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Abstract—This paper proposes a method and an algorithm to implement interpretable fuzzy reinforcement 

learning (IFRL). It provides alternative solutions to common problems in RL, like function approximation and 

continuous action space. The learning process resembles that of human beings by clustering the encountered 

states, developing experiences for each of the typical cases, and making decisions fuzzily. The learned policy 

can be expressed as human-intelligible IF-THEN rules, which facilitates further investigation and improvement. 

It adopts the actor-critic architecture whereas being different from mainstream policy gradient methods. The 

value function is approximated through the fuzzy system AnYa. The state-action space is discretized into a 

static grid with nodes. Each node is treated as one prototype and corresponds to one fuzzy rule, with the value 

of the node being the consequent. Values of consequents are updated using the Sarsa(λ) algorithm. Probability 

distribution of optimal actions regarding different states is estimated through Empirical Data Analytics (EDA), 

Autonomous Learning Multi-Model Systems (ALMMo), and Empirical Fuzzy Sets (𝝴FS). The fuzzy kernel of 

IFRL avoids the lack of interpretability in other methods based on neural networks. Simulation results with 
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four problems, namely Mountain Car, Continuous Gridworld, Pendulum Position, and Tank Level Control, are 

presented as a proof of the proposed concept. 

 

Keywords—interpretable fuzzy systems, reinforcement learning, probability distribution learning, 

autonomous learning systems, AnYa type fuzzy systems, Empirical Fuzzy Sets 

 

I. INTRODUCTION 

Reinforcement learning (RL) has attracted extensive research interest in recent years. It is mainly for 

solving decision- making problems in Markovian processes (Sutton and Barto, 2018). The goal is to find out 

the mapping from states to actions which yields maximal return. Here, “return” is defined as optionally 

discounted cumulative rewards within a finite or infinite time horizon. Various algorithms have been 

developed to solve RL problems. At the early stage, policies are derived through evaluation of actions values, 

like in the classic tabular Q-learning (Watkins, 1989) and Sarsa (Rummery and Niranjan, 1994). However, it 

is also possible to make decisions directly through a parameterized function, like in (Silver et al., 2014; Sutton 

et al., 2000). State-of-the-art researches combine deep learning (DL) (Goodfellow et al., 2016; Lecun et al., 

2015) with RL to attain powerful algorithms like Deep Q-Learning Networks (DQN) (Antonoglou et al., 

2015; Mnih et al., 2013) which is able to play Atari games at human level and Deep Deterministic Policy 

Gradient (DDPG) (Lillicrap et al., 2015) which can be used for high-dimensional continuous action space. 

Although great progress in both theory and applications of RL has been achieved, few researches are 

observed dealing with improving interpretability of policies produced by existing algorithms. In 

circumstances where safety is critical, like bio-medicine, the lack of interpretability makes the application of 

RL unacceptable (Maes et al., 2012; Verma et al., 2018). Introduction of deep neural networks (DNN) to deal 

with high-dimensional state-action space further deteriorates the problem, since DNN is known to be black-

box.  
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Current attempts in deriving interpretable policies are characterized by a) expressing them as 

parameterized forms like fuzzy rules (Hein et al., 2017; Mucientes and Casillas, 2007; Samsudin et al., 2011), 

mathematical formulas (Hein et al., 2018; Maes et al., 2012), domain specific programming language (Verma 

et al., 2018), and b) using optimization methods like Particle Swarm Optimization (PSO) (Hein et al., 2017), 

genetic algorithms (GA) (Hein et al., 2018; Samsudin et al., 2011), ant colony optimization (ACO) 

(Mucientes and Casillas, 2007), or searching algorithms (Maes et al., 2012; Verma et al., 2018) to determine 

the parameters. They can be further categorized into two groups according to the objective of the 

optimization/searching problem. In (Hein et al., 2018, 2017), an environment model is established using 

neural networks (NN), based on historical state-action-reward trajectories from the real environment. 

Objective/fitness function of the optimization problem is then expressed as the weight-average return of all 

initial states within the RL framework. Here, the role of RL is solely on providing the 

objective/fitness/scoring function, rather than updating policy parameters. This kind of methods are typical 

model-based ones since they require the availability of environment models. Therefore, they are only 

applicable when the system dynamics are relatively easy to model. Another approach is to firstly learn a high-

performance whereas uninterpretable policy (also referred to as “oracle” or nominal policy) through state-of-

the-art methods like DQN, and then search for parameters that minimize the differences between the behavior 

of the nominal policy and the parameterized one (Verma et al., 2018). Inspired by imitation learning (Ross 

et al., 2010; Schaal, 1999), this method provides policy interpretability by making one in the interpretable 

form to imitate another uninterpretable. (Hein et al., 2018) compared these two approaches with different 

objectives in parameter optimization/searching, and found that the one that optimizes the RL return directly 

actually performs better. 

All attempts above fail to learn interpretable policies online, in a per-step manner. Rather, they are all 

per-batch. This means that policy parameters won’t be updated until the end of an episode. Furthermore, for 

either the return optimization or the policy imitation approaches, the final attained policy is fixed once the 

offline learning is finished. If the environment changes, the whole set of policy parameters have to be 
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relearned. In other words, these algorithms are non-adaptive. Another disadvantage is that whereas the 

parameters can be learned automatically, the structure of the policy has to be manually specified a priori, like 

the number of membership functions (Mucientes and Casillas, 2007), the number of the rules (Hein et al., 

2017; Mucientes and Casillas, 2007; Samsudin et al., 2011), the complexity of the mathematical formulas 

(Hein et al., 2018; Maes et al., 2012), the atoms and operators in the language for policy representation 

(Verma et al., 2018), etc. Such decisions are problem-specific and are usually hard to made, which implies 

the necessity of trial and error. These drawbacks are shared by most of existing algorithms for interpretable 

RL. There are exceptions, though. In (Chia-Feng Juang and Chia-Hung Hsu, 2009), interval type-2 fuzzy sets 

are used in antecedent parts of the fuzzy rules, which are online generated automatically through a clustering 

algorithm. The algorithm also partitions the input space to reduce the number of rules. Consequent part of 

each rule is updated using both Q-learning and ACO, the former of which is per-step whereas the latter is 

per-episode. Thus, the algorithm is capable of online learning both the structure and the parameters 

automatically. However, discussions in (Chia-Feng Juang and Chia-Hung Hsu, 2009) are restricted to the 

problem of wall-following control of a mobile robot, in which the action space is discrete and univariate, and 

the number of action candidates is finite and small. Furthermore, the policy is solely action-value based, and 

therefore covers only deterministic cases (one state is mapped to exactly one action). In circumstances where 

effects of function approximation are significant, stochastic policy may provide better optimality than 

deterministic ones (Sutton and Barto, 2018). 

The term “interpretability”, though widely mentioned in literature on machine learning, has not yet been 

well defined (Lipton, 2018; Maes et al., 2012). In (Maes et al., 2012), interpretability of the policy is indicated 

through the Kolmogorov complexity, which is related to the number of symbols used in a certain description 

language. Generally speaking, it is more a qualitative metric than a quantitative one (Verma et al., 2018). 

Here, we take a practical perspective: a policy is regarded as “interpretable” if it satisfies: 

a) users are able to develop intuitive insights about the interactive process between the agent and 

the environment. More specifically, this means that: 
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⚫ the mapping between states/observations and actions should be expressed explicitly in a 

human-readable manner, rather than through black-box representations like NN; 

⚫ there should be some inductive procedures in the policy derivation, so as to condense the 

results and make them more tractable. 

b) the form of policy should facilitate integration of priori knowledge as well as modification of 

the algorithmic results according to expertise or application requirements. 

Fuzzy systems, dating back to (Mamdani and Assilian, 1975; Takagi and Sugeno, 1993; Zadeh, 1965), 

are appropriate candidates for such missions. Fuzzy controllers have been widely used in the past decades 

and welcomed by engineers, partly due to the fact that the control laws can be conveniently expressed as 

interpretable IF-THEN rules. Besides, fuzzy systems are universal approximators (Buckley, 1993; Kosko, 

1994; Wang and Mendel, 1992) just like NN and therefore can be used for approximation of value functions 

in RL (Jin, 2000; Nauck and Kruse, 1998). 

This paper proposes a method and an algorithm to implement interpretable fuzzy reinforcement learning 

(IFRL). It adopts the actor-critic architecture and consists of two components, namely the value function 

approximator and the optimal policy estimator. The former is based on the recent fuzzy systems AnYa. Value 

of a certain state-action pair is estimated as fuzzy ensemble of those of the predefined prototypes. The latter 

is a probability distribution learner within the framework of Autonomous Learning Multi-Model Systems 

(ALMMo) and Empirical Data Analytics (EDA). Generalization of the learned distribution between different 

states is achieved through Empirical Fuzzy Sets (𝝴FS). Cases of multivariate action space are handled through 

a hierarchical learning approach. Compared to other methods for interpretable RL, the proposed IFRL is model-

free and learns online in a sample-by-sample or step-by-step manner. As a result, it is able to react to the change 

of the environment adaptively in real time. This is possible because IFRL does not rely on offline optimization 

or searching to derive the policy parameters. Rather, they are obtained directly from the learned probability 

distribution. It is applicable to continuous and multivariate action space, whereas being different from 

mainstream policy gradient methods. The policy learned is expressed stochastically, which is sometimes more 
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favorable than the deterministic ones under the function approximation setting. Compared to classic tabular or 

state-of-the-art DNN-based algorithms, the main advantage of IFRL is that it produces policies as human-

intelligible IF-THEN rules, which is convenient for integration of priori knowledge as well as further 

investigation and improvement. Numerical experiments on four RL problems are conducted and the results are 

presented as a proof of the concept. 

The rest of this paper is organized as follows. Section II introduces the proposed IFRL structure. The 

value function approximator based on AnYa is discussed in Section III. The optimal policy estimator based 

on ALMMo, EDA, and 𝝴FS is discussed in Section IV. Section V presents simulation results and Section VI 

gives the conclusion. 

II. IFRL STRUCTURE 

As with other actor-critic algorithms, IFRL is made up of two components, namely the value function 

approximator and the optimal policy estimator. However, the mechanism of generating actual behaviors and 

the learning process of optimal policy in IFRL are different from mainstream policy-gradient methods. 

Common practice of the latter is to produce actual behaviors directly from a parameterized policy function 

describing the probability of selecting a certain action under a certain state. The value function can be used 

to aid the learning process of the policy function, but is not required for selecting actions (Sutton and Barto, 

2018). The policy function is updated by gradient-based methods to maximize returns.  

In the proposed IFRL, actions that are actually carried out come from two different sources. The first 

are the advised actions from the function approximator by comparing values of all candidates. The second 

are the inferred actions from the policy estimator which reflects the distribution of advised actions. The two 

sources can be combined in different ways, e.g. switching to one with a certain probability. The policy 

estimator differs from policy gradient methods in that it learns the policy from observed samples empirically, 

rather than through optimization techniques like gradient descent. Details are to be given in Section IV. 

Candidates evaluated by the function approximator are also from two different sources. The first are the 
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randomly selected actions from predefined intervals across the whole range of each dimension (𝐴𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠1 

in Fig. 1). For example, velocity of vehicles typically ranges from 0 to 200 km/h, which can be divided into 

20 intervals with the interval length being 10 km/h. Thus, the first interval will be 0-10 km/h, and the second 

10-20 km/h, and so on. At each time step for decision making, within each interval, one sample of velocity 

is randomly selected for evaluation. This approach is aiming to enable sparse, coarse, and fast exploration of 

the action space, and identify regions that are worth further investigation. Therefore, the interval length can 

be set quite large, which facilitates computation and memory reduction. The second source of candidates are 

actions randomly selected from the neighborhood of the inferred action (𝐴𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠2 in Fig. 1). They are to 

enable finer exploration in the region that is promising for optimal actions. The candidate with the largest 

estimated value is output as the advised action by the value function approximator. 

After the current action 𝐴𝑡 is executed, the agent moves to a new state 𝑆𝑡+1 and receives a reward 𝑅𝑡+1. 

The same procedure is repeated to determine the behavior 𝐴𝑡+1 for the new state. The Sarsa(λ) algorithm is 

then used to update the value of the last state-action pair (𝑆𝑡, 𝐴𝑡). The policy estimator is updated each time 

the advised action is determined. 

Complete block diagram of the proposed IFRL is shown in Fig. 1. 

Fig. 1.  Block diagram of IFRL. 
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III. VALUE FUNCTION APPROXIMATOR 

The value function approximator is responsible for evaluating values of different state-action pairs, and 

providing samples for the optimal policy estimator. We use AnYa for this purpose. This section discusses 

the framework of AnYa as well as the calculation and update of the firing strengths and consequents. 

A. AnYa Framework 

The value function approximator is based on the fuzzy rule-based system AnYa (Angelov, 2012; 

Angelov and Yager, 2012, 2011) within the EDA framework (Angelov et al., 2016; P. Angelov et al., 2017; 

Plamen P Angelov et al., 2017). The approximated value of a certain state-action pair is determined by 

constructing a set of fuzzy rules, each of which can be written as 

 IF (
𝐒
𝐀
) ∼ (

𝐒𝐣
∗

𝐀𝐣
∗)  Then 𝑞̂(𝐒, 𝐀) = 𝐶𝑗 (1) 

where 𝐒 and 𝐀 are the state and action variable, respectively. (
𝐒𝐣
∗

𝐀𝐣
∗) denotes the 𝑗𝑡ℎ prototype, 𝑗 = 1,2, … ,𝑁 

where 𝑁 denotes the total number of prototypes. A prototype represents a typical case. The “∼” can be 

interpreted as “being close to”. 𝑞̂(𝐒, 𝐀) is the estimated value of (
𝐒
𝐀
). 𝐶𝑗 is the consequent part of the rule. 

Finally, the estimation that is used is calculated as the weighted average of all consequents 

 𝑞̂(𝐒, 𝐀) = 𝛌T𝐂 (2) 

where 𝛌 is the firing strength of each rule 

 𝛌 = [𝜆1 𝜆2 … 𝜆𝑁]
T (3) 

and 𝐂 is the vector of consequents 

 𝐂 = [𝐶1 𝐶2 … 𝐶𝑁]
T (4) 

B. State-action Space Discretization 

State and action variables may come with multiple dimensions, and may be a hybrid of continuous and 

discrete components. For example, when describing the status of a vehicle on a straight road, we may consider 
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both, the moving direction and the velocity. The former is discrete with two enumerations: forward or 

backward. The latter is continuous with the possible range from 0 to 200 km/h. The approach here is to 

transform each continuous dimension into the discrete one with a certain step, and form a static grid. A typical 

one is shown in Fig. 2. The smaller the steps, the finer the hybrid/continuous space is approximated, whereas 

the number of nodes in the grid is larger and more computations are needed.  

Each node is treated as one prototype.  

 

Fig. 2.  A typical grid. 

C. Firing Strength Calculation 

Calculation of the firing strength vector 𝛌 is based on the EDA framework (P. Angelov et al., 2017). 

Fig. 3 shows the concept. A data cloud is formed with multiple data samples whereas requiring only two 

parameters for description, namely the focal point 𝛍𝐣  denoting the most representative sample and the 

standard deviation 𝜎𝑗  denoting the “radius” or range of the 𝑗𝑡ℎ cloud. It should be noted that the cloud itself 

can be of any shape. With the grid defined in Section III.B, the state-action space is partitioned into a set of 

sub-blocks with equal volumes. Each block is treated as a data cloud with its focal point being the 

corresponding node 𝛍𝐣 = (
𝐒𝐣
∗

𝐀𝐣
∗), 𝑗 = 1,2, … ,𝑁. Typicality of a certain sample 𝐱 = (

𝐒
𝐀
) regarding the 𝑗𝑡ℎ data 

cloud is measured through the unimodal discrete density (Plamen P. Angelov et al., 2017): 

 𝐷𝑗 =
1

1+
‖𝐱−𝛍𝐣‖

2

𝜎𝑗
2

 (5) 
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It comes with the form of a Cauchy function and can also be interpreted as the membership function in 

conventional fuzzy systems. For a static data cloud (𝜎𝑗  being fixed), the closer the sample is to the focal point, 

the larger the typicality. Fig. 3 shows the variation of 𝐷𝑗  regarding 𝛍𝐣 = (
0.5
0.5
). Note how 𝐷𝑗  decays radially. 

 

Fig. 3.  Concept of data clouds. 

To calculate 𝐷𝑗 , 𝛍𝐣 and 𝜎𝑗  should be known. As has been mentioned before, 𝛍𝐣 is the 𝑗𝑡ℎ node itself. 

Thus 𝜎𝑗  remains to be determined. As is shown in Fig. 4, variance of samples in the data cloud can be 

calculated as (assuming that all members are randomly distributed within the cloud) 
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Fig. 4.  Calculation of 𝜎. 

where 𝑥1, 𝑥2, 𝑦1, and 𝑦2 are coordinates of the borders. 

Generally, for the state-action space with 𝑛 dimensions, the standard deviation of each cloud is 

 𝜎 = √
1

12
∑ 𝑠𝑡𝑒𝑝𝑖2
𝑛
𝑖=1  (7) 

where 𝑠𝑡𝑒𝑝𝑖 is the step size for discretization of the 𝑖𝑡ℎ dimension. More details on derivation of Eq. (7) is 

given in the supplementary material. In practice, it is usually favorable to “shrink” the clouds. This is done 

by adding a factor 𝛿 to the step size: 

 𝜎 = √
1

12
∑ (𝛿 ⋅ 𝑠𝑡𝑒𝑝𝑖)2
𝑛
𝑖=1  (8) 

For example, 𝛿 =
1

2
 means that size of the cloud in each dimension is half of the original step sizes (Fig. 5). 
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Fig. 5.  Effect of 𝛿. 

Finally, firing strength of the 𝑗𝑡ℎ rule is defined as the normalized unimodal discrete density (Plamen P. 

Angelov et al., 2017): 

 𝜆𝑗 =
𝐷𝑗

∑ 𝐷𝑙
𝑁
𝑙=1

 (9) 

D. Consequents update 

Consequent of each cloud is updated by the Sarsa(λ) algorithm (Sutton and Barto, 2018). The feature 

vector and the weight vector in the context of linear function approximation in reinforcement learning 

corresponds to the firing strength 𝛌 and the consequents 𝐂 in AnYa, respectively. The tailored version of 

Sarsa(λ) for AnYa is detailed in the supplementary material. 

E. Computation complexity 

It is obvious that the number of nodes in the grid grows exponentially with the number of dimensions, 

which results in the curse of dimension. To alleviate this problem, other methods for selecting prototypes 

should be applied. Some options are discussed in the supplementary material. 

IV. OPTIMAL POLICY ESTIMATOR 

The optimal policy estimator, is indeed, a probability distribution learner. It reconstructs the cumulative 

distribution function (CDF) from the online observed samples. Discussions of learning an unknown 

distribution in this section will focus on continuous cases. For discrete variables, the problem is easier since 
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the distribution can be learned by simply recording the frequency of each enumeration. 

A. Univariate Distribution Learning 

Consider the circumstance where the agent observes univariate samples generated from an unknown 

continuous distribution. The aim now is to reconstruct the inherent distribution from the samples. There are 

many approaches available, the most common of which is to use conventional distribution models like 

Gaussian or Cauchy ones for description, and learn the parameters (mean, standard deviation, etc.) with 

optimization techniques. Such practices are popular because they are convenient for mathematical analysis. 

However, using predefined distribution functions may introduce subjective bias and degrade performances 

of the system. Moreover, merely one distribution function is usually not descriptive enough and a mixture of 

them is required, which induces the need for clustering. 

To address these problems, ALMMo and EDA are used. 

1) ALMMo System 

ALMMo forms data clouds dynamically from streaming data in an objective way (Plamen P. Angelov et 

al., 2017; Angelov and Gu, 2019, 2017a). In the context of machine learning, an ALMMo agent performs online 

clustering for a certain variable, while avoiding the need of specifying priori configurations like the number of 

clusters. It is a sophisticated system with components like structure identification, online quality monitoring, 

parameter identification, online input selection, etc. In the context of IFRL, however, only the first two are used. 

Structure identification does the fundamental job of forming data clouds and updating corresponding 

parameters like 𝛍 and 𝜎. Upon arrival of a new data sample 𝐱𝐤+𝟏, its unimodal discrete density 𝐷𝑘+1(𝐱𝐤+𝟏) is 

calculated using Eq. (5) and then compared with those of the focal points. Based on the result of comparison, 

either a new cloud is formed or the meta-parameters of a certain existing one are updated. Online quality 

monitoring is to prune the clouds that are less relevant to the recently observed samples and keep the number 

of existing clouds from going too large, since more clouds bring about more computations. Flowchart of the 

ALMMo system’s learning process is given in the supplementary material. Interested readers can refer to 

(Plamen P. Angelov et al., 2017) for further details. 
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2) EDA Framework 

We get a group of autonomously formed clouds and their meta-parameters like mean 𝛍𝐣 , standard 

deviation 𝜎𝑗 , support 𝑆𝑗 (the number of members belonging to a certain cloud), etc. with ALMMo. We then 

process them with EDA to extract the underlying probabilistic information. Specifically, the quantity 

continuous multimodal typicality is used (Plamen P Angelov et al., 2017). It resembles the probability density 

function (PDF) whereas differs from it. PDF is predefined, subjective, and considers only spatial relationship 

of data samples. For example, if observed samples concentrate around a certain focal point 𝛍, then the 

probability density of a sample far away from 𝛍 will be small and its occurrence will be considered less 

probable. Comparatively, continuous multimodal typicality considers not only the spatial relationship but 

also the frequency of the samples. It approximates frequentist probability when the number of observed 

samples is small and automatically transforms into PDF when a lot of samples are observed (P. Angelov et 

al., 2017). Since the data clouds are formed online automatically by the ALMMo, continuous multimodal 

typicality is totally objective and not based on any priori assumptions of the pattern of data. Denote this 

quantity with 𝜏 and for data sample 𝐱 it is (assuming that Euclidean type distance is used) 

 𝜏(𝐱) =
𝛤(

𝑛+1

2
)

𝜋
𝑛+1
2 𝑆

∑
𝑆𝑗

𝜎𝑗
𝑛(1+

‖𝐱−𝛍𝐣‖
2

𝜎𝑗
2 )

𝑛+1
2

𝑁
𝑗=1  (10) 

where 𝑆 is the number of all the observed data samples, 𝑆𝑗 is the number of members belonging to the 𝑗𝑡ℎ 

cloud, 𝑛 is the number of dimensions of 𝐱, and 𝑁 is the number of clouds formed dynamically online. For 

the univariate case (𝑛 = 1), Eq. (10) turns into 

 𝜏(𝑥) =
1

𝜋𝑆
∑

𝑆𝑗

𝜎𝑗(1+
(𝑥−𝜇𝑗)

2

𝜎𝑗
2 )

𝑁
𝑗=1  (11) 

This function can be used as a form of PDF. The corresponding CDF can be derived by integrating Eq. 

(11): 
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 𝑃(𝑥 ≤ 𝑡) = ∫ 𝜏(𝑥)d𝑥
𝑡

𝑥=−∞
=

∑ 𝑆𝑗(
1

𝜋
arctan(

𝑡−𝜇𝑗

𝜎𝑗
)+

1

2
)𝑁

𝑗=1

𝑆
 (12) 

3) Inverse Transform Sampling 

The ultimate goal of learning the optimal policy is to reproduce actions from it. This is done through 

Inverse Transform Sampling (ITS) (Devroye, 1990). Specifically, for the variable 𝑋, samples are reproduced 

by 

 𝑋 = 𝐹𝑋
−1(𝑈) (13) 

where 𝐹𝑋(𝑡) = 𝑃(𝑥 ≤ 𝑡) is the CDF and 𝑈 is a uniformly distributed random number in the interval [0, 1]. 

For the CDF in Eq. (12), however, the inverse function is difficult to calculate analytically. Therefore, a 1-D 

lookup table is used instead. Eq. (12) is evaluated on evenly spaced points and the values are stored in a table. 

The uniform random number generator is called to produce 𝑈 and interpolation is carried out to derive the 

interpolated value of 𝐹𝑋
−1(𝑈) at the query point. 

Note that the domain of definition of 𝐹𝑋(𝑡) is [−∞, +∞], which may differ from real cases. To fix this 

problem, the truncated version (Kochenderfer et al., 2015) of Eq. (12) should be used: 

 𝑃𝑡𝑟(𝑥 ≤ 𝑡) =
𝑃(𝑥≤𝑡)−𝑃(𝑥≤𝑙)

𝑃(𝑥≤𝑟)−𝑃(𝑥≤𝑙)
, 𝑙 ≤ 𝑡 ≤ 𝑟 (14) 

where 𝑙 and 𝑟 are the left and right boundary of the interval, respectively. 

4) Verification 

The univariate distribution learning algorithm is tested through a simple simulation. Firstly, an artificial 

distribution is defined by a table with two rows specifying the query points and the corresponding cumulative 

probability. A batch of samples are then generated from it using ITS and interpolation. At each time step, 

one sample is passed to the proposed algorithm. Totally 10000 samples are used. Comparison between the 

estimated CDF and the actual one as well as the root-mean-square (RMS) of the estimation error during 

training is shown in Fig. 6. It can be seen that the estimated CDF corresponds with the actual one quite well 

and the RMS of estimation error falls to a low level with about 1000 samples. 
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(a) Estimated vs. actual CDF. 

 

(b) RMS of estimation error. 

Fig. 6.  Results of learning a univariate distribution. 
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B. Fuzzy Generalization Between Different States 

1) 𝝴FS Framework 

The last subsection discusses learning of a continuous univariate distribution. Now consider the 

extended circumstance where the learned distribution is valid only in a certain state. Moreover, the state 

variable is also continuous, but not necessarily univariate. The question is how to generalize the estimated 

distribution between different states. 

We propose to use for this purpose the ALMMo and the 𝝴FS (Angelov and Gu, 2017b; Rong et al., 

2018). They are much like the density and typicality discussed in Section III with differences in that a) data 

clouds are formed dynamically online, whereas in Section III they are predefined and static; b) variable in 

the antecedent part is the state variable rather than the state-action pair; c) consequents are the distributions 

regarding each state, whereas in Section III they are the estimated values of each state-action pair.  

Suppose that the action variable of the reinforcement learning problem is one-dimensional. In this case, 

totally (𝑁 + 1) ALMMo agents need to be used, as is illustrated in Fig. 7. Here, 𝑁 denotes the number of 

data clouds/prototypes for states. As a result, 𝑁 agents are needed for estimating the distributions of optimal 

actions. Apart from them, another ALMMo agent is needed for the state variable. It outputs the firing strength 

for each of the 𝑁 rules. For better understanding, recall the process of decision making by human beings. We 

categorize numerous situations into several typical ones and take corresponding actions for each of them. For 

example, we get more dressing when we travel north, and less when travelling south (assuming that we live 

in the Northern Hemisphere). Here, “north” and “south” are typical prototypes of the state variable “latitude”, 

and “more” or “less” are the actions for each prototype. We do not keep a table in our mind with the first row 

as 0°, 1°, …, etc. and the second row as different levels of dressing, since this will take up too much memory 

resources. Instead, we just use two simple rules. This is possible because human beings are able to identify 

typical situations and generalize actions from them. ALMMo and 𝝴FS implement these two functionalities, 

respectively. Prototypes are identified online through autonomously formed data clouds. Generalization is 

done through the fuzzy ensemble of 𝑁 sets of policies corresponding to 𝑁 prototypes.  
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Fig. 7.  Fuzzy generalization of policies between different states. 

Upon encounter of a new state 𝐒𝐭+𝟏, which may be of multiple dimensions, the vector of firing strength 

𝛌(𝐒𝐭+𝟏) is calculated as in Section III. Let us denote the policy vector as 

 𝐅𝑋 = [𝐹𝑋
1 𝐹𝑋

2 … 𝐹𝑋
𝑁]T (15) 

where 𝐹𝑋
𝑗
(𝑡) = 𝑃𝑗(𝑥 ≤ 𝑡) is the estimated CDF of optimal actions for the 𝑗𝑡ℎ prototype of state. The policy 

for 𝐒𝐭+𝟏 is determined as 

 𝐹𝑋
𝐒𝐭+𝟏 = 𝛌T𝐅𝑋 (16) 

The superscript means that the CDF is conditioned on 𝐒𝐭+𝟏. 

2) Learning of Individual Policy 

Whenever an advised action is proposed by the value function approximator, the policy corresponding 

to the most relevant situation is updated. Relevance of the current state regarding each prototype is measured 

through the firing strength vector 𝛌. Specifically, it is identified as 

 𝑖𝑛𝑑 = argmax 
𝑗

𝜆𝑗 (17) 

The corresponding ALMMo agent for actions is then updated as detailed in (Plamen P. Angelov et al., 2017). 

C. Multivariate Actions 

Discussions above are restricted to the case of univariate action variable. However, there are problems 

with multivariate action space. To solve them within the same framework introduced before, a hierarchical 
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method is used. 

The idea is to learn distributions of each component in the action vector incrementally. Imagine a clock 

with two hands. In each round, the player manipulates the two hands and receives a reward as either 0 or 1. 

The action variable is 𝐀 = [𝐴1 𝐴2] denoting positions of the two hands, each of which varies continuously. 

The aim is to find out the distribution of 𝐀 with which the player maximizes his rewards. Since the optimal 

distribution is unknown, the player tries different combinations of [𝐴1 𝐴2] randomly, and for each attempt 

records the action and the corresponding reward. Actions with positive rewards are then picked out. For the 

first component 𝐴1, a histogram with a certain discretization step can be used to describe the distribution. 

However, for the second one, since it is dependent on the first one, doing so would be meaningless. In other 

words, distribution of 𝐴2 is conditioned on 𝐴1. This situation is similar to the one in Section IV.B, where the 

the univariate action is conditioned on the state. Therefore, the method of fuzzy generalization can be used 

here. If the clock comes with 𝑀  hands, firstly the distribution of 𝐴1  is learned, then the conditioned 

distribution of 𝐴2  on 𝐴1 , then 𝐴3  on [𝐴1 𝐴2], and so on, up to 𝐴𝑀 . Each time we learn the univariate 

distribution of a certain component in the action vector as in Section IV.A, and condition it on the sub-vector 

composed of all preceding ones as in Section IV.B. 

Now consider a more complex situation where the clock presented to the player in each round is different 

and attached with a state variable 𝐒. This is controlled by the environment and not the player. However, it 

can still be treated as part of the condition. Therefore, the method discussed before can be applied by simply 

appending 𝐒 to each condition: 𝐴1 on 𝐒, 𝐴2 on [𝐒 𝐴1], 𝐴3 on [𝐒 𝐴1 𝐴2], and so on, up to 𝐴𝑀 . In this 

way, the problem of multivariate policy learning is handled. It is hierarchical because the learning of each 

component is based on the preceding ones. 

Decision process of the inferred action for 𝐒𝐭+𝟏 is as follows. Firstly generate 𝐴1 through ITS of the 

fuzzily weighted CDF 𝐹𝐴1
𝐒𝐭+𝟏 = 𝛌T(𝐒𝐭+𝟏)𝐅𝐴1 as 

 𝐴1 = ITS(𝐹𝐴1
𝐒𝐭+𝟏) (18) 
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Then generate 𝐴2 as  

 𝐴2 = ITS( 𝐹𝐴2
[𝐒𝐭+𝟏 𝐴1]) (19) 

where 𝐹𝐴2
[𝐒𝐭+𝟏 𝐴1] = 𝛌T([𝐒𝐭+𝟏 𝐴1])𝐅𝐴2. And repeat the procedure for 𝐴3, 𝐴4, etc. until all the components 

are determined. 

D. Computation complexity 

Computation complexity of the optimal policy estimator is discussed in this subsection. Suppose that 

the action space has 𝑀  dimensions. In this case, the conditions are 𝐒 , [𝐒 𝐴1] , [𝐒 𝐴1 𝐴2] , …, 

[𝐒 𝐴1 𝐴2 … 𝐴𝑀−1], and the number of them is 1 + (𝑀 − 1) = 𝑀. For each condition, one ALMMo 

agent is needed to calculate the firing strength vector 𝛌. The number of data clouds within each agent is 

denoted as 𝑁𝑖, 𝑖 = 1,2, … ,𝑀. As has been discussed before, each cloud corresponds to one prototype of the 

condition, and for each prototype there is one policy, which is a univariate distribution learned through an 

ALMMo agent. Thus, the number of all agents needed is 

 𝑀𝑎𝑙𝑙 = 𝑀 + ∑ 𝑁𝑖
𝑀
𝑖=1 = 𝑀 + ∑ 𝑁̄𝑀

𝑖=1 = 𝑀 ⋅ (1 + 𝑁̄) (20) 

where 𝑁̄ is the average of 𝑁𝑖. 𝑁𝑖 is controlled by online quality monitoring (Plamen P. Angelov et al., 

2017) and its variation is small for the same configurations. Therefore, 𝑁̄ can be regarded as a constant for 

action space with different dimensions. Consequently, it can be concluded from Eq. (20) that the 

computation complexity grows linearly, rather than exponentially, with increase of the number of 

dimensions in the action space. This is one of the advantages of the proposed optimal policy estimator. 

V. SIMULATION RESULTS 

Four problems, namely Mountain Car, Continuous Gridworld, Pendulum Positioning, and Tank Level 

Control, are used for validation. 

A. Mountain Car 

The Mountain Car problem (Sutton and Barto, 2018) is classic and mainly used for evaluation of 
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function approximation methods. The goal is to drive the car up to the goal position, which is on the end of 

the upslope. Difficulty of the problem is that the power of the car is not strong enough to propel it along the 

slope directly. Rather, the car has to be driven in the inverse direction first to build up enough potential energy. 

Definition of the problem is shown in Table I. An illustration is given in Fig. 8. 

 

Fig. 8.  The mountain car problem. 

 

TABLE I 

MOUNTAIN CAR PROBLEM 

Item Definition 

State transition 

𝑥𝑡+1 = bound[𝑥𝑡 + 𝑥̇𝑡+1 ] 

𝑥̇𝑡+1 = bound[𝑥̇𝑡 + 0.001𝐴𝑡 − 0.0025 cos(3𝑥𝑡)] 

𝑥̇𝑡 is reset to zero when 𝑥𝑡 reaches the left bound 

State variable 

[𝑥𝑡 𝑥̇𝑡] 

position and velocity of the car 

State space 

−1.2 ≤ 𝑥𝑡 ≤ 0.5 

−0.07 ≤ 𝑥̇𝑡 ≤ 0.07 

Initial state 𝑥0 ∈ (−0.6 −0.4] 



 22 

𝑥̇0 = 0 

Terminal state 𝑥𝑇 = 0.5 

Maximal steps per episode unrestricted 

Discount rate 1 

Action variable 

𝐴𝑡 can be taken as discrete: 𝐴𝑡 ∈ {+1,−1, 0} 

or continuous: 𝐴𝑡 ∈ [−1, 1] 

full throttle forward (+1) 

full throttle backward (-1) 

zero throttle (0) 

Action space discrete action variable 

Reward -1 on each step until the terminal state is reached 

Firstly, AnYa as the value function approximator is compared to state aggregation, which produces one 

estimation for one group. Value approximation in state aggregation is based on merely one component of 

the weight vector 𝐰 (i.e. the consequent vector 𝐂), whereas in AnYa all the components (or part of them, 

depending on the implementation) in 𝐂 are utilized. For the Mountain Car problem, performances of the two 

methods are compared through Steps per Episode (SPE), assuming discrete action space. Results are shown 

in Fig. 9. It is obvious that AnYa comes with great advantages over state aggregation regarding the learning 

rate. Near optimality is obtained after the first several episodes. Comparatively, it takes over 2000 episodes 

for state aggregation to achieve the same result. Difference in the learning rate by two methods partly results 

from the different numbers of components in the weight vector. In AnYa, only 90 weights need to be learned, 

whereas in state aggregation it is 14280. Using the same number of weights in state aggregation as that of 

AnYa will result in divergence.  



 23 

 

Fig. 9.  Steps per episode in Mountain Car problem (AnYa vs. state aggregation). 

 

 

(a) AnYa 

 

(b) state aggregation 

Fig. 10.  Cost-to-go function learned by the two methods. 

The cost-to-go function learned at the end is shown in Fig. 10. It is obvious that state aggregation with 

more weights produces a better approximation. However, although AnYa approximates the true values 

coarsely (with only 90 weights), the corresponding policy is near-optimal. This implies that for learning an 
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optimal policy, the exact value of each state-action pair is not important. Rather, the relativity of magnitude 

is what really matters. By considering values of all the nodes or a group of neighboring ones within the grid, 

and weighting them fuzzily, AnYa is able to extract this relativity with a small number of weights, which 

makes extremely fast learning possible. 

The Mountain Car problem is then solved again by treating the action variable as continuous. Results 

are shown in Fig. 11. IFRL automatically forms 9 rules online. Note how the data clouds are positioned along 

the optimal phase trajectory. To reach the terminal state, the car has to dangle back and forth to accumulate 

energy, which is obvious from the plot. 

The first four of algorithmically learned rules are listed in Table II. These rules allow human users to 

gain insights from them. Firstly, although the action space is continuous, actual behaviors are concentrated 

on the two ends, which indicates that the car is going either forward or backward with full throttle most of 

the time. Thus, using continuous actions makes little improvement in optimality and is unnecessary. Secondly, 

intuition on the optimal policy can be developed by observing PDFs of several prototypes. For example, 

PDFs of both the 1st and the 2nd prototype come with peaks on the two ends of the action space. This can be 

translated into human-intelligible rules as “IF the car is in the middle of the valley and with low velocity, 

THEN it should go either forward or backward with full throttle to build up the potential energy”. If the car 

is on the downhill with negative velocity, the firing strength of the 3rd rule will be dominant and accordingly 

the car should keep going backward with full throttle, which corresponds to the phase trajectory. On the other 

hand, if the car is on the downhill with large velocity (the 4th prototype), then it should go forward with full 

throttle to reach the goal directly. 

Interpretability through the fuzzy kernel is one of the main advantages of the newly proposed IFRL. 

This is possible because: 

a) IFRL is able to cluster encountered states online; 

b) it is integrated with an optimal policy estimator, which learns the probability distribution of 

optimal actions. 
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Note also that the automatically formed data clouds only cover states on the optimal trajectory, which makes 

the method memory-efficient. 

 

Fig. 11.  Results for the Mountain Car Problem with continuous action space. 

 

TABLE II 

ONLINE LEARNED RULES 

ID of data cloud in Fig. 11 

IF 

state is close to 

Then 

PDF of action is 

1 [−0.4772 0.0113] 
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2 [−0.2803 0.0140] 

 

3 [−0.9251 −0.0007] 

 

4 [−0.5808 0.0423] 

 

B. Continuous Gridworld 

A typical gridworld is shown in Fig. 12. The agent starts at the initial position [5 5] and tries to move 

to the target position [10 10]. The classic version treats both the state and action as discrete variables. The 

agent chooses one of the four actions in each step: left, right, up, and down. In the adapted version used here, 

however, the state and action variables are both continuous, as are shown in Table III. What’s more, the 

action variable is now of two dimensions. This means that the agent can move diagonally. Introduction of 

the 2-D action space is to validate the method of hierarchical learning in Section IV.C. 



 27 

 

Fig. 12.  A typical gridworld. 

Results of SPE are shown in Fig. 13. The theoretical minimal SPE is 6. The agent achieves near-

optimality after 1500 episodes. From Fig. 13 it can be concluded that the method of hierarchical learning is 

effective for problems with multivariate action space. 

TABLE III 

CONTINUOUS GRIDWORLD 

Item Definition 

State transition 
ℎ𝑡+1 = ℎ𝑡 + ℎ̇𝑡 

𝑣𝑡+1 = 𝑣𝑡 + 𝑣̇𝑡 

State variable 

[ℎ𝑡 𝑣𝑡] 

horizontal and vertical position 

State space 

0 ≤ ℎ𝑡 ≤ 10 

0 ≤ 𝑣𝑡 ≤ 10 

Initial state 

ℎ0 = 5 

𝑣0 = 5 

Terminal state 

ℎ𝑇 = 10 

𝑣𝑇 = 10 

Maximal steps per episode unrestricted 
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Discount rate 1 

Action variable 

[ℎ̇𝑡 𝑣̇𝑡] 

−1 < ℎ̇𝑡 < 1 

−1 < 𝑣̇𝑡 < 1 

Action space continuous action variable 

Reward -1 on each step until the terminal state is reached 

 

 

Fig. 13.  Steps per episode for the Continuous Gridworld problem with 2-D action space. 

C. Pendulum Positioning 

The Pendulum Positioning problem is described in (Sheen, 2016). The pendulum is initially positioned 

straight down. A torque is exerted on the pendulum to drive it to the upright position. If the torque is too 

small, the pendulum fails to go up. On the other hand, if it is too large, the pendulum simply crosses the target 

position and goes to the downside again. The aim is to drive the pendulum uprightly with as few steps as 

possible. An extra bonus is provided if the pendulum is successfully positioned to the target, as is shown in 
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Fig. 14 and Table IV. 

 

Fig. 14.  The pendulum positioning problem. 

TABLE IV 

PENDULUM POSITIONING PROBLEM 

Item Definition 

State transition refer to (Sheen, 2016) for details 

State variable 

[𝑥𝑡 𝑥̇𝑡] 

angle and angular speed of the pendulum 

State space 

−𝜋 ≤ 𝑥𝑡 ≤ 𝜋 

−𝜋 ≤ 𝑥̇𝑡 ≤ 𝜋 

Initial state 

𝑥0 = 𝜋 

𝑥̇0 = 0 

Terminal state 

𝑥𝑇 = 0 

𝑥̇𝑇 = 0 

Maximal steps per episode 1500 

Discount rate 0.9 

Action variable 

𝐴𝑡 

𝐴𝑡 can be taken as discrete: 𝐴𝑡 ∈ {−1, 0, 1} 

or continuous: 𝐴𝑡 ∈ [−1, 1] 

Action space discrete/continuous action variable 
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Reward 

IF √𝑥𝑡+1
2 + 𝑥̇𝑡+1

2 < 0.01 

𝑅(𝑡 + 1) = −𝑥𝑡+1
2 − 0.25𝑥̇𝑡+1

2 + 100 

ELSE 

𝑅(𝑡 + 1) = −𝑥𝑡+1
2 − 0.25𝑥̇𝑡+1

2  

Phase trajectory of the pendulum is shown in Fig. 15. The action variable is considered to be continuous. 

The pendulum starts at the initial state [𝜋, 0] and travels to the target [0, 0] successfully. Note that  [𝜋, 0] and  

[−𝜋, 0] are actually the same state. 

 

Fig. 15.  Phase trajectory of the pendulum. 

D. Tank Level Control 

The Tank Level Control problem is described in (Noel and Pandian, 2014). There are two tanks with 

different liquid levels. The goal is to maintain the first one at a desired setpoint. This benchmark is to evaluate 

the potential of applying IFRL to control problems of nonlinear systems with continuous states and inputs, 

which is common in practical engineering circumstances. Definition of the problem is shown in Table V. Fig. 
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16 shows the optimal trajectories of tank levels obtained by dynamic programming (DP) and IFRL, 

respectively. Results from DP are calculated offline and can be treated as theoretically best. It can be observed 

that the trajectory from IFRL successfully achieves the control target, though with some chattering. This is 

due to the inherent probabilistic characteristics of IFRL. 

TABLE V 

TANK LEVEL CONTROL PROBLEM 

Item Definition 

State transition 

ℎ1 ≥ ℎ2

{
 
 

 
 ℎ̇1 =

𝑞1 − 𝑟1√ℎ1 − 𝑟3√ℎ1 − ℎ2
𝐴1

ℎ̇2 =
𝑞2 − 𝑟2√ℎ2 − 𝑟3√ℎ1 − ℎ2

𝐴2

 

ℎ1 ≤ ℎ2

{
 
 

 
 ℎ̇1 =

𝑞1 − 𝑟1√ℎ1 − 𝑟3√ℎ2 − ℎ1
𝐴1

ℎ̇2 =
𝑞2 − 𝑟2√ℎ2 − 𝑟3√ℎ2 − ℎ1

𝐴2

 

ℎ1(𝑡 + 1) = ℎ1(𝑡) + 0.1ℎ̇1(𝑡) 

ℎ2(𝑡 + 1) = ℎ2(𝑡) + 0.1ℎ̇2(𝑡) 

State variable 

[ℎ1(𝑡) ℎ2(𝑡)] 

liquid levels of the two tanks 

State space 

0 ≤ ℎ1(𝑡) ≤ 10 

0 ≤ ℎ2(𝑡) ≤ 10 

Initial state 

ℎ1(0) = 1 

ℎ2(0) = 0 

Terminal state ℎ1(𝑇) = 7 

Maximal steps per episode 1500 

Discount rate 0.99 
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Action variable 𝐴𝑡 ∈ [0, 20] 

Action space continuous action variable 

Reward 𝑅(𝑡 + 1) = −|ℎ1(𝑡 + 1) − ℎ1(𝑇)| 

 

 

Fig. 16.  Optimal trajectories of tank levels (DP vs. IFRL). 

VI. CONCLUSION 

In this paper, a new method and an algorithm are proposed to implement interpretable fuzzy 

reinforcement learning (IFRL). The method is able to produce human-intelligible rules online, which 

facilitates further investigation and improvement of the policy. It is applicable to problems with continuous 

and multivariate action space, which is a great advantage over the classic tabular approaches. Different from 

mainstream policy-gradient methods, the learning process of IFRL is much like that of a human. Various 

actions are tried and the outcomes are evaluated. Favorable ones are memorized to form a policy. The recent 

fuzzy system AnYa is used to approximate values of state-action pairs and acts as an evaluator. The classic 
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Sarsa(λ) algorithm is used to update consequents of the fuzzy rules. ALMMo with EDA is used for learning 

the univariate probability distribution. Inferred actions from the learned CDF are produced through ITS. 

Generalization between different states is implemented by 𝝴FS. Hierarchical learning is adopted to deal with 

multivariate action space. Solution of the Mountain Car problem shows that the newly proposed method 

requires orders of magnitude less parameters and provides low-error solution with orders of magnitude faster 

convergence, in addition to its transparency from the human-intelligible fuzzy rules. Effectiveness of 

hierarchical learning is validated by solutions of the Continuous Gridworld problem. Potential of applying 

IFRL on control problems of nonlinear systems in engineering is evaluated through the Tank Level Control 

problem. 

Future research directions are:  

a) Improvement of the value function approximator. In the current version, a static grid is used. This can 

be replaced with a dynamic grid to achieve balance between performances and the number of nodes. 

b) Improvement of the optimal policy estimator. The current version clusters states/conditions 

encountered with ALMMo. However, a more proper setting is to cluster the variable consisting both 

the condition and the action. This is expected to reduced the numbers of rules learned. 

c) Addition of a component for learning of the environment model. 

d) Addition of the ability to perform planning using algorithms like tree search. 

e) Improvement on the way of generating recommended actions from the optimal policy estimator, so as 

to reduce chattering in the output. This can be achieved by, for example, using the mean of the 

distribution (rather than the sampled one from the CDF) as the inferred action. 

f) Treatment of hidden states. 

  



 34 

REFERENCES 

Angelov, P., 2012. Autonomous Learning Systems. John Wiley & Sons, Ltd, Chichester, UK. 

https://doi.org/10.1002/9781118481769 

Angelov, P., Gu, X., Kangin, D., 2017. Empirical Data Analytics. Int. J. Intell. Syst. 32, 1261–1284. 

https://doi.org/10.1002/int.21899 

Angelov, P., Gu, X., Kangin, D., Principe, J., 2016. Empirical data analysis: A new tool for data analytics, 

in: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp. 

000052–000059. https://doi.org/10.1109/SMC.2016.7844219 

Angelov, P., Yager, R., 2012. A new type of simplified fuzzy rule-based system. Int. J. Gen. Syst. 41, 163–

185. https://doi.org/10.1080/03081079.2011.634807 

Angelov, P., Yager, R., 2011. Simplified fuzzy rule-based systems using non-parametric antecedents and 

relative data density, in: 2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS). 

IEEE, pp. 62–69. https://doi.org/10.1109/EAIS.2011.5945926 

Angelov, P.P., Gu, X., 2019. Empirical approach to machine learning. Springer. 

Angelov, P.P., Gu, X., 2017a. Autonomous learning multi-model classifier of 0-order (ALMMo-0). IEEE 

Conf. Evol. Adapt. Intell. Syst. 1–7. https://doi.org/10.1109/EAIS.2017.7954832 

Angelov, P.P., Gu, X., 2017b. Empirical Fuzzy Sets. Int. J. Intell. Syst. 00, 1–34. 

https://doi.org/10.1002/int.21935 

Angelov, Plamen P, Gu, X., Principe, J., 2017. A generalized methodology for data analysis. IEEE Trans. 

Cybern. 1, DOI: 10.1109/TCYB.2017.2753880. https://doi.org/10.1109/TCYB.2017.2753880 

Angelov, Plamen P., Gu, X., Principe, J.C., 2017. Autonomous learning multi-model systems from data 

streams. IEEE Trans. Fuzzy Syst. 6706, 1–12. https://doi.org/10.1109/TFUZZ.2017.2769039 

Antonoglou, I., Fidjeland, A.K., Wierstra, D., King, H., Bellemare, M.G., Legg, S., Petersen, S., 

Riedmiller, M., Beattie, C., Graves, A., Sadik, A., Kavukcuoglu, K., Ostrovski, G., Veness, J., Rusu, 

A.A., Silver, D., Hassabis, D., Kumaran, D., Mnih, V., 2015. Human-level control through deep 

reinforcement learning. Nature 518, 529–533. https://doi.org/10.1038/nature14236 

Buckley, J.J., 1993. Sugeno type controllers are universal controllers. Fuzzy sets Syst. 53, 299–303. 

https://doi.org/10.1016/0165-0114(93)90401-3 

Chia-Feng Juang, Chia-Hung Hsu, 2009. Reinforcement Ant Optimized Fuzzy Controller for Mobile-Robot 

Wall-Following Control. IEEE Trans. Ind. Electron. 56, 3931–3940. 

https://doi.org/10.1109/TIE.2009.2017557 

Devroye, L., 1990. Non-Uniform Random Variate Generation, Proceedings of COMPSTAT 2010 - 19th 

International Conference on Computational Statistics, Keynote, Invited and Contributed Papers. 

https://doi.org/10.1007/978-3-7908-2604-3-1 

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep learning. MIT press. 



 35 

Hein, D., Hentschel, A., Runkler, T., Udluft, S., 2017. Particle swarm optimization for generating 

interpretable fuzzy reinforcement learning policies. Eng. Appl. Artif. Intell. 65, 87–98. 

https://doi.org/10.1016/j.engappai.2017.07.005 

Hein, D., Udluft, S., Runkler, T.A., 2018. Interpretable policies for reinforcement learning by genetic 

programming. Eng. Appl. Artif. Intell. 76, 158–169. https://doi.org/10.1016/j.engappai.2018.09.007 

Jin, Y., 2000. Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability 

improvement. IEEE Trans. Fuzzy Syst. 8, 212–221. https://doi.org/10.1109/91.842154 

Kochenderfer, M.J., Amato, C., Chowdhary, G., How, J.P., Reynolds, H.J.D., Thornton, J.R., Torres-

Carrasquillo, P.A., Üre, N.K., Vian, J., 2015. Decision Making Under Uncertainty: Theory and 

Application. 

Kosko, B., 1994. Fuzzy systems as universal approximators. IEEE Trans. Comput. 43, 1329–1333. 

Lecun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444. 

https://doi.org/10.1038/nature14539 

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D., 2015. 

Continuous control with deep reinforcement learning. https://doi.org/10.1561/2200000006 

Lipton, Z.C., 2018. The mythos of model interpretability. Commun. ACM 61, 36–43. 

https://doi.org/10.1145/3233231 

Maes, F., Fonteneau, R., Wehenkel, L., Ernst, D., 2012. Policy search in a space of simple closed-form 

formulas: Towards interpretability of reinforcement learning. Lect. Notes Comput. Sci. (including 

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 7569 LNAI, 37–51. 

https://doi.org/10.1007/978-3-642-33492-4_6 

Mamdani, E.H., Assilian, S., 1975. An experiment in linguistic synthesis with a fuzzy logic controller. Int. 

J. Man. Mach. Stud. 7, 1–13. https://doi.org/10.1016/S0020-7373(75)80002-2 

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M., 2013. 

Playing Atari with Deep Reinforcement Learning 1–9. https://doi.org/10.1038/nature14236 

Mucientes, M., Casillas, J., 2007. Quick design of fuzzy controllers with good interpretability in mobile 

robotics. IEEE Trans. Fuzzy Syst. 15, 636–651. https://doi.org/10.1109/TFUZZ.2006.889889 

Nauck, D., Kruse, R., 1998. A neuro-fuzzy approach to obtain interpretable fuzzy systems for function 

approximation, in: 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World 

Congress on Computational Intelligence (Cat. No.98CH36228). IEEE, pp. 1106–1111. 

https://doi.org/10.1109/FUZZY.1998.686273 

Noel, M.M., Pandian, B.J., 2014. Control of a nonlinear liquid level system using a new artificial neural 

network based reinforcement learning approach. Appl. Soft Comput. J. 23, 444–451. 

https://doi.org/10.1016/j.asoc.2014.06.037 



 36 

Rong, H., Angelov, P.P., Gu, X., Bai, J., 2018. Stability of Evolving Fuzzy Systems Based on Data Clouds. 

IEEE Trans. Fuzzy Syst. 26, 2774–2784. https://doi.org/10.1109/TFUZZ.2018.2793258 

Ross, S., Gordon, G.J., Bagnell, J.A., 2010. A Reduction of Imitation Learning and Structured Prediction to 

No-Regret Online Learning. In AISTATS 15, 627–635. http://arxiv.org/abs/1011.0686 

Rummery, G., Niranjan, M., 1994. On-line Q-learning using connectionist systems (Technical report). 

University of Cambridge, Department of Engineering Cambridge, England.  

Samsudin, K., Ahmad, F.A., Mashohor, S., 2011. A highly interpretable fuzzy rule base using ordinal 

structure for obstacle avoidance of mobile robot. Appl. Soft Comput. 11, 1631–1637. 

https://doi.org/10.1016/j.asoc.2010.05.002 

Schaal, S., 1999. Is imitation learning the route to humanoid robots? Trends Cogn. Sci. 3, 233–242. 

https://doi.org/10.1016/S1364-6613(99)01327-3 

Sheen, M., n.d. Reinforcement Learning Example - Pendulum Controller w/ Animation [WWW 

Document]. URL https://ww2.mathworks.cn/matlabcentral/fileexchange/57882-reinforcement-

learning-example-pendulum-controller-w-animation (accessed 3.31.19). 

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M., 2014. Deterministic policy 

gradient algorithms, in: 31st International Conference on Machine Learning, ICML 2014. pp. 605–

619. 

Sutton, R.S., Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press. 

Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y., 2000. Policy gradient methods for reinforcement 

learning with function approximation, in: Advances in Neural Information Processing Systems. pp. 

1057–1063. 

Takagi, T., Sugeno, M., 1985. Fuzzy Identification of Systems and Its Applications to Modeling and 

Control, in: IEEE Transactions on Systems, Man and Cybernetics. Elsevier, pp. 116–132. 

https://doi.org/10.1109/TSMC.1985.6313399 

Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S., 2018. Programmatically interpretable 

reinforcement learning. 35th Int. Conf. Mach. Learn. ICML 2018 11, 8024–8033. 

Wang, L.X., Mendel, J.M., 1992. Fuzzy Basis Functions, Universal Approximation, and Orthogonal Least-

Squares Learning. IEEE Trans. Neural Networks 3, 807–814. https://doi.org/10.1109/72.159070 

Watkins, C.J.C.H., 1989. Learning from delayed rewards. King’s College, Cambridge. 

Zadeh, L.A., 1965. Fuzzy sets. Inf. Control 8, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X 

  



 37 

Figure Captions List 

 

Fig. 1.  Block diagram of IFRL. 

Fig. 2.  A typical grid. 

Fig. 3.  Concept of data clouds. 

Fig. 4.  Calculation of 𝜎. 

Fig. 5.  Effect of 𝛿. 

Fig. 6.  Results of learning a univariate distribution. 

Fig. 6(a) Estimated vs. actual CDF. 

Fig. 6(b) RMS of estimation error. 

Fig. 7.  Fuzzy generalization of policies between different states. 

Fig. 8.  The mountain car problem. 

Fig. 9.  Steps per episode in Mountain Car problem (AnYa vs. state aggregation). 

Fig. 10.  Cost-to-go function learned by the two methods. 

Fig. 10(a) AnYa 

Fig. 10(b) state aggregation 

Fig. 11.  Results for the Mountain Car Problem with continuous action space. 

Fig. 12.  A typical gridworld. 

Fig. 13.  Steps per episode for the Continuous Gridworld problem with 2-D action space. 

Fig. 14.  The pendulum positioning problem. 

Fig. 15.  Phase trajectory of the pendulum. 

Fig. 16.  Optimal trajectories of tank levels (DP vs. IFRL).  
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Table Captions List 

 

Table I Mountain car problem. 

Table II Online learned rules. 

Table III Continuous gridworld. 

Table IV Pendulum positioning problem. 

Table V Tank level control problem. 



1. Derivation of Eq. (7): 

 

The coordinate variable for the 𝑖𝑡ℎ dimension is denoted with 𝑎𝑖 (recall the role of 

𝑥, 𝑦, 𝑧, … ). 𝑎𝑖1  and 𝑎𝑖2  are the two coordinates (𝑎𝑖2 > 𝑎𝑖1 ) of the border on the 

rectangular data cloud. 

 

 

 

Suppose that the data samples are randomly distributed within the cloud, the variance 

is 

 𝜎2 = E(‖𝐗‖2) − ‖E(𝐗)‖2 

=
∫ ∫ … ∫ (𝑎1

2 + 𝑎2
2 + ⋯ + 𝑎𝑛

2)d𝑎1d𝑎2 … d𝑎𝑛
𝑎𝑛2

𝑎𝑛1

𝑎22

𝑎21

𝑎12

𝑎11

(𝑎12 − 𝑎11)(𝑎22 − 𝑎21) … (𝑎𝑛2 − 𝑎𝑛1)

− [(
𝑎11 + 𝑎12

2
)

2

+ (
𝑎21 + 𝑎22

2
)

2

+ ⋯

+ (
𝑎𝑛1 + 𝑎𝑛2

2
)

2

] 

=
1

3
⋅

1

∏ (𝑎𝑖2 − 𝑎𝑖1)𝑛
𝑖=1

⋅ ∑ ((𝑎𝑖2
3 − 𝑎𝑖1

3 ) ∏ (𝑎𝑗2 − 𝑎𝑗1)

𝑛

𝑗=1,𝑗≠𝑖

)

𝑛

𝑖=1

−
1

4
∑(𝑎𝑖1 + 𝑎𝑖2)2

𝑛

𝑖=1

 

(1) 

 

Note that 𝑎𝑖2
3 − 𝑎𝑖1

3  can be expanded to (𝑎𝑖2 − 𝑎𝑖1)(𝑎𝑖2
2 + 𝑎𝑖1

2 + 𝑎𝑖2𝑎𝑖1), thus Eq. (1) 



is 

 
𝜎2 =

1

3
⋅

1

∏ (𝑎𝑖2 − 𝑎𝑖1)𝑛
𝑖=1

⋅ ∑ ((𝑎𝑖2
2 + 𝑎𝑖1
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−
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4
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𝑛

𝑖=1

 

=
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−
1

4
∑(𝑎𝑖1 + 𝑎𝑖2)2

𝑛
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=
1
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𝑛

𝑖=1

 

=
1

12
∑ 𝑠𝑡𝑒𝑝𝑖

2

𝑛

𝑖=1

 

(2) 

The highlighted parts in Eq. (2) are cancelled. 

 

  



2. The Sarsa(λ) algorithm with fuzzy features and linear function approximation using 

AnYa: 

 

Note: Please refer to Section 12.7, page 303 of the textbook for reinforcement learning 

by Prof. Sutton and Prof. Barto, which can be downloaded via 

http://incompleteideas.net/book/RLbook2018.pdf. 

 

Algorithm parameters: 

step size (learning rate) 𝛼 > 0,  

trace decay rate 𝜆𝑡𝑟 ∈ [0,1],  

discount rate 𝛾 ∈ [0,1] 

probability of taking a random action 𝜀 ∈ [0,1] 

 

Initialize: 𝐂 = 𝟎 

 

Loop for each episode: 

Initialize 𝐒 

Choose 𝐀 near greedily from 𝐒 using 𝐂 

Calculate 𝛌(𝐒, 𝐀) = [𝜆1 𝜆2 … 𝜆𝑁], with 𝜆𝑗 =
𝐷𝑗

∑ 𝐷𝑙
𝑁
𝑙=1

, 𝐷𝑗 =
1

1+
‖𝐱−𝛍𝐣‖

2

𝜎𝑗
2

,  

𝐱 = (
𝐒
𝐀

), 𝛍𝐣 = (
𝐒𝐣

∗

𝐀𝐣
∗), 𝜎 = √

1

12
∑ 𝑠𝑡𝑒𝑝

𝑖
2𝑛

𝑖=1  

𝐳 ← 𝟎  

Loop for each step of episode: 

| Take action 𝐀, observe 𝑅, 𝐒′ 

| 𝑞̂(𝐒, 𝐀) ← 𝛌T𝐂 

| 𝛿 ← 𝑅 − 𝑞̂(𝐒, 𝐀) 

| 𝐳 ← 𝐳 + 𝛌 

| If 𝐒′ is terminal then: 

 𝐂 ← 𝐂 + 𝛼𝛿𝐳 

   Go to next episode 

| Choose 𝐀′ near greedily from 𝐒′ using 𝐂 

| Calculate 𝛌′(𝐒′, 𝐀′) with 𝐒′ and 𝐀′ 

| 𝑞̂(𝐒′, 𝐀′) ← 𝛌′T𝐂 

| 𝛿 ← 𝛿 + 𝛾𝑞̂(𝐒′, 𝐀′) 

| 𝐂 ← 𝐂 + 𝛼𝛿𝐳 

| 𝐳 ← 𝛾𝜆𝑡𝑟𝐳 

 | 𝐒 ← 𝐒′, 𝐀 ← 𝐀′, 𝛌 ← 𝛌′ 

 

  

http://incompleteideas.net/book/RLbook2018.pdf


3. Forming the grid in other ways 

 

Suppose that the number of segments/intervals in each dimension is 𝑠𝑖 , 𝑖 =

1,2, … , 𝑛. The total number of nodes is 

 𝑠 = ∏ 𝑠𝑖

𝑛

𝑖=1

 (1) 

If 𝑠𝑖 is the same for every dimension, Eq. (1) turns into 

  𝑠 = 𝑠̄𝑛 (2) 

where 𝑠̄ is the unified number of segments in each dimension. This implies that the 

number of nodes in the grid grows exponentially with the number of dimensions. 

To alleviate it, other methods for selecting prototypes should be applied. Specially, 

new methods should be able to decouple the number of nodes and the number of 

dimensions. The simplest way is to randomly select 𝑠 samples in the state-action space, 

and use them as nodes of the grid. In this case, calculation of 𝜎 should be reformulated. 

Denote the volume of the state-action space as 𝑉, and each sample is allocated with 

  

 𝑉𝑖 =
𝑉

𝑠
 (3) 

Suppose that 𝑉𝑖 is occupied by a hypersphere of 𝑛 dimensions. If sampling randomly 

within the hypersphere, the variance is 

 𝜎2 = ∫ 𝑟2d𝑟
𝑅

0

=
𝑅3

3
 (4) 

where 𝑅 is the radius of the hypersphere. Eq. (4) implies that the standard deviation 

𝜎 can be expressed as the function of 𝑅: 

  𝜎 =
𝑅

3
2

√3
 (5) 

Volume of a 𝑛-dimensional hypersphere is 

 𝑉𝑖 =
𝜋𝑛/2𝑅𝑛

𝛤(1 +
𝑛
2)

 (6) 

Therefore, 𝜎 is 

 𝜎 =
1

√3
(𝛤(1 +

𝑛

2
) ⋅

𝑉

𝑠
⋅

1

𝜋𝑛/2
)

3
2𝑛

 (7) 

In this way, the number 𝑠 is subject to specifics of the problem and needs not to be 

exponential in the number of dimensions. 



For some problems, randomly determined prototypes may not produce satisfactory 

results. This is simply because the resolution of the grid is not large enough to 

distinguish between good or bad action candidates if the number of nodes in the grid is 

too small. This is the law of nature: higher-dimensional space contains more 

information and requires more resources for representation. In these cases, 

dimensionality reduction techniques in both the state and action space, like changing 

the way of state representation (e.g. using relative quantities rather than absolute ones 

as the state variable), removing irrelevant components in the action variable (those 

make little difference to the reward), will be helpful. However, if dimensionality 

reduction is impossible, methods which reduce resources consumption only on 

computation but not memory should be applied. Specifically, note that most 

components of 𝛌  are approximately zero, especially 

those corresponding with nodes far away from the 

current data sample. For high-dimensional state-action 

space, the number of nodes can be quite large. It is 

unnecessary to perform value evaluation and 

consequents update with the whole 𝛌 vector. Rather, 

only parts of it have to be used. Upon each time step, a 

subgrid near the encountered data sample is used for 

calculation, rather than the full one. This reduces 

computations significantly. Memory resources required 

can be reduced by other techniques like feature 

hashing1, which is out of the scope of this paper. 

 

 
1 Weinberger, K.Q., Dasgupta, A., Langford, J., Smola, A.J., Attenberg, J., 2009. Feature hashing for 

large scale multitask learning, in: International Conference on Machine Learning. 



4. Flowchart of the ALMMo system’s learning process2 

 

 
2 Reproduced from: Angelov, P.P., Gu, X., Principe, J.C., 2017. Autonomous learning multi-model systems from data streams. IEEE Trans. Fuzzy Syst. 6706, 1–12. 

https://doi.org/10.1109/TFUZZ.2017.2769039 



Variables and meanings: 

 

𝐾: time instance, at each time instance only one data sample is observed 

𝐱𝐾: data sample observed at the 𝐾𝑡ℎ time instance 

𝛍𝐾: mean of all the data samples observed till the 𝐾𝑡ℎ time instance 

𝑋𝐾: average scalar product of all the data samples observed till the 𝐾𝑡ℎ time instance 

𝑋𝐾 = ∑
1

𝐾
‖𝐱𝐾‖2

𝐾

𝑙=1

 

𝜎𝐾
2 = 𝑋𝐾 − ‖𝛍𝐾‖2  

𝑁𝐾: number of data clouds at the 𝐾𝑡ℎ time instance 

𝛍𝐾,𝑗: focal point of the 𝑗𝑡ℎ data cloud at the 𝐾𝑡ℎ time instance 

𝑆𝐾,𝑗: number of members of the 𝑗𝑡ℎ data cloud at the 𝐾𝑡ℎ time instance 

𝑋𝐾,𝑗 : average scalar product of members of the 𝒋𝒕𝒉  data cloud at the 𝐾𝑡ℎ  time 

instance 

𝐷𝐾(𝐱𝐾) : unimodal discrete density of 𝐱𝐾  calculated using all the data samples 

observed till the 𝐾𝑡ℎ time instance 

𝐷𝐾(𝐱𝐾) =
1

1 +
‖𝐱𝐾 − 𝛍𝐾‖2

𝜎𝐾
2

 

𝐷𝐾,𝑖(𝐱𝐾): unimodal discrete density of 𝐱𝐾 calculated using members of the 𝒊𝒕𝒉 data 

cloud 

𝐷𝐾,𝑖(𝐱𝐾) =
1

1 +
𝑆𝐾−1,𝑖

2 ‖𝐱𝐾 − 𝛍𝐾−1,𝐢‖
2

(𝑆𝐾−1,𝑖 + 1)(𝑆𝐾−1,𝑖𝑋𝐾−1,𝑖 + ‖𝐱𝐾‖2) − ‖𝐱𝐾 + 𝑆𝐾−1,𝑖𝛍𝐾−1,𝑖‖
2

 

𝜆𝐾,𝑗: firing strength of 𝐱𝐾 regarding the 𝑗𝑡ℎ rule, or activation level of 𝐱𝐾 regarding 

the 𝑗𝑡ℎ data cloud 

𝜆𝐾,𝑖 =
𝐷𝐾,𝑖(𝐱𝐾)

∑ 𝐷𝐾,𝑗(𝐱𝐾)𝑁𝐾
𝑗=1

 

𝜂𝐾,𝑗: utility of the 𝑗𝑡ℎ data cloud at the 𝐾𝑡ℎ time instance 

Utility is defined as averaged 𝜆𝑙,𝑗 since the establishment of the 𝑗𝑡ℎ data cloud. If the 

𝑗𝑡ℎ data cloud is formulated at the 𝐼𝑗 time instance, then 𝜂𝐼𝑗,𝑗 is defined to be 1. For 

other time instances after the birth of the data cloud, 𝜂𝐾,𝑗 =
1

𝐾−𝐼𝑗
∑ 𝜆𝑙,𝑗

𝐾
𝑙=𝐼𝑗

. 



5. Using other kinds of orderings in Section 4.3 

 

In Section 4.3, it is stated the learning problem of multivariate action space with 

𝑀 dimensions can be solved by conditioning each component of the action variable 

over a series of artificial states: 𝐴1 on 𝐒, 𝐴2 on [𝐒 𝐴1], 𝐴3 on [𝐒 𝐴1 𝐴2], and 

so on, up to 𝐴𝑀. It is also possible to use the opposite ordering: 𝐴𝑀 on 𝐒, 𝐴𝑀−1 on 

[𝐒 𝐴𝑀], 𝐴𝑀−2 on [𝐒 𝐴𝑀 𝐴𝑀−1], and so on, up to 𝐴1. 

In fact, 𝐴1, 𝐴2, … , 𝐴𝑀 and 𝐒 can be combined in any order. For example, if 𝐀 =

[𝐴1 𝐴2 𝐴3 𝐴4]T , then the conditions can be 𝐒 , [𝐒 𝐴3] , [𝐒 𝐴3 𝐴1] , 
[𝐒 𝐴3 𝐴1 𝐴2]. Or they can be 𝐒, [𝐒 𝐴4], [𝐒 𝐴4 𝐴2], [𝐒 𝐴4 𝐴2 𝐴3]. 

 

This can be proved by definitions and theorems on conditional probability: 

a) The definition of conditional probability is 

 𝑃(𝑌|𝑋) =
𝑃(𝑋𝑌)

𝑃(𝑋)
 (1) 

b) The Multiplication Rule: 

 

𝑃(𝐴1𝐴2 … 𝐴𝑀𝐒)

= 𝑃(𝐒) ⋅ 𝑃(𝐴1|𝐒) ⋅ 𝑃(𝐴2|𝐒𝐴1) ⋅ 𝑃(𝐴3|𝐒𝐴1𝐴2) ⋅ …

⋅ 𝑃(𝐴𝑀|𝐒𝐴1𝐴2 … 𝐴𝑀−1) 

(2) 

 

According to Eq. (1) and Eq. (2) above, 

 

𝑃(𝐴1𝐴2 … 𝐴𝑀|𝐒) =
𝑃(𝐴1𝐴2 … 𝐴𝑀𝐒)

𝑃(𝐒)
 

=  𝑃(𝐴1|𝐒) ⋅ 𝑃(𝐴2|𝐒𝐴1) ⋅ 𝑃(𝐴3|𝐒𝐴1𝐴2) ⋅ …

⋅ 𝑃(𝐴𝑀|𝐒𝐴1𝐴2 … 𝐴𝑀−1) 

(3) 

Note that the left side of Eq. (3) is the policy for state 𝐒. 

Since the ordering and combination of 𝐴1, 𝐴2, … , 𝐴𝑀 on the right side of Eq. (2) 

do not matter, they can appear in any order on the right side of Eq. (3). 

  



6. Pseudocode and source code of IFRL 

 

Both will be provided here (details to be supplemented later):  

 

https://ww2.mathworks.cn/matlabcentral/fileexchange/73473-interpretable-fuzzy-

reinforcement-learning 

https://ww2.mathworks.cn/matlabcentral/fileexchange/73473-interpretable-fuzzy-reinforcement-learning
https://ww2.mathworks.cn/matlabcentral/fileexchange/73473-interpretable-fuzzy-reinforcement-learning
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