
 1

Interpretable Policies for Reinforcement Learning

by Empirical Fuzzy Sets1

Jianfeng Huang a, *, Plamen P. Angelov b, Chengliang Yin a

a Shanghai Jiao Tong University, School of Mechanical Engineering, 200240 Shanghai, China

b Lancaster University, School of Computing and Communications, LA1 4WA Lancaster, UK

Abstract—This paper proposes a method and an algorithm to implement interpretable fuzzy reinforcement

learning (IFRL). It provides alternative solutions to common problems in RL, like function approximation and

continuous action space. The learning process resembles that of human beings by clustering the encountered

states, developing experiences for each of the typical cases, and making decisions fuzzily. The learned policy

can be expressed as human-intelligible IF-THEN rules, which facilitates further investigation and improvement.

It adopts the actor-critic architecture whereas being different from mainstream policy gradient methods. The

value function is approximated through the fuzzy system AnYa. The state-action space is discretized into a

static grid with nodes. Each node is treated as one prototype and corresponds to one fuzzy rule, with the value

of the node being the consequent. Values of consequents are updated using the Sarsa(λ) algorithm. Probability

distribution of optimal actions regarding different states is estimated through Empirical Data Analytics (EDA),

Autonomous Learning Multi-Model Systems (ALMMo), and Empirical Fuzzy Sets (𝝴FS). The fuzzy kernel of

IFRL avoids the lack of interpretability in other methods based on neural networks. Simulation results with

1 ©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite this article as:

J. Huang, P.P. Angelov and C. Yin, Interpretable policies for reinforcement learning by empirical fuzzy sets. Engineering Applications of Artificial Intelligence

(2020) 103559, https://doi.org/10.1016/j.engappai.2020.103559.

* Corresponding author at: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

E-mail address: 515064@sjtu.edu.cn (Jianfeng Huang)

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.engappai.2020.103559
mailto:515064@sjtu.edu.cn

 2

four problems, namely Mountain Car, Continuous Gridworld, Pendulum Position, and Tank Level Control, are

presented as a proof of the proposed concept.

Keywords—interpretable fuzzy systems, reinforcement learning, probability distribution learning,

autonomous learning systems, AnYa type fuzzy systems, Empirical Fuzzy Sets

I. INTRODUCTION

Reinforcement learning (RL) has attracted extensive research interest in recent years. It is mainly for

solving decision- making problems in Markovian processes (Sutton and Barto, 2018). The goal is to find out

the mapping from states to actions which yields maximal return. Here, “return” is defined as optionally

discounted cumulative rewards within a finite or infinite time horizon. Various algorithms have been

developed to solve RL problems. At the early stage, policies are derived through evaluation of actions values,

like in the classic tabular Q-learning (Watkins, 1989) and Sarsa (Rummery and Niranjan, 1994). However, it

is also possible to make decisions directly through a parameterized function, like in (Silver et al., 2014; Sutton

et al., 2000). State-of-the-art researches combine deep learning (DL) (Goodfellow et al., 2016; Lecun et al.,

2015) with RL to attain powerful algorithms like Deep Q-Learning Networks (DQN) (Antonoglou et al.,

2015; Mnih et al., 2013) which is able to play Atari games at human level and Deep Deterministic Policy

Gradient (DDPG) (Lillicrap et al., 2015) which can be used for high-dimensional continuous action space.

Although great progress in both theory and applications of RL has been achieved, few researches are

observed dealing with improving interpretability of policies produced by existing algorithms. In

circumstances where safety is critical, like bio-medicine, the lack of interpretability makes the application of

RL unacceptable (Maes et al., 2012; Verma et al., 2018). Introduction of deep neural networks (DNN) to deal

with high-dimensional state-action space further deteriorates the problem, since DNN is known to be black-

box.

 3

Current attempts in deriving interpretable policies are characterized by a) expressing them as

parameterized forms like fuzzy rules (Hein et al., 2017; Mucientes and Casillas, 2007; Samsudin et al., 2011),

mathematical formulas (Hein et al., 2018; Maes et al., 2012), domain specific programming language (Verma

et al., 2018), and b) using optimization methods like Particle Swarm Optimization (PSO) (Hein et al., 2017),

genetic algorithms (GA) (Hein et al., 2018; Samsudin et al., 2011), ant colony optimization (ACO)

(Mucientes and Casillas, 2007), or searching algorithms (Maes et al., 2012; Verma et al., 2018) to determine

the parameters. They can be further categorized into two groups according to the objective of the

optimization/searching problem. In (Hein et al., 2018, 2017), an environment model is established using

neural networks (NN), based on historical state-action-reward trajectories from the real environment.

Objective/fitness function of the optimization problem is then expressed as the weight-average return of all

initial states within the RL framework. Here, the role of RL is solely on providing the

objective/fitness/scoring function, rather than updating policy parameters. This kind of methods are typical

model-based ones since they require the availability of environment models. Therefore, they are only

applicable when the system dynamics are relatively easy to model. Another approach is to firstly learn a high-

performance whereas uninterpretable policy (also referred to as “oracle” or nominal policy) through state-of-

the-art methods like DQN, and then search for parameters that minimize the differences between the behavior

of the nominal policy and the parameterized one (Verma et al., 2018). Inspired by imitation learning (Ross

et al., 2010; Schaal, 1999), this method provides policy interpretability by making one in the interpretable

form to imitate another uninterpretable. (Hein et al., 2018) compared these two approaches with different

objectives in parameter optimization/searching, and found that the one that optimizes the RL return directly

actually performs better.

All attempts above fail to learn interpretable policies online, in a per-step manner. Rather, they are all

per-batch. This means that policy parameters won’t be updated until the end of an episode. Furthermore, for

either the return optimization or the policy imitation approaches, the final attained policy is fixed once the

offline learning is finished. If the environment changes, the whole set of policy parameters have to be

 4

relearned. In other words, these algorithms are non-adaptive. Another disadvantage is that whereas the

parameters can be learned automatically, the structure of the policy has to be manually specified a priori, like

the number of membership functions (Mucientes and Casillas, 2007), the number of the rules (Hein et al.,

2017; Mucientes and Casillas, 2007; Samsudin et al., 2011), the complexity of the mathematical formulas

(Hein et al., 2018; Maes et al., 2012), the atoms and operators in the language for policy representation

(Verma et al., 2018), etc. Such decisions are problem-specific and are usually hard to made, which implies

the necessity of trial and error. These drawbacks are shared by most of existing algorithms for interpretable

RL. There are exceptions, though. In (Chia-Feng Juang and Chia-Hung Hsu, 2009), interval type-2 fuzzy sets

are used in antecedent parts of the fuzzy rules, which are online generated automatically through a clustering

algorithm. The algorithm also partitions the input space to reduce the number of rules. Consequent part of

each rule is updated using both Q-learning and ACO, the former of which is per-step whereas the latter is

per-episode. Thus, the algorithm is capable of online learning both the structure and the parameters

automatically. However, discussions in (Chia-Feng Juang and Chia-Hung Hsu, 2009) are restricted to the

problem of wall-following control of a mobile robot, in which the action space is discrete and univariate, and

the number of action candidates is finite and small. Furthermore, the policy is solely action-value based, and

therefore covers only deterministic cases (one state is mapped to exactly one action). In circumstances where

effects of function approximation are significant, stochastic policy may provide better optimality than

deterministic ones (Sutton and Barto, 2018).

The term “interpretability”, though widely mentioned in literature on machine learning, has not yet been

well defined (Lipton, 2018; Maes et al., 2012). In (Maes et al., 2012), interpretability of the policy is indicated

through the Kolmogorov complexity, which is related to the number of symbols used in a certain description

language. Generally speaking, it is more a qualitative metric than a quantitative one (Verma et al., 2018).

Here, we take a practical perspective: a policy is regarded as “interpretable” if it satisfies:

a) users are able to develop intuitive insights about the interactive process between the agent and

the environment. More specifically, this means that:

 5

⚫ the mapping between states/observations and actions should be expressed explicitly in a

human-readable manner, rather than through black-box representations like NN;

⚫ there should be some inductive procedures in the policy derivation, so as to condense the

results and make them more tractable.

b) the form of policy should facilitate integration of priori knowledge as well as modification of

the algorithmic results according to expertise or application requirements.

Fuzzy systems, dating back to (Mamdani and Assilian, 1975; Takagi and Sugeno, 1993; Zadeh, 1965),

are appropriate candidates for such missions. Fuzzy controllers have been widely used in the past decades

and welcomed by engineers, partly due to the fact that the control laws can be conveniently expressed as

interpretable IF-THEN rules. Besides, fuzzy systems are universal approximators (Buckley, 1993; Kosko,

1994; Wang and Mendel, 1992) just like NN and therefore can be used for approximation of value functions

in RL (Jin, 2000; Nauck and Kruse, 1998).

This paper proposes a method and an algorithm to implement interpretable fuzzy reinforcement learning

(IFRL). It adopts the actor-critic architecture and consists of two components, namely the value function

approximator and the optimal policy estimator. The former is based on the recent fuzzy systems AnYa. Value

of a certain state-action pair is estimated as fuzzy ensemble of those of the predefined prototypes. The latter

is a probability distribution learner within the framework of Autonomous Learning Multi-Model Systems

(ALMMo) and Empirical Data Analytics (EDA). Generalization of the learned distribution between different

states is achieved through Empirical Fuzzy Sets (𝝴FS). Cases of multivariate action space are handled through

a hierarchical learning approach. Compared to other methods for interpretable RL, the proposed IFRL is model-

free and learns online in a sample-by-sample or step-by-step manner. As a result, it is able to react to the change

of the environment adaptively in real time. This is possible because IFRL does not rely on offline optimization

or searching to derive the policy parameters. Rather, they are obtained directly from the learned probability

distribution. It is applicable to continuous and multivariate action space, whereas being different from

mainstream policy gradient methods. The policy learned is expressed stochastically, which is sometimes more

 6

favorable than the deterministic ones under the function approximation setting. Compared to classic tabular or

state-of-the-art DNN-based algorithms, the main advantage of IFRL is that it produces policies as human-

intelligible IF-THEN rules, which is convenient for integration of priori knowledge as well as further

investigation and improvement. Numerical experiments on four RL problems are conducted and the results are

presented as a proof of the concept.

The rest of this paper is organized as follows. Section II introduces the proposed IFRL structure. The

value function approximator based on AnYa is discussed in Section III. The optimal policy estimator based

on ALMMo, EDA, and 𝝴FS is discussed in Section IV. Section V presents simulation results and Section VI

gives the conclusion.

II. IFRL STRUCTURE

As with other actor-critic algorithms, IFRL is made up of two components, namely the value function

approximator and the optimal policy estimator. However, the mechanism of generating actual behaviors and

the learning process of optimal policy in IFRL are different from mainstream policy-gradient methods.

Common practice of the latter is to produce actual behaviors directly from a parameterized policy function

describing the probability of selecting a certain action under a certain state. The value function can be used

to aid the learning process of the policy function, but is not required for selecting actions (Sutton and Barto,

2018). The policy function is updated by gradient-based methods to maximize returns.

In the proposed IFRL, actions that are actually carried out come from two different sources. The first

are the advised actions from the function approximator by comparing values of all candidates. The second

are the inferred actions from the policy estimator which reflects the distribution of advised actions. The two

sources can be combined in different ways, e.g. switching to one with a certain probability. The policy

estimator differs from policy gradient methods in that it learns the policy from observed samples empirically,

rather than through optimization techniques like gradient descent. Details are to be given in Section IV.

Candidates evaluated by the function approximator are also from two different sources. The first are the

 7

randomly selected actions from predefined intervals across the whole range of each dimension (𝐴𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠1

in Fig. 1). For example, velocity of vehicles typically ranges from 0 to 200 km/h, which can be divided into

20 intervals with the interval length being 10 km/h. Thus, the first interval will be 0-10 km/h, and the second

10-20 km/h, and so on. At each time step for decision making, within each interval, one sample of velocity

is randomly selected for evaluation. This approach is aiming to enable sparse, coarse, and fast exploration of

the action space, and identify regions that are worth further investigation. Therefore, the interval length can

be set quite large, which facilitates computation and memory reduction. The second source of candidates are

actions randomly selected from the neighborhood of the inferred action (𝐴𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠2 in Fig. 1). They are to

enable finer exploration in the region that is promising for optimal actions. The candidate with the largest

estimated value is output as the advised action by the value function approximator.

After the current action 𝐴𝑡 is executed, the agent moves to a new state 𝑆𝑡+1 and receives a reward 𝑅𝑡+1.

The same procedure is repeated to determine the behavior 𝐴𝑡+1 for the new state. The Sarsa(λ) algorithm is

then used to update the value of the last state-action pair (𝑆𝑡, 𝐴𝑡). The policy estimator is updated each time

the advised action is determined.

Complete block diagram of the proposed IFRL is shown in Fig. 1.

Fig. 1. Block diagram of IFRL.

 8

III. VALUE FUNCTION APPROXIMATOR

The value function approximator is responsible for evaluating values of different state-action pairs, and

providing samples for the optimal policy estimator. We use AnYa for this purpose. This section discusses

the framework of AnYa as well as the calculation and update of the firing strengths and consequents.

A. AnYa Framework

The value function approximator is based on the fuzzy rule-based system AnYa (Angelov, 2012;

Angelov and Yager, 2012, 2011) within the EDA framework (Angelov et al., 2016; P. Angelov et al., 2017;

Plamen P Angelov et al., 2017). The approximated value of a certain state-action pair is determined by

constructing a set of fuzzy rules, each of which can be written as

 IF (
𝐒
𝐀
) ∼ (

𝐒𝐣
∗

𝐀𝐣
∗) Then 𝑞̂(𝐒, 𝐀) = 𝐶𝑗 (1)

where 𝐒 and 𝐀 are the state and action variable, respectively. (
𝐒𝐣
∗

𝐀𝐣
∗) denotes the 𝑗𝑡ℎ prototype, 𝑗 = 1,2, … ,𝑁

where 𝑁 denotes the total number of prototypes. A prototype represents a typical case. The “∼” can be

interpreted as “being close to”. 𝑞̂(𝐒, 𝐀) is the estimated value of (
𝐒
𝐀
). 𝐶𝑗 is the consequent part of the rule.

Finally, the estimation that is used is calculated as the weighted average of all consequents

 𝑞̂(𝐒, 𝐀) = 𝛌T𝐂 (2)

where 𝛌 is the firing strength of each rule

 𝛌 = [𝜆1 𝜆2 … 𝜆𝑁]
T (3)

and 𝐂 is the vector of consequents

 𝐂 = [𝐶1 𝐶2 … 𝐶𝑁]
T (4)

B. State-action Space Discretization

State and action variables may come with multiple dimensions, and may be a hybrid of continuous and

discrete components. For example, when describing the status of a vehicle on a straight road, we may consider

 9

both, the moving direction and the velocity. The former is discrete with two enumerations: forward or

backward. The latter is continuous with the possible range from 0 to 200 km/h. The approach here is to

transform each continuous dimension into the discrete one with a certain step, and form a static grid. A typical

one is shown in Fig. 2. The smaller the steps, the finer the hybrid/continuous space is approximated, whereas

the number of nodes in the grid is larger and more computations are needed.

Each node is treated as one prototype.

Fig. 2. A typical grid.

C. Firing Strength Calculation

Calculation of the firing strength vector 𝛌 is based on the EDA framework (P. Angelov et al., 2017).

Fig. 3 shows the concept. A data cloud is formed with multiple data samples whereas requiring only two

parameters for description, namely the focal point 𝛍𝐣 denoting the most representative sample and the

standard deviation 𝜎𝑗 denoting the “radius” or range of the 𝑗𝑡ℎ cloud. It should be noted that the cloud itself

can be of any shape. With the grid defined in Section III.B, the state-action space is partitioned into a set of

sub-blocks with equal volumes. Each block is treated as a data cloud with its focal point being the

corresponding node 𝛍𝐣 = (
𝐒𝐣
∗

𝐀𝐣
∗), 𝑗 = 1,2, … ,𝑁. Typicality of a certain sample 𝐱 = (

𝐒
𝐀
) regarding the 𝑗𝑡ℎ data

cloud is measured through the unimodal discrete density (Plamen P. Angelov et al., 2017):

 𝐷𝑗 =
1

1+
‖𝐱−𝛍𝐣‖

2

𝜎𝑗
2

 (5)

 10

It comes with the form of a Cauchy function and can also be interpreted as the membership function in

conventional fuzzy systems. For a static data cloud (𝜎𝑗 being fixed), the closer the sample is to the focal point,

the larger the typicality. Fig. 3 shows the variation of 𝐷𝑗 regarding 𝛍𝐣 = (
0.5
0.5
). Note how 𝐷𝑗 decays radially.

Fig. 3. Concept of data clouds.

To calculate 𝐷𝑗 , 𝛍𝐣 and 𝜎𝑗 should be known. As has been mentioned before, 𝛍𝐣 is the 𝑗𝑡ℎ node itself.

Thus 𝜎𝑗 remains to be determined. As is shown in Fig. 4, variance of samples in the data cloud can be

calculated as (assuming that all members are randomly distributed within the cloud)

 11

2 2

1 1

2 22

2 2
2 2

1 2 1 2

2 1 2 1

2 2

2 1 2 1

E() E()

+) ()

()() 4 4

() ()

12

()d d
x y

x y
x y x y y

x y

x x y

x y

x yx y



+ +
−= −

− −

− −
=

= −

+

 

X X

（
 (6)

Fig. 4. Calculation of 𝜎.

where 𝑥1, 𝑥2, 𝑦1, and 𝑦2 are coordinates of the borders.

Generally, for the state-action space with 𝑛 dimensions, the standard deviation of each cloud is

 𝜎 = √
1

12
∑ 𝑠𝑡𝑒𝑝𝑖2
𝑛
𝑖=1 (7)

where 𝑠𝑡𝑒𝑝𝑖 is the step size for discretization of the 𝑖𝑡ℎ dimension. More details on derivation of Eq. (7) is

given in the supplementary material. In practice, it is usually favorable to “shrink” the clouds. This is done

by adding a factor 𝛿 to the step size:

 𝜎 = √
1

12
∑ (𝛿 ⋅ 𝑠𝑡𝑒𝑝𝑖)2
𝑛
𝑖=1 (8)

For example, 𝛿 =
1

2
 means that size of the cloud in each dimension is half of the original step sizes (Fig. 5).

 12

Fig. 5. Effect of 𝛿.

Finally, firing strength of the 𝑗𝑡ℎ rule is defined as the normalized unimodal discrete density (Plamen P.

Angelov et al., 2017):

 𝜆𝑗 =
𝐷𝑗

∑ 𝐷𝑙
𝑁
𝑙=1

 (9)

D. Consequents update

Consequent of each cloud is updated by the Sarsa(λ) algorithm (Sutton and Barto, 2018). The feature

vector and the weight vector in the context of linear function approximation in reinforcement learning

corresponds to the firing strength 𝛌 and the consequents 𝐂 in AnYa, respectively. The tailored version of

Sarsa(λ) for AnYa is detailed in the supplementary material.

E. Computation complexity

It is obvious that the number of nodes in the grid grows exponentially with the number of dimensions,

which results in the curse of dimension. To alleviate this problem, other methods for selecting prototypes

should be applied. Some options are discussed in the supplementary material.

IV. OPTIMAL POLICY ESTIMATOR

The optimal policy estimator, is indeed, a probability distribution learner. It reconstructs the cumulative

distribution function (CDF) from the online observed samples. Discussions of learning an unknown

distribution in this section will focus on continuous cases. For discrete variables, the problem is easier since

 13

the distribution can be learned by simply recording the frequency of each enumeration.

A. Univariate Distribution Learning

Consider the circumstance where the agent observes univariate samples generated from an unknown

continuous distribution. The aim now is to reconstruct the inherent distribution from the samples. There are

many approaches available, the most common of which is to use conventional distribution models like

Gaussian or Cauchy ones for description, and learn the parameters (mean, standard deviation, etc.) with

optimization techniques. Such practices are popular because they are convenient for mathematical analysis.

However, using predefined distribution functions may introduce subjective bias and degrade performances

of the system. Moreover, merely one distribution function is usually not descriptive enough and a mixture of

them is required, which induces the need for clustering.

To address these problems, ALMMo and EDA are used.

1) ALMMo System

ALMMo forms data clouds dynamically from streaming data in an objective way (Plamen P. Angelov et

al., 2017; Angelov and Gu, 2019, 2017a). In the context of machine learning, an ALMMo agent performs online

clustering for a certain variable, while avoiding the need of specifying priori configurations like the number of

clusters. It is a sophisticated system with components like structure identification, online quality monitoring,

parameter identification, online input selection, etc. In the context of IFRL, however, only the first two are used.

Structure identification does the fundamental job of forming data clouds and updating corresponding

parameters like 𝛍 and 𝜎. Upon arrival of a new data sample 𝐱𝐤+𝟏, its unimodal discrete density 𝐷𝑘+1(𝐱𝐤+𝟏) is

calculated using Eq. (5) and then compared with those of the focal points. Based on the result of comparison,

either a new cloud is formed or the meta-parameters of a certain existing one are updated. Online quality

monitoring is to prune the clouds that are less relevant to the recently observed samples and keep the number

of existing clouds from going too large, since more clouds bring about more computations. Flowchart of the

ALMMo system’s learning process is given in the supplementary material. Interested readers can refer to

(Plamen P. Angelov et al., 2017) for further details.

 14

2) EDA Framework

We get a group of autonomously formed clouds and their meta-parameters like mean 𝛍𝐣 , standard

deviation 𝜎𝑗 , support 𝑆𝑗 (the number of members belonging to a certain cloud), etc. with ALMMo. We then

process them with EDA to extract the underlying probabilistic information. Specifically, the quantity

continuous multimodal typicality is used (Plamen P Angelov et al., 2017). It resembles the probability density

function (PDF) whereas differs from it. PDF is predefined, subjective, and considers only spatial relationship

of data samples. For example, if observed samples concentrate around a certain focal point 𝛍, then the

probability density of a sample far away from 𝛍 will be small and its occurrence will be considered less

probable. Comparatively, continuous multimodal typicality considers not only the spatial relationship but

also the frequency of the samples. It approximates frequentist probability when the number of observed

samples is small and automatically transforms into PDF when a lot of samples are observed (P. Angelov et

al., 2017). Since the data clouds are formed online automatically by the ALMMo, continuous multimodal

typicality is totally objective and not based on any priori assumptions of the pattern of data. Denote this

quantity with 𝜏 and for data sample 𝐱 it is (assuming that Euclidean type distance is used)

 𝜏(𝐱) =
𝛤(

𝑛+1

2
)

𝜋
𝑛+1
2 𝑆

∑
𝑆𝑗

𝜎𝑗
𝑛(1+

‖𝐱−𝛍𝐣‖
2

𝜎𝑗
2)

𝑛+1
2

𝑁
𝑗=1 (10)

where 𝑆 is the number of all the observed data samples, 𝑆𝑗 is the number of members belonging to the 𝑗𝑡ℎ

cloud, 𝑛 is the number of dimensions of 𝐱, and 𝑁 is the number of clouds formed dynamically online. For

the univariate case (𝑛 = 1), Eq. (10) turns into

 𝜏(𝑥) =
1

𝜋𝑆
∑

𝑆𝑗

𝜎𝑗(1+
(𝑥−𝜇𝑗)

2

𝜎𝑗
2)

𝑁
𝑗=1 (11)

This function can be used as a form of PDF. The corresponding CDF can be derived by integrating Eq.

(11):

 15

 𝑃(𝑥 ≤ 𝑡) = ∫ 𝜏(𝑥)d𝑥
𝑡

𝑥=−∞
=

∑ 𝑆𝑗(
1

𝜋
arctan(

𝑡−𝜇𝑗

𝜎𝑗
)+

1

2
)𝑁

𝑗=1

𝑆
 (12)

3) Inverse Transform Sampling

The ultimate goal of learning the optimal policy is to reproduce actions from it. This is done through

Inverse Transform Sampling (ITS) (Devroye, 1990). Specifically, for the variable 𝑋, samples are reproduced

by

 𝑋 = 𝐹𝑋
−1(𝑈) (13)

where 𝐹𝑋(𝑡) = 𝑃(𝑥 ≤ 𝑡) is the CDF and 𝑈 is a uniformly distributed random number in the interval [0, 1].

For the CDF in Eq. (12), however, the inverse function is difficult to calculate analytically. Therefore, a 1-D

lookup table is used instead. Eq. (12) is evaluated on evenly spaced points and the values are stored in a table.

The uniform random number generator is called to produce 𝑈 and interpolation is carried out to derive the

interpolated value of 𝐹𝑋
−1(𝑈) at the query point.

Note that the domain of definition of 𝐹𝑋(𝑡) is [−∞, +∞], which may differ from real cases. To fix this

problem, the truncated version (Kochenderfer et al., 2015) of Eq. (12) should be used:

 𝑃𝑡𝑟(𝑥 ≤ 𝑡) =
𝑃(𝑥≤𝑡)−𝑃(𝑥≤𝑙)

𝑃(𝑥≤𝑟)−𝑃(𝑥≤𝑙)
, 𝑙 ≤ 𝑡 ≤ 𝑟 (14)

where 𝑙 and 𝑟 are the left and right boundary of the interval, respectively.

4) Verification

The univariate distribution learning algorithm is tested through a simple simulation. Firstly, an artificial

distribution is defined by a table with two rows specifying the query points and the corresponding cumulative

probability. A batch of samples are then generated from it using ITS and interpolation. At each time step,

one sample is passed to the proposed algorithm. Totally 10000 samples are used. Comparison between the

estimated CDF and the actual one as well as the root-mean-square (RMS) of the estimation error during

training is shown in Fig. 6. It can be seen that the estimated CDF corresponds with the actual one quite well

and the RMS of estimation error falls to a low level with about 1000 samples.

 16

(a) Estimated vs. actual CDF.

(b) RMS of estimation error.

Fig. 6. Results of learning a univariate distribution.

 17

B. Fuzzy Generalization Between Different States

1) 𝝴FS Framework

The last subsection discusses learning of a continuous univariate distribution. Now consider the

extended circumstance where the learned distribution is valid only in a certain state. Moreover, the state

variable is also continuous, but not necessarily univariate. The question is how to generalize the estimated

distribution between different states.

We propose to use for this purpose the ALMMo and the 𝝴FS (Angelov and Gu, 2017b; Rong et al.,

2018). They are much like the density and typicality discussed in Section III with differences in that a) data

clouds are formed dynamically online, whereas in Section III they are predefined and static; b) variable in

the antecedent part is the state variable rather than the state-action pair; c) consequents are the distributions

regarding each state, whereas in Section III they are the estimated values of each state-action pair.

Suppose that the action variable of the reinforcement learning problem is one-dimensional. In this case,

totally (𝑁 + 1) ALMMo agents need to be used, as is illustrated in Fig. 7. Here, 𝑁 denotes the number of

data clouds/prototypes for states. As a result, 𝑁 agents are needed for estimating the distributions of optimal

actions. Apart from them, another ALMMo agent is needed for the state variable. It outputs the firing strength

for each of the 𝑁 rules. For better understanding, recall the process of decision making by human beings. We

categorize numerous situations into several typical ones and take corresponding actions for each of them. For

example, we get more dressing when we travel north, and less when travelling south (assuming that we live

in the Northern Hemisphere). Here, “north” and “south” are typical prototypes of the state variable “latitude”,

and “more” or “less” are the actions for each prototype. We do not keep a table in our mind with the first row

as 0°, 1°, …, etc. and the second row as different levels of dressing, since this will take up too much memory

resources. Instead, we just use two simple rules. This is possible because human beings are able to identify

typical situations and generalize actions from them. ALMMo and 𝝴FS implement these two functionalities,

respectively. Prototypes are identified online through autonomously formed data clouds. Generalization is

done through the fuzzy ensemble of 𝑁 sets of policies corresponding to 𝑁 prototypes.

 18

Fig. 7. Fuzzy generalization of policies between different states.

Upon encounter of a new state 𝐒𝐭+𝟏, which may be of multiple dimensions, the vector of firing strength

𝛌(𝐒𝐭+𝟏) is calculated as in Section III. Let us denote the policy vector as

 𝐅𝑋 = [𝐹𝑋
1 𝐹𝑋

2 … 𝐹𝑋
𝑁]T (15)

where 𝐹𝑋
𝑗
(𝑡) = 𝑃𝑗(𝑥 ≤ 𝑡) is the estimated CDF of optimal actions for the 𝑗𝑡ℎ prototype of state. The policy

for 𝐒𝐭+𝟏 is determined as

 𝐹𝑋
𝐒𝐭+𝟏 = 𝛌T𝐅𝑋 (16)

The superscript means that the CDF is conditioned on 𝐒𝐭+𝟏.

2) Learning of Individual Policy

Whenever an advised action is proposed by the value function approximator, the policy corresponding

to the most relevant situation is updated. Relevance of the current state regarding each prototype is measured

through the firing strength vector 𝛌. Specifically, it is identified as

 𝑖𝑛𝑑 = argmax
𝑗

𝜆𝑗 (17)

The corresponding ALMMo agent for actions is then updated as detailed in (Plamen P. Angelov et al., 2017).

C. Multivariate Actions

Discussions above are restricted to the case of univariate action variable. However, there are problems

with multivariate action space. To solve them within the same framework introduced before, a hierarchical

 19

method is used.

The idea is to learn distributions of each component in the action vector incrementally. Imagine a clock

with two hands. In each round, the player manipulates the two hands and receives a reward as either 0 or 1.

The action variable is 𝐀 = [𝐴1 𝐴2] denoting positions of the two hands, each of which varies continuously.

The aim is to find out the distribution of 𝐀 with which the player maximizes his rewards. Since the optimal

distribution is unknown, the player tries different combinations of [𝐴1 𝐴2] randomly, and for each attempt

records the action and the corresponding reward. Actions with positive rewards are then picked out. For the

first component 𝐴1, a histogram with a certain discretization step can be used to describe the distribution.

However, for the second one, since it is dependent on the first one, doing so would be meaningless. In other

words, distribution of 𝐴2 is conditioned on 𝐴1. This situation is similar to the one in Section IV.B, where the

the univariate action is conditioned on the state. Therefore, the method of fuzzy generalization can be used

here. If the clock comes with 𝑀 hands, firstly the distribution of 𝐴1 is learned, then the conditioned

distribution of 𝐴2 on 𝐴1 , then 𝐴3 on [𝐴1 𝐴2], and so on, up to 𝐴𝑀 . Each time we learn the univariate

distribution of a certain component in the action vector as in Section IV.A, and condition it on the sub-vector

composed of all preceding ones as in Section IV.B.

Now consider a more complex situation where the clock presented to the player in each round is different

and attached with a state variable 𝐒. This is controlled by the environment and not the player. However, it

can still be treated as part of the condition. Therefore, the method discussed before can be applied by simply

appending 𝐒 to each condition: 𝐴1 on 𝐒, 𝐴2 on [𝐒 𝐴1], 𝐴3 on [𝐒 𝐴1 𝐴2], and so on, up to 𝐴𝑀 . In this

way, the problem of multivariate policy learning is handled. It is hierarchical because the learning of each

component is based on the preceding ones.

Decision process of the inferred action for 𝐒𝐭+𝟏 is as follows. Firstly generate 𝐴1 through ITS of the

fuzzily weighted CDF 𝐹𝐴1
𝐒𝐭+𝟏 = 𝛌T(𝐒𝐭+𝟏)𝐅𝐴1 as

 𝐴1 = ITS(𝐹𝐴1
𝐒𝐭+𝟏) (18)

 20

Then generate 𝐴2 as

 𝐴2 = ITS(𝐹𝐴2
[𝐒𝐭+𝟏 𝐴1]) (19)

where 𝐹𝐴2
[𝐒𝐭+𝟏 𝐴1] = 𝛌T([𝐒𝐭+𝟏 𝐴1])𝐅𝐴2. And repeat the procedure for 𝐴3, 𝐴4, etc. until all the components

are determined.

D. Computation complexity

Computation complexity of the optimal policy estimator is discussed in this subsection. Suppose that

the action space has 𝑀 dimensions. In this case, the conditions are 𝐒 , [𝐒 𝐴1] , [𝐒 𝐴1 𝐴2] , …,

[𝐒 𝐴1 𝐴2 … 𝐴𝑀−1], and the number of them is 1 + (𝑀 − 1) = 𝑀. For each condition, one ALMMo

agent is needed to calculate the firing strength vector 𝛌. The number of data clouds within each agent is

denoted as 𝑁𝑖, 𝑖 = 1,2, … ,𝑀. As has been discussed before, each cloud corresponds to one prototype of the

condition, and for each prototype there is one policy, which is a univariate distribution learned through an

ALMMo agent. Thus, the number of all agents needed is

 𝑀𝑎𝑙𝑙 = 𝑀 + ∑ 𝑁𝑖
𝑀
𝑖=1 = 𝑀 + ∑ 𝑁̄𝑀

𝑖=1 = 𝑀 ⋅ (1 + 𝑁̄) (20)

where 𝑁̄ is the average of 𝑁𝑖. 𝑁𝑖 is controlled by online quality monitoring (Plamen P. Angelov et al.,

2017) and its variation is small for the same configurations. Therefore, 𝑁̄ can be regarded as a constant for

action space with different dimensions. Consequently, it can be concluded from Eq. (20) that the

computation complexity grows linearly, rather than exponentially, with increase of the number of

dimensions in the action space. This is one of the advantages of the proposed optimal policy estimator.

V. SIMULATION RESULTS

Four problems, namely Mountain Car, Continuous Gridworld, Pendulum Positioning, and Tank Level

Control, are used for validation.

A. Mountain Car

The Mountain Car problem (Sutton and Barto, 2018) is classic and mainly used for evaluation of

 21

function approximation methods. The goal is to drive the car up to the goal position, which is on the end of

the upslope. Difficulty of the problem is that the power of the car is not strong enough to propel it along the

slope directly. Rather, the car has to be driven in the inverse direction first to build up enough potential energy.

Definition of the problem is shown in Table I. An illustration is given in Fig. 8.

Fig. 8. The mountain car problem.

TABLE I

MOUNTAIN CAR PROBLEM

Item Definition

State transition

𝑥𝑡+1 = bound[𝑥𝑡 + 𝑥̇𝑡+1]

𝑥̇𝑡+1 = bound[𝑥̇𝑡 + 0.001𝐴𝑡 − 0.0025 cos(3𝑥𝑡)]

𝑥̇𝑡 is reset to zero when 𝑥𝑡 reaches the left bound

State variable

[𝑥𝑡 𝑥̇𝑡]

position and velocity of the car

State space

−1.2 ≤ 𝑥𝑡 ≤ 0.5

−0.07 ≤ 𝑥̇𝑡 ≤ 0.07

Initial state 𝑥0 ∈ (−0.6 −0.4]

 22

𝑥̇0 = 0

Terminal state 𝑥𝑇 = 0.5

Maximal steps per episode unrestricted

Discount rate 1

Action variable

𝐴𝑡 can be taken as discrete: 𝐴𝑡 ∈ {+1,−1, 0}

or continuous: 𝐴𝑡 ∈ [−1, 1]

full throttle forward (+1)

full throttle backward (-1)

zero throttle (0)

Action space discrete action variable

Reward -1 on each step until the terminal state is reached

Firstly, AnYa as the value function approximator is compared to state aggregation, which produces one

estimation for one group. Value approximation in state aggregation is based on merely one component of

the weight vector 𝐰 (i.e. the consequent vector 𝐂), whereas in AnYa all the components (or part of them,

depending on the implementation) in 𝐂 are utilized. For the Mountain Car problem, performances of the two

methods are compared through Steps per Episode (SPE), assuming discrete action space. Results are shown

in Fig. 9. It is obvious that AnYa comes with great advantages over state aggregation regarding the learning

rate. Near optimality is obtained after the first several episodes. Comparatively, it takes over 2000 episodes

for state aggregation to achieve the same result. Difference in the learning rate by two methods partly results

from the different numbers of components in the weight vector. In AnYa, only 90 weights need to be learned,

whereas in state aggregation it is 14280. Using the same number of weights in state aggregation as that of

AnYa will result in divergence.

 23

Fig. 9. Steps per episode in Mountain Car problem (AnYa vs. state aggregation).

(a) AnYa

(b) state aggregation

Fig. 10. Cost-to-go function learned by the two methods.

The cost-to-go function learned at the end is shown in Fig. 10. It is obvious that state aggregation with

more weights produces a better approximation. However, although AnYa approximates the true values

coarsely (with only 90 weights), the corresponding policy is near-optimal. This implies that for learning an

 24

optimal policy, the exact value of each state-action pair is not important. Rather, the relativity of magnitude

is what really matters. By considering values of all the nodes or a group of neighboring ones within the grid,

and weighting them fuzzily, AnYa is able to extract this relativity with a small number of weights, which

makes extremely fast learning possible.

The Mountain Car problem is then solved again by treating the action variable as continuous. Results

are shown in Fig. 11. IFRL automatically forms 9 rules online. Note how the data clouds are positioned along

the optimal phase trajectory. To reach the terminal state, the car has to dangle back and forth to accumulate

energy, which is obvious from the plot.

The first four of algorithmically learned rules are listed in Table II. These rules allow human users to

gain insights from them. Firstly, although the action space is continuous, actual behaviors are concentrated

on the two ends, which indicates that the car is going either forward or backward with full throttle most of

the time. Thus, using continuous actions makes little improvement in optimality and is unnecessary. Secondly,

intuition on the optimal policy can be developed by observing PDFs of several prototypes. For example,

PDFs of both the 1st and the 2nd prototype come with peaks on the two ends of the action space. This can be

translated into human-intelligible rules as “IF the car is in the middle of the valley and with low velocity,

THEN it should go either forward or backward with full throttle to build up the potential energy”. If the car

is on the downhill with negative velocity, the firing strength of the 3rd rule will be dominant and accordingly

the car should keep going backward with full throttle, which corresponds to the phase trajectory. On the other

hand, if the car is on the downhill with large velocity (the 4th prototype), then it should go forward with full

throttle to reach the goal directly.

Interpretability through the fuzzy kernel is one of the main advantages of the newly proposed IFRL.

This is possible because:

a) IFRL is able to cluster encountered states online;

b) it is integrated with an optimal policy estimator, which learns the probability distribution of

optimal actions.

 25

Note also that the automatically formed data clouds only cover states on the optimal trajectory, which makes

the method memory-efficient.

Fig. 11. Results for the Mountain Car Problem with continuous action space.

TABLE II

ONLINE LEARNED RULES

ID of data cloud in Fig. 11

IF

state is close to

Then

PDF of action is

1 [−0.4772 0.0113]

 26

2 [−0.2803 0.0140]

3 [−0.9251 −0.0007]

4 [−0.5808 0.0423]

B. Continuous Gridworld

A typical gridworld is shown in Fig. 12. The agent starts at the initial position [5 5] and tries to move

to the target position [10 10]. The classic version treats both the state and action as discrete variables. The

agent chooses one of the four actions in each step: left, right, up, and down. In the adapted version used here,

however, the state and action variables are both continuous, as are shown in Table III. What’s more, the

action variable is now of two dimensions. This means that the agent can move diagonally. Introduction of

the 2-D action space is to validate the method of hierarchical learning in Section IV.C.

 27

Fig. 12. A typical gridworld.

Results of SPE are shown in Fig. 13. The theoretical minimal SPE is 6. The agent achieves near-

optimality after 1500 episodes. From Fig. 13 it can be concluded that the method of hierarchical learning is

effective for problems with multivariate action space.

TABLE III

CONTINUOUS GRIDWORLD

Item Definition

State transition
ℎ𝑡+1 = ℎ𝑡 + ℎ̇𝑡

𝑣𝑡+1 = 𝑣𝑡 + 𝑣̇𝑡

State variable

[ℎ𝑡 𝑣𝑡]

horizontal and vertical position

State space

0 ≤ ℎ𝑡 ≤ 10

0 ≤ 𝑣𝑡 ≤ 10

Initial state

ℎ0 = 5

𝑣0 = 5

Terminal state

ℎ𝑇 = 10

𝑣𝑇 = 10

Maximal steps per episode unrestricted

 28

Discount rate 1

Action variable

[ℎ̇𝑡 𝑣̇𝑡]

−1 < ℎ̇𝑡 < 1

−1 < 𝑣̇𝑡 < 1

Action space continuous action variable

Reward -1 on each step until the terminal state is reached

Fig. 13. Steps per episode for the Continuous Gridworld problem with 2-D action space.

C. Pendulum Positioning

The Pendulum Positioning problem is described in (Sheen, 2016). The pendulum is initially positioned

straight down. A torque is exerted on the pendulum to drive it to the upright position. If the torque is too

small, the pendulum fails to go up. On the other hand, if it is too large, the pendulum simply crosses the target

position and goes to the downside again. The aim is to drive the pendulum uprightly with as few steps as

possible. An extra bonus is provided if the pendulum is successfully positioned to the target, as is shown in

 29

Fig. 14 and Table IV.

Fig. 14. The pendulum positioning problem.

TABLE IV

PENDULUM POSITIONING PROBLEM

Item Definition

State transition refer to (Sheen, 2016) for details

State variable

[𝑥𝑡 𝑥̇𝑡]

angle and angular speed of the pendulum

State space

−𝜋 ≤ 𝑥𝑡 ≤ 𝜋

−𝜋 ≤ 𝑥̇𝑡 ≤ 𝜋

Initial state

𝑥0 = 𝜋

𝑥̇0 = 0

Terminal state

𝑥𝑇 = 0

𝑥̇𝑇 = 0

Maximal steps per episode 1500

Discount rate 0.9

Action variable

𝐴𝑡

𝐴𝑡 can be taken as discrete: 𝐴𝑡 ∈ {−1, 0, 1}

or continuous: 𝐴𝑡 ∈ [−1, 1]

Action space discrete/continuous action variable

 30

Reward

IF √𝑥𝑡+1
2 + 𝑥̇𝑡+1

2 < 0.01

𝑅(𝑡 + 1) = −𝑥𝑡+1
2 − 0.25𝑥̇𝑡+1

2 + 100

ELSE

𝑅(𝑡 + 1) = −𝑥𝑡+1
2 − 0.25𝑥̇𝑡+1

2

Phase trajectory of the pendulum is shown in Fig. 15. The action variable is considered to be continuous.

The pendulum starts at the initial state [𝜋, 0] and travels to the target [0, 0] successfully. Note that [𝜋, 0] and

[−𝜋, 0] are actually the same state.

Fig. 15. Phase trajectory of the pendulum.

D. Tank Level Control

The Tank Level Control problem is described in (Noel and Pandian, 2014). There are two tanks with

different liquid levels. The goal is to maintain the first one at a desired setpoint. This benchmark is to evaluate

the potential of applying IFRL to control problems of nonlinear systems with continuous states and inputs,

which is common in practical engineering circumstances. Definition of the problem is shown in Table V. Fig.

 31

16 shows the optimal trajectories of tank levels obtained by dynamic programming (DP) and IFRL,

respectively. Results from DP are calculated offline and can be treated as theoretically best. It can be observed

that the trajectory from IFRL successfully achieves the control target, though with some chattering. This is

due to the inherent probabilistic characteristics of IFRL.

TABLE V

TANK LEVEL CONTROL PROBLEM

Item Definition

State transition

ℎ1 ≥ ℎ2

{

 ℎ̇1 =

𝑞1 − 𝑟1√ℎ1 − 𝑟3√ℎ1 − ℎ2
𝐴1

ℎ̇2 =
𝑞2 − 𝑟2√ℎ2 − 𝑟3√ℎ1 − ℎ2

𝐴2

ℎ1 ≤ ℎ2

{

 ℎ̇1 =

𝑞1 − 𝑟1√ℎ1 − 𝑟3√ℎ2 − ℎ1
𝐴1

ℎ̇2 =
𝑞2 − 𝑟2√ℎ2 − 𝑟3√ℎ2 − ℎ1

𝐴2

ℎ1(𝑡 + 1) = ℎ1(𝑡) + 0.1ℎ̇1(𝑡)

ℎ2(𝑡 + 1) = ℎ2(𝑡) + 0.1ℎ̇2(𝑡)

State variable

[ℎ1(𝑡) ℎ2(𝑡)]

liquid levels of the two tanks

State space

0 ≤ ℎ1(𝑡) ≤ 10

0 ≤ ℎ2(𝑡) ≤ 10

Initial state

ℎ1(0) = 1

ℎ2(0) = 0

Terminal state ℎ1(𝑇) = 7

Maximal steps per episode 1500

Discount rate 0.99

 32

Action variable 𝐴𝑡 ∈ [0, 20]

Action space continuous action variable

Reward 𝑅(𝑡 + 1) = −|ℎ1(𝑡 + 1) − ℎ1(𝑇)|

Fig. 16. Optimal trajectories of tank levels (DP vs. IFRL).

VI. CONCLUSION

In this paper, a new method and an algorithm are proposed to implement interpretable fuzzy

reinforcement learning (IFRL). The method is able to produce human-intelligible rules online, which

facilitates further investigation and improvement of the policy. It is applicable to problems with continuous

and multivariate action space, which is a great advantage over the classic tabular approaches. Different from

mainstream policy-gradient methods, the learning process of IFRL is much like that of a human. Various

actions are tried and the outcomes are evaluated. Favorable ones are memorized to form a policy. The recent

fuzzy system AnYa is used to approximate values of state-action pairs and acts as an evaluator. The classic

 33

Sarsa(λ) algorithm is used to update consequents of the fuzzy rules. ALMMo with EDA is used for learning

the univariate probability distribution. Inferred actions from the learned CDF are produced through ITS.

Generalization between different states is implemented by 𝝴FS. Hierarchical learning is adopted to deal with

multivariate action space. Solution of the Mountain Car problem shows that the newly proposed method

requires orders of magnitude less parameters and provides low-error solution with orders of magnitude faster

convergence, in addition to its transparency from the human-intelligible fuzzy rules. Effectiveness of

hierarchical learning is validated by solutions of the Continuous Gridworld problem. Potential of applying

IFRL on control problems of nonlinear systems in engineering is evaluated through the Tank Level Control

problem.

Future research directions are:

a) Improvement of the value function approximator. In the current version, a static grid is used. This can

be replaced with a dynamic grid to achieve balance between performances and the number of nodes.

b) Improvement of the optimal policy estimator. The current version clusters states/conditions

encountered with ALMMo. However, a more proper setting is to cluster the variable consisting both

the condition and the action. This is expected to reduced the numbers of rules learned.

c) Addition of a component for learning of the environment model.

d) Addition of the ability to perform planning using algorithms like tree search.

e) Improvement on the way of generating recommended actions from the optimal policy estimator, so as

to reduce chattering in the output. This can be achieved by, for example, using the mean of the

distribution (rather than the sampled one from the CDF) as the inferred action.

f) Treatment of hidden states.

 34

REFERENCES

Angelov, P., 2012. Autonomous Learning Systems. John Wiley & Sons, Ltd, Chichester, UK.

https://doi.org/10.1002/9781118481769

Angelov, P., Gu, X., Kangin, D., 2017. Empirical Data Analytics. Int. J. Intell. Syst. 32, 1261–1284.

https://doi.org/10.1002/int.21899

Angelov, P., Gu, X., Kangin, D., Principe, J., 2016. Empirical data analysis: A new tool for data analytics,

in: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp.

000052–000059. https://doi.org/10.1109/SMC.2016.7844219

Angelov, P., Yager, R., 2012. A new type of simplified fuzzy rule-based system. Int. J. Gen. Syst. 41, 163–

185. https://doi.org/10.1080/03081079.2011.634807

Angelov, P., Yager, R., 2011. Simplified fuzzy rule-based systems using non-parametric antecedents and

relative data density, in: 2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS).

IEEE, pp. 62–69. https://doi.org/10.1109/EAIS.2011.5945926

Angelov, P.P., Gu, X., 2019. Empirical approach to machine learning. Springer.

Angelov, P.P., Gu, X., 2017a. Autonomous learning multi-model classifier of 0-order (ALMMo-0). IEEE

Conf. Evol. Adapt. Intell. Syst. 1–7. https://doi.org/10.1109/EAIS.2017.7954832

Angelov, P.P., Gu, X., 2017b. Empirical Fuzzy Sets. Int. J. Intell. Syst. 00, 1–34.

https://doi.org/10.1002/int.21935

Angelov, Plamen P, Gu, X., Principe, J., 2017. A generalized methodology for data analysis. IEEE Trans.

Cybern. 1, DOI: 10.1109/TCYB.2017.2753880. https://doi.org/10.1109/TCYB.2017.2753880

Angelov, Plamen P., Gu, X., Principe, J.C., 2017. Autonomous learning multi-model systems from data

streams. IEEE Trans. Fuzzy Syst. 6706, 1–12. https://doi.org/10.1109/TFUZZ.2017.2769039

Antonoglou, I., Fidjeland, A.K., Wierstra, D., King, H., Bellemare, M.G., Legg, S., Petersen, S.,

Riedmiller, M., Beattie, C., Graves, A., Sadik, A., Kavukcuoglu, K., Ostrovski, G., Veness, J., Rusu,

A.A., Silver, D., Hassabis, D., Kumaran, D., Mnih, V., 2015. Human-level control through deep

reinforcement learning. Nature 518, 529–533. https://doi.org/10.1038/nature14236

Buckley, J.J., 1993. Sugeno type controllers are universal controllers. Fuzzy sets Syst. 53, 299–303.

https://doi.org/10.1016/0165-0114(93)90401-3

Chia-Feng Juang, Chia-Hung Hsu, 2009. Reinforcement Ant Optimized Fuzzy Controller for Mobile-Robot

Wall-Following Control. IEEE Trans. Ind. Electron. 56, 3931–3940.

https://doi.org/10.1109/TIE.2009.2017557

Devroye, L., 1990. Non-Uniform Random Variate Generation, Proceedings of COMPSTAT 2010 - 19th

International Conference on Computational Statistics, Keynote, Invited and Contributed Papers.

https://doi.org/10.1007/978-3-7908-2604-3-1

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep learning. MIT press.

 35

Hein, D., Hentschel, A., Runkler, T., Udluft, S., 2017. Particle swarm optimization for generating

interpretable fuzzy reinforcement learning policies. Eng. Appl. Artif. Intell. 65, 87–98.

https://doi.org/10.1016/j.engappai.2017.07.005

Hein, D., Udluft, S., Runkler, T.A., 2018. Interpretable policies for reinforcement learning by genetic

programming. Eng. Appl. Artif. Intell. 76, 158–169. https://doi.org/10.1016/j.engappai.2018.09.007

Jin, Y., 2000. Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability

improvement. IEEE Trans. Fuzzy Syst. 8, 212–221. https://doi.org/10.1109/91.842154

Kochenderfer, M.J., Amato, C., Chowdhary, G., How, J.P., Reynolds, H.J.D., Thornton, J.R., Torres-

Carrasquillo, P.A., Üre, N.K., Vian, J., 2015. Decision Making Under Uncertainty: Theory and

Application.

Kosko, B., 1994. Fuzzy systems as universal approximators. IEEE Trans. Comput. 43, 1329–1333.

Lecun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444.

https://doi.org/10.1038/nature14539

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D., 2015.

Continuous control with deep reinforcement learning. https://doi.org/10.1561/2200000006

Lipton, Z.C., 2018. The mythos of model interpretability. Commun. ACM 61, 36–43.

https://doi.org/10.1145/3233231

Maes, F., Fonteneau, R., Wehenkel, L., Ernst, D., 2012. Policy search in a space of simple closed-form

formulas: Towards interpretability of reinforcement learning. Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 7569 LNAI, 37–51.

https://doi.org/10.1007/978-3-642-33492-4_6

Mamdani, E.H., Assilian, S., 1975. An experiment in linguistic synthesis with a fuzzy logic controller. Int.

J. Man. Mach. Stud. 7, 1–13. https://doi.org/10.1016/S0020-7373(75)80002-2

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M., 2013.

Playing Atari with Deep Reinforcement Learning 1–9. https://doi.org/10.1038/nature14236

Mucientes, M., Casillas, J., 2007. Quick design of fuzzy controllers with good interpretability in mobile

robotics. IEEE Trans. Fuzzy Syst. 15, 636–651. https://doi.org/10.1109/TFUZZ.2006.889889

Nauck, D., Kruse, R., 1998. A neuro-fuzzy approach to obtain interpretable fuzzy systems for function

approximation, in: 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World

Congress on Computational Intelligence (Cat. No.98CH36228). IEEE, pp. 1106–1111.

https://doi.org/10.1109/FUZZY.1998.686273

Noel, M.M., Pandian, B.J., 2014. Control of a nonlinear liquid level system using a new artificial neural

network based reinforcement learning approach. Appl. Soft Comput. J. 23, 444–451.

https://doi.org/10.1016/j.asoc.2014.06.037

 36

Rong, H., Angelov, P.P., Gu, X., Bai, J., 2018. Stability of Evolving Fuzzy Systems Based on Data Clouds.

IEEE Trans. Fuzzy Syst. 26, 2774–2784. https://doi.org/10.1109/TFUZZ.2018.2793258

Ross, S., Gordon, G.J., Bagnell, J.A., 2010. A Reduction of Imitation Learning and Structured Prediction to

No-Regret Online Learning. In AISTATS 15, 627–635. http://arxiv.org/abs/1011.0686

Rummery, G., Niranjan, M., 1994. On-line Q-learning using connectionist systems (Technical report).

University of Cambridge, Department of Engineering Cambridge, England.

Samsudin, K., Ahmad, F.A., Mashohor, S., 2011. A highly interpretable fuzzy rule base using ordinal

structure for obstacle avoidance of mobile robot. Appl. Soft Comput. 11, 1631–1637.

https://doi.org/10.1016/j.asoc.2010.05.002

Schaal, S., 1999. Is imitation learning the route to humanoid robots? Trends Cogn. Sci. 3, 233–242.

https://doi.org/10.1016/S1364-6613(99)01327-3

Sheen, M., n.d. Reinforcement Learning Example - Pendulum Controller w/ Animation [WWW

Document]. URL https://ww2.mathworks.cn/matlabcentral/fileexchange/57882-reinforcement-

learning-example-pendulum-controller-w-animation (accessed 3.31.19).

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M., 2014. Deterministic policy

gradient algorithms, in: 31st International Conference on Machine Learning, ICML 2014. pp. 605–

619.

Sutton, R.S., Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y., 2000. Policy gradient methods for reinforcement

learning with function approximation, in: Advances in Neural Information Processing Systems. pp.

1057–1063.

Takagi, T., Sugeno, M., 1985. Fuzzy Identification of Systems and Its Applications to Modeling and

Control, in: IEEE Transactions on Systems, Man and Cybernetics. Elsevier, pp. 116–132.

https://doi.org/10.1109/TSMC.1985.6313399

Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S., 2018. Programmatically interpretable

reinforcement learning. 35th Int. Conf. Mach. Learn. ICML 2018 11, 8024–8033.

Wang, L.X., Mendel, J.M., 1992. Fuzzy Basis Functions, Universal Approximation, and Orthogonal Least-

Squares Learning. IEEE Trans. Neural Networks 3, 807–814. https://doi.org/10.1109/72.159070

Watkins, C.J.C.H., 1989. Learning from delayed rewards. King’s College, Cambridge.

Zadeh, L.A., 1965. Fuzzy sets. Inf. Control 8, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

 37

Figure Captions List

Fig. 1. Block diagram of IFRL.

Fig. 2. A typical grid.

Fig. 3. Concept of data clouds.

Fig. 4. Calculation of 𝜎.

Fig. 5. Effect of 𝛿.

Fig. 6. Results of learning a univariate distribution.

Fig. 6(a) Estimated vs. actual CDF.

Fig. 6(b) RMS of estimation error.

Fig. 7. Fuzzy generalization of policies between different states.

Fig. 8. The mountain car problem.

Fig. 9. Steps per episode in Mountain Car problem (AnYa vs. state aggregation).

Fig. 10. Cost-to-go function learned by the two methods.

Fig. 10(a) AnYa

Fig. 10(b) state aggregation

Fig. 11. Results for the Mountain Car Problem with continuous action space.

Fig. 12. A typical gridworld.

Fig. 13. Steps per episode for the Continuous Gridworld problem with 2-D action space.

Fig. 14. The pendulum positioning problem.

Fig. 15. Phase trajectory of the pendulum.

Fig. 16. Optimal trajectories of tank levels (DP vs. IFRL).

 38

Table Captions List

Table I Mountain car problem.

Table II Online learned rules.

Table III Continuous gridworld.

Table IV Pendulum positioning problem.

Table V Tank level control problem.

1. Derivation of Eq. (7):

The coordinate variable for the 𝑖𝑡ℎ dimension is denoted with 𝑎𝑖 (recall the role of

𝑥, 𝑦, 𝑧, …). 𝑎𝑖1 and 𝑎𝑖2 are the two coordinates (𝑎𝑖2 > 𝑎𝑖1) of the border on the

rectangular data cloud.

Suppose that the data samples are randomly distributed within the cloud, the variance

is

 𝜎2 = E(‖𝐗‖2) − ‖E(𝐗)‖2

=
∫ ∫ … ∫ (𝑎1

2 + 𝑎2
2 + ⋯ + 𝑎𝑛

2)d𝑎1d𝑎2 … d𝑎𝑛
𝑎𝑛2

𝑎𝑛1

𝑎22

𝑎21

𝑎12

𝑎11

(𝑎12 − 𝑎11)(𝑎22 − 𝑎21) … (𝑎𝑛2 − 𝑎𝑛1)

− [(
𝑎11 + 𝑎12

2
)

2

+ (
𝑎21 + 𝑎22

2
)

2

+ ⋯

+ (
𝑎𝑛1 + 𝑎𝑛2

2
)

2

]

=
1

3
⋅

1

∏ (𝑎𝑖2 − 𝑎𝑖1)𝑛
𝑖=1

⋅ ∑ ((𝑎𝑖2
3 − 𝑎𝑖1

3) ∏ (𝑎𝑗2 − 𝑎𝑗1)

𝑛

𝑗=1,𝑗≠𝑖

)

𝑛

𝑖=1

−
1

4
∑(𝑎𝑖1 + 𝑎𝑖2)2

𝑛

𝑖=1

(1)

Note that 𝑎𝑖2
3 − 𝑎𝑖1

3 can be expanded to (𝑎𝑖2 − 𝑎𝑖1)(𝑎𝑖2
2 + 𝑎𝑖1

2 + 𝑎𝑖2𝑎𝑖1), thus Eq. (1)

is

𝜎2 =

1

3
⋅

1

∏ (𝑎𝑖2 − 𝑎𝑖1)𝑛
𝑖=1

⋅ ∑ ((𝑎𝑖2
2 + 𝑎𝑖1

2 + 𝑎𝑖2𝑎𝑖1) ∏(𝑎𝑗2 − 𝑎𝑗1)

𝑛

𝑗=1

)

𝑛

𝑖=1

−
1

4
∑(𝑎𝑖1 + 𝑎𝑖2)2

𝑛

𝑖=1

=
1

3
∑(𝑎𝑖2

2 + 𝑎𝑖2
2 + 𝑎𝑖1𝑎𝑖2)

𝑛

𝑖=1

−
1

4
∑(𝑎𝑖1 + 𝑎𝑖2)2

𝑛

𝑖=1

=
1

12
∑(𝑎𝑖2 − 𝑎𝑖1)2

𝑛

𝑖=1

=
1

12
∑ 𝑠𝑡𝑒𝑝𝑖

2

𝑛

𝑖=1

(2)

The highlighted parts in Eq. (2) are cancelled.

2. The Sarsa(λ) algorithm with fuzzy features and linear function approximation using

AnYa:

Note: Please refer to Section 12.7, page 303 of the textbook for reinforcement learning

by Prof. Sutton and Prof. Barto, which can be downloaded via

http://incompleteideas.net/book/RLbook2018.pdf.

Algorithm parameters:

step size (learning rate) 𝛼 > 0,

trace decay rate 𝜆𝑡𝑟 ∈ [0,1],

discount rate 𝛾 ∈ [0,1]

probability of taking a random action 𝜀 ∈ [0,1]

Initialize: 𝐂 = 𝟎

Loop for each episode:

Initialize 𝐒

Choose 𝐀 near greedily from 𝐒 using 𝐂

Calculate 𝛌(𝐒, 𝐀) = [𝜆1 𝜆2 … 𝜆𝑁], with 𝜆𝑗 =
𝐷𝑗

∑ 𝐷𝑙
𝑁
𝑙=1

, 𝐷𝑗 =
1

1+
‖𝐱−𝛍𝐣‖

2

𝜎𝑗
2

,

𝐱 = (
𝐒
𝐀

), 𝛍𝐣 = (
𝐒𝐣

∗

𝐀𝐣
∗), 𝜎 = √

1

12
∑ 𝑠𝑡𝑒𝑝

𝑖
2𝑛

𝑖=1

𝐳 ← 𝟎

Loop for each step of episode:

| Take action 𝐀, observe 𝑅, 𝐒′

| 𝑞̂(𝐒, 𝐀) ← 𝛌T𝐂

| 𝛿 ← 𝑅 − 𝑞̂(𝐒, 𝐀)

| 𝐳 ← 𝐳 + 𝛌

| If 𝐒′ is terminal then:

 𝐂 ← 𝐂 + 𝛼𝛿𝐳

 Go to next episode

| Choose 𝐀′ near greedily from 𝐒′ using 𝐂

| Calculate 𝛌′(𝐒′, 𝐀′) with 𝐒′ and 𝐀′

| 𝑞̂(𝐒′, 𝐀′) ← 𝛌′T𝐂

| 𝛿 ← 𝛿 + 𝛾𝑞̂(𝐒′, 𝐀′)

| 𝐂 ← 𝐂 + 𝛼𝛿𝐳

| 𝐳 ← 𝛾𝜆𝑡𝑟𝐳

 | 𝐒 ← 𝐒′, 𝐀 ← 𝐀′, 𝛌 ← 𝛌′

http://incompleteideas.net/book/RLbook2018.pdf

3. Forming the grid in other ways

Suppose that the number of segments/intervals in each dimension is 𝑠𝑖 , 𝑖 =

1,2, … , 𝑛. The total number of nodes is

 𝑠 = ∏ 𝑠𝑖

𝑛

𝑖=1

 (1)

If 𝑠𝑖 is the same for every dimension, Eq. (1) turns into

 𝑠 = 𝑠̄𝑛 (2)

where 𝑠̄ is the unified number of segments in each dimension. This implies that the

number of nodes in the grid grows exponentially with the number of dimensions.

To alleviate it, other methods for selecting prototypes should be applied. Specially,

new methods should be able to decouple the number of nodes and the number of

dimensions. The simplest way is to randomly select 𝑠 samples in the state-action space,

and use them as nodes of the grid. In this case, calculation of 𝜎 should be reformulated.

Denote the volume of the state-action space as 𝑉, and each sample is allocated with

 𝑉𝑖 =
𝑉

𝑠
 (3)

Suppose that 𝑉𝑖 is occupied by a hypersphere of 𝑛 dimensions. If sampling randomly

within the hypersphere, the variance is

 𝜎2 = ∫ 𝑟2d𝑟
𝑅

0

=
𝑅3

3
 (4)

where 𝑅 is the radius of the hypersphere. Eq. (4) implies that the standard deviation

𝜎 can be expressed as the function of 𝑅:

 𝜎 =
𝑅

3
2

√3
 (5)

Volume of a 𝑛-dimensional hypersphere is

 𝑉𝑖 =
𝜋𝑛/2𝑅𝑛

𝛤(1 +
𝑛
2)

 (6)

Therefore, 𝜎 is

 𝜎 =
1

√3
(𝛤(1 +

𝑛

2
) ⋅

𝑉

𝑠
⋅

1

𝜋𝑛/2
)

3
2𝑛

 (7)

In this way, the number 𝑠 is subject to specifics of the problem and needs not to be

exponential in the number of dimensions.

For some problems, randomly determined prototypes may not produce satisfactory

results. This is simply because the resolution of the grid is not large enough to

distinguish between good or bad action candidates if the number of nodes in the grid is

too small. This is the law of nature: higher-dimensional space contains more

information and requires more resources for representation. In these cases,

dimensionality reduction techniques in both the state and action space, like changing

the way of state representation (e.g. using relative quantities rather than absolute ones

as the state variable), removing irrelevant components in the action variable (those

make little difference to the reward), will be helpful. However, if dimensionality

reduction is impossible, methods which reduce resources consumption only on

computation but not memory should be applied. Specifically, note that most

components of 𝛌 are approximately zero, especially

those corresponding with nodes far away from the

current data sample. For high-dimensional state-action

space, the number of nodes can be quite large. It is

unnecessary to perform value evaluation and

consequents update with the whole 𝛌 vector. Rather,

only parts of it have to be used. Upon each time step, a

subgrid near the encountered data sample is used for

calculation, rather than the full one. This reduces

computations significantly. Memory resources required

can be reduced by other techniques like feature

hashing1, which is out of the scope of this paper.

1 Weinberger, K.Q., Dasgupta, A., Langford, J., Smola, A.J., Attenberg, J., 2009. Feature hashing for

large scale multitask learning, in: International Conference on Machine Learning.

4. Flowchart of the ALMMo system’s learning process2

2 Reproduced from: Angelov, P.P., Gu, X., Principe, J.C., 2017. Autonomous learning multi-model systems from data streams. IEEE Trans. Fuzzy Syst. 6706, 1–12.

https://doi.org/10.1109/TFUZZ.2017.2769039

Variables and meanings:

𝐾: time instance, at each time instance only one data sample is observed

𝐱𝐾: data sample observed at the 𝐾𝑡ℎ time instance

𝛍𝐾: mean of all the data samples observed till the 𝐾𝑡ℎ time instance

𝑋𝐾: average scalar product of all the data samples observed till the 𝐾𝑡ℎ time instance

𝑋𝐾 = ∑
1

𝐾
‖𝐱𝐾‖2

𝐾

𝑙=1

𝜎𝐾
2 = 𝑋𝐾 − ‖𝛍𝐾‖2

𝑁𝐾: number of data clouds at the 𝐾𝑡ℎ time instance

𝛍𝐾,𝑗: focal point of the 𝑗𝑡ℎ data cloud at the 𝐾𝑡ℎ time instance

𝑆𝐾,𝑗: number of members of the 𝑗𝑡ℎ data cloud at the 𝐾𝑡ℎ time instance

𝑋𝐾,𝑗 : average scalar product of members of the 𝒋𝒕𝒉 data cloud at the 𝐾𝑡ℎ time

instance

𝐷𝐾(𝐱𝐾) : unimodal discrete density of 𝐱𝐾 calculated using all the data samples

observed till the 𝐾𝑡ℎ time instance

𝐷𝐾(𝐱𝐾) =
1

1 +
‖𝐱𝐾 − 𝛍𝐾‖2

𝜎𝐾
2

𝐷𝐾,𝑖(𝐱𝐾): unimodal discrete density of 𝐱𝐾 calculated using members of the 𝒊𝒕𝒉 data

cloud

𝐷𝐾,𝑖(𝐱𝐾) =
1

1 +
𝑆𝐾−1,𝑖

2 ‖𝐱𝐾 − 𝛍𝐾−1,𝐢‖
2

(𝑆𝐾−1,𝑖 + 1)(𝑆𝐾−1,𝑖𝑋𝐾−1,𝑖 + ‖𝐱𝐾‖2) − ‖𝐱𝐾 + 𝑆𝐾−1,𝑖𝛍𝐾−1,𝑖‖
2

𝜆𝐾,𝑗: firing strength of 𝐱𝐾 regarding the 𝑗𝑡ℎ rule, or activation level of 𝐱𝐾 regarding

the 𝑗𝑡ℎ data cloud

𝜆𝐾,𝑖 =
𝐷𝐾,𝑖(𝐱𝐾)

∑ 𝐷𝐾,𝑗(𝐱𝐾)𝑁𝐾
𝑗=1

𝜂𝐾,𝑗: utility of the 𝑗𝑡ℎ data cloud at the 𝐾𝑡ℎ time instance

Utility is defined as averaged 𝜆𝑙,𝑗 since the establishment of the 𝑗𝑡ℎ data cloud. If the

𝑗𝑡ℎ data cloud is formulated at the 𝐼𝑗 time instance, then 𝜂𝐼𝑗,𝑗 is defined to be 1. For

other time instances after the birth of the data cloud, 𝜂𝐾,𝑗 =
1

𝐾−𝐼𝑗
∑ 𝜆𝑙,𝑗

𝐾
𝑙=𝐼𝑗

.

5. Using other kinds of orderings in Section 4.3

In Section 4.3, it is stated the learning problem of multivariate action space with

𝑀 dimensions can be solved by conditioning each component of the action variable

over a series of artificial states: 𝐴1 on 𝐒, 𝐴2 on [𝐒 𝐴1], 𝐴3 on [𝐒 𝐴1 𝐴2], and

so on, up to 𝐴𝑀. It is also possible to use the opposite ordering: 𝐴𝑀 on 𝐒, 𝐴𝑀−1 on

[𝐒 𝐴𝑀], 𝐴𝑀−2 on [𝐒 𝐴𝑀 𝐴𝑀−1], and so on, up to 𝐴1.

In fact, 𝐴1, 𝐴2, … , 𝐴𝑀 and 𝐒 can be combined in any order. For example, if 𝐀 =

[𝐴1 𝐴2 𝐴3 𝐴4]T , then the conditions can be 𝐒 , [𝐒 𝐴3] , [𝐒 𝐴3 𝐴1] ,
[𝐒 𝐴3 𝐴1 𝐴2]. Or they can be 𝐒, [𝐒 𝐴4], [𝐒 𝐴4 𝐴2], [𝐒 𝐴4 𝐴2 𝐴3].

This can be proved by definitions and theorems on conditional probability:

a) The definition of conditional probability is

 𝑃(𝑌|𝑋) =
𝑃(𝑋𝑌)

𝑃(𝑋)
 (1)

b) The Multiplication Rule:

𝑃(𝐴1𝐴2 … 𝐴𝑀𝐒)

= 𝑃(𝐒) ⋅ 𝑃(𝐴1|𝐒) ⋅ 𝑃(𝐴2|𝐒𝐴1) ⋅ 𝑃(𝐴3|𝐒𝐴1𝐴2) ⋅ …

⋅ 𝑃(𝐴𝑀|𝐒𝐴1𝐴2 … 𝐴𝑀−1)

(2)

According to Eq. (1) and Eq. (2) above,

𝑃(𝐴1𝐴2 … 𝐴𝑀|𝐒) =
𝑃(𝐴1𝐴2 … 𝐴𝑀𝐒)

𝑃(𝐒)

= 𝑃(𝐴1|𝐒) ⋅ 𝑃(𝐴2|𝐒𝐴1) ⋅ 𝑃(𝐴3|𝐒𝐴1𝐴2) ⋅ …

⋅ 𝑃(𝐴𝑀|𝐒𝐴1𝐴2 … 𝐴𝑀−1)

(3)

Note that the left side of Eq. (3) is the policy for state 𝐒.

Since the ordering and combination of 𝐴1, 𝐴2, … , 𝐴𝑀 on the right side of Eq. (2)

do not matter, they can appear in any order on the right side of Eq. (3).

6. Pseudocode and source code of IFRL

Both will be provided here (details to be supplemented later):

https://ww2.mathworks.cn/matlabcentral/fileexchange/73473-interpretable-fuzzy-

reinforcement-learning

https://ww2.mathworks.cn/matlabcentral/fileexchange/73473-interpretable-fuzzy-reinforcement-learning
https://ww2.mathworks.cn/matlabcentral/fileexchange/73473-interpretable-fuzzy-reinforcement-learning

	Interpretable_Policies_for_Reinforcement_Learning_by_Empirical_Fuzzy_Sets
	I. INTRODUCTION
	II. IFRL Structure
	III. Value function approximator
	A. AnYa Framework
	B. State-action Space Discretization
	C. Firing Strength Calculation
	D. Consequents update
	E. Computation complexity

	IV. Optimal Policy Estimator
	A. Univariate Distribution Learning
	1) ALMMo System
	2) EDA Framework
	3) Inverse Transform Sampling
	4) Verification

	B. Fuzzy Generalization Between Different States
	1) 𝝴FS Framework
	2) Learning of Individual Policy

	C. Multivariate Actions
	D. Computation complexity

	V. Simulation results
	A. Mountain Car
	B. Continuous Gridworld
	C. Pendulum Positioning
	D. Tank Level Control

	VI. Conclusion
	References

	supplementary_material

