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Abstract

Feature selection methods have an important role on the readability of data
and the reduction of complexity of learning algorithms. In recent years, a
variety of efforts are investigated on feature selection problems based on un-
supervised viewpoint due to the laborious labeling task on large datasets.
In this paper, we propose a novel approach on unsupervised feature selec-
tion initiated from the subspace clustering to preserve the similarities by
representation learning of low dimensional subspaces among the samples. A
self-expressive model is employed to implicitly learn the cluster similarities
in an adaptive manner. The proposed method not only maintains the sample
similarities through subspace clustering, but it also captures the discrimina-
tive information based on a regularized regression model. In line with the
convergence analysis of the proposed method, the experimental results on
benchmark datasets demonstrate the effectiveness of our approach as com-
pared with the state of the art methods.

Keywords: Unsupervised feature selection, Graph learning, Subspace
clustering, Sparse learning, Representation learning

1. Introduction

One of the most common approaches for dealing with high dimensional
data is to select the appropriate features which is known as feature selec-
tion (FS) problem in machine learning community [1, 2]. FS techniques are
widely applied in many domains including text mining [3], bioinformatics [4],
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social media [5], and ensemble learning [6]. On the one hand, FS approach
provides a sparse representation for data with massive number of features
to alleviate the curse of dimensionality effect on the learning performance
[7]. On the other hand, the computational burden of facing with massive
data could be decreased significantly through FS approach as compared with
other techniques like feature extraction approaches [8].

FS techniques can be categorized into wrapper, filter and embedded ap-
proaches by considering the evaluation criteria. In wrapper methods [9, 10,
11], the evaluation process depends on the learning algorithms, in contrast
to the filter methods [12, 13, 14] that only use data for evaluating without
any learning phase. The embedded methods [15, 16], embed the process of
selecting features in a learning algorithm.

On learning taxonomy, FS problem can be stated as “Supervised” and
“Unsupervised”. Supervised FSs are primarily constructed from the depen-
dency among the features and the label information, including information
theoretic approaches [17], statistical tests [18, 19], sparse learning methods
[20, 21], and structure learning [22]. On the other hand, appropriate cri-
terion on Unsupervised FS (UFS) problems is more challenging due to the
ill-defined nature of the problem. There have been a variety of works on
UFS [23] including metaheuristic approach [24], graph clustering [25], feature-
level reconstruction [26], discriminative approach [27], and spectral clustering
[28, 29]. One of the important aims in UFS approaches is to preserve the
geometric structure in the selected features [13]. To this end, the similarity
preserving methods construct a graph similarities to maintain the geometric
structure in the reduced space [30].

The graph similarity computation is often performed independently from
the feature selection, which may lead to a suboptimal solution. Adaptive
structure learning methods [31] explicitly learn a similarity matrix which
expand the search space of solutions. There are some UFS by considering
the subspace learning to exploit the hidden multidimensional substructures
of data [32]. The main idea of the subspace learning is constructed from
the representation of high dimensional data points based on the union of
the subspaces [33]. Subspace clustering refers to the process of clustering
and detecting the low dimensional structure of the clusters at the same time
[34]. The earlier subspace learning methods [35, 36] have considered the
self-expressiveness of the features aligned with the graph similarity stage.

In this paper, we propose a novel UFS, “Subspace Clustering unsuper-
vised Feature Selection” (SCFS), to exploit the discriminative information
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Figure 1: The outline of the proposed method.

concurrent with cluster analysis and adaptively maintain the similarity struc-
ture through an implicit similarity matrix computation. The proposed ap-
proach is constituted by a self-expressive model to include both of learning
latent homogeneous structures and similarity matrix computation in a uni-
fied objective function aligned with an `2,1-norm to address a regularized
regression model. In our approach, subspace learning is utilized to maintain
the cluster similarities in the selected features and sparse learning is applied
to learn a regularized regression model to measure the correlation between
the features and the learned clustering information. The more a feature is
related to the clusters, the more it is likely to be selected. The outline of the
proposed method is presented in Fig. 1.

The main contributions of this paper are as follows,

• We propose a novel UFS method by applying subspace learning, cluster
analysis and sparse learning to consider the sample similarities and
discriminative information in the selected features.

• We introduce a self-expressive model to adaptively and implicitly learn
the cluster similarities.

• We use a regularized regression approach to compute the sparse corre-
lation among the features and clusters.

• We introduce an optimization algorithm to address the proposed ob-
jective function.
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This paper is organized as follows. The related works are introduced in
Section 2. The proposed method and the corresponding optimization algo-
rithm are presented in Section 3. Convergence analysis and computational
complexity are discussed in Section 4. Experimental setting and results are
reported in Section 5. Finally, the conclusion of the paper is provided in
Section 6.

2. Related Works

Unsupervised feature selection methods generally select features based on
the intrinsic structural characteristics of data. These methods can be divided
into three main categories, similarity preserving [13], data reconstruction [37],
and sparse learning approaches [28].

The main focus of similarity preserving methods including Laplacian
Score [13] and SPEC [14], is to maintain the local similarities. Reconstruction
based methods employ a feature-level self-expressive model including con-
vex principal feature selection, CPFS [37], embedded reconstruction based,
REFS [26] and structure preserving, SPUFS [38]. Sparse unsupervised FS
approaches are initiated from the ideas of the sparse machine learning [39].
The core idea is to embed FS in a regularized learning model. There are sev-
eral well-known approaches in this category including preserving the multi-
cluster structure of data, MCFS [40], local discriminative approach using the
scatter matrix, UDFS [27], joint embedding learning and sparse regression,
JELSR [15], nonnegative discriminative feature selection based on spectral
clustering, NDFS [28], global similarity preserving feature selection, SPFS
[41], global and local similarity preserving feature selection, GLSPFS [30],
and unsupervised feature selection with adaptive structure learning, FSASL
[31].

There are some UFS methods by considering the subspace learning idea.
Feature-level reconstruction based approach was proposed in, MFFS [32] by
exploiting the matrix factorization. In [35], a graph regularized approach
was introduced to maintain the local similarities. A sparse discriminative
learning approach was devised in [36] to select discriminative features based
on the local structure of the samples. While, UFS methods with the aid of
subspace learning, MFFS [32], SGFS [35], LDSSL [36] mainly reconstruct
the data matrix in feature-level, the sample-level characteristics such as the
cluster structures are not thoroughly incorporated in them.
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Table 1: A comparison of the related unsupervised feature selection methods.

Algorithm
Self-

expression
Similarity preserving

Adaptive
graph matrix

Joint
learning

Cluster
analysis

Regression Regularization

LS [13] × Explicit × X × × ×
CPFS [37] Feature × × × × × X
MCFS [40] × Explicit × × × X X
UDFS [27] × Explicit × X × X X
NDFS [28] × Explicit × X X X X
GLSPFS [30] × Explicit × X × X X
MFFS [32] Feature × × × × × ×
FSASL [31] × Explicit X X × X X
REFS [26] Feature Explicit × X × × ×
SPUFS [38] Feature Explicit × X × × X
LDSSL [36] Feature Explicit × X × × X
SCFS Sample Implicit X X X X X

The important properties of the well-known UFS methods are summa-
rized in Table 1. Theses methods are compared based on multiple prop-
erties including, Self-expression, Similarity preserving, Adaptive graph ma-
trix, Joint learning, Cluster analysis, Regression and Regularization. Self-
expressive property points out the reconstruction on samples or features.
Similarity preserving is related to maintain sample similarities and comput-
ing explicitly or implicitly of the similarity matrix. Adaptive graph matrix
indicates the property of learning the similarity matrix concurrent with the
feature selection process. Joint learning refers to perform both of subspace
learning and feature selection in a unified framework. Cluster analysis in-
dicates that a method employs any clustering algorithm to select relevant
features. Regression refers to exploit a regression model to discover discrim-
inative features. Finally, Regularization indicates the consideration of regu-
larization factors in the method to result a sparse solution. Most of the UFS
techniques are constructed from one or more of these properties, but in this
work, a unified framework is proposed to consider all of the characteristics
to provide a more robust UFS.

3. The Proposed Method

3.1. Notations

Throughout this paper, matrices are denoted by bold uppercase and vec-
tors by bold lowercase characters. Let B be an arbitrary matrix , Bij is
its (i, j)-th element, and bi denotes the i-th row. The Frobenius norm, the
trace and the transpose operators on matrix B are denoted by ‖B‖F , tr(B),
and B>, respectively. The `2-norm of a vector v is denoted as ‖v‖2 and the
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`2,1-norm is defined as following,

‖B‖2,1 =
∑
i

√∑
j

B2
ij.

X ∈ Rn×p denotes the data matrix, where n and p are the number of
samples and features. G ∈ Rn×c represents the clustering matrix, where c is
the number of clusters.

3.2. The Proposed Method
At first, the similarity matrix is implicitly computed by subspace learning.

The proposed self-expressive similarity representation is given in Eq. (1),

min
G
‖X−GG>X‖2F

s.t. G ≥ 0,GG>1 = 1,
(1)

where 1 is an n×n matrix of ones and the constraint GG>1 = 1 is imposed to
normalize the similarity matrix. The symmetric nonnegative matrix GG>

is learned such that the samples within common subspaces tend to attain
large values in GG>. In lines with a low dimensional representation of G
by assuming c < {n, p}, G can also be interpreted as a clustering matrix.
Moreover, GG>, represents the pairwise sample similarities in terms of the
clustering values.

The next stage is to construct a sparse transformation W on the data
matrix X by employing the clustering matrix G, joined with a regularization
term,

min
W

‖XW −G‖2F + β‖W‖2,1, (2)

where W ∈ Rp×c is a linear and low dimensional transformation matrix, and
β is a regularization parameter. The objective function in Eq. (2) represents
the linear transformation model to measure the association between features
and clusters. The `2,1 norm induces sparsity on the rows of the transformation
matrix, wi’s. When wi’s are closer to zero, their correspondence features are
less relevant and more likely to be eliminated from the final candidate set of
the discriminative features.

By integrating Eq. (1) and (2) in a joint objective function, our final
model is obtained as follows,

min
W,G

‖X−GG>X‖2F + α‖XW −G‖2F + β‖W‖2,1

s.t. G ≥ 0,GG>1 = 1,
(3)
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Figure 2: The description of the proposed method.

where α is a tuning parameter. By solving the objective function in Eq. (3),
W and G are iteratively updated in advance of achieving the optimal result.

We illustrate the steps of SCFS in Fig. 2. X is a nonnegative artificial
data matrix with seven samples and ten features. The bright entries of X
are close to zero and the dark ones are far from zero. Initially, subspace
learning stage provides the cluster similarities G which is used to construct
the similarity matrix GG> among samples. Then, a sparse learning method
is applied for learning the regularized coefficients W through a regression
model to measure the importance of features. The W and G are optimized
in an iterative process. Finally, the most important features are selected
based on W. In this example, F6, F3, and F9 are selected according to their
roles’ in the learned hidden subspaces.

3.3. Optimization

The primary objective function in Eq. (3) can be considered as,

min
W,G≥0,GG>1=1

f(W,G) = ‖X−GG>X‖2F + α‖XW −G‖2F + β‖W‖2,1.

(4)
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A gradient based procedure is utilized to solve this optimization problem by
considering the main elements W and G. It begins by fixing one element and
finding the optimum value for the other ones which is described in below.
Initially, G is fixed to yield the following objective function,

min
W

f(W) = α‖XW −G‖2F + β‖W‖2,1. (5)

Taking the derivative to calculate the ∇f(W) and setting it to zero,

W =
(
αX>X + βD

)−1
αX>G, (6)

where D is a diagonal matrix with,

Dii =
1

2‖wi‖2 + ε
, (7)

where ε is a very small positive number to prevent the division by zero.
Then, G is updated through the objective function in Eq. (8) by fixing W,

min
G≥0,GG>1=1

f(G) = ‖X−GG>X‖2F + α‖XW −G‖2F . (8)

Eq. (8) is rewritten to relax the constraints as,

f(G) = ‖X−GG>X‖2F + α‖XW −G‖2F + γ‖GG>1− 1‖2F + tr
(
ΦG>

)
,

(9)
where γ > 0 is a parameter to control the normalizing constraint and prac-
tically should be a large number. Φ is the Lagrange multiplier for G ≥ 0
constraint. Setting the derivative of f(G) with respect to G to 0,

2MG>G + 2GG>M + 2αG− 4M− 2αXW + Φ = 0, (10)

where M =
(
XX> + nγ1

)
G. By applying the KKT condition [42], the

following updating rule is obtained,

Gij = Gij

[2M + αXW]ij

[MG>G + GG>M + αG]ij
, (11)

Therefore, by initializing the G and D, in each iteration of the proposed
formulation, first W is updated by Eq. (6), and then G and D is updated
by Eq. (11) and (7). Algorithm 1 describes the optimization process of the
proposed method.
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Algorithm 1 SCFS algorithm.

Input: Data matrix X ∈ Rn×p and parameters α and β.
1: t = 0.
2: Initialize G0 ∈ Rn×c.
3: Initialize D0 as an identity matrix.
4: repeat

5: Wt+1 =
(
αX>X + βDt

)−1
αX>Gt.

6: Mt =
(
XX> + nγ1

)
Gt.

7: (Gt+1)ij = (Gt)ij
[2Mt + αXWt+1]ij

[MtG>t Gt + GtG>t Mt + αGt]ij
.

8: Update the diagonal matrix D as (Dt+1)ii = 1
2‖(wt+1)i‖2+ε .

9: t = t+ 1.

10: until Convergence of the objective function in Eq. (3).
Output: Sort features by descending order of ‖wi‖2.

4. The analysis of the proposed algorithm

This section presents the convergence behavior and computational com-
plexity of SCFS.

4.1. Convergence Analysis

Our aim is to show the non-increasing behavior of the primary objective
function in Eq. (3). First, a lemma is given [21].

Lemma 1. For any nonzero vectors u,v ∈ Rp, the following holds,

‖u‖2 −
‖u‖22
2‖v‖2

≤ ‖v‖2 −
‖v‖22
2‖v‖2

. (12)

Theorem 1. The objective function in Eq. (3) is non-increasing in each
iteration by employing the updating rules in Algorithm 1.

Proof. First, the objective function can be written as,

f(W,G) = ‖X−GG>X‖2F + α‖XW −G‖2F + β‖W‖2,1
+γ‖GG>1− 1‖2F .

(13)
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By fixing Gt, we should justify the following inequality,

f(Wt+1,Gt) ≤ f(Wt,Gt). (14)

Based on Eq. (5), inequality (14) can be written as,

‖XWt+1 −Gt‖2F + β
∑p

i=1(
‖(wt+1)i‖22
2‖(wt)i‖2

)

≤ ‖XWt −Gt‖2F + β
∑p

i=1(
‖(wt)i‖22
2‖(wt)i‖2

).
(15)

The inequality (15) is followed as,

‖XWt+1 −Gt‖2F + β‖Wt+1‖2,1 − β
p∑
i=1

(‖(wt+1)i‖2 −
‖(wt+1)i‖22
2‖(wt)i‖2

)

≤ ‖XWt −Gt‖2F + β‖Wt‖2,1 − β
p∑
i=1

(‖(wt)i‖2 −
‖(wt)i‖22
2‖(wt)i‖2

). (16)

According to Lemma 1,

‖XWt+1 −Gt‖2F + β‖Wt+1‖2,1 ≤ ‖XWt −Gt‖2F + β‖Wt‖2,1. (17)

Taking fixed Wt+1, based on a similar approach in [43], it follows,

f(Wt+1,Gt+1) ≤ f(Wt+1,Gt). (18)

Hence,
f(Wt+1,Gt+1) ≤ f(Wt+1,Gt) ≤ f(Wt,Gt). (19)

Therefore, Algorithm 1 will monotonically decrease the objective function in
Eq. (3) based on the relations (17) and (18).

4.2. Computational complexity

The main steps of Algorithm 1 contains the updating W and G on each
iteration. The update of W and G take O(p3 + np2 + npc) and O(n2p +
n2c + npc) time complexity. Hence, the time complexity of the proposed
algorithm is max{O(p3), O(np2), O(n2p), O(n2c), O(npc)}. In most applied
scenarios c� p, that implies the time complexity of the proposed algorithm
could be reduced to, max{O(p3), O(n2p)}.
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Table 2: The main properties of datasets in the experiments.

Dataset n p c Type Domain

Lung 203 3312 5 Continuous Biology
Lymphoma 96 4026 9 Discrete Biology
Prostate-GE 102 5966 2 Continuous Biology
ORL 400 1024 40 Discrete Image
Isolet 1560 617 26 Continuous Voice
BASEHOCK 1993 4862 2 Discrete Text

5. Experiments

In this section, the proposed method is evaluated using benchmark datasets
by standard evaluation measures. A bunch of state-of-the-art FS methods are
compared with SCFS where the results and experimental setting are reported
in the following.

5.1. Datasets

A variety of datasets are applied in different domains including biologi-
cal (Lung, Lymphoma, Prostate-GE), image (ORL), voice (Isolet), and text
(BASEHOCK) data. All of the datasets are available on repository [2].
Table 2 reports the main characteristics of datasets.

5.2. Evaluation measures

The performance is evaluated in terms of clustering by two widely used
and standard measures, Accuracy (Acc) and Normalized Mutual Information
(NMI). By taking y as the ground truth label information, and z as the
predicted ones’, Acc is defined as,

Acc(y, z) =
1

n

n∑
i=1

δ(yi,map(zi)),

where δ(a, b) equals to 1 if a = b and 0, otherwise. The best permutation of
z to match y values is found by map(.) function based on the Kuhn-Munkres
approach [44]. The definition of NMI is given as,

NMI(y, z) =
I(y, z)

max(H(y), H(z))
,
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where H(.) represents the entropy and I(y, z) is the mutual information of
y and z defined as,

I(y, z) =
∑
y∈y

∑
z∈z

p(y, z) log

(
p(y, z)

p(y) p(z)

)
.

5.3. The experimental setting

The state-of-the-art UFS methods are applied such as LS[13], UDFS[27],
NDFS[28], SPUFS [38], LDSSL [36], and Baseline means to select all of the
original features.

We set k = 5 on k-nearest neighbor algorithm, and σ = 1 for the band-
width parameter in the Gaussian kernel for the methods based on explicit
construction of the graph matrix. The γ = 106 is taken on our method and
NDFS. The grid search strategy is employed to choose the appropriate weight
parameters α and β among the set of {10−4, 10−2, 1, 102, 104} candidates. We
limit data by selecting different number of features in the range of {50, 100,
150, 200, 250, 300} and cluster each ones by k-means algorithm, and then
evaluate the clustering results by Acc and NMI measures. The mean and
standard deviation values of Acc and NMI are reported by repeating the
experiments for 20 times.

5.4. Experimental results

The performance of the feature selection algorithms are empirically eval-
uated in terms of Acc and NMI. The mean and standard deviation of the
clustering result are reported in the Table 3 and 4. The best and the second
best results are marked as bold and underline. By considering the Table
3 and 4, we have the following conclusions,

• The proposed approach outperform the Baseline method which is showed
the efficacy of SCFS to select the more relevant features rather than
the irrelevant and redundant ones’.

• Clustering based methods such as NDFS and SCFS commonly attain
better results in an unsupervised manner.

• The proposed method, SCFS, achieves the best performance on Acc on
the whole datasets, and also the best on NMI on the most cases.
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Table 3: Clustering results (Acc% ± std) of unsupervised feature selection methods
on standard datasets. Bold and underlined numbers are the best and the second
best.

Dataset Lung Lymphoma Prostate-GE ORL Isolet BASEHOCK

Baseline 71.67 ± 6.86 58.75 ± 5.19 58.82 ± 0.00 59.14 ± 2.11 63.19 ± 2.19 50.08 ± 0.00
LS 61.46 ± 2.61 50.12 ± 2.26 60.82 ± 1.71 49.94 ± 3.62 53.31 ± 4.49 50.63 ± 0.23
UDFS 56.65 ± 4.93 59.60 ± 2.50 61.36 ± 1.14 49.30 ± 3.90 57.97 ± 6.24 51.57 ± 0.56
NDFS 83.71 ± 0.64 63.81 ± 0.33 60.07 ± 0.77 58.81 ± 1.19 67.72 ± 1.51 50.18 ± 0.14
SPUFS 68.33 ± 1.20 53.57 ± 3.42 61.09 ± 1.45 48.63 ± 2.68 63.65 ± 13.10 50.41 ± 0.40
LDSSL 64.59 ± 5.14 58.11 ± 1.67 60.27 ± 0.74 57.78 ± 1.49 65.97 ± 3.64 50.49 ± 0.11
SCFS 86.70± 1.38 64.87± 1.59 61.70± 0.73 59.19± 0.83 69.17± 1.03 51.95± 0.44

Table 4: Clustering results (NMI% ± std) of unsupervised feature selection meth-
ods on standard datasets. Bold and underlined numbers are the best and the
second best.

Dataset Lung Lymphoma Prostate-GE ORL Isolet BASEHOCK

Baseline 62.90 ± 2.76 68.95 ± 3.63 2.55 ± 0.00 77.90± 0.86 77.61 ± 1.12 0.63 ± 0.00
LS 50.16 ± 5.95 55.88 ± 2.52 4.46 ± 1.65 70.90 ± 2.67 70.41 ± 4.52 2.54 ± 0.82
UDFS 45.73 ± 4.02 69.46 ± 3.36 5.06 ± 1.12 70.75 ± 2.91 71.03 ± 6.07 1.02 ± 0.77
NDFS 67.68 ± 0.85 73.70 ± 0.71 5.42 ± 0.48 77.61 ± 0.72 79.40 ± 1.72 1.20 ± 0.81
SPUFS 60.28 ± 1.81 63.24 ± 2.45 5.17 ± 0.45 70.25 ± 2.24 72.81 ± 11.14 1.86 ± 1.25
LDSSL 52.31 ± 5.19 64.64 ± 1.66 5.66 ± 0.13 76.41 ± 1.26 77.26 ± 3.37 1.67 ± 0.39
SCFS 70.17± 0.90 73.73± 0.75 5.85± 0.46 77.71 ± 0.44 79.43± 1.62 3.73± 0.50

• Moreover, the proposed method outperforms the earlier subspace learn-
ing based approach, LDSSL, due to employing the sample-level self-
expression, and adaptive learning of the cluster similarities.

Furthermore, we demonstrate the performance of the proposed method for
two extreme scenarios, the first by considering the number of selected features
as 50, and the second as 300. Fig. 3 and Fig. 4 represent the obtained results
according to these scenarios. On the one hand, SCFS performs satisfactory
on the first scenario to deal with the small number of selected features. On
the other hand, the results indicate that the proposed approach attains better
performance than the other well-known methods on almost all datasets on
the second scenario.
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Figure 3: The obtained results in terms of Acc with 50 and 300 numbers of selected
features.
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selected features.

14



5.5. Parameter sensitivity and convergence study

First, the sensitivity of parameters α and β in our model are investigated.
The experimental results on Acc and NMI criteria for all of datasets are
presented on Fig. 5. For all candidate of α and β parameters, the logarithms
base 10 is taken. As shown in Fig. 5, there is a relative sensitivity to the
parameters, which is still an open problem.

Next, we experimentally study the convergence behavior of the proposed
algorithm. Fig. 6 presents the speed of the convergence according to the ob-
jective values with respect to the number of iterations on different datasets.
The stopping criteria is set as obj(t)−obj(t−1)

obj(t)
< 10−5, where obj(t) is the objec-

tive function value of Eq. (3) in the t-th iteration. As shown in the Fig. 6,
the proposed algorithm monotonically decreases the objective function in a
few iteration.

6. Conclusion

In this paper, we proposed a novel unsupervised feature selection frame-
work initiated from the subspace learning and regularized regression to main-
tain sample similarities and take discriminative information into account in
the selected features. The proposed method, SCFS, was designed to implic-
itly learn the cluster similarities in an adaptive manner. Furthermore, a uni-
fied objective function was constituted from the main underlying character-
istics of the proposed method. The optimization algorithm was proposed to
obtain the solutions in an efficient way. In line with the computational com-
plexity of the proposed algorithm, its convergence was investigated through
an empirical study on real datasets. Extensive experiments on variaty of
datasets was performed to show the effectiveness of the proposed method.
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Figure 5: Acc and NMI of SCFS with different values of the parameters α and β.
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Figure 6: Convergence curve of SCFS on different datasets.
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