlier detection procedure ® can be an unsupervised outlier detection method, such as, the
isolation forest (IF) (Liu et al., 2012), using for instance, Eq. (13), as an input. Other unsupervised outlier detection
methods such as one class-support vector machine (OC-SVM) (Scholkopf et al., 1999) can also be used here assuming
that the reference-group represents the normal behavior.

In this study, IF is chosen as the outlier detection procedure ®. This choice is based on the study conducted in
(Emmott et al., 2015), which after comparing eight outlier detection methods reaches the following conclusion:
Because Isolation Forest performed best on average and because it has very good runtime properties, we recommend
it for general use. However, we also recommend that context should impact your choice of algorithm.

In addition, a recent study in (Domingues et al., 2018) after comparing fourteen outlier detection methods also makes
a similar conclusion.

IF works on the assumption that outliers are easily isolated compared to normal data points. In the context of this
study, the requirement is to check if the target is isolated among its reference-group. In certain instances, a reference-
group may itself contain outliers. To deal with the issue, the contamination rate of IF can be adjusted. So, if the
reference-group consists of 40 systems, then for a contamination rate of 0.1 or 10%, it can be checked if the target is
among the list of those 4 systems that IF considered as isolated. If this happens to be the case, then the target is an
outlier.

On application of ®(z;, r;), if the target is found to be behaving differently from its reference-group, it is considered
an outlier. When the adequacy criteria discussed earlier are not met, ® in many cases can fail to detect an outlier target.
In cases where a target is found to be an outlier by O, the adequacy criteria can be used in conjunction to understand
possible reasons behind its outlierness.

The steps required for detecting outlier targets using a reference-group based approach are summarized in Algo-
rithm 1.

Algorithm 1 Reference-group based deviation and outlier detection

Require: Time-series data YVig, ¥Yng,] from N systems corresponding to episodes [&, &, ...], an appropriate dis-
tance measure d(-, -) to estimate similarity between systems, the size k of the reference-group, a function I" that
computes an appropriate representation for the target and its reference-group, an outlier detection procedure ® that
outputs —1 if the system is an outlier and O otherwise.

1: fori < 1to N do

2. forj < 1toN do

3 Dij=D;;=d(igYe,)

4:  end for

5: 7[; kg1 = argsort D; . //the first item of x is the index of target system.
6: end for

7: for m < 0 to oo do

8: fori« 1toN do

> o li = F(yﬂi:kﬂ’é’"
10: pi = O(z;, 1))
11: if f; =—1then
12: The target system i is an outlier.
13: end if
14:  end for
15: end for
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4. Case study

The focus of this study was the return temperature of substations since it affects efficiency of the entire DH network.
Historically, in Sweden, the most commonly used variable for analyzing substations used to be the temperature differ-
ence, i.e., the difference between the supply are the return temperature. This was because in earlier times, only heating
rate and flow rate data were collected, from which the temperature difference was indirectly estimated. However, since
the supply temperature is not constant over the year and differs between networks, the temperature difference may not
be a reliable variable, especially when comparing substations with each other. Therefore, it is much better to use return
temperature, since there is a physical lower limit defined by the indoor temperature.

The choice of multi-dwelling buildings for the analysis rests on the fact that according to Oresundskraft, it represents
more than 50% of the heat deliveries (55% in Helsingborg) in their DH network. Moreover, the overall market share
of DH in this category is 93%.

4.1. Data description and preprocessing

The dataset used in this study was provided by Orsundskraft, a DH utility located in the South-West of Sweden. It
was derived from smart meter readings from buildings connected to the DH network of the Helsingborg municipality.
In 2017, 3070 TJ of heat was delivered to 11,242 delivery points. The dataset included hourly measurements of the
heating rate, the flow rate, the supply temperature and the return temperature on the primary side of all substations
during 2017. Moreover, it was divided into six customer categories: single family buildings, multi-dwelling buildings,
public administration buildings, commercial buildings, health and social service buildings and others.

The return temperature data of the multi-dwelling buildings from Nov’17 and Dec’17 was used in the analysis.
In this respect, data from a total of 965 substations in Nov’17 and 963 substations in Dec’17 was available. For
data preprocessing, substations with less than 85% hourly return temperature data points in each month were removed.
Moreover, substations with constant values were also removed. For the rest, missing values, if any, were imputed using
linear interpolation. Furthermore, only those substations having data from both the months, i.e., Nov’17 and Dec’17,
were retained. The aforementioned data preprocessing left a total of 865 substations from the two aforementioned
months.

The return temperature is a very volatile operational variable (Sandin et al., 2013). Therefore, to remove the
influence of outliers and other variations, daily mean of the return temperature for each of the 865 substations was
calculated before any further analysis.

4.2. Setup for the analysis

According to (Frederiksen and Werner, 2013), the national average return temperature in Sweden is 40°C-50°C.
Therefore, a global threshold of 50°C can be considered as the red line that differentiates a sufficiently normal substation
from a bad one. Hence, it was used as a global threshold in our analysis.

Five different distance based similarity measures were studied for creating a reference-group for each target sub-
station: Euclidean, Wasserstein (Earth Movers Distance), Energy (Cramér von Mises), Hellinger and KS. The stability
of the reference-groups based on the aforementioned distance measures for various values of k were tested using Eq.
(5). A median size k was calculated using Eq. (6) and its selection was based on 6, = 0.60. Finally, the adequacy of
the reference-groups were based on the following criteria: (1) The correlation between target and the mean behavior
of members of its reference-group was p > 0.60. (2) The median Hellinger distance between the target and members
of its reference-group was H < 0.40.

The month of November is usually the start of winter season in Sweden. It was assumed that the pairwise distances
between substation’s return temperature data from this month provides sufficient information on their similarities and
diversities. Hence, the reference-group for each target was created using the return temperature data from Nov’17,
i.e., episode &,. The reference-groups were then kept fixed on the assumption that they will continue to follow their
respective targets in a similar manner over the next subsequent episode. Therefore, the operational behavior of the
return temperature for each target was observed relative to its reference-group for Dec’17, i.e., episode &;. Monthly
mean and standard deviation were used to represent the target along with its reference-group. This representation
from Dec’17 was then used as an input to the IF method to detect the change in behavior of the target relative to its
reference-group. The contamination rate of the IF was set to 0.10 or 10%. Hence, a target was considered an outlier
if it was found to be among those 10% substations identified as such by IF. The overall process for detecting outlier
targets using the reference-group approach was based on Algorithm 1.
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Multi-dwelling - 865 substations
Nov 2017

141

124
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(monthly st. dev based on daily mean)

Return temperature (K)
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Return temperature (°C)
(monthly mean)

——- Global threshold []
----- MCD boundary v

Outlier DH substations (MCD)=87
Inlier DH substations (MCD)=778

Figure 1: Based on the global threshold, 52 (5.9% contamination rate) substations had a monthly mean return temperature
greater than 50°C in Nov'17. MCD discovered 87 outlier substations based on a contamination rate of 0.1 or 10%.

The programing environment used in this study was Python 3.7. All distance measures, except for Hellinger, were
computed using the scipy library (ver. 1.3.0). The Hellinger distance was computed using Eq. (8). The outlier detection
methods based on IF and minimum covariance determinant (MCD) (Rousseeuw and Van Driessen, 1999) were used
from the scikit-learn library (ver. 0.20.0). MCD is a distance based statistical outlier detection method, which was
used to create a global outlier model for all substations.

5. Results

Figure 1 shows the monthly mean and standard deviation of the return temperature of substations based on Nov’17
data. As noted before, the state of practice in DH industry is to set global thresholds. A normally accepted threshold
for the return temperature is around 50°C. As can be observed in Figure 1, the dashed dark red line separated those
substations which had a return temperature higher than 50°C from the normal ones. In total, there were 52 substations
with a return temperature higher than 50°C.

High standard deviation in the return temperature can be another sign of problem in a substation. A global outlier
model based on the MCD was applied to the representation shown in Figure 1. Based on the criterion that the decision
boundary of the MCD model agreed with the global threshold, the contamination rate for MCD was set to 0.1 or 10%
(top outliers). With that, 87 substations with the return temperature of around 50°C or higher and with a standard
deviation of around 4 K (Kelvin) or higher were identified as global outliers. These substations were removed from
both Nov’17 and Dec’17, leaving the total to 778. Individual analysis of some of these substations by the DH expert
suggests that those with return temperature of less than 50°C but with a standard deviation greater than 5 K were
not necessarily faulty. In particular, some of these substations switched on a time-clock operation for ventilation
(Frederiksen and Werner, 2013), which also affected the return temperature by increasing their standard deviation.

5.1. Stability analysis of reference-groups

Reference-groups were created for the 778 target substations using different distance measures and various values
of k for episode &, and &;. Figure 2 shows the stable proportion of the reference-group for a given distance measure
and median k between episodes & and &,. The Euclidean distance reached the threshold of §; = 0.6 with the minimum
median k, i.e., 80, compared to other distance measures. Moreover, for the Euclidean distance, increasing median k
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Multi-dwelling - 778 substations
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Figure 2: On the x-axis is the median size k of the reference-groups at the time of their creation. On the y-axis, is the
proportion of reference-group members that if it was reconstructed in the next episode, were still its members. Based on
this criterion, the Euclidean distance appeared to be more stable among all other distance measures.

beyond 80 did not show large marginal increases in the stable proportion. Hence, Euclidean distance with k = 80
appeared to be a reasonable choice for creating the reference-groups.

5.2. Adequacy analysis of reference-groups

Once the reference-groups for their respective targets were created in episode & i.e., Nov’17, they were kept fixed
for the next episode &, i.e., Dec’17. However, dispersion among the members of the reference-groups over time
can reduce their effectiveness. This is obvious, because there are many unobservable factors that can change at the
substations or the particular buildings they are associated with. For instance, some substations might have changed their
outdoor temperature compensation curve, people may have moved into/out of the buildings, some sort of equipment
fault might have occurred at substations, additional heaters were removed/introduced in the buildings, etc.

Figure 3 shows the histograms of the adequacy measures for the reference-groups constructed using Euclidean
distance with k = 80. It shows that on aggregate basis, median 5 decreased from 0.85 to 0.81, while median H
increased from 0.21 to 0.30, from Nov’17 to Dec’17. Reference-groups not fulfilling p > 0.60 showed an increase
from estimated 175 (22%) in Nov’17 to 210 (26%) in Dec’17. Similarly, reference-groups not fulfilling H < 0.40
showed an increase from 68 (8%) in Nov’17 to 201 (25%) in Dec’17. Possible reasons for the reference-groups not
fulfilling these adequacy criteria include: (a) the reference-groups could not adequately represent their respective
targets, and (b) the targets behaved differently from their reference-groups and therefore might have developed a fault.
In the former case, an outlier detection model may miss to detect a deviating target.

5.3. Detection of outlier target substations

The results of Table 1 were obtained using the reference-group based approach described in Algorithm 1. Moreover,
although Euclidean distance with k = 80 was selected for the creation of the reference-groups based on the analysis in
Figure 2, the results of different distance measures for various values of the size k of the reference-groups can provide
some additional useful insights. Against each distance measure in Table 1, the first row consists of global outlier targets,
the second row consists of local outlier targets and the third row consists of total outlier targets, i.e., it is the sum of
global and local outlier targets. The fourth row consists of global outlier targets detected by the MCD model but missed
by the reference-group based approach. On an overall basis, it can be observed that the total number of outlier targets
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Multi-dwelling - 778 substations
reference-groups based on Euclidean with k=80
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Figure 3: (a): Here, the histograms based on correlations between the target substations and the mean behavior of their
respective reference-groups are shown. When the reference-groups were created at Nov'17, 175 (22%) of them did not
fulfill the adequacy criterion based on correlation. This increased to 210 (26%) in Dec'17. (b): Here, the histograms based
on median Hellinger distances between each member of the reference-groups to their target are shown. About 68 (8%)
of the reference-groups did not meet the adequacy criterion based on Hellinger distance in Nov'17. This increased to 201
(25%) in Dec'17.

detected may depend both on the choice of the distance measure as well as the size k of the reference-group. Moreover,
it can also be observed that at lower values of k, more local outlier targets were detected compared to the global outlier
targets. However, this also increases the possibility of false alarms. With increasing k, the relative proportion of the
local outlier targets decreases, while that of the global outlier targets, it increases. Hence, a trade-off appeared to exist
between the number of global and local outlier targets depending on the size k of the reference-group. Finally, with
increasing k, less global outlier targets were missed compared to the global MCD model. Hence, as expected, with
increasing k, the reference-group approach moved towards becoming a global model.

5.4. A comparison between reference-group based and global outlier detection approaches

Figure 4 presents a comparison of the reference-group based approach with global threshold based and MCD based
global outlier models. Using the criterion that the boundary of the MCD model agreed with the global threshold of
50°C, the contamination rate for MCD for Dec’17 was set to 5%. The MCD model detected 39 global outlier targets
including five out of six detected by the global threshold.

The results for the reference-group based approach in Figure 4 were obtained using the Euclidean distance with
k = 80. In comparison to global models, the reference-group based approach detected 33 global outlier targets, missing
six of them. However, as can be observed in Figure 4, those missed were close to the boundaries of MCD and the global
threshold. In addition, the reference-group based approach detected 44 local outlier targets which can be observed as
red dots inside the MCD boundary in Figure 4. Although these additional outliers increased the overall contamination
rate to 10%, they presented the possibility of detecting potentially problematic cases at a local level, albeit, at the cost
of false alarms. In this regard, a 5% increase in the overall contamination rate is tolerable.

To illustrate further on these local outlier targets, an example is presented in Figure 5. Observe the target, marked
as ared dot, along with its reference-group marked as light blue dots. The target together with its reference-group con-
sisting of 80 substations had an average return temperature of 35°C in Nov’17. However, in Dec’17, the target showed
a return temperature of 40°C, which was a significant increase compared to the majority of those in its reference-group.

Shiraz Farouq et al.: Preprint submitted to Engineering Applications of Al Page 13 of 23



Large-scale monitoring of district heating substations

. Outliers
Distance
k=20 | k=40 | k=60 | k=80 | k=100 | k=120 | k=140 | k=160 | k=180 | k=200

Global 30 31 33 33 35 34 37 37 36 37

Euclidean Local 45 52 51 44 48 45 43 45 37 35
Total 75 83 84 77 83 79 80 82 73 72
Missed 9 8 6 6 4 5 2 2 3 2
Global 25 25 27 32 33 34 34 36 35 33

Wasserstein Local 52 47 45 42 35 35 39 37 32 34
Total 77 72 72 74 638 69 73 73 67 67
Missed 14 14 12 7 6 5 5 3 4 6
Global 26 25 28 30 33 33 33 31 37 34

Energy Local 47 43 37 32 34 34 37 37 34 36
Total 73 68 65 62 67 67 70 68 71 70
Missed 13 14 11 9 6 6 6 8 2 5
Global 21 24 25 25 30 29 28 31 32 32

Hellinger Local 45 38 35 36 39 34 33 32 33 35
Total 66 62 60 61 69 63 61 63 65 67
Missed 18 15 14 14 9 10 11 8 7 7
Global 22 26 25 28 31 32 30 32 33 33

KS Local 48 37 35 39 40 32 37 37 35 34
Total 70 63 60 67 71 64 67 69 68 67
Missed 17 13 14 11 8 7 9 7 6 6

Table 1

Outliers detected in Dec'17 by tracking the 778 target substations with their respective
reference-groups created using different distance measures. For each distance measure, the
first row consists of global outlier targets, the second row consists of local outlier targets
and the third row is the sum of global and local outlier targets. The fourth row consists
of global outlier targets detected by the MCD model, but missed by the reference-group
based approach.

With such an increase, there was a fair chance that there might be a problem. Even if there was no fault, such increase
could be due to inefficient control setting at the substation. Hence, a potential problem was identified before it could
be possibly detected by a global outlier detection approach at some later point in time. In many instances, if the situ-
ation is not dealt with in time, such cases have the potential of further deterioration where eventually the 50°C line is
crossed. Other than that, it can also be observed in Figure 5, that a reference-group provided for a relative comparative
reference to judge a target on its outlierness.

5.5. Return temperature patterns of outlier substations
Following the reference-group based approach, the observed pattern of behavior in the return temperature of the
77 outlier target substations can be summarized into the following:

Constant (5)

Fluctuating (9)
Temporary increase (15)
Temporary decrease (10)
Level increase (22)

6. Level decrease (9)

Nk W=

The observed occurrence of each pattern is stated in the brackets. For seven out of 77 cases, none of the above patterns
seemed to fit clearly. The analysis of example cases associated with the six patterns above using the reference-group
approach based on Algorithm 1 are presented next. Here, Euclidean distance with k = 80 was used for creating the
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Multi-dwelling - 778 substations
reference-group based on Euclidean with k=80
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Figure 4: The reference-group based approach not only detected global outlier targets, but also those at the local level.
It can also be observed that those missed global outlier targets were very close to boundaries associated with the global
models.

reference-groups. However, the specific cases that are discussed were also found by all the other four distance measures
with k = 80, except for the one associated with the "fluctuating" pattern: it was not detected with the Hellinger distance.
We therefore considered that Euclidean with k = 80 was sufficient to describe the aforementioned six patterns with
the example cases.

In Figure 6 to Figure 11, red color lines and dots represent the target substation, light blue color lines and dots
represent the members of its reference-group and dark blue color lines and dots represent the mean behavior of the
reference-groups. The dashed dark red line represents the global threshold at 50°C. The adequacy criteria based on
correlation and Hellinger distance are also shown on each of these figures. The adequacy criteria can be useful in
understanding some reasoning behind a target’s outlierness.

Since no labels or ground truth on normal, atypical or faulty behavior were available, each example case associated
with the six patterns was specifically discussed with the DH expert at Oresundskraft, Sweden. No additional information
other than what can be observed in Figure 6 to Figure 11 was part of the discussion. In that way, the mathematical and
practical knowledge were merged into the following description:

5.5.1. Example case of the ""constant'’ pattern

Figure 6(a) shows that the return temperature of the target substation had an almost constant level with very low
standard deviation compared to its reference-group during Nov’17. Moreover, a low p indicated that the reference-
group did not follow the target well over time. Furthermore, H was at the threshold boundary of 0.4. All this indicated
that the target could not be sufficiently represented by a reference-group. In Figure 6(b), it can be observed that the
situation did not change much in Dec’17. According to the DH expert, even though the target substation was an outlier
here, it does not appear to be a fault.

5.5.2. Example case of the ''fluctuating'’ pattern

In Figure 7(a), both 5 and H indicated that the target could not be well represented by its reference-group. More-
over, the target showed erratic behavior compared to its reference-group. According to the DH expert, the behavior
could be due to a malfunction or inefficient control setting at the target substation. In Figure 7(b), it can be observed
that there was no improvement of situation in Dec’17.
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Multi-dwelling - 778 substations
reference-group based on Euclidean with k=80
(a) Nov 2017 (b) Dec 2017
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Figure 5: (a): The target substation (red dot) in Nov'17, relative to its reference (light blue dots) and population (blue
dots) is shown. (b): The target substation relative its reference-group and population in Dec’17 is shown.

5.5.3. Example case of the '"'temporary increase'' pattern

Here, in Figure 8(a), both 5 and H indicated that the target was well represented by its reference-group. In Figure
8(b), the target showed a sudden continuous increase in its return temperature for around six days before it reverted
back to the behavior of its reference-group. Both 5 and H., albeit near their threshold boundary, indicated that the target
had deviated from its reference-group. According to the DH expert, a possible reason could be a control malfunction
of a short duration at the target substation in Dec’17.

5.5.4. Example case of the "temporary decrease'’ pattern

In Figure 9(a), both 5 and H indicated that the target was well represented by its reference-group. In Figure 9(b),
the target showed a decrease in its return temperature for a few days around the mid period of Dec’17, before later
appearing to move closer to the behavior of its reference-group. Both p and H, during this period indicated that the
target had deviated from its reference-group. According to the DH expert, a possible explanation could be a significant
change in heating use during the period. Other possible reasons could be a temporary change of control settings at the
target substation.

5.5.5. Example case of the "level increase'’ pattern

In Figure 10(a), both p and H indicated that the target was well represented by its reference-group. Figure 10(b)
shows that there was a sharp increase in the return temperature of the target compared to that of its reference-group in
Dec’17. This resulted in an obvious deterioration of both s and H during the period. This behavior, according the DH
expert, can possibly be due to a fault in the flow control valve at the target substation.

5.5.6. Example case of the "level decrease'’ pattern

In Figure 11(a), H indicated that the target was well represented by its reference-group. However, 5 indicated a
low correlation between the target and its reference-group. Hence, 5 and H were in conflict with each other. This
made it a borderline case where it was a bit difficult to ascertain if the target was an outlier at the time of the creation
of its reference-group. Interestingly, in Figure 11(b), while p indicated a strong relation between the target and its
reference-group, H indicated otherwise. Both p and H were still in conflict with each other. However, the level of the
return temperature of the target had fallen considerably compared to its reference-group. In this sense, the target was
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Case 1: constant pattern
reference-group based on Euclidean with k=80
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Figure 6: Example case of the "constant" pattern: The return temperature of the target stays at near constant levels
compared to its reference-group.

no longer well represented by its reference-group. According to the DH expert, such decrease in return temperature
could be due to maintenance service or changes in the configuration at the target substation or certain improvements
in its associated building.

6. Discussion

In this section, we first discuss the reasons behind the selection of the return temperature variable used in this study.
Next, we provide a reason behind the choice of using the data from the substations associated with the multi-dwelling
building category. This is followed by a discussion on the basis of construction of the reference-groups and observations
made therein. The results of comparison between global models, i.e., MCD and threshold, and the reference-group
based approach are discussed next. Finally, we discuss the advantages and limitations of the reference-group approach.

The choice of return temperature for the analysis was based on the fact that it affects the overall operational effi-
ciency of the entire DH network. Moreover, the return temperature is a good indicator of many problems in a substation.
Furthermore, according to (Mansson et al., 2019), the analysis of return temperature levels is a widely used control
check on the operational efficiency of substations in Sweden. The choice of multi-dwellings was based on the basis
that it constitutes a significant proportion of more than 50% of total heat deliveries of the DH network investigated in
this study.

Hence, the operational behavior of the return temperature from 778 substations associated with multi-dwellings in
Helsingborg, Sweden, was studied using the reference-group based approach. The similarities among substations were
measured on the basis of pointwise and distributional distances between their return temperature data. Analysis based
on the stability proportion criterion was performed as shown in Figure 2 to determine which similarity measure and
what k value is the best for constructing the reference-group. The results favored Euclidean distance with k£ = 80 to
be the best available choice. Additionally, to study the effects of different similarity measures with various values of k
on the detectability of target outliers, further analysis was conducted as shown in Table 1. Herein, it was observed that
irrespective of the similarity measure used, there exists a trade-off in the detection of global and local outlier targets
depending on the size k of the reference-group. A smaller k resulted in more local outlier targets. However, as k
decreases, the possibility of false alarms increases.

The application of a global outlier detection model based on MCD with a contamination rate of 5% resulted in
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Case 2: fluctuating pattern
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Figure 7: Example case of the "fluctuating" pattern: A possible malfunctioning target substation, which shows erratic
behavior with high variability compared to its reference-group.

detection of a total of 39 global outlier targets among a total of 778 substations. Using a threshold of 50°C, only
6 global outlier targets were detected. In comparison, the reference-group approach under Euclidean distance with
k = 80 detected a total of 77 outlier targets, 33 global and 44 local. This yielded an overall contamination rate of 10%.
A total of 6 global outlier targets detected by the MCD model were missed by the reference-group approach. However,
the 44 additional local outlier targets provided a possibility of detecting potentially problematic cases at a local level,
albeit, at the cost of few false alarms. In this respect, a mere 5% increase in the outlier targets was justified. These local
outlier targets could not have been detected by global models of outlier detection based on MCD and the threshold.

The main advantage of a reference-group based approach is that the reference operational behavior of any target
substation in the network does not need to be predefined. Instead, the definition of normal, atypical or faulty op-
erational behavior in a target substation is described relative to how its reference-group behaves. Thus, in effect, a
reference-group acts as a local model of the target substation’s operational behavior. It is therefore more efficient in
detecting a deviating behavior compared to global models applied at the network level. Moreover, by relying on the
operational behavior of the reference-group, this approach led to the identification of six most frequent patterns of
deviating behavior in the return temperature of the substations. This can be useful to the DH utilities in deciding on
where to look for to detect atypical and faulty operational behavior of a substation in a network.

The first limitation of the reference-group based approach is that not all target substations can be represented by
reference-groups. For instance, it can be observed in Figure 3(b), that 68 targets among a total of 778 did not fulfill
the adequacy criterion according to which the average Hellinger distance between the target and each member of its
reference-group should be less than 0.4. Hence, these targets are not adequately represented by reference-groups at the
episode of their construction, i.e., Nov’17. Such targets are either atypical or faulty to start with. In the former case,
an individual model for the particular target may be required.

The second limitation is imposed by the DH network infrastructure itself. For the DH case, the reference-group
based approach cannot be directly used by the individual substations to run any sort of automatic control mechanism
when a problem is detected. The reason is that the focus of DH business has so far been on meeting the heat demand
according to the customer’s need. This is being achieved by controlling the supply temperature and pressure level via
a centralized supervisory control and data actuation (SCADA) system, to deliver enough flow to the network in order
to fulfill that requirement. However, most substations in operation currently are not configured for a SCADA system
with regards to measurement, diagnosis, and load control (Gummerus, 2016). Over the last few years, improvements
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Case 3: temporary increase pattern
reference-group based on Euclidean with k=80
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Figure 8: Example case of the "temporary increase" pattern: The return temperature of the target shows a considerable
increase for about a week compared to its reference-group. A possible reason could be a control malfunction for short
duration in Dec’'17.

in technology and changes in energy regulations with regards to data collection have happened in the DH industry.
This has enabled the possibility of improving the operational monitoring platform of DH networks, especially with
regards to fault detection in substations. However, operational monitoring for control and optimization at the network
level, which utilizes data and information on all the substations in a network, still remains a challenge (Gustafsson and
Sandin, 2016). Thus, at present, the operational monitoring of substations, either via the central SCADA or condition
monitoring (CM) systems, does not perform the analysis as suggested in this study. Therefore, the work done in
this study can be programmed as a module for a DH utility for detecting atypical or faulty operational behavior of
substations in its network.

7. Conclusion

Decrease in distribution temperatures is important for achieving the operational efficiency of a DH network. It
is also a key requirement for a transition to 4GDH technology. Hence, understanding the operational behavior of
distribution temperatures, especially the return temperature, is required at the substation level. Such analysis is now
enabled due to digital or so-called "smart" meters installed at all the substations in Sweden. However, due to the
constraints mentioned in Section 1, individual model at the substation level can be difficult to construct, while global
models at the network level can be inefficient in terms of detecting deviating substations. Moreover, the common
state of practice of using thresholds also has a limitation. That is, choosing a reference level for a threshold that is a
compromise between a true alarm and a false alarm is usually unattainable. These constraints and limitations were
addressed by formulating a reference-group based approach, which is described in Algorithm 1, see Section 3.5. There
are three main advantages of using this approach. The first is that the reference operational behavior of any substation
in a network does not need to be predefined. The second is that it provides a basis of what a substation’s operational
behavior should have been and what it is. In this respect, each system in the reference-group provides an evidence
about a particular behavior during a particular time period. This can be very useful when a description of the normal,
atypical or faulty operational behavior is unavailable. The third is that it leads to the detection of outlier substations
that can be missed through the use of global models by providing for a more local context. These advantages have
been demonstrated through the operational monitoring of the return temperature of 778 substations belonging to multi-
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Case 4: temporary decrease pattern
reference-group based on Euclidean with k=80
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Figure 9: Example case of the "temporary decrease" pattern: A decrease in the return temperature of the target was
observed for a few weeks of Dec'17 in comparison to its reference-group.

dwelling buildings located in Helsingborg, Sweden.

From a data-mining point of view, a reference-group based approach is useful not only in terms of isolating atypical
and faulty operational behavior, but also in terms of interaction with the DH domain expert to determine why a partic-
ular operational behavior is occurring. Moreover, in the absence of a comprehensive fault-symptom datasets (Gunay
et al., 2019), a reference-group based approach can provide a framework to label data of faulty substations. This can
help in creating a knowledge base of faults in the DH industry in cases where they are not available.

While we have demonstrated this approach on the monitoring of the return temperature od substations, other rele-
vant variables such as heating and flow rates together with the supply temperature can also be included. In fact, com-
bining all the available relevant variables associated with substations is the best approach towards their operational
monitoring. We will address this in the future. Moreover, the reference-group based approach may be applicable to
other application domains where large-scale operational monitoring is required, such as in electricity utilities, solar
and wind energy farms, factories with large fleet of manufacturing equipment or industrial robots, devices linked with
Internet of Things (IoT).

We believe that in future smart energy systems, a system will not only require information on itself, but also
knowledge about other comparable and related systems within the network. A reference-group based approach has the
potential of enabling such information exchange.
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Figure 11: Example case of the "level decrease" pattern: A considerable decrease in observed in the return temperature
of the target compared to its reference-group. This indicated towards possible improvements at the target substation or
the building.
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