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8 ABSTRACT9

10

A typical district heating (DH) network consists of hundreds, sometimes thousands, of substa-11

tions. In the absence of a well-understood prior model or data labels about a substation, the12

overall monitoring of such large number of substations can be challenging. To overcome the13

challenge, an approach based on collective operational monitoring by a local group (i.e., the14

reference-group) of other similar substations in the network was formulated. Herein, if a substa-15

tion of interest (i.e., the target) starts to behave differently in comparison to those in its reference-16

group, then it was designated as an outlier. The approach was demonstrated on the monitoring of17

the return temperature variable for atypical1 and faulty operational behavior in 778 substations18

associated with multi-dwelling buildings. The choice of an appropriate similarity measure along19

with its size 𝑘 were the two important factors that enables a reference-group to detect outliers in20

an effective manner. Thus, different similarity measures and size 𝑘 for the construction of the21

reference-group were investigated. This led to the selection of Euclidean distance as a similarity22

measure with 𝑘 = 80. This setup resulted in the detection of 44 target substations that were out-23

liers, i.e., the behavior of their return temperature changed in comparison to the majority of those24

in their respective reference-groups. In addition, six frequent patterns of deviating behavior in25

the return temperature of substations were identified using the reference-group based approach,26

which were then further corroborated by the feedback from a DH domain expert.27

28

1. Introduction29

The survival of DH industry in the future will rely on its ability to use a wide range of sustainable energy sources30

like biomass, geothermal, industrial excess heat and domestic and industrial waste. This would require efficiency in31

both the supply and the demand side of energy use. The most potent way to move towards this goal is to reduce the32

distribution temperature of the DH networks. However, the current situation in Sweden is that DH networks have33

supply temperatures of about 75 − 90◦C and return temperatures of about 40 − 50◦C as annual averages (Frederiksen34

andWerner, 2013). Onemajor reason behind a high supply temperature is that faults, both at the primary and secondary35

side of a district heating substation1, are compensated through the supply temperature increase. However, this situation36

cannot be sustained if a transition is to be made to the 4𝑡ℎ generation district heating (4GDH) technology (Lund et al.,37

2014), where low distribution temperatures of 50∕20◦C are a key requirement. In a 4GDH regime, DH utilities will38

not be able to compensate for faults in their respective DH networks through a high supply temperature, which in turn39

will directly affect their customer’s comfort. It has been shown in (Gummérus, 1989) that if all substations work as40

designed, the current distribution temperatures of DH networks can be decreased to approximately 70∕35◦C.Moreover,41

according to (Sköldberg and Rydén, 2014), a decrease in the return temperature of the DH networks can result in a42

cost saving of up to 1 billion SEK2 per year for the DH sector in Sweden. This clearly indicates that monitoring and43

fault detection capabilities must be enhanced at the substation level of the DH network.44

An adequate way to deal with the monitoring of substations is to identify a physical model for each building’s45

thermodynamics in conjunction with its heating system (Bacher and Madsen, 2011), while also taking into account46

social factors (Yao et al., 2009). These models can then be used for various purposes, including the control of indoor47

1Here, "atypical" means that while it does not fit the definition of a normal operation, it is not faulty either and may also have some context.
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climate, forecasting of thermal energy consumption, description of building’s energy performance and fault detection.48

However, such models can require a lot of details about each building and its heating system, which makes them costly49

and difficult to construct. Therefore, construction of such models, especially on large-scale, is mostly infeasible. A50

similar observation has been made in (Gustafsson and Sandin, 2016):51

A substation and the associated building is a complex physical system that is difficult to model because of the high52

number of substations in a DH system.53

Due to the aforementioned reasons, no prior benchmark reference models are available in practice for the monitoring54

of buildings and their associated heating systems.55

The energy policy of Sweden shares a common basis with energy policy developed at the European Union (EU)56

level. In 2006, the EU adopted the energy end-use efficiency directive (European Parliament, Council of the European57

Union, 2006). It suggests improving billing by taking measures to charge the consumer in a timely manner based58

on their actual energy use. It also calls to enable final consumers to make better informed decisions as regards their59

individual energy consumption by providing them with further relevant information on energy use. As a result, the60

Swedish DH act (Riksdagen, 2008) was changed, requiring that from 1𝑠𝑡 January 2015, all DH entities to charge61

their customers based on their actual monthly thermal heat use. Therefore, substations are now equipped with digital62

metering devices on the primary side, measuring hourly heating rate, flow rate, the supply temperature and the return63

temperature. These meters are, however, only data acquisition (DAQ) systems. The main use of this data acquisition64

for the DH utilities is to bill the customers for heat use.65

One can expect that the data available through digital meters enables the use of data-driven approaches to monitor66

and study the operational behavior of substations in a DH network. However, the main assumption of a data-driven67

approach is that all relevant information about a system is sufficiently well-captured in the data. Most commonly, three68

possible schemes exist here: (a) a data-driven model for each substation, (b) a hybrid model for each substation, and69

(c) a global model for the entire DH network.70

The first scheme has limitations due to the non availability of important information, such as, data related to the71

control parameter setting and secondary side operation of the substations. Moreover, the available data lacks labels on72

normal, atypical and faulty operational behavior of a substation. One reason why the aforementioned data and details73

related to substations are not available to a DH utility is due to the issue of ownership. In most cases in Sweden, it is74

the building administration or the house owner that owns a substation and not the DH utility. Right now, DH utilities75

in Sweden do not have a procedure in place to obtain details about a substation or its history of fault complaints and76

subsequent repairs. Furthermore, the operational behavior of substations in a network can vary depending on various77

factors. These include local weather conditions and different characteristics of the buildings, such as, geographical78

location, construction year and thermal transmittance value (U-value). Additional factors include the social purpose79

of the buildings and its associated control strategy, which then affects its heat load profile (Frederiksen and Werner,80

2013; Gadd and Werner, 2013). Details related to these factors are also usually not available. Additionally, tuning for81

various hyper-parameters of a selected data-driven model for each substation is required. Hence, a data-driven model82

for each substation can be difficult to obtain and scale to all the substations in a large DH network.83

The second scheme is based on a hybrid approach which combines physical models with data-driven models, while84

also incorporating expert opinion. For instance, in (Cai et al., 2019), a dynamic Bayesian network (DBN) model is85

proposed. Herein, when data on certain variables is not available for the construction of a DBN model of a system,86

physical models are used to estimate their distribution or the value of their parameters. In some cases, their values87

were obtained based on expert opinion. However, buildings and their associated heating systems in a city are quite88

diverse. Therefore, input parameter values for even simple physical models may not be readily available.89

Tomitigate for the non availability of data and various details related to substations to some extent, the third scheme90

provides for an alternative approach, which assumes that the operational behavior of substations in a DH network is91

homogeneous. This implicitly assumes that substations are affected by the same set of unobservable variables over92

time. This approach is referred to as group or fleet based monitoring, and requires a global model for the entire fleet93

or network3 (Byttner et al., 2011; Oza and Das, 2012). Such a setup would require each substation to be described by94

the same set of representative features which are then used as input to an appropriate data-driven model for the DH95

network. Any substation that deviates significantly from the network according to this model is considered as atypical96

or faulty. Such global models can be inefficient in detecting atypical or faulty substations. This is because, in most97

cases, substations exhibit operationally diverse behaviors due to both technical and social factors.98

3For referring to large number of substations, the word "network" is more appropriate than the word "fleet".
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In summary, typical data-driven schemes for operational monitoring of substations are constrained by the following99

factors:100

1. Lack of access to data and information related to the buildings and their heating systems.101

2. Absence of labels about atypical and faulty behavior together with their associated contexts.102

3. Operational diversity due to social and technical factors.103

In general, the most common state of practice in the DH industry is to use thresholds (Månsson et al., 2019). The104

main limitation of using such a method is the choice of threshold values. In the presence of operational diversity,105

achieving a compromise between efficiency of detecting true outlier substations and false alarms on the basis of a106

threshold is mostly unattainable.107

The objective of this study is to address the aforementioned constraints on the use of typical data-driven schemes108

and the limitations of the state of practice for the operational monitoring of a large network of substations. To achieve109

this, a reference-group basedmonitoring approachwas formulated (Bolton andHand, 2001; Byttner et al., 2011; Lapira,110

2012), where the reference operational behavior of a particular substation in a network does not need to be predefined.111

Instead, its operational behavior is tracked by a local group of other similar substations within the network. In this112

sense, that particular substation is referred to as the target and the local group of other similar substations are referred113

to as its reference-group. Thus, the definition of a normal, atypical and faulty operational behavior in a target is now114

described relative to its reference-group. Under this setup, if the target is not behaving operationally in consort with115

the substations in its reference-group, then either it is due to a fault or because of some atypical operation arising116

at the target due to its local peculiarities. In effect, a reference-group acts as a just-in-time local model of a target’s117

operational behavior. The reference-group based approach was demonstrated on the operational monitoring of the118

return temperature of 778 substations belonging to multi-dwelling buildings located in Helsingborg, Sweden. The119

results showed that this approach was able to detect deviations in the return temperature of substations over time by120

providing an adequate description of operational behavior for the target. That is, it provided for a comparison based121

on what the operational behavior of the target is and how its reference-group describes what it should be. Moreover,122

the approach was able to detect deviating targets which can be missed through setting a global threshold or the use of123

global models of outlier detection by providing for a more local context. Finally, based on the analysis, we created a124

categorization of most frequent deviation patterns observed in the return temperature data of the analyzed substations.125

This can be useful for creating a database of atypical and faulty operational behavior for this domain.126

The remainder of this paper is organized as follows. Section 2 first gives an overview on the current state of the art127

of the data-driven analysis in the DH domain. Next, related work on the reference-group based monitoring approaches128

are discussed. Section 3 presents the reference-group based monitoring approach and summarizes it as an algorithm.129

Issues related to the reference-group, such as, its size and stability along with its adequacy to detect deviations at a130

local level are also addressed here. Section 4 provides a description about the data used in the case study. Details of131

setup for the study are then described. In Section 5, the results of the study are presented. Section 6 discusses the main132

findings of the study, including the limitations. Finally, the main conclusions of the study are presented in Section 7.133

2. Related work134

Various approaches have been proposed for the monitoring and fault detection of building related energy systems,135

for instance (Cai et al., 2014). For a comprehensive survey related to such approaches, the reader is referred to (Kim136

and Katipamula, 2018). However, the focus of this study is specifically on the application of group based monitoring137

to the DH domain. Therefore, the state of the art of data-driven analysis and fault detection for this domain is presented138

next. This is then followed by the state-of-the-art approaches in group based monitoring.139

2.1. The state of the art of data-driven analysis and fault detection in DH140

Most data-driven studies in DH have been on the prediction of entire network’s heat demand. For instance, (Gross-141

windhager et al., 2011) proposes a model based on seasonal autoregressive integrated moving average (SARIMA) for142

short term on-line forecasting of the heat load in the DH network of Tannheim city, which is located in Tyrol in Aus-143

tria. This article also studies outliers based on analyzing the model residuals by explicitly incorporating them into the144

model. Interestingly, this article also makes an observation about the challenges associated with the construction of145

models for individual substations:146
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Consumer load forecasting were not treated, due to the highly stochastic nature of the consumer data, which would147

make it necessary to build several individual models.148

Another such study in (Fang and Lahdelma, 2016) evaluates multiple linear regressionmodels together with a SARIMA149

based model for forecasting the heat demand for the DH network of Espoo city in Finland.150

Fewer studies have been done on substation meter data compared to electricity meter data as has also been observed151

in (Gianniou et al., 2018; Tureczek et al., 2019). The available literature is mostly concentrated on the clustering of152

substations based on their thermal energy use profiles. These clusters, in most studies, are then further analyzed for153

the purpose of fault detection. Interestingly, there are also not many studies related to heat-load forecast of individual154

substations. One such study in (Protić et al., 2015) proposes a multi-step heat-load forecast model for a substation155

based on a combination of support vector machine (SVM) and discrete wavelet transform (DWT). The data used in156

this study was obtained from one of the 3795 substations located in the DH network of Novi Sad, Serbia.157

In a recent article (Månsson et al., 2019), interviews and surveys have been conducted on how DH utilities in158

Sweden perform fault detection on substations in their network. Additionally, statistics on commonly occurring faults159

as observed by DH utilities in various equipment of a substation have also been reported. It has been observed that160

analysis of the return temperature based on thresholds is the most commonly used control check for inefficient sub-161

station used by DH utilities. It has been further observed that other reported ways of detecting inefficient substations162

also mostly rely on threshold based methods. A study in (J. Pakanen and Ahonen, 1996) has already discussed the163

problems associated with a threshold based approach in DH way back in 1996. A later study in (Sandin et al., 2013)164

reiterated those results. Using statistical methods, the aforementioned study examines the operational behavior and165

conducts fault analysis on 996 substations located in Stockholm. To improve the operational efficiency of the entire166

DH networks, (Gadd and Werner, 2015) puts an emphasis on the need of understanding each individual substation167

in the network, with focus on fault detection. The aforementioned study performs fault analysis on 135 substations168

located in Helsingborg and Ängelholm, in Sweden. In particular, it identifies several types of faults and concludes169

that 3 out of 4 substations have some kind of faulty behavior. For improving fault detection, it also proposes to use170

thresholds for each substation based on the knowledge of customer’s behavior. An approach based on partition around171

medoids (PAM) (Ma et al., 2017) uses heat load variation rather than heat load magnitude to group together similarly172

behaving buildings. The analysis is based on thermal energy use data collected from 19 higher education buildings173

located at Norwegian University of Science and Technology (NTNU) in Trondheim, Norway. One conclusion of the174

aforementioned study is that identifying daily heating energy use characteristics can be used to assist in fault detection175

and diagnosis strategies. Another study in (Xue et al., 2017) applies different clustering methods to extract heat load176

patterns and then uses association analysis to generate a set of association rules. It then uses these to detect faulty and177

energy inefficient substations. The data for the aforementioned study came from both the primary and the secondary178

side of two substations located in Changchun city, China. A 𝑘-means clustering approach is used in (Gianniou et al.,179

2018) to group and study the heat load profiles of 8293 single-family households in Aarhus, Denmark. This study finds180

that building’s age and its area has a significant influence on its thermal energy use. The effect of autocorrelation on181

𝑘-means clustering of the thermal energy use by heat exchange stations has been recently studied in (Tureczek et al.,182

2019). The data for this study came from 53 heat exchange stations located in Aarhus, Denmark.183

Studies related to the distribution temperature of substations are also rather scarce. One such study in (Gadd and184

Werner, 2014) discusses different technical details about how to achieve a low return temperature. It analyzes 140185

substations in Sweden, 85 located in Helsingborg and 55 in Ängelholm, to examine their temperature difference faults.186

The aforementioned study concludes that faults result in the increase of return temperature, which is then followed187

by an increase in the supply temperature. Another study in (Nord et al., 2018) analyzes technical possibilities for188

transitioning to low temperature district heating (LTDH). It proposes a thermal model with certain assumptions under189

which the supply temperature of the DH network, despite the presence of faults, can be reduced to 50◦C and thereby190

also reducing the return temperature. This conclusion is based on the analysis of data from two DH networks located191

in Trondheim, Norway.192

2.2. Group based monitoring and outlier detection193

The idea of grouping similarly behaving systems in a large-scale deployment, though scarce, has been previously194

studied in (Bolton and Hand, 2001; Byttner et al., 2011; Das et al., 2010; Fan et al., 2015; Fontugne et al., 2013; Lapira,195

2012; Narayanaswamy et al., 2014; Räsänen et al., 2008; Weston et al., 2012). A peer-group or reference-group based196

approach for detecting outliers among systems is proposed in (Bolton and Hand, 2001). The main idea here is to create197

a reference-group for each target object based on the 𝑘 most similar objects criterion using Euclidean as a similarity198
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measure. The application area of aforementioned study is credit card fraud detection and its assessment is done on the199

basis of visual inspection. Weekly spending data from 858 credit card accounts for a year is analyzed. Target accounts200

that moved further away from their respective peer-groups (or reference-groups) based on some externally defined201

threshold were considered suspicious. Using the same approach, a subsequent study in (Weston et al., 2012) examines202

faulty behavior in 200 weather stations. Another work in the area of fleet monitoring has been conducted by NASA for203

enhancing aviation safety (Das et al., 2010). The aforementioned work is based on detecting anomalies in multivariate204

flight operations quality assurance (FOQA) data. The study notes that the state-of-the-art approaches of the time were205

unable to deal with heterogeneity in the data containing both discrete and continuous variables. To overcome this206

limitation, the study proposes a multiple kernel learning (MKL) approach. Here, two kernels, one for discrete data207

and the other continuous data are combined linearly. It has been claimed that the MKL based approach is not only208

able to detect significant anomalies that were detected by the state-of-the-art approaches, but also other operationally209

significant anomalies in the data. Another study in (Fontugne et al., 2013) analyzes data of electrical energy use of210

devices in two different buildings with 135 and 70 room sensors. In each case, the data is divided into consecutive time211

bins and a pairwise correlation matrix between device’s energy use for each time bin is computed. A constant reference212

matrix representing normal behavior is then created by computing the median of these correlation matrices. Faults213

are detected by applying a threshold to Minkowski weighted distance between the target and the reference correlation214

matrices at each time bin. Assessment of the faults is done on the basis of "known" fault signatures. True/False positive215

rates were not evaluated exhaustively due to lack of input from the domain expert. In another study (Narayanaswamy216

et al., 2014), parameters of energy use models for heating, ventilation, and air conditioning (HVAC) zones in a building217

were computed and then visualized using principal component analysis (PCA). The use of PCA revealed similar zones218

to be close to each other. Therefore, these PCA components were grouped together using 𝑘-means++ clustering. The219

resulting clusters were then examined by introducing three different definitions of fault. Overall, there were 237HVAC220

zones, with 17 sensors each. Faults found in the study were assessed based on manual inspection of sensor data by221

a domain expert. Another study in (Lapira, 2012) uses clustering on 34 servo-gun units belonging to 30 industrial222

welding robots before the application of a fault detection procedure. Similar analysis is performed on 11wind turbines223

from three wind farms. The aforementioned study (Lapira, 2012) shows that a clustering based approach to group224

similar behaving systems before the application of an outlier detection step is more robust to false alarms compared to225

individual models for each system. The so-called consensus self organized models (COSMO) (Byttner et al., 2011),226

a reference-group based monitoring approach, assumes the systems in a fleet to be operationally similar to each other.227

Here, each target system is compared to every other system in the fleet, i.e., its reference-group, and those found to be228

deviating the most based on a certain threshold are marked as outliers. This approach is later evaluated on a fleet of229

Volvo buses in (Fan et al., 2015) to detect those that behave differently from the group over time. A study in (Räsänen230

et al., 2008) identifies electricity usage patterns by using self organized maps (SOM) to create groups based on a list231

of building characteristics. The purpose, however, is geared towards studying the behavior of the building rather than232

fault detection. Nonetheless, the results of the study show the importance of meta-information about a system, which in233

most cases is not available. In a recent paper (Iyengar et al., 2018), building’s physical attributes, e.g., its construction234

year and type, were used to create peer-groups for analyzing their energy efficiency. Those building groups with less235

than 20 houses were discarded on the pretext that this size is not enough for a meaningful analysis.236

3. Methodology237

Constructing a model for monitoring each system in a large fleet may not always be feasible. An alternative to this238

is fleet based monitoring. A fleet, according to (Oza and Das, 2012), is described as follows:239

A fleet is a group of systems (e.g., cars, aircraft) that are designed and manufactured the same way and are intended240

to be used the same way.241

The main assumption of a global model at the fleet level as described in (Oza and Das, 2012) is as follows:242

Each system in the fleet is comparable to a sample drawn from some distribution, so that all the systems in the fleet are243

independent and identically distributed.244

Thus, a global model assumes the operational behavior of all the systems in a fleet to be consistent with each other, i.e.,245

homogeneous. Therefore, the behavior of any particular system can be inferred from the behavior of other systems in246

the fleet. Any system whose behavior is significantly different from the fleet is considered as an outlier. This is referred247

to as group based or fleet based monitoring (Byttner et al., 2011; Oza and Das, 2012). In this context, the entire fleet248

or network of systems is the reference-group. However, in many situations, there can be differences in the ambient249
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environment, installation and control settings, model type, age and many other factors among the systems in a fleet,250

details about which may not be readily available. Under these conditions, a global model based on the homogeneity251

assumption will not be very efficient since it leads to the detection of only those systems that are outliers in the global252

sense. Therefore, the notion of similarity may need to be relaxed here as described in (Bolton and Hand, 2001; Lapira,253

2012), which specifies that similarity among systems does not necessarily imply that they are exactly identical. Hence,254

a system in a fleet should be compared to only those systems that are found to be the most similar to it in terms of their255

behavior. This context of a peer-group or a reference-group based approach has been described in (Bolton and Hand,256

2001):257

The distinguishing feature of peer-group analysis lies in its focus of local pattern analysis rather than global models.258

In addition, a motivation for the reference-group based approach also comes from quantitative biochemistry (Livak259

and Schmittgen, 2001), according to which:260

Relative quantification describes the change in expression of the target gene relative to some reference group such as261

an untreated control or a sample at time zero in a time-course study.262

3.1. A reference-group based approach for detecting outlier systems263

In the context of monitoring a large fleet, the main task is to select an appropriate method to construct a reference-264

group for each target system. The issue that arises here is that in most cases, the behavior of systems in such a fleet265

lies on a spectrum and not necessarily consists of some discrete sets of well separable values. This makes it difficult to266

apply a clustering based approach. Moreover, as noted earlier, meta-information about those systems that can be useful267

to compare or distinguish them from each other is not always available. In addition, clustering based methods such as268

the 𝑘-means and the Gaussian mixture model (GMM) impose a certain distributional criterion on the underlying data269

distribution of the features selected to represent the systems in a fleet, which may not reflect the ground truth. A 𝑘-270

nearest neighbor (𝑘-NN) based criterion does not impose such a restriction. From the point of view of outlier detection,271

it has been shown in (Goldstein and Uchida, 2016) that an imperfect choice of 𝑘 tends to give more stable results for a272

nearest neighbor based approach than a clustering based approach. Moreover, the basic principle of nearest neighbor as273

pointed out in (Cover, 1982) is: things that look alike must be alike, which is a requirement for a reference-group. Due274

to these aforementioned factors, the notion of 𝑘-nearest systems based on the definition of an appropriate similarity275

measure is justified.276

Consider a large fleet (or network) of 𝑁 systems and let 𝑧𝑖,1 represent the (state of) the 𝑖-th system at time 𝑡 = 1.277

The evolution of the fleet’s behavior over time can be represented by a matrix:278

𝜁𝑁×𝑇 =
⎡⎢⎢⎣
𝑧1,1 𝑧1,2 … 𝑧1,𝑡 𝑧1,𝑡+1 … 𝑧1,𝑡+𝑠 … 𝑧1,𝑇
⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
reference-group creation
time-period: 𝜉0={1,...,𝑡}

𝑧𝑁,1 𝑧𝑁,2 … 𝑧𝑁,𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

reference-group evaluation
time-period: 𝜉1={𝑡+1,...,𝑇 }

𝑧𝑁,𝑡+1 ⋱ 𝑧𝑖,𝑡+𝑠 … 𝑧𝑁,𝑇

⎤⎥⎥⎦ (1)

Any new data that arrives at a latter time, i.e., 𝑇 + 1, 𝑇 + 2, and so on, can be appended to the above matrix. For279

simplicity, assume that each system is represented by a single variable. Moreover, let 𝜉𝑚=0 = [1, ..., 𝑡] represent the280

0-th episode. Then,281

𝐲𝑖,𝜉0 = [𝑧𝑖,1, ..., 𝑧𝑖,𝑡] 𝑖 = 1, ..., 𝑁. (2)

Each particular system in the fleet which is selected for the purpose of its operational monitoring is referred to as a282

target. In general, systems in a fleet may differ due to factors, such as, their ambient environment, control settings,283

etc. This information, as discussed earlier, may not always be available. However, assume that there exist sufficient284

number of systems, which share a similar but unknown underlying data generating mechanism. Further, assume that285

there exists an appropriate distance measure that can adequately estimate their similarity. Then based on the definition286

of the selected distance measure, the reference-group comprises of those systems whose underlying data generating287

mechanism is approximately similar to that of the target. Assume that the data from episode 𝜉𝑚=0 is sufficient to288

capture the similarity among the systems in a fleet, and that the Euclidean is an appropriate distance measure for this289

task. Then, the similarity between systems 𝑖 and 𝑗 can be measured as follows:290

𝑑(𝑖, 𝑗) =
√
(𝐲𝑖,𝜉0 − 𝐲𝑗,𝜉0 )(𝐲𝑖,𝜉0 − 𝐲𝑗,𝜉0 )

∗. (3)
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The application of 𝑑(⋅, ⋅) to estimate the similarity between 𝑁 systems results in a 𝐷𝑁×𝑁 distance matrix consisting291

of pairwise distances. Each row 𝑖 of𝐷 is then sorted in the decreasing order of similarity (or increasing distance). Let292

some 𝑘 << 𝑁 be the appropriate size of the reference-group. Then, the indexes of the reference-group for each target293

system 𝑖 sorted in the decreasing order of similarity are given by:294

𝜋𝑖1∶𝑘+1 = argsort 𝐷𝑖,∶ 𝑖 = 1, ..., 𝑁, (4)

where 𝜋𝑖1 = 𝑖 is the index of the target in matrix𝐷. These index vectors are created at the 0-th episode, i.e., 𝜉0, and then295

kept fixed. Let 𝜏𝑖 = 𝐲𝜋𝑖1,𝜉0 represent the target and 𝐫𝑖 = [𝐲𝜋𝑖2,𝜉0 , ..., 𝐲𝜋𝑖𝑘+1,𝜉0 ] its reference-group. The main assumption296

here is that over subsequent episodes 𝜉1, 𝜉2,..., the same set of unobserved variables, say Υ, will continue to affect the297

target 𝑖 along with its reference-group. Therefore, the target 𝑖 will continue to behave in a similar manner compared298

to most of the systems in its reference-group. Then under certain algorithmic criteria Θ, if the target 𝑖 is found to be299

behaving differently from its reference-group, it is considered an outlier.300

The nature and quality of outlier detection will depend of various factors including the choice of the similarity301

measure used to create the reference-groups, the notion of stability of the reference-group, the size 𝑘 of the reference-302

group, the adequacy of the reference-group to discover outlier targets at the local level, the representation of the target303

and its reference-group along with choice of outlier detection procedureΘ. We discus each one of these in the following304

sections.305

3.2. The choice of the similarity measure, stability and the size 𝑘 of the reference-group306

The first step in the creation of a reference-group is the choice of a similarity measure. This selection can be made307

on the notion of stability based on the following criterion: The stable proportion of a particular distance measure for308

a given 𝑘 is the ratio between the systems that were members of the reference-group at the episode of its creation that309

continue to remain its members when it is reconstructed in the next subsequent episode, and 𝑘. An adequate threshold,310

say 𝛿𝑠 ∈ [0, 1], can be used to select the desired stable proportion. The stable proportion of a reference-group is311

usually an increasing function of its size 𝑘. The similarity measure which fulfills this threshold criterion with the312

least reference-group size 𝑘 is selected. Hence, using the stability criterion, the size 𝑘 of the reference-group can be313

simultaneously determined. Hence, for each target 𝑖, the size of its reference-group is given by 𝑘𝑖 = 𝑘
′
when the314

following approximation holds:315

#
[
𝜋𝑖
2∶𝑘′+1,𝜉0

⋂
𝜋𝑖
2∶𝑘′+1,𝜉1

]
𝑘
′ ≈ 𝛿𝑠 𝑘

′ = 1, ..., 𝑁, 𝑖 = 1, ..., 𝑁. (5)

Here, # is the cardinality of the set and
⋂

is the set intersection operator. Based on the formulation of Eq. (5), a316

reference-group for each target 𝑖 will have a different size 𝑘𝑖. A single global 𝑘, though not efficient, can be selected317

by taking the median of the vector given by:318

𝑘 = 𝑚𝑒𝑑𝑖𝑎𝑛 [𝑘𝑖]𝑁𝑖=1. (6)

The loss of members in the reference-group over the next episode is usually driven by the changes in the data319

distribution of its members. A desirable reference-group should be stable over time.320

Concerning the question of minimum 𝑘, (Breunig et al., 2000) proposes it to be at least 10 to avoid statistical321

fluctuations. Yet another perspective, described in the same paper is based on the definition of a local cluster. It has322

been suggested that this cluster must contain at least 𝑘 objects (the reference-group in our case) so that other objects323

(the target, in our case) can be outliers relative to the cluster. In this sense, the choice of minimum 𝑘 is application324

specific. In summary, each member of a reference-group adds to the evidence about a particular behavior that its target325

is supposed to follow.326

3.3. Adequacy of a reference-group327

An adequate reference-group is one which follows its target as closely as possible. In this regard, an adequacy328

measure, which estimates the similarity between the target and its reference-group can be useful. Such a measure can329

be based on some distributional distance or correlation. For instance, the median distributional distance between the330
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target and each member of its reference-group can be estimated by:331

𝐻̄𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛 [Ω(𝐲𝑖,𝜉𝑚 , 𝐲𝜋𝑖𝑗 ,𝜉𝑚 )]
𝑁
𝑗=2, 𝑖 = 1, ..., 𝑁. (7)

If the underlying data of eachmember in the reference-group and the target is assumed to follow aGaussian distribution,332

Ω can be described by Hellinger distance via its relation to Bhattacharyya coefficient (BC):333

Ω(𝑝, 𝑞) =
√
1 − 𝐵𝐶(𝑝, 𝑞), 𝑝 ∼ 𝑁(𝜇1, 𝜎21), 𝑞 ∼ 𝑁(𝜇2, 𝜎22), (8)

where 𝐵𝐶 =
√

2𝜎1𝜎2
𝜎21 + 𝜎22

exp
−
1
4
(𝜇1 − 𝜇2)2

𝜎21 + 𝜎22 . In case the data distribution of each member in the reference-group and334

the target is not known, Ω can be described by the Kolmogorov-Smirnov (KS) two-sample test, used as a distance335

measure. KS and Hellinger distance based on BC are bounded in the range [0, 1]. KS measures the maximum distance336

between the cumulative density functions of the two distributions. Hellinger distance via its relation to BC measures337

the amount of non-overlap between the two distributions. In this sense, an adequate reference-group is one where the338

median distributional distance between its members to the target is less some specified threshold.339

Let the mean behavior of the members of the reference-group be represented by:340

𝐮𝑖,𝜉𝑚 =
1
𝑘

𝑘+1∑
𝑗=2

𝐲𝜋𝑖
𝑗
,𝜉𝑚

𝑖 = 1, ..., 𝑁. (9)

Then the correlation between the mean behavior of the reference-group and its target can be estimated by:341

𝜌̄𝑖 = 𝜌(𝐮𝑖,𝜉𝑚 , 𝐲𝑖,𝜉𝑚 ), 𝑖 = 1, ..., 𝑁. (10)

Accordingly, an adequate reference-group here is one that strongly follows in the direction of its target over time, based342

on some specified threshold.343

Let 𝛿𝐻̄ and 𝛿𝜌̄ be the minimum acceptable distance and correlation thresholds, respectively. These are referred344

to as the adequacy criteria. When 𝐻̄ > 𝛿𝐻̄ , it implies that the underlying parameters such as the mean or standard345

deviation of the target and/or the majority of the members of its reference-group have changed. Similarly, when 𝜌̄ < 𝛿𝜌̄,346

it implies the target and its reference-group do not behave in a similar fashion over time.347

When 𝜌̄ and 𝐻̄ violate their respective thresholds at the episode of the creation of a reference-group, it might348

indicate that the target already has a fault or it has a unique behavior which is not mirrored by other systems. In the349

latter case, a reference-group based approach may not be applicable for the particular target. When a violation occurs350

in the next subsequent episodes, it might be due to a fault or due to changes in the target, such as changes in its working351

environment or control setting. In the latter case, a new reference-group may be required for the target.352

3.4. Representing the target and its reference-group353

Once an appropriate similarity measure has been chosen and the reference-group for each target identified, appro-354

priate features can be computed to represent the target and its reference-group. For instance, the mean of the target 𝑖355

along with the mean of each member of its reference-group over some episode 𝜉𝑚 = [1, ...,𝑊 ] is given by:356

𝑢
𝜇
𝑗
= 1
𝑊

𝑊∑
𝜉𝑚=1

𝐲𝜋𝑖
𝑗
,𝜉𝑚
, 𝑗 = 1, ..., 𝑘 + 1, (11)

where 𝑢𝜇1 is the mean of the target. Similarly, the standard deviation is given by:357

𝑢𝜎𝑗 =

√√√√√ 1
𝑊 − 1

𝑊∑
𝜉𝑚=1

(𝐲𝜋𝑖
𝑗
,𝜉𝑚

− 𝑢
𝜇
𝑗
)(𝐲𝜋𝑖

𝑗
,𝜉𝑚

− 𝑢
𝜇
𝑗
)∗, 𝑗 = 1, ..., 𝑘 + 1, (12)
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where 𝑢𝜎1 is the standard deviation of the target. The target 𝑖 along with its reference-group can then be represented by:358

𝜏𝑖 = [𝑢𝜇1 , 𝑢
𝜎
1 ] 𝐫𝑖 = [𝑢𝜇

𝑗
, 𝑢𝜎𝑗 ]

𝑘+1
𝑗=2 𝑖 = 1, ..., 𝑁. (13)

Other features, such as min, max, skewness, kurtosis can also be added to Eq. (13).359

3.5. The outlier detection procedure Θ360

The choice of an outlier detection procedure Θ can be an unsupervised outlier detection method, such as, the361

isolation forest (IF) (Liu et al., 2012), using for instance, Eq. (13), as an input. Other unsupervised outlier detection362

methods such as one class-support vector machine (OC-SVM) (Schölkopf et al., 1999) can also be used here assuming363

that the reference-group represents the normal behavior.364

In this study, IF is chosen as the outlier detection procedure Θ. This choice is based on the study conducted in365

(Emmott et al., 2015), which after comparing eight outlier detection methods reaches the following conclusion:366

Because Isolation Forest performed best on average and because it has very good runtime properties, we recommend367

it for general use. However, we also recommend that context should impact your choice of algorithm.368

In addition, a recent study in (Domingues et al., 2018) after comparing fourteen outlier detection methods also makes369

a similar conclusion.370

IF works on the assumption that outliers are easily isolated compared to normal data points. In the context of this371

study, the requirement is to check if the target is isolated among its reference-group. In certain instances, a reference-372

group may itself contain outliers. To deal with the issue, the contamination rate of IF can be adjusted. So, if the373

reference-group consists of 40 systems, then for a contamination rate of 0.1 or 10%, it can be checked if the target is374

among the list of those 4 systems that IF considered as isolated. If this happens to be the case, then the target is an375

outlier.376

On application ofΘ(𝜏𝑖, 𝐫𝑖), if the target is found to be behaving differently from its reference-group, it is considered377

an outlier. When the adequacy criteria discussed earlier are not met,Θ in many cases can fail to detect an outlier target.378

In cases where a target is found to be an outlier by Θ, the adequacy criteria can be used in conjunction to understand379

possible reasons behind its outlierness.380

The steps required for detecting outlier targets using a reference-group based approach are summarized in Algo-381

rithm 1.

Algorithm 1 Reference-group based deviation and outlier detection
Require: Time-series data [𝐲1,𝜉𝑚 , ...𝐲𝑁,𝜉𝑚

] from𝑁 systems corresponding to episodes [𝜉0, 𝜉1, ...], an appropriate dis-
tance measure 𝑑(⋅, ⋅) to estimate similarity between systems, the size 𝑘 of the reference-group, a function Γ that
computes an appropriate representation for the target and its reference-group, an outlier detection procedureΘ that
outputs −1 if the system is an outlier and 0 otherwise.

1: for 𝑖 ← 1 to𝑁 do
2: for 𝑗 ← 1 to𝑁 do
3: 𝐷𝑖,𝑗 = 𝐷𝑗,𝑖 = 𝑑(𝐲𝑖,𝜉0 , 𝐲𝑗,𝜉0 )
4: end for
5: 𝜋𝑖1∶𝑘+1 = argsort 𝐷𝑖,∶ //the first item of 𝜋 is the index of target system.
6: end for
7: for 𝑚 ← 0 to∞ do
8: for 𝑖 ← 1 to𝑁 do
9: 𝜏𝑖, 𝐫𝐢 = Γ(𝐲𝜋𝑖1∶𝑘+1,𝜉𝑚 )
10: 𝛽𝑖 = Θ(𝜏𝑖, 𝐫𝑖)
11: if 𝛽𝑖 = −1 then
12: The target system 𝑖 is an outlier.
13: end if
14: end for
15: end for

382
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4. Case study383

The focus of this study was the return temperature of substations since it affects efficiency of the entire DH network.384

Historically, in Sweden, the most commonly used variable for analyzing substations used to be the temperature differ-385

ence, i.e., the difference between the supply are the return temperature. This was because in earlier times, only heating386

rate and flow rate data were collected, from which the temperature difference was indirectly estimated. However, since387

the supply temperature is not constant over the year and differs between networks, the temperature difference may not388

be a reliable variable, especially when comparing substations with each other. Therefore, it is much better to use return389

temperature, since there is a physical lower limit defined by the indoor temperature.390

The choice ofmulti-dwelling buildings for the analysis rests on the fact that according toÖresundskraft, it represents391

more than 50% of the heat deliveries (55% in Helsingborg) in their DH network. Moreover, the overall market share392

of DH in this category is 93%.393

4.1. Data description and preprocessing394

The dataset used in this study was provided by Örsundskraft, a DH utility located in the South-West of Sweden. It395

was derived from smart meter readings from buildings connected to the DH network of the Helsingborg municipality.396

In 2017, 3070 TJ of heat was delivered to 11,242 delivery points. The dataset included hourly measurements of the397

heating rate, the flow rate, the supply temperature and the return temperature on the primary side of all substations398

during 2017. Moreover, it was divided into six customer categories: single family buildings, multi-dwelling buildings,399

public administration buildings, commercial buildings, health and social service buildings and others.400

The return temperature data of the multi-dwelling buildings from Nov’17 and Dec’17 was used in the analysis.401

In this respect, data from a total of 965 substations in Nov’17 and 963 substations in Dec’17 was available. For402

data preprocessing, substations with less than 85% hourly return temperature data points in each month were removed.403

Moreover, substations with constant values were also removed. For the rest, missing values, if any, were imputed using404

linear interpolation. Furthermore, only those substations having data from both the months, i.e., Nov’17 and Dec’17,405

were retained. The aforementioned data preprocessing left a total of 865 substations from the two aforementioned406

months.407

The return temperature is a very volatile operational variable (Sandin et al., 2013). Therefore, to remove the408

influence of outliers and other variations, daily mean of the return temperature for each of the 865 substations was409

calculated before any further analysis.410

4.2. Setup for the analysis411

According to (Frederiksen and Werner, 2013), the national average return temperature in Sweden is 40◦C-50◦C.412

Therefore, a global threshold of 50◦C can be considered as the red line that differentiates a sufficiently normal substation413

from a bad one. Hence, it was used as a global threshold in our analysis.414

Five different distance based similarity measures were studied for creating a reference-group for each target sub-415

station: Euclidean, Wasserstein (Earth Movers Distance), Energy (Cramér von Mises), Hellinger and KS. The stability416

of the reference-groups based on the aforementioned distance measures for various values of 𝑘 were tested using Eq.417

(5). A median size 𝑘 was calculated using Eq. (6) and its selection was based on 𝛿𝑠 = 0.60. Finally, the adequacy of418

the reference-groups were based on the following criteria: (1) The correlation between target and the mean behavior419

of members of its reference-group was 𝜌̄ ≥ 0.60. (2) The median Hellinger distance between the target and members420

of its reference-group was 𝐻̄ ≤ 0.40.421

The month of November is usually the start of winter season in Sweden. It was assumed that the pairwise distances422

between substation’s return temperature data from this month provides sufficient information on their similarities and423

diversities. Hence, the reference-group for each target was created using the return temperature data from Nov’17,424

i.e., episode 𝜉0. The reference-groups were then kept fixed on the assumption that they will continue to follow their425

respective targets in a similar manner over the next subsequent episode. Therefore, the operational behavior of the426

return temperature for each target was observed relative to its reference-group for Dec’17, i.e., episode 𝜉1. Monthly427

mean and standard deviation were used to represent the target along with its reference-group. This representation428

from Dec’17 was then used as an input to the IF method to detect the change in behavior of the target relative to its429

reference-group. The contamination rate of the IF was set to 0.10 or 10%. Hence, a target was considered an outlier430

if it was found to be among those 10% substations identified as such by IF. The overall process for detecting outlier431

targets using the reference-group approach was based on Algorithm 1.432
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Figure 1: Based on the global threshold, 52 (5.9% contamination rate) substations had a monthly mean return temperature
greater than 50◦C in Nov’17. MCD discovered 87 outlier substations based on a contamination rate of 0.1 or 10%.

The programing environment used in this study was Python 3.7. All distance measures, except for Hellinger, were433

computed using the scipy library (ver. 1.3.0). TheHellinger distancewas computed using Eq. (8). The outlier detection434

methods based on IF and minimum covariance determinant (MCD) (Rousseeuw and Van Driessen, 1999) were used435

from the scikit-learn library (ver. 0.20.0). MCD is a distance based statistical outlier detection method, which was436

used to create a global outlier model for all substations.437

5. Results438

Figure 1 shows the monthly mean and standard deviation of the return temperature of substations based on Nov’17439

data. As noted before, the state of practice in DH industry is to set global thresholds. A normally accepted threshold440

for the return temperature is around 50◦C. As can be observed in Figure 1, the dashed dark red line separated those441

substations which had a return temperature higher than 50◦C from the normal ones. In total, there were 52 substations442

with a return temperature higher than 50◦C.443

High standard deviation in the return temperature can be another sign of problem in a substation. A global outlier444

model based on the MCD was applied to the representation shown in Figure 1. Based on the criterion that the decision445

boundary of the MCD model agreed with the global threshold, the contamination rate for MCD was set to 0.1 or 10%446

(top outliers). With that, 87 substations with the return temperature of around 50◦C or higher and with a standard447

deviation of around 4 K (Kelvin) or higher were identified as global outliers. These substations were removed from448

both Nov’17 and Dec’17, leaving the total to 778. Individual analysis of some of these substations by the DH expert449

suggests that those with return temperature of less than 50◦C but with a standard deviation greater than 5 K were450

not necessarily faulty. In particular, some of these substations switched on a time-clock operation for ventilation451

(Frederiksen and Werner, 2013), which also affected the return temperature by increasing their standard deviation.452

5.1. Stability analysis of reference-groups453

Reference-groups were created for the 778 target substations using different distance measures and various values454

of 𝑘 for episode 𝜉0 and 𝜉1. Figure 2 shows the stable proportion of the reference-group for a given distance measure455

and median 𝑘 between episodes 𝜉0 and 𝜉1. The Euclidean distance reached the threshold of 𝛿𝑠 = 0.6with the minimum456

median 𝑘, i.e., 80, compared to other distance measures. Moreover, for the Euclidean distance, increasing median 𝑘457
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Figure 2: On the x-axis is the median size 𝑘 of the reference-groups at the time of their creation. On the y-axis, is the
proportion of reference-group members that if it was reconstructed in the next episode, were still its members. Based on
this criterion, the Euclidean distance appeared to be more stable among all other distance measures.

beyond 80 did not show large marginal increases in the stable proportion. Hence, Euclidean distance with 𝑘 = 80458

appeared to be a reasonable choice for creating the reference-groups.459

5.2. Adequacy analysis of reference-groups460

Once the reference-groups for their respective targets were created in episode 𝜉0 i.e., Nov’17, they were kept fixed461

for the next episode 𝜉1, i.e., Dec’17. However, dispersion among the members of the reference-groups over time462

can reduce their effectiveness. This is obvious, because there are many unobservable factors that can change at the463

substations or the particular buildings they are associatedwith. For instance, some substationsmight have changed their464

outdoor temperature compensation curve, people may have moved into/out of the buildings, some sort of equipment465

fault might have occurred at substations, additional heaters were removed/introduced in the buildings, etc.466

Figure 3 shows the histograms of the adequacy measures for the reference-groups constructed using Euclidean467

distance with 𝑘 = 80. It shows that on aggregate basis, median 𝜌̄ decreased from 0.85 to 0.81, while median 𝐻̄468

increased from 0.21 to 0.30, from Nov’17 to Dec’17. Reference-groups not fulfilling 𝜌̄ ≥ 0.60 showed an increase469

from estimated 175 (22%) in Nov’17 to 210 (26%) in Dec’17. Similarly, reference-groups not fulfilling 𝐻̄ ≤ 0.40470

showed an increase from 68 (8%) in Nov’17 to 201 (25%) in Dec’17. Possible reasons for the reference-groups not471

fulfilling these adequacy criteria include: (a) the reference-groups could not adequately represent their respective472

targets, and (b) the targets behaved differently from their reference-groups and therefore might have developed a fault.473

In the former case, an outlier detection model may miss to detect a deviating target.474

5.3. Detection of outlier target substations475

The results of Table 1were obtained using the reference-group based approach described inAlgorithm 1. Moreover,476

although Euclidean distance with 𝑘 = 80 was selected for the creation of the reference-groups based on the analysis in477

Figure 2, the results of different distance measures for various values of the size 𝑘 of the reference-groups can provide478

some additional useful insights. Against each distancemeasure in Table 1, the first row consists of global outlier targets,479

the second row consists of local outlier targets and the third row consists of total outlier targets, i.e., it is the sum of480

global and local outlier targets. The fourth row consists of global outlier targets detected by theMCDmodel but missed481

by the reference-group based approach. On an overall basis, it can be observed that the total number of outlier targets482

Shiraz Farouq et al.: Preprint submitted to Engineering Applications of AI Page 12 of 23



Large-scale monitoring of district heating substations

Figure 3: (a): Here, the histograms based on correlations between the target substations and the mean behavior of their
respective reference-groups are shown. When the reference-groups were created at Nov’17, 175 (22%) of them did not
fulfill the adequacy criterion based on correlation. This increased to 210 (26%) in Dec’17. (b): Here, the histograms based
on median Hellinger distances between each member of the reference-groups to their target are shown. About 68 (8%)
of the reference-groups did not meet the adequacy criterion based on Hellinger distance in Nov’17. This increased to 201
(25%) in Dec’17.

detected may depend both on the choice of the distance measure as well as the size 𝑘 of the reference-group. Moreover,483

it can also be observed that at lower values of 𝑘, more local outlier targets were detected compared to the global outlier484

targets. However, this also increases the possibility of false alarms. With increasing 𝑘, the relative proportion of the485

local outlier targets decreases, while that of the global outlier targets, it increases. Hence, a trade-off appeared to exist486

between the number of global and local outlier targets depending on the size 𝑘 of the reference-group. Finally, with487

increasing 𝑘, less global outlier targets were missed compared to the global MCD model. Hence, as expected, with488

increasing 𝑘, the reference-group approach moved towards becoming a global model.489

5.4. A comparison between reference-group based and global outlier detection approaches490

Figure 4 presents a comparison of the reference-group based approach with global threshold based andMCD based491

global outlier models. Using the criterion that the boundary of the MCD model agreed with the global threshold of492

50◦C, the contamination rate for MCD for Dec’17 was set to 5%. The MCD model detected 39 global outlier targets493

including five out of six detected by the global threshold.494

The results for the reference-group based approach in Figure 4 were obtained using the Euclidean distance with495

𝑘 = 80. In comparison to global models, the reference-group based approach detected 33 global outlier targets, missing496

six of them. However, as can be observed in Figure 4, those missed were close to the boundaries ofMCD and the global497

threshold. In addition, the reference-group based approach detected 44 local outlier targets which can be observed as498

red dots inside the MCD boundary in Figure 4. Although these additional outliers increased the overall contamination499

rate to 10%, they presented the possibility of detecting potentially problematic cases at a local level, albeit, at the cost500

of false alarms. In this regard, a 5% increase in the overall contamination rate is tolerable.501

To illustrate further on these local outlier targets, an example is presented in Figure 5. Observe the target, marked502

as a red dot, along with its reference-group marked as light blue dots. The target together with its reference-group con-503

sisting of 80 substations had an average return temperature of 35◦C in Nov’17. However, in Dec’17, the target showed504

a return temperature of 40◦C, which was a significant increase compared to the majority of those in its reference-group.505
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Distance Outliers
k=20 k=40 k=60 k=80 k=100 k=120 k=140 k=160 k=180 k=200

Euclidean

Global 30 31 33 33 35 34 37 37 36 37
Local 45 52 51 44 48 45 43 45 37 35
Total 75 83 84 77 83 79 80 82 73 72
Missed 9 8 6 6 4 5 2 2 3 2

Wasserstein

Global 25 25 27 32 33 34 34 36 35 33
Local 52 47 45 42 35 35 39 37 32 34
Total 77 72 72 74 68 69 73 73 67 67
Missed 14 14 12 7 6 5 5 3 4 6

Energy

Global 26 25 28 30 33 33 33 31 37 34
Local 47 43 37 32 34 34 37 37 34 36
Total 73 68 65 62 67 67 70 68 71 70
Missed 13 14 11 9 6 6 6 8 2 5

Hellinger

Global 21 24 25 25 30 29 28 31 32 32
Local 45 38 35 36 39 34 33 32 33 35
Total 66 62 60 61 69 63 61 63 65 67
Missed 18 15 14 14 9 10 11 8 7 7

KS

Global 22 26 25 28 31 32 30 32 33 33
Local 48 37 35 39 40 32 37 37 35 34
Total 70 63 60 67 71 64 67 69 68 67
Missed 17 13 14 11 8 7 9 7 6 6

Table 1
Outliers detected in Dec’17 by tracking the 778 target substations with their respective
reference-groups created using different distance measures. For each distance measure, the
first row consists of global outlier targets, the second row consists of local outlier targets
and the third row is the sum of global and local outlier targets. The fourth row consists
of global outlier targets detected by the MCD model, but missed by the reference-group
based approach.

With such an increase, there was a fair chance that there might be a problem. Even if there was no fault, such increase506

could be due to inefficient control setting at the substation. Hence, a potential problem was identified before it could507

be possibly detected by a global outlier detection approach at some later point in time. In many instances, if the situ-508

ation is not dealt with in time, such cases have the potential of further deterioration where eventually the 50◦C line is509

crossed. Other than that, it can also be observed in Figure 5, that a reference-group provided for a relative comparative510

reference to judge a target on its outlierness.511

5.5. Return temperature patterns of outlier substations512

Following the reference-group based approach, the observed pattern of behavior in the return temperature of the513

77 outlier target substations can be summarized into the following:514

1. Constant (5)515

2. Fluctuating (9)516

3. Temporary increase (15)517

4. Temporary decrease (10)518

5. Level increase (22)519

6. Level decrease (9)520

The observed occurrence of each pattern is stated in the brackets. For seven out of 77 cases, none of the above patterns521

seemed to fit clearly. The analysis of example cases associated with the six patterns above using the reference-group522

approach based on Algorithm 1 are presented next. Here, Euclidean distance with 𝑘 = 80 was used for creating the523
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Figure 4: The reference-group based approach not only detected global outlier targets, but also those at the local level.
It can also be observed that those missed global outlier targets were very close to boundaries associated with the global
models.

reference-groups. However, the specific cases that are discussed were also found by all the other four distance measures524

with 𝑘 = 80, except for the one associated with the "fluctuating" pattern: it was not detected with the Hellinger distance.525

We therefore considered that Euclidean with 𝑘 = 80 was sufficient to describe the aforementioned six patterns with526

the example cases.527

In Figure 6 to Figure 11, red color lines and dots represent the target substation, light blue color lines and dots528

represent the members of its reference-group and dark blue color lines and dots represent the mean behavior of the529

reference-groups. The dashed dark red line represents the global threshold at 50◦C. The adequacy criteria based on530

correlation and Hellinger distance are also shown on each of these figures. The adequacy criteria can be useful in531

understanding some reasoning behind a target’s outlierness.532

Since no labels or ground truth on normal, atypical or faulty behavior were available, each example case associated533

with the six patterns was specifically discussedwith theDH expert at 0̈resundskraft, Sweden. No additional information534

other than what can be observed in Figure 6 to Figure 11 was part of the discussion. In that way, the mathematical and535

practical knowledge were merged into the following description:536

5.5.1. Example case of the "constant" pattern537

Figure 6(a) shows that the return temperature of the target substation had an almost constant level with very low538

standard deviation compared to its reference-group during Nov’17. Moreover, a low 𝜌̄ indicated that the reference-539

group did not follow the target well over time. Furthermore, 𝐻̄ was at the threshold boundary of 0.4. All this indicated540

that the target could not be sufficiently represented by a reference-group. In Figure 6(b), it can be observed that the541

situation did not change much in Dec’17. According to the DH expert, even though the target substation was an outlier542

here, it does not appear to be a fault.543

5.5.2. Example case of the "fluctuating" pattern544

In Figure 7(a), both 𝜌̄ and 𝐻̄ indicated that the target could not be well represented by its reference-group. More-545

over, the target showed erratic behavior compared to its reference-group. According to the DH expert, the behavior546

could be due to a malfunction or inefficient control setting at the target substation. In Figure 7(b), it can be observed547

that there was no improvement of situation in Dec’17.548
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Figure 5: (a): The target substation (red dot) in Nov’17, relative to its reference (light blue dots) and population (blue
dots) is shown. (b): The target substation relative its reference-group and population in Dec’17 is shown.

5.5.3. Example case of the "temporary increase" pattern549

Here, in Figure 8(a), both 𝜌̄ and 𝐻̄ indicated that the target was well represented by its reference-group. In Figure550

8(b), the target showed a sudden continuous increase in its return temperature for around six days before it reverted551

back to the behavior of its reference-group. Both 𝜌̄ and 𝐻̄ , albeit near their threshold boundary, indicated that the target552

had deviated from its reference-group. According to the DH expert, a possible reason could be a control malfunction553

of a short duration at the target substation in Dec’17.554

5.5.4. Example case of the "temporary decrease" pattern555

In Figure 9(a), both 𝜌̄ and 𝐻̄ indicated that the target was well represented by its reference-group. In Figure 9(b),556

the target showed a decrease in its return temperature for a few days around the mid period of Dec’17, before later557

appearing to move closer to the behavior of its reference-group. Both 𝜌̄ and 𝐻̄ , during this period indicated that the558

target had deviated from its reference-group. According to the DH expert, a possible explanation could be a significant559

change in heating use during the period. Other possible reasons could be a temporary change of control settings at the560

target substation.561

5.5.5. Example case of the "level increase" pattern562

In Figure 10(a), both 𝜌̄ and 𝐻̄ indicated that the target was well represented by its reference-group. Figure 10(b)563

shows that there was a sharp increase in the return temperature of the target compared to that of its reference-group in564

Dec’17. This resulted in an obvious deterioration of both 𝜌̄ and 𝐻̄ during the period. This behavior, according the DH565

expert, can possibly be due to a fault in the flow control valve at the target substation.566

5.5.6. Example case of the "level decrease" pattern567

In Figure 11(a), 𝐻̄ indicated that the target was well represented by its reference-group. However, 𝜌̄ indicated a568

low correlation between the target and its reference-group. Hence, 𝜌̄ and 𝐻̄ were in conflict with each other. This569

made it a borderline case where it was a bit difficult to ascertain if the target was an outlier at the time of the creation570

of its reference-group. Interestingly, in Figure 11(b), while 𝜌̄ indicated a strong relation between the target and its571

reference-group, 𝐻̄ indicated otherwise. Both 𝜌̄ and 𝐻̄ were still in conflict with each other. However, the level of the572

return temperature of the target had fallen considerably compared to its reference-group. In this sense, the target was573
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Figure 6: Example case of the "constant" pattern: The return temperature of the target stays at near constant levels
compared to its reference-group.

no longer well represented by its reference-group. According to the DH expert, such decrease in return temperature574

could be due to maintenance service or changes in the configuration at the target substation or certain improvements575

in its associated building.576

6. Discussion577

In this section, we first discuss the reasons behind the selection of the return temperature variable used in this study.578

Next, we provide a reason behind the choice of using the data from the substations associated with the multi-dwelling579

building category. This is followed by a discussion on the basis of construction of the reference-groups and observations580

made therein. The results of comparison between global models, i.e., MCD and threshold, and the reference-group581

based approach are discussed next. Finally, we discuss the advantages and limitations of the reference-group approach.582

The choice of return temperature for the analysis was based on the fact that it affects the overall operational effi-583

ciency of the entire DH network. Moreover, the return temperature is a good indicator of many problems in a substation.584

Furthermore, according to (Månsson et al., 2019), the analysis of return temperature levels is a widely used control585

check on the operational efficiency of substations in Sweden. The choice of multi-dwellings was based on the basis586

that it constitutes a significant proportion of more than 50% of total heat deliveries of the DH network investigated in587

this study.588

Hence, the operational behavior of the return temperature from 778 substations associated with multi-dwellings in589

Helsingborg, Sweden, was studied using the reference-group based approach. The similarities among substations were590

measured on the basis of pointwise and distributional distances between their return temperature data. Analysis based591

on the stability proportion criterion was performed as shown in Figure 2 to determine which similarity measure and592

what 𝑘 value is the best for constructing the reference-group. The results favored Euclidean distance with 𝑘 = 80 to593

be the best available choice. Additionally, to study the effects of different similarity measures with various values of 𝑘594

on the detectability of target outliers, further analysis was conducted as shown in Table 1. Herein, it was observed that595

irrespective of the similarity measure used, there exists a trade-off in the detection of global and local outlier targets596

depending on the size 𝑘 of the reference-group. A smaller 𝑘 resulted in more local outlier targets. However, as 𝑘597

decreases, the possibility of false alarms increases.598

The application of a global outlier detection model based on MCD with a contamination rate of 5% resulted in599
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Figure 7: Example case of the "fluctuating" pattern: A possible malfunctioning target substation, which shows erratic
behavior with high variability compared to its reference-group.

detection of a total of 39 global outlier targets among a total of 778 substations. Using a threshold of 50◦C, only600

6 global outlier targets were detected. In comparison, the reference-group approach under Euclidean distance with601

𝑘 = 80 detected a total of 77 outlier targets, 33 global and 44 local. This yielded an overall contamination rate of 10%.602

A total of 6 global outlier targets detected by the MCDmodel were missed by the reference-group approach. However,603

the 44 additional local outlier targets provided a possibility of detecting potentially problematic cases at a local level,604

albeit, at the cost of few false alarms. In this respect, a mere 5% increase in the outlier targets was justified. These local605

outlier targets could not have been detected by global models of outlier detection based on MCD and the threshold.606

The main advantage of a reference-group based approach is that the reference operational behavior of any target607

substation in the network does not need to be predefined. Instead, the definition of normal, atypical or faulty op-608

erational behavior in a target substation is described relative to how its reference-group behaves. Thus, in effect, a609

reference-group acts as a local model of the target substation’s operational behavior. It is therefore more efficient in610

detecting a deviating behavior compared to global models applied at the network level. Moreover, by relying on the611

operational behavior of the reference-group, this approach led to the identification of six most frequent patterns of612

deviating behavior in the return temperature of the substations. This can be useful to the DH utilities in deciding on613

where to look for to detect atypical and faulty operational behavior of a substation in a network.614

The first limitation of the reference-group based approach is that not all target substations can be represented by615

reference-groups. For instance, it can be observed in Figure 3(b), that 68 targets among a total of 778 did not fulfill616

the adequacy criterion according to which the average Hellinger distance between the target and each member of its617

reference-group should be less than 0.4. Hence, these targets are not adequately represented by reference-groups at the618

episode of their construction, i.e., Nov’17. Such targets are either atypical or faulty to start with. In the former case,619

an individual model for the particular target may be required.620

The second limitation is imposed by the DH network infrastructure itself. For the DH case, the reference-group621

based approach cannot be directly used by the individual substations to run any sort of automatic control mechanism622

when a problem is detected. The reason is that the focus of DH business has so far been on meeting the heat demand623

according to the customer’s need. This is being achieved by controlling the supply temperature and pressure level via624

a centralized supervisory control and data actuation (SCADA) system, to deliver enough flow to the network in order625

to fulfill that requirement. However, most substations in operation currently are not configured for a SCADA system626

with regards to measurement, diagnosis, and load control (Gummerus, 2016). Over the last few years, improvements627
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Figure 8: Example case of the "temporary increase" pattern: The return temperature of the target shows a considerable
increase for about a week compared to its reference-group. A possible reason could be a control malfunction for short
duration in Dec’17.

in technology and changes in energy regulations with regards to data collection have happened in the DH industry.628

This has enabled the possibility of improving the operational monitoring platform of DH networks, especially with629

regards to fault detection in substations. However, operational monitoring for control and optimization at the network630

level, which utilizes data and information on all the substations in a network, still remains a challenge (Gustafsson and631

Sandin, 2016). Thus, at present, the operational monitoring of substations, either via the central SCADA or condition632

monitoring (CM) systems, does not perform the analysis as suggested in this study. Therefore, the work done in633

this study can be programmed as a module for a DH utility for detecting atypical or faulty operational behavior of634

substations in its network.635

7. Conclusion636

Decrease in distribution temperatures is important for achieving the operational efficiency of a DH network. It637

is also a key requirement for a transition to 4GDH technology. Hence, understanding the operational behavior of638

distribution temperatures, especially the return temperature, is required at the substation level. Such analysis is now639

enabled due to digital or so-called "smart" meters installed at all the substations in Sweden. However, due to the640

constraints mentioned in Section 1, individual model at the substation level can be difficult to construct, while global641

models at the network level can be inefficient in terms of detecting deviating substations. Moreover, the common642

state of practice of using thresholds also has a limitation. That is, choosing a reference level for a threshold that is a643

compromise between a true alarm and a false alarm is usually unattainable. These constraints and limitations were644

addressed by formulating a reference-group based approach, which is described in Algorithm 1, see Section 3.5. There645

are three main advantages of using this approach. The first is that the reference operational behavior of any substation646

in a network does not need to be predefined. The second is that it provides a basis of what a substation’s operational647

behavior should have been and what it is. In this respect, each system in the reference-group provides an evidence648

about a particular behavior during a particular time period. This can be very useful when a description of the normal,649

atypical or faulty operational behavior is unavailable. The third is that it leads to the detection of outlier substations650

that can be missed through the use of global models by providing for a more local context. These advantages have651

been demonstrated through the operational monitoring of the return temperature of 778 substations belonging to multi-652
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Figure 9: Example case of the "temporary decrease" pattern: A decrease in the return temperature of the target was
observed for a few weeks of Dec’17 in comparison to its reference-group.

dwelling buildings located in Helsingborg, Sweden.653

From a data-mining point of view, a reference-group based approach is useful not only in terms of isolating atypical654

and faulty operational behavior, but also in terms of interaction with the DH domain expert to determine why a partic-655

ular operational behavior is occurring. Moreover, in the absence of a comprehensive fault-symptom datasets (Gunay656

et al., 2019), a reference-group based approach can provide a framework to label data of faulty substations. This can657

help in creating a knowledge base of faults in the DH industry in cases where they are not available.658

While we have demonstrated this approach on the monitoring of the return temperature od substations, other rele-659

vant variables such as heating and flow rates together with the supply temperature can also be included. In fact, com-660

bining all the available relevant variables associated with substations is the best approach towards their operational661

monitoring. We will address this in the future. Moreover, the reference-group based approach may be applicable to662

other application domains where large-scale operational monitoring is required, such as in electricity utilities, solar663

and wind energy farms, factories with large fleet of manufacturing equipment or industrial robots, devices linked with664

Internet of Things (IoT).665

We believe that in future smart energy systems, a system will not only require information on itself, but also666

knowledge about other comparable and related systems within the network. A reference-group based approach has the667

potential of enabling such information exchange.668
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