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Abstract

There are many situations in our daily life where touch gestures during natural
human-human interaction take place: meeting people (shaking hands), personal
relationships (caresses), moments of celebration or sadness (hugs), etc. Considering
that robots are expected to form part of our daily life in the future, they should be
endowed with the capacity of recognizing these touch gestures and the part of its
body that has been touched since the gesture’s meaning may differ. Therefore, this
work presents a learning system for both purposes: detect and recognize the type of
touch gesture (stroke, tickle, tap and slap) and its localization. The interpretation
of the meaning of the gesture is out of the scope of this paper.

Different technologies have been applied to perceive touch by a social robot,
commonly using a large number of sensors. Instead, our approach uses 3 contact
microphones installed inside some parts of the robot. The audio signals generated
when the user touches the robot are sensed by the contact microphones and processed
using Machine Learning techniques. We acquired information from sensors installed
in two social robots, Maggie and Mini (both developed by the RoboticsLab at the
Carlos III University of Madrid), and a real-time version of the whole system has
been deployed in the robot Mini. The system allows the robot to sense if it has been
touched or not, to recognise the kind of touch gesture, and its approximate location.
The main advantage of using contact microphones as touch sensors is that by using
just one, it is possible to “cover” a whole solid part of the robot. Besides, the sensors
are unaffected by ambient noises, such as human voice, TV, music etc. Nevertheless,
the fact of using several contact microphones makes possible that a touch gesture is
detected by all of them, and each may recognize a different gesture at the same time.
The results show that this system is robust against this phenomenon. Moreover, the
accuracy obtained for both robots is about 86%.

Key words: Acoustic Sensing; Social Robots; Touch gesture recognition; Touch
localisation; Human-Robot Interaction; Machine Learning applications



1 Introduction

During human-human interaction there are many communication channels,
some of them are verbal, and others not verbal, such as facial expressions,
body gestures, and, in many cultures, physical interaction, that is, touch
gestures (Gallace & Spence, 2010). In fact, in some situations, humans try
to communicate, or even emphasize, important social messages using these
non-verbal communication channels (e.g. to tap on the back trying to get a
person’s attention, to comfort someone giving him a hug, or when a father
caresses his crying son’s face) (Hertenstein et al., 2006, 2009). All those touch
gestures are easily recognizable for everyone (depending on their culture) since
complex languages have incorporated these touch interactions (Wilhelm et al.,
2001). On the other hand, it is important to note that, depending on the part
of the body that has been touched, gestures may have different meanings.

Due to the ability of touch gestures to communicate or improve the other
communication channels, some studies have explored how this kind of
interaction can be used to improve Human-Robot Interaction (HRI) (Schmid
et al., 2007), (Altun & MacLean, 2015). In fact, considering that social robots
are designed to interact with people and are expected to behave following
social norms during HRI, it seems logical to think that they should be able to
perceive and recognise 1 different touch gestures to behave appropriately (Kim
et al., 2010; Silvera-Tawil et al., 2011; Altun & MacLean, 2015; Jung et al.,
2015). As an example, Paro, the seal-robot designed to interact with elders
with cognitive impairment, has proven to improve their mood by taking and
stroking the robot as if it were a real animal (Sabanovic et al., 2013; Sharkey
& Wood, 2014).

With respect to sensing technologies, social robots are commonly endowed
with basic tactile sensors (e.g. capacitive, force or temperature sensors) to
detect physical contact (throughout the text this will be called ‘touch activity
detection’). Some studies have aimed to recognise ‘touch gestures’ (contacts
made on a surface with a certain communicative intention) using these devices
(Argall & Billard, 2010). Nevertheless, most of these proposals usually require
important hardware deployments that are oriented towards equipping the
robot with large amounts of sensors (Stiehl et al., 2005). Moreover, dealing
with such a large amount of sensors increases the chance of false positives,
leading to low recognition rates.
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The objective of the work presented in this paper is to develop and
implement a system to learn to recognise and localise a touch gesture made
on a social robot. Besides, this system uses a small number of sensors
unlike other approaches described above. The present work builds on the
preliminary results presented in Alonso-Martín et al. (2017). Our contribution
explores a novel application of a sensing technology, piezoelectric pickups, in
Human-Robot Touch Interaction. These devices perceive the sound vibrations
that are generated when a user touches the robot’s surface. The perturbations
originated by the contact propagate through the rigid parts of the robot (its
shell and inner structure). One of the main advantages that these devices offer
is that they are not affected by usual ambient sounds propagated in the air,
such as the human voice, TV, music, etc.

The system is able to classify both contact location and touch gestures,
working as follows: When one of multiple sensors perceive an interaction, the
system commences to process their signals separately, extracting a group of
features that belong to the time and frequency audio domains 2 from each
of them such as Signal to Noise Ratio, Pitch or duration. When the system
detects that the contact has ended, it computes the features’ average values
during this timespan. These values are then grouped into labelled instances
that represent the contact performed. A dataset composed by a set of these
instances is later used as training data for further classification of the gesture
through machine learning techniques.

The main contributions of this paper are: the ability to recognise touch
gestures on the different parts of the robot’s surface, and to identify the zone
in which the touch gesture takes place. Both, the type of gesture and its
localisation are fundamental to be able to make a correct interpretation of the
communicative message of the user. This paper focuses on the learning process
of the recognition of the type of gesture and its localization, the interpretation
of its possible meaning is out of the scope of this paper.

Moreover, our system also follows a modular design that is able to adapt to
different robotic platforms. In order to prove this, data acquisition part of the
system proposed has been implemented on two robotic platforms, the social
robots Maggie (Gonzalez-Pacheco et al., 2011) and Mini (Salichs San Jose
et al., 2016), which have been developed by the RoboticsLab at the Carlos
III of Madrid University. Both robots have a similar physical structure: head,
body and two arms at their sides. Finally, the real-time version of the whole
system has been integrated in the robot Mini.

As will be later explained, three piezoelectric pickups (or contact microphones)
will be integrated inside the rigid parts of each of the robots’ shells: in

2 The complete set of features is shown and explained in Section 4.2.
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their heads and inside each arm. As already explained, this type of touch
sensors perceives the sound vibrations generated when the robot’s surface
is touched and these perturbations propagate through the rigid parts of the
robot. Therefore, we have different microphones detecting simultaneously in
connected rigid bodies (head and arms). This is important because extending
the touch recognition to multiple sensing devices means that touch gestures
can be recognised by several sensors at the same time. This fact generates
a problem considering how the nature of the sound signal affects both
localisation and identification of gestures. On one hand, regarding localisation,
sound propagates over the rigid parts of the robot (hard shells and inner
structure) and different microphones may sense it at the same time. This
behaviour complicates the task of locating where the user touched the robot.
On the other hand, concerning touch gesture recognition, the propagation of
the sound signal changes as it moves through the irregular surface and inner
structure of the robot (note that our robots are composed by different rigid
parts connected). This causes that each microphone perceives the signal in a
different way depending on the distance that separates each sensor from the
signal source. For instance, touching the arm of the robot, not only introduces
the vibrations corresponding to the touch itself, but also the extra movement
caused by the force exerted on that part.

Therefore, it is possible that each sensor recognises different touch gestures at
the same time. In this work, we studied all these effects and our results show
that our system is robust against these phenomena.

The rest of the paper is structured as follows. First, Section 2 reviews
the literature related to touch interaction in social robotics and describes
different systems that integrate contact microphones to locate and classify
touch gestures on different kinds of surfaces. Section 3 details the hardware
involved in this proposal: two robotic platforms with contact microphones
beneath their respective shells. Then, Section 4 explains the structure and
the phases of the proposed system primarily at a software level. Section 5,
describes the experimental part of this paper: the set of gestures selected, the
data collection process, the way to construct the dataset and the evaluation
metrics used. Next, Section 6 and Section 7 present and discuss the results
obtained in the classification process, respectively. Finally, Section 8 shows the
conclusions that have been gathered from the results of the previous section.

2 Related Works

In recent years, touch interaction has attracted attention and has been
introduced in many different areas, such as domotics, electronics, or
robotics. Nowadays, devices such as smartphones, wearables, laptops or
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tactile fingerprint sensors implement technology related to touch interaction
(Murray-Smith et al., 2008; Robinson et al., 2011; Wang et al., 2019). In this
section, we analyse the literature, while paying special attention to two trends:
first, we review the solutions related to Touch Interaction in HRI, deepening
in the sensors implemented on several social robots; and second, we focus on
the evolution of touch interaction based on acoustic sensing and applied to
different contexts or scenarios, extending robotics.

2.1 Touch-sensing technologies in social robots

Several sensing technologies traditionally have been applied to touch detection
and touch gesture recognition in robotics. Nicholls & Lee (1989) reviewed
different proposals based on endowing robots with skills related to touch recog-
nition. These authors found that touch interaction in robotics implemented
mostly capacitive, resistive, mechanical and optical sensors, due to their
robustness and durability. The authors also addressed some disadvantages
of this kind of sensor—mostly their susceptibility to noise and heat, and that
their capacitance decreases as the surface size increases, limiting its spatial
resolution. The sensing technologies that were analysed in this survey are still
popular.

More recently, Argall & Billard (2010) studied how social robots that
are made of different materials and shapes integrate tactile technologies
in their designs. This paper classified robots by taking into account the
consistency of their shell—distinguishing between soft or hard-skinned
robots. According to this survey, robots such as WENDY (Morita et al.,
1999) belonged to the hard-skinned group. This kind of hard-skin robots
usually integrate force/torque, force sensitive resistors (FSR), accelerometers,
capacitive sensors, and deformation sensors to detect touch. They are able
to detect physical contact, but they cannot locate its source nor categorize
the kind of contact performed. Soft-skinned robots such as Paro (Sabanovic
et al., 2013; Sharkey & Wood, 2014) and CB2 (Minato et al., 2007) tend
to be equipped with the following sensors to detect the physical contact:
piezoelectric, FSR, capacitive sensors, potentiometers that provide kinesthetic
information, temperature sensors (thermistors), electric field sensors and
photo reflectors. PROBO, which is a soft-skinned robot shaped like a huggable
animal-like creature (Goris et al., 2011), has more than 1000 force sensors
that are arranged in a grid (which are able to detect the amount of pressure
exerted), 400 temperature sensors and nine electric field sensors. This system
senses contact and recognises some kinds of touch gestures.

In their research, Silvera-Tawil et al. (2011, 2014) focused on advanced touch
interaction systems, designed to identify gestures. They carried out several
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experiments with an artificial arm covered by a sensible skin layer. Their
prototype recognised six different kinds of contact and a LogitBoost algorithm
performed classification, reaching an accuracy of 74% in cross-validation with
a dataset composed of 1050 instances obtained from 35 users.

Albawi et al. (2018) followed a similar hardware setup as Silvera et al.: an
artificial arm covered by a sensible skin layer that is able to register the
pressure applied to it. This information is processed with a Convolutional
Neural Network that achieves an accuracy of 63.7% using cross-validation. In
this work, the authors propose a set of 14 touch gestures. Müller & Gross
(2018) proposed a combination of capacitive and pressure sensors. These were
mounted on an assistive robot, achieving an accuracy of 74% when recognising
between four possible gestures. These authors integrated a probabilistic
classifier, particularly the Gaussian Mixture Models, and cross-validation.
Hughes et al. (2017) also proposed the use of deep learning to deal with touch
recognition on social robots. This system achieves an accuracy of 61.35% with
a combination of Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN). Zhou & Du (2016) proposed an evolution of these techniques
using a 3D CNN achieving the accuracy of 76.1% using the same database that
Hughes.

Cooney et al. (2012) continued along the same line, presenting a survey that
tried to differentiate between 20 affective contacts on a humanoid robot (kisses,
hugs, strokes in the cheek, handshakes, etc.). Their approach implemented a
combination of artificial vision techniques and Kinotex tactile sensors 3 . In
this case, the machine algorithm selected was an SVM classifier, and they
claimed that they were able to get 90.5% accuracy using cross-validation over
a dataset formed by 340 instances gathered from 17 users.

Most of these works tend to agree that the traditional touch sensors used
in HRI have some shortcomings, including short-range, tendency to false
positives, susceptibility to noise, inability to recognise touch gestures, poor
scalability and, in some cases, high complexity.

2.2 Acoustic-sensing technologies applied to touch interaction

Traditional touch-sensing technologies (e.g. capacitive sensors) suffer from
drawbacks such as hardware complexity, high manufacturing cost, and high
power consumption. These technologies can also affect the platform where
they are present. For example, they can reduce the optical performance and
transparency in touch screens or introduce cross-talks with other electronics

3 Details about the Kinotex sensor: http://www.esa-tec.eu/workspace/assets/
files/1203588444_1246-51ba009775868.pdf
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in the device (Walker, 2012). Therefore, using acoustic devices may pose an
attractive alternative for touch interaction.

Paradiso & Checka (2002) presented a system to locate and classify touch
interactions upon an interactive tap window. They placed four contact
microphones (also known as piezoelectric pickups) on each corner of a
square glass screen. Touch localisation was based on Time Difference of
Arrival (TDOA) analysis (Cho et al., 2015), which was evaluated using
a cross-correlation technique. They reported a high performance, with an
accuracy of 2 to 4 cm on a surface of 2.24 square meters. The system was also
able to differentiate between touch gestures (i.e. knock, tap or bang). Later,
Lopes et al. (2011) presented a system that extended traditional multi-touch
systems by mixing two technologies: capacitive sensors to detect the position
of the touch, and acoustic sensing devices to recognise different kinds of touch
gestures. The user established contact with the a glass surface of 1.12 square
meters, using different parts of the hand and expressing gestures such as finger
taps, a knock, a slap, and a punch.

Nikolovski (2013) developed a 10 mm thick and 1 square meter screen panel
that was capable of locating low-energy contacts generated by fingernail taps.
The system implemented Lamb wave absorption as localisation principle, a
technique derived from the TDOA algorithm (Nikolovski, 2003). The system
had a spatial resolution of 2 mm positioning the contacts. Also following the
Lamb wave principle, Firouzi et al. (2016) presented an ultrasonic touch screen
system that detected multiple touch contacts simultaneously with high contact
sensitivity. This system had a resolution of 0.5 cm2, taking into account the size
of the cells composing the surface. Even though all these works achieved good
accuracy results, these systems are focused on locating the contact’s source
and they were not designed to recognise the kind of touch gesture performed.

Acoustic technologies have traditionally obtained good performance on flat,
glass-like surfaces. Therefore, we believe that this sensing technology could
shed good results when implemented in social robots with rigid surfaces;
however, in this case we must consider the challenge of recognising touch
gestures in rounded and irregular surfaces. Besides, in this contribution we
align with the proposals studied regarding the set of touch gestures detected
and also take inspiration from the work of Yohanan & MacLean (2012),
resulting in the four touch gestures, tap, slap, stroke and tickle, described
in Section 5.1.

7



(a) The social robot Maggie (b) The social robot Mini

Fig. 1. Robotic platforms, showing the location of the acoustic sensors.

3 Hardware components of the system

The system proposed in this work integrates piezoelectric pickups in two
robotic platforms as touch sensors. This section provides some insights into
the hardware platforms, detailing how the sensors have been installed on the
rigid surfaces of the platforms.

3.1 Robotic platforms

The touch sensing system was first integrated in the robot Maggie (see Fig. 1a).
This robot was developed by the RoboticsLab at the Carlos III University
(Spain) as a research platform on HRI (Gonzalez-Pacheco et al., 2011; Salichs
et al., 2006). Since Maggie is a social robot, its external appearance has to be
friendly. This means that it has, for example, an array of LEDs to represent
its mouth, which will light up as the robot speaks, or two animated eyelids,
that endow it with a life-like blinking. Maggie is 1.35 meters tall and has
a wheeled base to allow it to move around. Originally, the robot had some
capacitive sensors installed on its body, which allowed it to sense contact in
some specific portions of its head and body. In this work, the touch sensing
capabilities of the robot are extended by integrating the acoustic devices.

The touch system proposed in this work was also integrated in the social
robot Mini (see Fig. 1b). Mini was developed by the RoboticsLab and is a
small desktop robot (0.59m tall) with an external appearance based on its
predecessor Maggie. It was designed to assist and entertain the elderly who
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have cognitive impairment through improving their social skills (Salichs San
Jose et al., 2016). Some of these abilities include telling stories, expressing
emotions, showing pictures or videos on its tablet or playing games that belong
to a cognitive stimulation exercise program. Mini has LEDs to represent its
cheeks and heart, a VUmeter as its mouth, and two OLED screens serving as
eyes. Mini also has servomotors in its arms, base, and neck to allow simple
but natural movements to convey liveliness. In its first version,the robot also
integrated capacitive sensors on its body, which were made of foam, specifically
on both its shoulders and belly.

3.2 Touch sensors: contact microphones

Section 2 analysed the feasibility of using contact microphones as touch
sensors. With these devices, it is possible to extract features from the
characteristic vibration patterns generated by touch gestures and, therefore,
they enable accurate touch classification. The reach of this kind of sensor also
allows us to cover the entire shell of the robot using only a few microphones.
The external noise does not affect the performance of the system because
the sensors only receive the vibrations transmitted by the solid material in
direct contact with the pickups. This property is also one of this device’s main
drawback because their performance heavily relies on the material that they
are attached to (these sensors do not work on non-rigid materials) and also on
the uniformity of the contact. In the case of the robot Maggie, this was not a
problem because Maggie has a hard shell that covers all of its body. However,
in the case of Mini, its trunk is made of foam, whereas the head and arms are
made of a rigid material. Figure 1 shows the sensor placement in both robotic
platforms.

The system integrates an Oyster Schaller 723 4 contact microphone. This
sensor consists of a polished and chromed oyster-shaped piezoelectric pickup,
with a chrome silver cover pre-wired to a 1/4" standard instrumental cable.
This device provides several advantages, such as not requiring active circuitry
or pre-amplification.

3.3 System setup

The integration of the microphones followed a similar process in both robotic
platforms. In both robots, we integrated three receivers beneath each robot’s
shell to ensure that they would not hinder interaction. In the robot Maggie, one
contact microphone was placed on the internal side of the robot’s head shell,

4 https://schaller.info/en/search?sSearch=Oyster+723
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and the other two pickups are inside its left and right shoulders. Maximising
the contact area and achieving a uniform fitting was crucial to guarantee
good sound acquisition. Consequently, it was necessary to use modelling clay
to create a smooth and homogeneous layer between the microphones and the
inner parts of the shell, mostly because the latter was concave and rough (see
Fig.1a).

In the case of the robot Mini, we placed the pickups on the rigid surfaces on
its head and arms. The main reason to discard Mini’s shoulders (mimicking
Maggie’s setup) was that Mini’s torso is made of foam. Sound-waves propagate
with difficulty through foam as a solid mainly due to its lack of rigidity. The
rest of Mini is made from ABS, which is one of the most popular materials
in 3D printing, including the head, arms, and the internal structure of the
robot. Inside the head, the microphone was placed on the left cheek, while two
microphones were placed inside compartments in the arms that were made for
this purpose; as shown in Figure 1b.

4 Software components of the system

This section describes the different phases of our touch gesture recognition
system, namely: Sound Acquisition (SA), Feature Extraction and Touch
Activity Detection (FED), Instance Creation (IC), and finally, Touch
Classification and Localisation (TCL). Figure 2 shows a summarized view of
the operation flow where each contact microphone implies a pipeline of audio
analysis consisting in the SA and FED phases. The touches performed on the
robot’s shell are received by all of the contact microphones built into the robot,
what implies a parallel analysis of the sound collected by each pickup. Finally,
all the features obtained in each pipeline are merged together in instances in
the IC phase, which produces a dataset that can then be used to train different
families of classifiers to recognize and locate touches 5 in the TCL phase (see
Section 4.4).

4.1 Sound acquisition

When the user touches the robot, an acoustic vibration propagates through
the robot’s shell. The contact microphones integrated into the inner side of the
shell of the robot collect this perturbation. According to the propagation of the
sound waves (Thomson, 1950), it would be expected then that those receivers

5 A brief documentation of our system can be found at: https://trekirk.github.
io/acoustic_touch_recognition
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Fig. 2. Data flow scheme: a) the touch is performed by the user and the sound
vibration is transmitted through the robot’s shell and is collected by each contact
microphone built-into the robot; b) the system perceives a touch gesture and
computes the significant values of the audio features (max, min, average) until the
gesture ends; c) these values from all the audio receivers are stored in a single
instance, and subsequently saved in a dataset; d) the classifiers considered take as
input the instances in the dataset and outcome the kind of touch and its approximate
location.

located closest to the point of touch contact acquire a stronger signal than
those that are located farther away. But in practice, this behaviour does not
always appear. In fact„ there are cases in which strong touches are registered by
different sensors with similar intensities. In other cases, softer touches are only
perceived by the closest sensor. So, to improve the detection of any possible
sounds on the robot while minimising the number of sensors installed, it is
essential to adjust the position of each microphone and their input volume,
accordingly.

The sound propagation phenomenon is illustrated in Figure 3. This figure
shows a graphical representation of relevant features extracted from two
instances in our dataset, although this situation repeats in the data collected.
Each chart shows how the detection of some relevant features may not
correspond to the intensities expected when slapping the robot in different
places. That is, when slapping 6 the robot on the head (see Fig. 3 a)), the
microphone in the head detects the highest values for all of the features. This
would be the expected situation: when a user touches a body part of the robot
with a microphone, that sensor detects the higher intensity. In contrast, this
case does not seem to be that clear, as shown in Figure 3 b), where we can
see how a slap on the left arm does not provide the highest intensity in the
microphone located in the arm but in the head instead. This inconsistency may
lead to misclassification, both in terms of localisation and gesture recognition.

6 According to Yohanan &MacLean (2012), the term ’slap’ can be defined as: quickly
and sharply strike the Haptic Creature with your open hand. Section 5.1 elaborates
on this aspect.
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Therefore, the aim of this work is to study how machine learning can help to
mitigate this problem.

Note that the propagation time of sound waves through the robot’s body does
not affect the microphones response for two reasons: first, the system does not
detect instantaneous samples separately. Instead, it uses a window-like scheme
to group detections along time intervals as described in the next section.
Additionally, given the sound propagation speed and the short distances sound
travels within the robot, the three receivers acquire the sounds almost at the
same time.

4.2 Feature extraction and touch activity detection

Before implementing our audio processing system, responsible for extracting
and computing the sound features of our interest, we were looking for
alternatives having some basic requirements in mind. In the first place, we
wanted an open-source tool compatible with ROS 7 (the middle-ware present
in our robotic platforms and a standard the facto in robotics) and adaptable
enough to adjust to our changing robot internal architecture. Second, we
wanted a tool able to work in real-time having as less delay as possible. Finally,
the third requirement was that the audio processing task needed to work
in two audio domains (time, and frequency using Fast Fourier Transform).
In our previous works we already explored the performance of systems that
extract features from these audio domains in the context of voice recognition
(Alonso-Martin et al., 2013a,b, 2014).

Software like Praat 8 or CSound 9 met some of these requirements, but
in the end, not fulfilling one of these requirements would compromise the
performance of the final system. For example, being able to process sound
in real-time is a mandatory requirement, and Praat does not have this
functionality. Real-time alternatives may include Matlab or Octave, but in
both cases, connecting an application from these environments to ROS involves
an extra delay in real-time processing. For all these reasons, we finally chose
ChucK 10 , a versatile audio processing programming language traditionally
used by musicians and digital artists that allows real-time sound processing
with high performance.

7 ROS (acronym for Robot Operating System) is a framework widely used in robotics
to communicate the different system’s components. Homepage: www.ros.org
8 http://www.fon.hum.uva.nl/praat
9 https://csound.com
10 http://chuck.cs.princeton.edu
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(a) Bar chart representing the instance in the line 717 of the ARFF file, a slap in
the robot’s head

(b) Bar chart representing the instance in the line 1084 of the ARFF file, a slap in
the robot’s left arm

Fig. 3. Different instances represented in bar charts in logarithmic scale. The most
significant features were selected to show the variations depending on the area of
contact. The pitchFFT and centroid features are measured in Hertz, and the Signal
to Noise Ratio (SNR) is dimensionless.

This phase runs independently for each receiver and constitutes the core of
our system. The software consist of a series of scripts developed through
ChucK. All of the executables are managed using ROS, which allows them to
communicate with the rest of the system. For each microphone, the scripts
perform three tasks. First, a set of acoustic features is gathered (showed
in Table 1) to detect the beginning of the touch gesture. Second, once the
system detects touch activity, the program computes the most relevant values
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Table 1
The set of audio features computed.
Feature Description Domain

Pitch Frequency perceived by human ear. Time,
Frequency

Flux Feature computed as the sum across one analysis window
of the squared difference between the magnitude spectra
corresponding to successive signal frames. In other words, it
refers to the variation of the magnitude of the signal.

Frequency

RollOff-95 Frequency that contains 95% of the signal energy. Frequency

Centroid Represents the median of the signal spectrum in the frequency
domain. That is, the frequency at which the signal approaches
the most. It is frequently used to calculate the tone of a sound
or timbre.

Frequency

Zero Crossing Rate
(ZCR)

Indicates the number of times the signal cross the abscissa. Time

Root Mean Square
(RMS)

Amplitude of the signal volume. Time

Signal to Noise Ra-
tio (SNR)

Relates the touch signal with the noise signal. Time

Duration Duration of the contact in time (seconds). Time

Number of contacts
per minute

A touch gesture may consist of several touches, this feature
reports the number of contacts.

Time

of the features (average, maximum, minimum) according to the duration of
the gesture. Finally, each script sends this information to the next phase.

The scripts running in this phase sample the input signal at 44100 Hz,
gathering the information in windows of 256 samples. For each set, the sound
features are computed in two domains—time and frequency—, which are
related to the time domain directly obtained from the sampled analogue signal
that is acquired from the microphones. In the case of the features belonging
to the frequency domain, the Fast Fourier Transform (FFT) is applied to the
time-domain signal (Cochran et al., 1967). The system keeps extracting the
instantaneous values of the features highlighted in Table 1 until the extracted
information matches the decision rule shown in Eq. 1.

Ta =


TRUE, if SNRc > SNRτ

AND C2 ... AND Cn

FALSE, otherwise

(1)

Where Ta represents the touch activity (a touch gesture event), and SNRc

and SNRτ are the current Signal to Noise Ratio and the SNR fixed in the
threshold, respectively. The Signal to Noise Ratio is a comparison between
the current signal volume (or signal energy) and the noise signal volume (or
average ground noise energy) in the frequency domain (Tucker, 1966; Carlson,
1968). The average ground noise energy is updated whenever system is not
perceiving contact. Thus, in each iteration the SNR is computed dividing the
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Fig. 4. Illustration of Touch Activity Detection based on analysis of some features,
such as SNR, particularly in the figure using the relation between the SNR current
(SNRc) and a SNR threshold (SNRτ ). The beginning of the gesture is detected
when the SNRc is greater than SNRτ and the end of the gesture is detected when
SNRc is lower than SNRτ during a time span.

signal energy by the average ground noise energy. The system adds thresholds
for the other features extracted (represented as the conditions Ci in the Eq.
1). These thresholds can be adjusted depending on the variability of factors
such as the materials composing the robot, the type of microphones selected
and where they are, and the input volume of the sound cards or the conditions
of the experiment (e.g. external or internal noises). Since the platform stays
static during the experiments, the SNR is the only feature in the decision rule
(Lopes et al., 2011) for this experiment. Some more values served as thresholds
in preliminary tests, but it is projected that a more extensive study is required
in this subject.

It is worth noting that some touch gestures can be composed of more than one
touch instance (e.g. tickles) so, it could happen that instead of detecting one
gesture, the system detects several gestures in consecutive times. Therefore, to
achieve a more stable output (e.g. several tickles grouped together), a 500 ms
extra acquisition time begins when SNRc drops below SNRτ to consider the
end the gesture (see Fig. 4). If this extra time expires without detecting touch
activity, then the touch is considered as finished and the maximum, minimum,
average, and range (max -min) values of each feature are computed (except for
the duration). Finally, each script sends its piece of the gesture via ROS-topic
to the next phase.

4.3 Instance creation

Implementing and managing multiple microphones simultaneously raises many
challenges. The most important challenge is related to the detection of the
touch gesture; that is, establishing its beginning and end. It needs to be
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fmic1 fmic2 fmic3instance

rollOff centroid ZCR RMS SNRpitch flux duration number of 
contacts

ZCR_Max ZCR_Min ZCR_Mean ZCR_Range

gesture zone

features

basic descriptive 
statistics

classification labels 

Fig. 5. One touch gesture is stored as a dataset instance. An instance is composed of
several input features corresponding to each microphone, besides the classification
labels (kind of gesture and zone). Additionally, every feature is composed of four
statistics: max, min, mean, and range.

considered that the robotic platforms in which the contact microphones have
been installed do not have physically isolated areas. Therefore, it is expected
that a touch gesture executed on one of the body parts may activate multiple
microphones and not just the closest, as described in Section 4.1. This paper
aims to demonstrate that these combinations bring diversity to the samples,
which allows the classification to be more precise.

This phase gathers the features from all of the active receivers under the
same touch gesture event. For this reason, the IC phase needs to be able
to coordinate and synchronise the responses of the microphones. When one
FED script establishes the beginning of a gesture, the IC node checks how
many receivers have perceived the gesture within the same time period. In this
regard, the system starts recording data from each microphone detecting the
contact (a delay of miliseconds may apear due to the sound transmission). The
system then waits until each and every microphone involved in the interaction
reports the contact has ended. This helps to prevent fractioning a long gesture
or a contact overlap both due to false positives. Once the current gesture ends,
the IC node creates an instance with the data gathered by each FED script.
This instance will represent the touch gesture event, and it will be composed
by the readings of each microphone, whether or not it detected activity. In
case a microphone was not activated, the node will fill its corresponding
values within the instance with zeroes. An instance will follow this pattern
within the classification file: I = (fmic1, fmic2, . . . , fmicn) where n is the
number of contact microphones (three receivers in this case). Each sub-set
fmici is defined by fmici = (feature1, feature2, . . . , featurem) where m is
the number of features computed (see Fig. 5.)

Up to this point, the system is designed to create unlabelled individual
instances from gesture events received by the contact microphones. The next
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step is to record instances from subsequent events and label them in order to
create a complete dataset with labelled instances. Once the dataset is ready,
it will serve as a training set for different machine learning algorithms.

Each training instance is formed by an unlabelled instance (composed by the
features gathered in previous phases) and one or two labels; that is, I = (F, lgl),
where the class labels lgl in this case are the name of the touch gesture and
its location. The complete dataset D, composed by a set of labelled instances
follows the next structure:

D = {I1, . . . , Im} (2)

where m is the number of training instances of the dataset.

4.4 Touch classification and localisation using machine learning

This phase is designed to check if the information extracted by multiple contact
microphones and processed through our software is good enough to identify
the kind of gesture that is performed by the user and the contact zone on the
robot’s surface. If the system yields positive results, then we plan to design
an online classification phase for future implementations.

As discussed in Section 2, few works have raised the idea of locating and
recognising touch gestures at the same time. In this approach, we propose
to solve this problem by using machine learning algorithms. Because each
instance of the dataset has two different labels or categories, the problem
can be solved using two types of machine learning algorithms: Multiclass and
Multitarget algorithms.

(1) Multi-class approach: In our case, we use multi-class algorithms to
classify instances in one class from among the total set of possibilities,
such as taps, strokes, slaps, etc. Multi-class algorithms use two
independent classifiers to recognise the gesture and to identify the part
of the robot touched. In this first approach, we have employed the
third-party Weka framework (Holmes et al., 1994), which, by default,
integrates 82 classifiers 11 . It also enables the incorporation of new
classifiers (third-parties classifiers).

11 A complete list of the classifiers available in Weka can be found here: http:
//weka.sourceforge.net/doc.dev/weka/classifiers/Classifier.html
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In our tests, we have included the whole set of default algorithms
integrated in Weka, and other 44 third-party algorithms developed by
the community (see the complete list of classifiers added to Weka in
Appendix A). Weka’s algorithms can be categorised within the most
common families of machine learning classifiers, such as: meta-classifiers
(which include several single classifiers), decision trees, rule-based
classifiers, fuzzy classifiers, neural network and deep learning based,
Bayesian, nearest neighbours, and support vector machines.

(2) Multi-target approach: The other learning approach uses multi-target
algorithms. In this type of learning, a single classifier is able to
simultaneously recognise the type of gesture and its location (Bielza
et al., 2011; Appice & Dzeroski, 2007). In multi-target classification,
the model can find dependencies between the different classes—in our
case, dependencies between the kind of gesture and the place where it is
performed.
In this approach, we have used the third-party framework, known as

Meka (Read et al., 2016; Kavitha C.R, 2016). Meka is an extension of
Weka, and is specially designed for multi-target scenarios. It contains
all of the basic problem transformation methods, advanced methods
and many varieties of classifier chains. By default, Meka integrates
several kinds of meta-classifiers 12 , such as: Binary Relevance (BR),
Classifier Chains (CC), Classifier Trellis (CT), Label Combination (LC),
Ensembles of Pruned Sets (EPS), Ensembles of Classifier Chains (ECC),
and Bayesian Chain Classifier (BCC). An updated list of classifiers
available in Meka can be found here: http://meka.sourceforge.net/
methods.html. In the same way as Weka, Meka can be extended with
third-party algorithms.

5 Methods

This section describes the set of gestures selected in this work. These gestures
are composed of a series of datasets that are built after the users have
interacted with the robots. This information was then used to train the
classifiers and, through a series of metrics, assess their performance.

12 The meta-classifiers are able to join several single classifiers. In the case of Meka,
these meta-classifiers, “under-the-hood”, use the Weka classifiers.
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Table 2
Characterization of the touch gestures employed. The last column shows an example
of how each gesture can be performed.

Gesture Contact
Area

Contact
Intensity Duration

Stroke med-large low med-long

Tickle med med med-long

Tap small low short

Slap small high short

5.1 Selecting the set of gestures

Previous studies have proposed different sets of gestures to be recognized
during HRI, emphasizing the relevance of the non-verbal communication
in this kind of interactions (Tang et al., 2015; Madeo et al., 2016). More
specifically in touch interaction, Yohanan & MacLean (2012) presented a
set of 30 gestures extracted from the social psychology and human–animal
interaction literature (e.g. kiss, massage, pat, pinch, hit, grab, nuzzle, among
others). Similarly, Altun & MacLean (2015) proposed a set of 26 gestures (e.g.
press, poke, pat, nuzzle, trample, among others). However, Silvera-Tawil et al.
(2011) proposed a set of just 6 gestures (i.e. tap, pat, push, stroke, scratch,
and slap). In our approach, we have partially adopted the set of touch gestures
proposed by Silvera, considering those more relevant for interaction with a
social robot. Nevertheless, and according to Kim et al. (2010), push and pat
gestures are not considered because pat is very similar to tap (especially the
sound generated by both), and push does not happen often during HRI.

Table 2 offers a classification of the gestures regarding their contact area,
perceived intensity and duration.

5.2 Experimental setup of the training phase

We apply our learning scheme to the location and recognition of touch
gestures. This learning process starts with a training phase, which was
performed by 40 different users. Because we use two social robots, the
participants were separated into two groups (20 for each robot). Both training
phases, one per robot, were carried out separately. The participants were
always accompanied by a supervisor, and the interactions with the robots
were made by one participant at the time. During those sessions, the procedure
for both robots was as follows: first, each participant accessed the test area.
A supervisor provided specific instructions about the robot’s parts to be
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touched and the set of different gestures performed during the experiments
(shown in Table 3 and Table 4). The participants were also informed that the
robots would provide some hints about how to perform each gesture before
running each test. Additionally, the robot shows a video tutorial 13 on its
tablet (Maggie has one integrated in its chest, and Mini has an external tablet
next to it) of how to perform one of the gestures. The users then perform, in
all areas considered, that gesture on the robot as many times as they want.
Finally, after all of the gestures are explained and performed, the experiment
finishes and the participant leaves the laboratory.

The video tutorials were designed to try to standardise how the users perform
each gesture because touch gestures may differ between cultures or manners.

5.3 Building the datasets

All of the audio signals generated in these interactions are collected by the
contact microphones and are then stored to build the dataset. Because the
system proposed in this work has been integrated in two different social robots,
we have collected two independent datasets 14 . Both datasets are structured
using a plain text format, known as ARFF (Attribute-Relation File Format),
which is compatible with machine learning frameworks such as Weka and
Meka.

Given that the size of a dataset is closely related to the ability of our system to
generalise and learn how to recognise the gestures, it was necessary to collect
a relatively high number of instances. We have collected 3572 instances for
the Maggie dataset and 2777 instances for the Mini dataset. Tables 3 and
4 present a summarized view of the number of instances per gesture and
location gathered in the datasets. These numbers are the result of letting the
users perform each gesture freely as many times as they wanted.

5.4 Evaluation metrics for data analysis

In traditional classification problems (e.g. multi-class), Precision, Recall and
the F-score are some of the most commonly used evaluation criteria. F-score,
also known as F-measure, is a single value metric that indicates the accuracy
of a learning system, taking into account both its precision and recall. These
metrics are calculated as shown in Equations 3, 4, and 5. In our case, we use

13 The video tutorials are available online: https://vimeo.com/channels/1426407
14 The datasets are available at https://github.com/UC3MSocialRobots/
PublicDataSets.git
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Table 3
Touch instances disaggregated by kind of gesture and location in the Maggie dataset

Maggie Head Body Left Body Right Total

Tap 299 300 323 922

Slap 280 262 319 861

Stroke 296 218 337 851

Tickle 328 251 359 938

Total 1203 1031 1338 3572

Table 4
Touch instances disaggregated by kind of gesture and location in the Mini dataset

Mini Head Arm Left Arm Right Total

Tap 253 269 226 748

Slap 231 246 218 695

Stroke 226 201 219 646

Tickle 238 212 238 688

Total 948 928 901 2777

the weighted F-score because it takes into account not only the F-score of each
group to classify (in this case the kind of gesture and the localisation) but also
the number of instances of each group.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F-score =
2× Precision×Recall

Precision+Recall
(5)

In our multi-class problem, we run two training phases to see which classifier
works better with gesture recognition and also with gesture localisation.
Therefore, we eliminate the gesture or location information from the datasets.
Thus, both classifiers perform different and independent tasks and the
accuracy of the whole system depends on the success rate of each of them
separately. Because we are classifying two independent events, the probability
of the intersection of such events is equal to the multiplication of the
probabilities of each of them. Therefore, we have to multiply the F-score
obtained for each classifier to get the global F-score of our system. The F-score
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from each classifier is obtained using ten-fold cross-validation. Usually, five- or
ten-fold cross-validation provides a good tradeoff between variance and bias
when estimating the error (Breiman, 1992; Hastie et al., 2009).

Because our system encompasses the task of detecting both touch gestures and
their localisation, we have decided to explore another family of classification
techniques—multi-target algorithms. It is important to note that the main
difference in multi-target classification is the fact that the prediction can
be fully correct, partially correct (with different levels of correctness) or
fully incorrect. Therefore, the evaluation of a multi-target classifier is more
challenging than the evaluation of a single label classifier because none of the
previously mentioned evaluation metrics capture such notion in their original
form. In this case, it is appropriate to use the Hamming-score, as shown
in Equation 6, which is defined as the proportion of the predicted correct
labels (Yi ∩ Zi) to the total number (predicted Yi and actual Zi) of labels for
that instance (Godbole & Sarawagi, 2004). The overall Hamming-score is the
average across all instances.

Hamming-score =
1

n

n∑
i=1

Yi ∩ Zi
Yi ∪ Zi

(6)

6 Results

This section presents the results for the two possible classification approaches
in both robots. We have reported the results collected in four tables. Although
only the top ten classifiers are included, more than a hundred classifiers have
been trained and evaluated with various configurations. Each classifier was
trained more than once, particularly 10 times, using different configuration
parameters to find the best scores. While we are aware that finding the best
configuration parameters constitutes a complex problem, known as Combined
Algorithm Selection and Hyperparameter(CASH), this is outside the scope of
this work (Marques et al., 2015).

6.1 Results for Maggie robot

The first platform of choice for testing both classifier approaches is Maggie,
since is the first in which the system was installed. This section shows both
multi-class and multi-target results.
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Table 5
F-score in gesture recognition in Maggie robot (multi-class)

# Classifier Description F-score

1 Random Forest It consisting of many individual learners (trees). The
random forest combined multiple random trees that votes
on a particular outcome.

0.858

2 FURIA It stands for FuzzyUnorderedRule InductionAlgorithm.
It is a type of fuzzy inference system

0.833

3 JRIP It implements a propositional rule learner, Repeated
Incremental Pruning to Produce Error Reduction (RIP-
PER)

0.804

4 SMO Implements John Platt’s sequential minimal optimisation
algorithm for training a Support Vector Machine (SVM)

0.797

5 Neural Network Neural Network implementation based on Multilayer
Perceptron

0.792

6 J48 It generates a pruned or unpruned C4.5 decision tree 0.791

7 DeepLearning4J Deep Convolutional Network implemented in Java and
Weka

0.789

8 CHIRP It is based on composite hypercubes on iterated random
projections

0.789

9 IBK K-nearest neighbors classifier 0.758

10 Navie Bayes They are a family of probabilistic classifiers based on
applying Bayes’ theorem with strong (naive) independence
assumptions between the features

0.645

6.1.1 Multi-class algorithms

In this first testing stage, we compared the performance (F-score) of the
different classifiers with two instances of the Maggie dataset. First, a training
phase considered all input features and just the touch gesture performed,
omitting the location.

Under these conditions, the Random Forest classifier achieved the highest
performance with an F-score of 0.858. These results are summarised in Table
5. The same test was conducted considering location instead of gesture as an
output. In this case, several classifiers achieved high performance, as shown in
Table 6.

Given that both classifiers are trained independently, the probability of a
correct classification is the result of multiplying the probabilities of each
classifier, considering the best classifier found for both tasks. In the case of
Maggie robot, this is: 0.858 multiplied by 1, which results in 0.858.

6.1.2 Multi-target algorithms

In the second approach, we have evaluated many multi-target classifiers with
the Maggie dataset. In this case, the best-performing algorithm was one again
the BCC based on Random Forest, with 0.904 of Hamming-score. Table 7
shows the best 10 classifiers.
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Table 6
F-score in gesture localisation in robot Maggie (multi-class)

# Classifier Description F-score

1 Neural Networks Neural Network implementation based on Multilayer
Perceptron

1.000

2 SMO Implements John Platt’s sequential minimal optimisation
algorithm for training a Support Vector Machine (SVM)

1.000

3 FURIA It stands for FuzzyUnorderedRule InductionAlgorithm.
It is a type of fuzzy inference system

1.000

4 Naive Bayes They are a family of probabilistic classifiers based on
applying Bayes’ theorem with strong (naive) independence
assumptions between the features

1.000

5 Random Forest It consisting of many individual learners (trees). The
random forest combined multiple random trees that votes
on a particular outcome.

1.000

6 IBK K-nearest neighbors classifier 0.995

7 DeepLearning4J Deep Convolutional Network implemented in Java and
Weka

0.995

8 JRIP It implements a propositional rule learner, Repeated
Incremental Pruning to Produce Error Reduction (RIP-
PER)

0.995

9 J48 It generates a pruned or unpruned C4.5 decision tree 0.995

10 CHIRP It is based on composite hypercubes on iterated random
projections

0.987

Table 7
Hamming-score in gesture recognition and localisation together in Maggie robot
(multi-target)

# Multitarget classifier (metaclassifier and its associated
classifier)

Hamming-score

1 BCC 15 based on Random Forest 0.904

2 BCC based on Simple Logistic 0.890

3 BCC based on LogitBoost 0.882

4 BCC based on SMO (SVM) 0.882

5 BCC based on Neural Networks 0.875

6 BCC based on J48 0.869

7 BCC based on PART 0.865

8 BCC based on JRIP 0.855

9 BCC based on Decision Table 0.820

10 BCC based on Naive Bayes 0.745

6.2 Results for Mini robot

This subsection describes the results of system performance in the second
robot chosen for this purpose: Mini. As in the previous subsection, the results
of the multi-class and multi-target algorithms are shown, respectively.
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Table 8
F-score in gesture recognition in Mini robot (multi-class)

# Classifier name Description F-score

1 Logistic Multinomial logistic regression model with a ridge
estimator

0.870

2 Logistic Model Trees They are classification trees with logistic regression
functions at the leaves

0.851

3 Random Forest It consisting of many individual learners (trees). The
random forest combined multiple random trees that
votes on a particular outcome

0.844

4 FURIA It stands for Fuzzy Unordered Rule Induction
Algorithm. It is a type of fuzzy inference system

0.832

5 SMO Implements John Platt’s sequential minimal optimisa-
tion algorithm for training a Support Vector Machine
(SVM)

0. 810

6 Neural Network Neural Network implementation based on Multilayer
Perceptron

0.787

7 DeepLearning4J Deep Convolutional Network implemented in Java and
Weka

0.773

8 IBK K-nearest neighbors classifier 0.736

9 HiperPypes For each category a HyperPipe is constructed that
contains all points of that category

0.56

10 VFDR It learns decision rules 0.544

6.2.1 Multi-class algorithms

In the case of the multi-class approach, the results are similar to those obtained
for Maggie; that is, Logistic achieved the best F-score, 0.870 (see Table 8).
Additionally, Logistic Model Trees and Random Forest obtained competitive
results with F-scores of 0.851 and 0.844, respectively. Regarding localisation,
the same accuracy as Maggie is achieved 1.0 F-score (see Table 9). Thus, the
whole accuracy of the system according this first approach is 0.870 F-score for
Mini.

6.2.2 Multi-target algorithms

In the second approach in Mini, multi-target classifiers were also evaluated (see
Table 10). In this case, Bayesian Clasifier Chains (BCC) based on Random
Forest achieved the highest Hamming-score of 0.912.

6.2.3 Real-time operation in Mini robot

The tests run in both robots helped assessing the feasibility of the technique
for touch gesture recognition and localisation. In those tests, we installed three
microphones in the two social robots and built the datasets as described in
Section 5.2. With that information, we trained a series of machine learning
techniques to find the most suitable for our data. With this information, the
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Table 9
F-score in gesture localisation in Mini robot (multi-class)

# Classifier Description F-score

1 Neural Network Neural Network implementation based on Multilayer
Perceptron

1.000

2 SMO Implements John Platt’s sequential minimal optimisa-
tion algorithm for training a Support Vector Machine
(SVM)

1.000

3 DeepLearning4J Deep Convolutional Network implemented in Java and
Weka

1.000

4 Random Forest It consisting of many individual learners (trees). The
random forest combined multiple random trees that
votes on a particular outcome.

1.000

5 Naive Bayes They are a family of probabilistic classifiers based
on applying Bayes’ theorem with strong (naive)
independence assumptions between the features

1.000

6 CHIRP It is based on composite hypercubes on iterated
random projections

1.000

7 FURIA It stands for Fuzzy Unordered Rule Induction
Algorithm. It is a type of fuzzy inference system

1.000

8 J48 It generates a pruned or unpruned C4.5 decision tree 1.000

9 NNge Nearest-neighbor-like algorithm using non-nested gen-
eralised exemplars

1.000

10 JRip It implements a propositional rule learner, Repeated
Incremental Pruning to Produce Error Reduction
(RIPPER)

0.994

Table 10
Hamming-score in gesture recognition and localisation together in Mini robot (multi-
target)

# Multitarget classifier (metaclassifier and its asso-
ciated classifier)

Hamming-score

1 BCC 16 based on Random Forest 0.912

2 BCC based on Simple Logistic 0.900

3 BCC based on LogitBoost 0.897

4 BCC based on Neural Networks 0.893

5 BCC based on PART 0.89

6 BCC based on JRIP 0.889

7 BCC based on SMO (SVM) 0.889

8 BCC based on Naive Bayes 0.845

9 BCC based on Hoeffding Tree 0.844

10 BCC based on Decision Table 0.824

next step was to integrate a real-time version of our system in the social robot
Mini.

The real-time version of the system required updates in the operation pipeline.
Instead of gathering samples and storing them in datasets to train the
classifiers, in this case, we selected a multi-class approach in which two
Random Forest-based classifiers run in parallel, one recognising touch gestures,
and the other dealing with the classification problem. The acquisition process
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executed the Touch Activity Detection mechanism to record data instances,
synchronizing the data from the three microphones as shown in Section 4.3.
The following link shows a video of the robot Mini running the whole system
in real-time: https://vimeo.com/389963022.

Shepard (1967)

7 Discussion

The results described in the previous section show that this proposal provides
high accuracy with a less complex deployment (i.e. low amount of sensors and
relatively simple installation) when compared to other systems presented in
the literature (see Section 2). The first learning approach is the multi-class
technique, which has obtained a high F-score for both robots. For the social
robot Maggie, the global accuracy was F-score = 0.858; for Mini, competitive
results were also obtained: F-score = 0.870. The second approximation uses
the multi-target technique and the best result was obtained using BCC based
on Random Forest, with a 0.904 and 0.912 Hamming-score for Maggie and
Mini respectively.

Although both approaches offer high performance, their model validation
metrics are not exactly equivalent: F-score for the multi-class approach
and Hamming-score for multi-target algorithms. For the kind of problem
presented in this work, we argue it is more appropriate to use the multi-target
classification algorithms (our second approximation) because this approach
avoids training one classifier for each label (location and type of gesture), which
reduces the computational weight of the system in a future online-classification
iteration. Multi-target algorithms also take advantage of the possible influence
between the two labels to classify, which leads to better results overall.

Finally, in Table 11 we summarise the results of the similar works reviewed
in Section 2 that perform touch gesture recognition. The table shows the
results of the techniques using cross-validation and accuracy as a metric. Here,
we present Accuracy (see Eq. 7) instead of F-score as a metric because the
other works using the same metric. In our work, this result corresponds to
the accuracy of gesture recognition when taking the average from the best-
performing multi-class algorithm, Random Forest, in robot Maggie (accuracy
85.1%) and Logistic boost in the robot Mini (accuracy 87%). In this table, we
observed that Silvera and Albawi, using a sensitive skin, achieved a lower
accuracy. Muller, Hughes, and Zhou using deep learning achieved a lower
accuracy too. The work of Cooney et al. obtains the best accuracy, but working
with a combination of embedded optical sensors and external cameras.
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Table 11
Comparison of gesture recognition using several different techniques

Studies Accuracy Platform Technologies

Silvera-Tawil et al. (2014) 74% Artificial robot arm Pressure-sensitive
robotic skins

Albawi et al. (2018) 63.7% Artificial robotic arm Pressure-sensitive
robotic skins

Hughes et al. (2017) 61.35% Human-animal
affective robot

Pressure-sensitive
robotic skins

Zhou & Du (2016) 76.1% Human-animal
affective robot

Pressure-sensitive
robotic skins

Müller & Gross (2018) 74% Socially Assistive
Robot

Capacitive and
pressure-array touch
sensors

Cooney et al. (2012) 90.5% Humanoid robot mock-
up (foam-covered man-
nequin)

External cameras,
built-into optical
sensors

Our proposal 86.05% Two social robots (ir-
regular and rigid sur-
faces)

Built-into contact mi-
crophones

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Since the source codes from these works were not available to test our datasets,
we extracted the performance metrics provided in the papers and used those
to compare with the performance of our own proposal. Under these conditions,
our system achieves competitive results using fewer sensors that are mounted
into the robotic platform.

8 Conclusions

Social robots are expected to form part of our daily life, so endowing the robot
with the ability to recognize different kinds of touch gestures performed by the
user poses an important challenge in HRI. Consequently, this paper proposes
a new touch-sensing technology in the field of social robotics that is able to
detect, recognise and localise touch gestures in a whole robot shell using a
few sensors. In contrast, although traditional touch sensing technologies (e.g.
resistive, capacitive or piezoelectric, among others) present good durability
and robustness, their spatial resolution is poor. Furthermore, they tend to
provide a binary output, which just signals contact or not, which is in practice
quite limited when aiming to detect touch gestures as in natural interaction.
Therefore, contact microphones offer many interesting proprieties to overcome
the limitations of the traditional technologies. These devices are also robust
against ambient noise when detecting touch gestures in entire robot parts.
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In our approach, we have demonstrated how a single sensor is enough to detect
touch gestures in a whole robot part (e.g. in a robot’s head). The scalability of
the system as also been tested since we integrated three contact microphones in
each of the robots, which allowed gesture localisation. This required a study
of the sound propagation phenomenon in connected rigid parts (the inner
structure and shell of the robots). This phenomenon caused that different
sensors detected a touch gesture. Ideally, it was expected that the closest
sensor registered the highest sound intensity, but this did not happen always as
explained in detail in Section 4.1. Another interesting effect was the influence
of ambient noises and how those are registered by the contact microphones. In
our experiments, this rarely happened as the intensity of sounds propagating in
the air lowers when changing to a solid material. Nevertheless, we acknowledge
that intense ambient noises, if they could exert vibrations on the robot’s
shell, could be registered by the contact microphones and therefore cause
false positives. This limitation, although not frequent, could be alleviated
introducing traditional touch sensing technologies, such as capacitive ones.

We have successfully run our tests acquiring touch gestures from two different
social robots, the robot Maggie and the robot Mini. The accuracy in gesture
recognition in these robots was among the highest when compared with the
literature, as shown in Table 11, taking into account that our proposal uses
only 3 embarked sensors. Moreover, both robots obtained high performance
in both approaches: multi-class and multi-target.

Our system has also observed several limitations, which represent future goals
of the system. First, it is necessary to use a calibration phase to establish
the touch activity detection phase thresholds. Second, the recognition and
localization of touch gestures is currently limited to the robot’s rigid parts,
which makes the results unpredictable if the users touch other areas, such as
the foam covered by a layer of soft fabric in Mini’s torso. Consequently, we are
currently working on improving the system by adding air-microphones that
are integrated into the soft areas. Finally, another limitation is that the system
has only been tested with one particular type of contact microphone and with
only two kinds of social robots. Therefore, we are currently extending this
system to the social robots that we have in development.

Acknowledgment

The research leading to these results has received funding from the projects:
“Robots Sociales para Estimulación Física, Cognitiva y Afectiva de Mayores
(ROSES)”, funded by the Spanish “Ministerio de Ciencia, Innovación y
Universidades” and from RoboCity2030-DIH-CM, Madrid Robotics Digital

29



Innovation Hub, S2018/NMT-4331, funded by “Programas de Actividades I+D
en la Comunidad de Madrid” and cofunded by Structural Funds of the EU.

References

Albawi, S., Bayat, O., Al-Azawi, S., & Ucan, O. N. (2018). Social Touch
Gesture Recognition Using Convolutional Neural Network. Computational
Intelligence and Neuroscience, 2018, 1–10.

Alonso-Martin, F., Castro-González, Á., Gorostiza, J., & Salichs, M. A.
(2013a). Multidomain Voice Activity Detection during Human-Robot
Interaction. In International Conference on Social Robotics (ICSR 2013)
(pp. 64–73). Bristol: Springer International Publishing.

Alonso-Martín, F., Gamboa-Montero, J. J., Castillo, J. C., Castro-González,
Á., & Salichs, M. Á. (2017). Detecting and Classifying Human Touches in
a Social Robot Through Acoustic Sensing and Machine Learning. Sensors,
17(5), 1138.

Alonso-Martin, F., Malfaz, M., Sequeira, J., Gorostiza, J., & Salichs, M. A.
(2013b). A Multimodal Emotion Detection System during Human-Robot
Interaction. Sensors, 13(11), 15549–15581.

Alonso-Martin, F., Ramey, A., & Salichs, M. Á. (2014). Speaker identification
using three signal voice domains during human-robot interaction. In Pro-
ceedings of the 2014 ACM/IEEE international conference on Human-robot
interaction - HRI ’14 (pp. 114–115). Bielefeld (Germany): ACM Press.

Altun, K. & MacLean, K. E. (2015). Recognizing affect in human touch of a
robot. Pattern Recognition Letters, 66, 31–40.

Appice, A. & Dzeroski, S. (2007). Stepwise induction of multi-target model
trees. In Machine Learning: ECML 2007, volume 7 (pp. 502–509).: Springer
Berlin Heidelberg.

Argall, B. D. & Billard, A. G. (2010). A survey of Tactile Human–Robot
Interactions. Robotics and Autonomous Systems, 58(10), 1159–1176.

Bielza, C., Li, G., & Larrañaga, P. (2011). Multi-dimensional classification
with bayesian networks. International Journal of Approximate Reasoning,
52(6), 705–727.

Breiman, L. (1992). The little bootstrap and other methods for dimensionality
selection in regression: X-fixed prediction error. Journal of the American
Statistical Association, 87, 738–754.

Carlson, A. (1968). Communication systems: an introduction to signals and
noise in electrical communication. McGraw-Hill electrical and electronic
engineering series.

Cho, H.-s., Ji, J., Chen, Z., Park, H., & Lee, W. (2015). Accurate Distance
Estimation between Things: A Self-correcting Approach. Open Journal of
Internet Of Things (OJIOT), 1(2), 19–27.

30



Cochran, W., Cooley, J., Favin, D., Helms, H., Kaenel, R., Lang, W., Maling,
G., Nelson, D., Rader, C., & Welch, P. (1967). What is the fast Fourier
transform? In Proceedings of the IEEE, volume 55 (pp. 1664–1674).

Cooney, M. D., Nishio, S., & Ishiguro, H. (2012). Recognizing affection for
a touch-based interaction with a humanoid robot. In 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (pp. 1420–1427).:
IEEE.

Firouzi, K., Nikoozadeh, A., Carver, T. E., & Khuri-Yakub, B. P. T. (2016).
Lamb Wave Multitouch Ultrasonic Touchscreen. IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, 63(12), 2174–2186.

Gallace, A. & Spence, C. (2010). The science of interpersonal touch: An
overview. Neuroscience & Biobehavioral Reviews, 34(2), 246–259.

Godbole, S. & Sarawagi, S. (2004). Discriminative Methods for Multi-labeled
Classification. In H. Dai, R. Srikant, & C. Zhang (Eds.), Advances
in Knowledge Discovery and Data Mining: 8th Pacific-Asia Conference,
PAKDD 2004, Sydney, Australia, May 26-28, 2004. Proceedings (pp. 22–30).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Gonzalez-Pacheco, V., Ramey, A., Alonso-Martin, F., Castro-Gonzalez, A.,
& Salichs, M. A. (2011). Maggie: A Social Robot as a Gaming Platform.
International Journal of Social Robotics, 3(4), 371–381.

Goris, K., Saldien, J., Vanderborch, B., & Lefeber, D. (2011). Mechanical
design of the Huggable robot Probo. International Journal of Humanoid
Robotics, 08(03), 481–511.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical
learning: data mining, inference, and prediction. New York, NY: Springer.

Hertenstein, M., Holmes, R., McCullough, M., & Keltner, D. (2009).
The communication of emotion via touch. In American Psychological
Association, volume 9 (pp. 566–573).

Hertenstein, M. J., Verkamp, J. M., Kerestes, A. M., & Holmes, R. M. (2006).
The communicative functions of touch in humans, nonhuman primates, and
rats: a review and synthesis of the empirical research. Genetic, social, and
general psychology monographs, 132(1), 5–94.

Holmes, G., Donkin, A., & Witten, I. (1994). WEKA: a machine learning
workbench. In Proceedings of ANZIIS ’94 - Australian New Zealnd
Intelligent Information Systems Conference (pp. 357–361).: IEEE.

Hughes, D., Krauthammer, A., & Correli, N. (2017). Recognizing social touch
gestures using recurrent and convolutional neural networks. In Proceedings
- IEEE International Conference on Robotics and Automation (pp. 2315–
2321).: IEEE.

Jung, M. M., Cang, X. L., Poel, M., & MacLean, K. E. (2015). Touch Challenge
’15: Recognizing Social Touch Gestures. In Proceedings of the 2015 ACM
on International Conference on Multimodal Interaction, ICMI ’15 (pp. 387–
390). New York, NY, USA: ACM.

Kavitha C.R, M. T. (2016). A comparison of multi-label classification methods
using Meka on benchmark datasets. IJRET: International Journal of

31



Research in Engineering and Technology, 5(9), 330–335.
Kim, Y. m., Koo, S. y., Lim, J. G., & Kwon, D. s. (2010). A robust online

touch pattern recognition for dynamic human-robot interaction. IEEE
Transactions on Consumer Electronics, 56(3), 1979–1987.

Lopes, P., Jota, R., & Jorge, J. A. (2011). Augmenting touch interaction
through acoustic sensing. In Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces - ITS ’11 (pp.5̃3). New
York, New York, USA: ACM Press.

Madeo, R. C. B., Peres, S. M., & Lima, C. A. d. M. (2016). Gesture
phase segmentation using support vector machines. Expert Systems with
Applications, 56, 100–115.

Marques, R. Z., Coutinho, L. R., Borchartt, T. B., Vale, S. B., & Silva, F. J.
(2015). An Experimental Evaluation of Data Mining Algorithms Using
Hyperparameter Optimization. In 2015 Fourteenth Mexican International
Conference on Artificial Intelligence (MICAI) (pp. 152–156).: IEEE.

Minato, T., Yoshikawa, Y., Noda, T., Ikemoto, S., Ishiguro, H., & Asada,
M. (2007). Cb2: A child robot with biomimetic body for cognitive
developmental robotics. In 2007 7th IEEE-RAS International Conference
on Humanoid Robots (pp. 557–562).

Morita, T., Iwata, H., & Sugano, S. (1999). Development of human symbiotic
robot: Wendy. In Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No.99CH36288C), volume 4 (pp. 3183–3188
vol.4).

Müller, S. & Gross, H. M. (2018). Making a Socially Assistive Robot
Companion Touch Sensitive. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 10894 LNCS (pp. 476–488).: Springer,
Cham.

Murray-Smith, R., Williamson, J., Hughes, S., & Quaade, T. (2008). Stane:
synthesized surfaces for tactile input. In Proceeding of the twenty-sixth
annual CHI conference on Human factors in computing systems - CHI ’08
(pp. 1299). New York, New York, USA: ACM Press.

Nicholls, H. R. & Lee, M. H. (1989). A Survey of Robot Tactile Sensing
Technology. The International Journal of Robotics Research, 8(3), 3–30.

Nikolovski, J.-P. (2003). Device for transmitting/receiving acoustic waves in
a plate and method for making same.

Nikolovski, J. P. (2013). Moderately reverberant learning ultrasonic pinch
panel. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 60(10), 2105–2120.

Paradiso, J. & Checka, N. (2002). Passive acoustic sensing for tracking knocks
atop large interactive displays. In Proceedings of IEEE Sensors, volume 1
(pp. 521–527).: IEEE.

Read, J., Reutemann, P., Pfahringer, B., & Holmes, G. (2016). Meka: A
Multi-label/Multi-target Extension to Weka. Journal of Machine Learning
Research, 17, 1–5.

32



Robinson, S., Rajput, N., Jones, M., Jain, A., Sahay, S., & Nanavati, A. (2011).
TapBack. In Proceedings of the 2011 annual conference on Human factors
in computing systems - CHI ’11 (pp. 2733). New York, New York, USA:
ACM Press.

Sabanovic, S., Bennett, C. C., Chang, W.-L., & Huber, L. (2013). Paro robot
affects diverse interaction modalities in group sensory therapy for older
adults with dementia. In Rehabilitation Robotics (ICORR), 2013 IEEE
International Conference on (pp. 1–6).: IEEE.

Salichs, M., Barber, R., Khamis, A., Malfaz, M., Gorostiza, J., Pacheco, R.,
Rivas, R., Corrales, A., Delgado, E., & Garcia, D. (2006). Maggie: A Robotic
Platform for Human-Robot Social Interaction. In IEEE (Ed.), 2006 IEEE
Conference on Robotics, Automation and Mechatronics (pp. 1–7). Bangkok:
IEEE.

Salichs San Jose, E., Castro-González, Á., Malfáz, M., & Salichs, M. Á. (2016).
Mini: a social assistive robot for people with mild cognitive impairment. In
M. Heerink, B. Vandenborght, J. Albo Canals, A. Barco Martelo, C. Datta,
M. Sheutz, C. Gustafsson, C. Huijnen, & J. Broekens (Eds.), New Friends
2016: The 2nd International Conference on Social Robots in Therapy and
Education (pp. 31–32). Barcelona: OmniaScience.

Schmid, A. J., Hoffmann, M., & Woern, H. (2007). A Tactile Language
for Intuitive Human-robot Communication. In Proceedings of the 9th
International Conference on Multimodal Interfaces, ICMI ’07 (pp. 58–65).
New York, NY, USA: ACM.

Sharkey, A. & Wood, N. (2014). The Paro seal robot: Demeaning or enabling?
AISB 2014 - 50th Annual Convention of the AISB, (pp.5̃).

Shepard, R. N. (1967). Recognition memory for words, sentences, and pictures.
Journal of Verbal Learning and Verbal Behavior, 6(1), 156–163.

Silvera-Tawil, D., Rye, D., & Velonaki, M. (2011). Touch modality
interpretation for an EIT-based sensitive skin. In 2011 IEEE International
Conference on Robotics and Automation (pp. 3770–3776).: IEEE.

Silvera-Tawil, D., Rye, D., & Velonaki, M. (2014). Interpretation of social
touch on an artificial arm covered with an EIT-based sensitive skin.
International Journal of Social Robotics,, 6(4), 489–505.

Stiehl, W. D., Lieberman, J., Breazeal, C., Basel, L., Lalla, L., & Wolf, M.
(2005). Design of a therapeutic robotic companion for relational, affective
touch. In ROMAN 2005. IEEE International Workshop on Robot and
Human Interactive Communication, 2005. (pp. 408–415).

Tang, D., Yusuf, B., Botzheim, J., Kubota, N., & Chan, C. S. (2015). A
novel multimodal communication framework using robot partner for aging
population. Expert Systems with Applications, 42(9), 4540–4555.

Thomson, W. T. (1950). Transmission of Elastic Waves through a Stratified
Solid Medium. Journal of Applied Physics, 21(2), 89–93.

Tucker, D. (1966). Applied underwater acoustics. Pergamon Press.
Walker, G. (2012). A review of technologies for sensing contact location on the

surface of a display. Journal of the Society for Information Display, 20(8),

33



413–440.
Wang, Y., Cang, S., & Yu, H. (2019). A survey on wearable sensor modality

centred human activity recognition in health care. Expert Systems with
Applications.

Wilhelm, F. H., Kochar, A. S., Roth, W. T., & Gross, J. J. (2001). Social
anxiety and response to touch: incongruence between self-evaluative and
physiological reactions. Biological Psychology, 58(3), 181 – 202.

Yohanan, S. & MacLean, K. E. (2012). The Role of Affective Touch in Human-
Robot Interaction: Human Intent and Expectations in Touching the Haptic
Creature. International Journal of Social Robotics, 4(2), 163–180.

Zhou, N. & Du, J. (2016). Recognition of social touch gestures using
3D convolutional neural networks. In Communications in Computer and
Information Science, volume 662 (pp. 164–173).: Springer, Singapore.

34



A Third-Party Weka Classifiers Employed

Name Family Developed by Available on

EBMC Bayesian A. Lopez Pineda https://github.com/arturolp/ebmc-weka

Discriminant
Analysis

Funtions Eibe Frank http://weka.sourceforge.net/doc.
packages/discriminantAnalysis

Complement
Naive Bayes

Bayesian Ashraf M. Kibriya http://weka.sourceforge.net/doc.
packages/complementNaiveBayes

IBKLG K-Nearest
neighbor

S. Sreenivasamurthy https://github.com/sheshas/IBkLG

Alternating
Decision Trees

Decision Trees R. Kirkby et al. http://weka.sourceforge.net/doc.
packages/alternatingDecisionTrees

HMM Hidden Markov
Model

Marco Gillies http://www.doc.gold.ac.uk/~mas02mg/
software/hmmweka/index.html

Multilayer Per-
ceptrons

Neural
Network

Eibe Frank http://weka.sourceforge.net/doc.
packages/multiLayerPerceptrons

CHIRP Hypercubes Leland Wilkinson http://www.cs.uic.edu/~tdang/file/
CHIRP-KDD.pdf

AnDE Bayesian Nayyar Zaidi http://weka.sourceforge.net/
packageMetaData/AnDE/index.html

Ordinal Learn-
ing Method

Metaclassifier TriDat Tran http://weka.sourceforge.net/doc.
packages/ordinalLearningMethod

Grid Search Metaclassifier B. Pfahringer et al. http://weka.sourceforge.net/doc.
packages/gridSearch

AutoWeka Metaclassifier Lars Kotthoff et al. https://github.com/automl/autoweka

Ridor Rules Xin Xu http://weka.sourceforge.net/doc.
packages/ridor

Threshold Se-
lector

Metaclassifier Eibe Frank http://weka.sourceforge.net/doc.
packages/thresholdSelector

ExtraTrees Decision Trees Eibe Frank http://weka.sourceforge.net/doc.
packages/extraTrees

LibLinear Large Linear
Classification
(funtions)

B. Waldvogel http://liblinear.bwaldvogel.de/

SPegasos SVM Mark Hall http://weka.sourceforge.net/doc.
packages/SPegasos

Clojure Classi-
fier

Funtions Mark Hall http://weka.sourceforge.net/doc.
packages/clojureClassifier

SimpleCART Decision Trees Haijian Shi http://weka.sourceforge.net/doc.
packages/simpleCART

Conjuntive
Rule

Rules Xin XU http://weka.sourceforge.net/doc.
packages/conjunctiveRule

DTNB Bayesian Mark Hall et al. http://weka.sourceforge.net/doc.
packages/DTNB

J48
Consolidated

C4.5 decision
tree

J. M. Perez http://www.aldapa.eus

Lazy Associa-
tive Classifier

Rules Gesse Dafe et al. https://code.google.com/archive/p/
machine-learning-dcc-ufmg/wikis/
LACLazyAssociativeAlgorithmCpp.wiki

DeepLearning4J Deep Learning C. Beckham et al. http://weka.sourceforge.net/doc.
packages/wekaDeeplearning4j

HyperPipes HyperPipes Len Trigg et al. http://weka.sourceforge.net/doc.
packages/hyperPipes

J48Graft C4.5 decision
tree

J. Boughton http://weka.sourceforge.net/doc.
packages/J48graft
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Name Family Developed by Available on

Lazy Bayesian
Rules Classifier

Bayesian Zhihai Wang http://weka.sourceforge.net/doc.stable/
weka/classifiers/lazy/LBR.html

Hidden Naive
Bayes classifier

Bayesian H. Zhang http://weka.sourceforge.net/doc.
packages/hiddenNaiveBayes

Dagging meta-
classifier

Metaclasifier B. Pfahringer et al. http://weka.sourceforge.net/doc.
packages/dagging

Multilayer-
PerceptronCS

Neural
Networks

Ben Fowler http://weka.sourceforge.net/doc.
packages/multilayerPerceptronCS

Winnow and
Balanced
Winnow
Classifier

Funtions J. Lindgren http://weka.sourceforge.net/doc.
packages/winnow

Nearest-
neighbor-like
Classifier

k-nearest
neighbors

Brent Martin http://weka.sourceforge.net/doc.
packages/NNge

Naive Bayes
Tree

Bayesian Mark Hall http://weka.sourceforge.net/doc.
packages/naiveBayesTree

Kernel Logistic
Regression

Funtions Eibe Frank http://weka.sourceforge.net/doc.
packages/kernelLogisticRegression

LibSVM SVM FracPete https://www.csie.ntu.edu.tw/~cjlin/
libsvm/

Fuzzy
Unordered
Rule Induction

Fuzzy J. C. Hühn http://weka.sourceforge.net/doc.
packages/fuzzyUnorderedRuleInduction

Best First Tree Decision Tree Haijian Shi http://weka.sourceforge.net/doc.
packages/bestFirstTree

MetaCost
meta-classifier

Metaclassifier Len Trigg http://weka.sourceforge.net/doc.
packages/metaCost

Voting Feature
Intervals Clas-
sifier

Voting Mark Hall http://weka.sourceforge.net/doc.
packages/votingFeatureIntervals

ordinal
Stochastic
Dominance

Ordinal
Stochastic
Dominance
Learner

Stijn Lievens http://weka.sourceforge.net/doc.
packages/ordinalStochasticDominance

RBFNetwork Funtions Eibe Frank http://weka.sourceforge.net/doc.
packages/RBFNetwork

MODLEM rule
algorithm

Decision Trees S. Wojciechowski https://sourceforge.net/projects/modlem/

The Fuzzy Lat-
tice Reasoning
Classifier

Fuzzy I. N. Athanasiadis http://weka.sourceforge.net/doc.
packages/fuzzyLaticeReasoning

Functional
Trees

Decision trees C. Ferreira http://weka.sourceforge.net/doc.
packages/functionalTrees
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