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Abstract

Power load forecasting plays a critical role in the context of electric supply
optimization. The concept of load characterisation and profiling has been
used in the past as a valuable approach to improve forecasting performance
as well as problem interpretability.

This paper proposes a novel, fully fledged theoretical framework for a joint
probabilistic clustering and regression model, which is different from existing
models that treat both processes independently. The clustering process is
enhanced by simultaneously using the input data and the prediction targets
during training. The model is thus capable of obtaining better clusters than
other methods, leading to more informative data profiles, while maintaining
or improving predictive performance.

Experiments have been conducted using aggregated load data from two
U.S.A. regional transmission organizations, collected over 8 years. These
experiments confirm that the proposed model achieves the goals set for
interpretability and forecasting performance.

Keywords: Power Load, Forecasting, Profiling, Clustering, Machine
Learning, Probabilistic Model

1. Introduction

During the past decade, the use of renewable energy has continued to grow
steadily, representing 18.9% of the energy consumed in the European Union
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[8] and the 11% in the United States [2| in 2018. This trend is expected to
continue in the future due to the need to reduce carbon emissions worldwide.
The global tendency towards green energy has the effect of turning energy
production into a non deterministic process, as it depends mainly on the
local availability of solar radiation and wind. Not only do both these sources
add uncertainty to the energy production problem, but they also introduce
hard constraints due to their limited availability and seasonal nature. This
makes the balance between energy availability and demand a complex problem
that can only be tackled by demand side-management and energy storage
strategies. Accurate power load profiling and forecasting models have thus
become vital aids in this context.

In particular, the use of load profiling can mitigate the uncertainties
introduced by the diversity of stakeholders in generation, transmission, and
distribution agents [14]. In general, the characterization and profiling of
electricity consumption or modelling of common behaviours at user level and
its applications have become an important research topic in the literature
related to renewable energies.

In [27] the profiling methodology is justified by the need for an accurate
customer billing assessment. In [19], load profiling is presented with the
purpose of designing efficient low voltage distribution networks in residential
areas in South Africa. A similar approach is found in [22|, where load
profiles were characterized in Sao Paulo, Brazil. Examples of the use of these
profiles are “transformer rating selection and management, load diversity
evaluation and to determine the expected load profile in any preset point of
the distribution network”, among others. A different application can be found
in [7], where authors group customers based on their different profiles in order
to design customized tariffs based on their energy usage preferences. The
topic was discussed also in 1], where machine learning is used to detect habits
in energy consumption. A similar application, but restricted to modelling
energy consumption in buildings is presented in [10, 9]. Load models based
on load profiles that mimic observed load are presented in [28].

Regarding power load forecasting, many efforts have been made to design
reliable models. Usually, load prediction models are categorized into short-
term (from minutes to less than one week) and long-term (from more than one
week to several years) [42, 45]. For the purpose of short-term load forecast,
traditional methods include linear prediction models that use historical time-
series of the observed load. The main structures used in these models are
moving-average (MA), auto-regressive moving-average (ARMA) or auto-



regressive integrated moving-average (ARIMA) [4]. The most widely used
parameter optimization algorithm consists of the minimization of the mean
square error (MMSE) (see, e.g. [17], [34]). Further attempts at using AR
or ARMA regression include the use of support vector machines (SVM) [5]
due to their robustness [38] and ability to construct nonlinear versions [29].
Some approaches include an SVM-MA [32] or an SVM-ARIMA structure |26].
Both of these works include the use of kernels [40] in order to attain nonlinear
properties. Other approaches, such as [30], include the use of Gaussian
processes (GP) [36]. While the MMSE criterion can easily be implemented
online if the structure is linear [18], SVMs and GPs require block training,
which limits the number of data that can be used.

The use of neural networks has become a widespread practice in power-
load forecast. Early works using the standard multilayer perceptron neural
network include [47, 41]. More recent works use recurrent networks adapted
for time series analysis called long short-term memory (LSTM) networks
[20, 23|, convolutional neural networks [11] and others. In general, due to
their complexity, these methods show excellent performance, but they need
to be trained with very large data-sets to obtain satisfactory results. These
techniques also allow online and batch training.

Most of these models can and have been enhanced with the inclusion of
multi-source data (which is also allowed by the use of kernels [6]). In particular,
besides historical load time-series, the most used data source in power-load
forecast consists of weather parameters such as outdoor temperature, humidity,
solar radiation intensity, dew point temperature, wind speed, rainfall and
others.

Tying profiling and forecasting together, it has been shown that good
profiling can also improve forecasting accuracy when it is used as a form of
data selection for model training. The main efforts in this topic take two
different approaches. The first one is to directly produce an interpretation
of the behaviour of the load time-series in time, space or across users. The
second one focuses on the usage of clustering simply for the improvement
of load forecasting accuracy. The main idea behind the second approach
consists of constructing prediction models specialized in each one of the
clusters. This way, it is expected that the possible nonlinear relationships
between the predictor (input data) and the regressor (forecast load) can
be locally approximated by linear functions or, at least, by less complex
nonlinear structures. Clustering techniques are the most popular for both
load characterization as well as joint profiling and forecasting [46, 35|, due to
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their easy implementation and direct interpretation.

Clustering is a classic idea in machine learning and it was first presented
as an application for load forecast in [44], in which the authors use K-means
clustering and linear regression for load forecasting. In fact, most of the
works related to load profiling use clustering based on the K-means algorithm
(see e.g. [3]). For example, [37] uses K-means to cluster load data and
produce a detailed analysis of the results by grouping the clusters into yearly
seasons. In [13], the authors assume that the data fits a linear ARMA model
and show that, when the data is clustered, this assumption produces better
prediction results for a large number of substations of the Belgian power grid.
Nonlinear approaches have also been applied together with clustering. In [15]
the authors use K-means to cluster aggregate data supplied by smart meters.
The test data is then classified as belonging to one of such clusters and then
processed through traditional neural networks to produce a forecast. In this
work it is assumed that the input-output relationship is still nonlinear, but
the clustering allows less complex structures.

K-means can be seen as a simplification of the Gaussian mixture model
(GMM), which is trained with the well known Expectation Maximization
algorithm [31]. An example of GMM used to identify typical daily electricity
usage profiles of multiple buildings can be found in [24]. Authors actually
use two clustering levels, the first one (intra-building) being a GMM and the
second one (inter building) a hierarchical clustering.

Other authors, such as [33], take advantage of projections of the data
into higher dimension Hilbert spaces through the use of kernelized versions of
clustering techniques [39].

In all previous papers where clustering is used to enhance load prediction,
the authors construct a cascaded scheme with two distinct stages: a clustering
algorithm followed by a battery of regression functions that are trained
independently. Alternative models attempt to train both stages at the same
time. A variant of the GMM for its application to regression is the approach
known as Gaussian Process Mixture Model [43]. A version of this method was
applied to power-load forecasting in [25]. This model produces a probabilistic
interpretation of the output but, since the input space is not clustered, it
cannot provide a meaningful profiling of the data.

In this paper we present a new approach to simultaneous clustering and
regression with the aim of providing good profiling characteristics while
maintaining solid forecasting performance. The main theoretical novelty of
the approach lies in the definition of a probabilistic model that performs a joint
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training of the clustering and regression stages. This results in a clustering
of the input data that is actively informed by the forecasting process. The
clusters achieved by the model will therefore offer a better, more informative
representation of the problem than if they were a function of the input data
alone.

The remainder of this paper is organised as follows:

e Section 2 fully defines the theoretical framework for the proposed model.
It also provides a simple synthetic example to illustrate its capabilities.

e Section 3 gives a detailed description of the experiments that have been
carried out, in which we apply the model to power load forecasting.
It includes a thorough analysis of the resulting profiles and predictive
function distribution as well as a performance evaluation. Several
reference models have been included in the experiments for comparison.

e In Section 4 we present our conclusions and final thoughts on the
experiments as well as a brief discussion of future lines of work to
improve and expand the models capabilities.

The full model, as used in this study, is implemented in python and is
available at the following GitHub repository: https://github.com/0GHinde/
Clusterwise_Linear_Model.

2. The Clusterwise Linear Model

Following on the idea of using an initial clustering phase to select groups
of samples to later train separate regressors, we propose a unified probabilistic
model that integrates regression into the clustering process. For this reason,
we have called it the Clusterwise Linear Model (CWLM). We first assume
that the observations, or input data, are generated by a standard Gaussian
mixture model (GMM) with K components. Next, we consider that each
component of the mixture model is associated to a linear regression model
that generates the output targets. The novelty of this approach lies in the
fact that both stages are coupled: not only does the input space clustering
influence the linear regression on the output space, but also the regression
process affects the overall clustering of the data.

Let’s consider a regression problem defined by an observation data matrix
X = [xy,... ,XN]T and a target vector y = [y, ... ,yN]T, where x; € R is
the i-th observation and y; € R is its corresponding target.


https://github.com/OGHinde/Clusterwise_Linear_Model
https://github.com/OGHinde/Clusterwise_Linear_Model

The proposed model starts by considering that the data distribution can
be approximated by a mixture of K Gaussians,

p(X) = ZWICN(X“%? Ek)? (1)

k=1

where p, and ¥ are, respectively, the mean and covariance matrix of the
k-th Gaussian component, and 7 is the prior probability that sample x has
been generated by the k-th Gaussian component.

Next, we introduce the following set of K linear models,

y:Wl;rX—i_elm (2)

where w;, are the linear regression weights of the k-th component, including
the bias term', and ¢, is assumed to be Gaussian noise with zero mean and
variance [3, L

Thus, given that observation x has been generated by the k-th Gaussian
component, its corresponding target value y will be generated by the k-th
linear model. Therefore the probability distribution for y becomes

p(ylx,0) = N(ylw.x, 8, ") (3)

The mixture distribution for the target variables can therefore be stated
as

K
plylx.8) =) mN(ylwix, 5.1, (4)
k=1

where 6 includes all model parameters: m, which are the prior cluster
probabilities; p and 3, which contain all component mean vectors p, and
covariance matrices 3, for the input clustering stage; and w and 3 contain
all regression weight vectors wj, and estimation noise precisions (.

2.1. Probabilistic representation

From a probabilistic standpoint, this model can be represented by the
graph depicted in Figure 1.

Ix is considered to be extended with a constant term of value 1 to account for the bias

term
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Figure 1: Graphical representation for the CWLM. Shaded nodes indicate variables that
are observed during the training phase, whereas non-shaded nodes indicate latent variables.
The smaller solid nodes indicate deterministic model parameters.

The model assumes that a set of latent variables Z = [z, ...,zy]| exists,
where each z; = {z;x}&_, is modeled such that only the k-th entry of these
vectors equals 1 and the rest is zero, indicating that x; has been generated by
the k-th Gaussian mixture component and, consequently, y; has been generated
by the k-th linear regressor. The prior distribution of these variables is defined

p(zip = 1) = 7. (5)

where 0 <7, <1land ), 7 =1
The graphical model in Figure 1 leads us to the following complete-data
likelihood function

p(Z7X7y|0> :p(Z|0)p(X|Z,0)p(y’Z,X,9), (6)

where

p(Z|0) = HH Sk (7)

i=1 k=1
p(X120) = T TT At 0 ®)
=1 k=1
N K
p(y1Z,X,0) = [ [ [TV (wilwixi, ). (9)
=1 k=1
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Therefore, the complete-data likelihood becomes

p(Z,X,y|0) = HH [N (i o, )N (il wii xi, B, 1)) ™. (10)

i=1 k=1

From here we can now compute the complete-data log likelihood,

(11)

2.2. Model inference through FExpectation Maximization

The Expectation Maximization algorithm (EM) is a common approach to
find the optimal values for the parameters of a model that depends on latent
variables. The EM algorithm iterates between two distinct stages: it first
performs the expectation step (E-step), in which the current values of the
model parameters are used to evaluate the posterior probabilities of the latent
variables; it then applies the maximization step (M-step), in which these
posterior probabilities are used to maximize the complete log-likelihood and
update the values of the model parameters. These two steps are performed
until a convergence criteria is met.

During the E-step the posterior distribution of the latent variables, known
as the responsibilities, is computed as

Y(zig) = Ez {2%|0} = p(2ik|%i,yi,0) =
_ TN (i | g, SN (yil Wil x5, 8, ) (12)
S TN (% s S )N (yi| Wi xi, B

Note that in this model the responsibilities depend on both p(x|u, )
and p(y|w'X, 371). Therefore the clustering process is informed by both the
input space (the input variables contained in the observation data matrix, X)
and the output space (the output variables contained in the labels, y).

During the M-step we update the model parameters by maximizing the
expected value of the complete log-likelihood under the posterior of the latent
variables. That is,

0" = arg mhax Ez {Inp(Z,X,y[0)}, (13)



where

]EZ {lnp(za X? Y|0)} =

N K
= Z Z Y(zin) [In 7y + N (x5 g, i) + In N (yi|w) xi, By )] -

i=1 k=1

(14)

Thus, the derivatives of (14) with respect to each parameter give us all
the necessary update rules.
The cluster weight update rule becomes

N
1
™= N ;’Y(Zn,k)a (15)

considering the constraints 0 < m, <1 and ), m, = 1.
The cluster mean and cluster covariance matrix update rules are

N
1
A > ()% (16)
=1
and
1 N
X = N, D i) (xix] = ) (17)
=1

respectively, where Ny, is the number of members belonging to component £k,
Ni =220 7 (Zik)-

Whereas the update rules for the regression weights and noise precision
become

wp = (XTI X)"'X Ty (18)
and
1 2
Byl = N ;V(Zi,k) (i — wiix;) (19)

respectively, where T is defined as Ty, = diag ({v(z11), 7(22), - - -, Y(2n ) }).-

2.8. Predictive distribution

The predictive distribution enables us to obtain an estimation of the
output, y*, given a new test observation x*. In this case, the output of
the k-th regressor is given by yi = w, x* + ¢;. Therefore, the probability
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distribution of y* given the test observation together with the training data
and the inferred model parameters is given by

K
Py X", X,y,0) = > p(zi[x*, 0)p(y*|z = 1,x*,X,y,6), (20)
k=1
where
p(z5,x*(0) _ TN (x| g, Eie)

p(z[x",0) = (21)

25:1 p(Z,:/, X*‘0> 25:1 Wk’N(X*lluk’; Ek')

and takes a similar role to that of the responsibilities, 7%, in (12). The
difference lies in the fact that here we don’t have access to the real value of
the target and therefore we can’t incorporate this information to the cluster

assignment.
Now, since
p(yilze x*, X, y,0) = N(yilwe x*, B ), (22)
we have that
K
p(y' X" X, y,0) = > p(zilx", O)N (yilw/x", 8;") (23)
k=1

We can now obtain an estimation of y* as the expected value of p(y*|x*, X, y, 0)

g?\/[SE - E{y*’X*7 X7 Yy, 0}
K

> p(zilx*, 0)E{y;[x*, X, y, 0}

(24)

>
Il
—_

plzi|x*, O)w; x*

I
]~

T
I

This estimation is essentially the sum of the outputs of the K regressors
weighted by p(z}|x*, @), which translates to the minimum square error (MSE)
estimator. The maximum a posteriori (MAP) estimator, §3,4p, can also be
implemented by using the output of the regressor associated to the highest
value of p(z}|x*,0) as the estimated value for y*.
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2.4. Model extensions

We now present some minor modifications to the standard version of
CWLM that can be easily applied to obtain a more powerful, robust and
expressive model.

Regularization term. An L? regularization [21] on the regression weights can
be included in the model with barely any modifications to the algorithm. This
regularization term is introduced to the model in (18), which now becomes

wi = (X T X8 +nI) ' X T8y (25)

The free parameter n acts simply as a regularization constant, and must be
cross-validated to determine its optimal value without over-fitting the training
data. This result is akin to assuming a Gaussian prior on the regression
weights, where p(w|n) = N (w|0,n7'T).

Multi-output prediction. The model can be easily extended to perform basic
multi-output prediction, provided we assume complete independence of the
output variables among themselves. In this case, the target vector y becomes
target matrix Y = [y1, ..., yn]", where y; € RT contains the T target variables
for the i-th observation. Note that in this case the number of responsibilities
computed in the E-step grows linearly with T" (see (12)), meaning that the
number of matrix inversions performed by the regression weight update rule
(18) also grows linearly with 7. This leaves us with per-task responsibilities

0
p(xi,y; s 2ik|0)
IRCHE |

k)= (26)
and per-task regression weight update rule
wi) = (XTTPX) Xy ®. (27)

This severe increase in computational complexity can be avoided by
averaging the responsibilities over all output targets for each observation,

T
1
-+ OYNO)
Yik = T ;—1 Y (Zz,k) (28)

resulting in a single regression weight update rule in which the new averaged
responsibilities 4; ;, are arranged in matrix I'y, = diag({%,k, Nokos - - - ﬂN’k}).
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Multiple input-space views. Another modification of the model allows us to
use different characterizations or views of the data for the input mixture
of Gaussians and the output linear regressors, provided there is a one to
one correspondence between the samples in each view. By defining two
distinct input data matrices, Xt € RV and Xt € RVPY | we can easily
reformulate the M-Step and E-Step equations by replacing all appearances
of x; with either XI or xf appropriately. As we shall see in Section 3, this
multi-view approach can prove to be very useful when we wish to exploit
different expressions of the input data in the Gaussian mixture and the linear

regression portions of the model.

2.5. Model capabilities

To illustrate the capabilities of the CWLM we have generated a simple
synthetic data-set with one-dimensional input and output spaces so we can
visually analyze the problem. As can be seen in Figure 2, the data is arranged
in three distinct groups, each associated to a different cluster and regressor,
whose weights, bias terms and observational noise have been set randomly.

20 A

154

Figure 2: Synthetic data-set designed to illustrate the capabilities of CWLM.

We have fitted three models to this synthetic data-set: a ridge regression
model, a K-Means clustering model with 3 components feeding 3 separate
ridge regression algorithms, and the CWLM model described in Section 2.

Figure 3 summarizes the results. It’s obvious that, while Ridge Regression
does its best to fit a linear model to the data, it fails to capture any of its
structure. Meanwhile, the K-Means + Ridge Regression approach does a
little better at acknowledging the complex nature of the data, but it still
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Figure 3: Model training and evaluation on the synthetic data-set. The subfigures on
the top row show the results of fitting to the training set a Ridge Regression model (a),
a K-means + Ridge Regression model (b) and the CWLM model (c), respectively. The
subfigures on the bottom row show the predictions on a test set for the three models.
Subfigure (f) also depicts the predictive distribution contour-plot for the CWLM model.

fails to provide an adequate description of the underlying structure due to
its inability to use the information contained in the training targets. On the
other hand, the CWLM model manages to correctly identify the three clusters
and accurately estimate the values of the weights and bias terms. Given the
mixed distribution nature of the model, and to the best of our knowledge, an
analytical expression for the confidence intervals of the prediction cannot be
explicitly obtained. However, the predictive model (see (23)) does provide a
full probability distribution for the test target predictions. This can be used
as an intuitive indicator of the confidence in the predictions for a given region
of the output space. This can be seen in Subfigure 3f, in which predictions
that fall within areas delimited by strong contours will offer higher confidence
levels. We will illustrate the usefulness of this notion in Section 3.5 in the
context of power load forecasting.

3. CWLM applied to power load forecasting

The goal of this section is to evaluate the ability of the CWLM to gain
valuable insight into the structure of the data in the context of power load
profiling, while achieving competitive forecasting performance scores. For this
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purpose we have worked with power load data-sets belonging to two North
American Regional Transmission Organizations (RTO).

3.1. Data-set description

ISO New England (ISO) serves the states of Massachusetts, Connecticut,
Maine, New Hampshire, Vermont and Rhode Island. It provides an online
repository of historical power load data. We have used aggregated data from
all its member utilities, spanning from January 2011 to December 2018. The
data consists of hourly samples arranged as a time-series. The corresponding
hourly measurements of ambient and dew-point temperatures were included
as input variables to enhance the overall performance of the models. This
meteorological data was obtained from the public NOAA repository.

PJM Interconnection LLC (PJM) serves all or part of Delaware, Illi-
nois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina,
Ohio, Pennsylvania, Tennessee, Virginia, West Virginia, and the District of
Columbia. As with ISO New England, PJM provides a public repository
that includes data from all their partner utilities, with each utility serving a
distinct zone. For this experiment we have selected four different zones: East
Kentucky Power Cooperative (EKPC), Dayton Power an Light Company
(DAY), Pennsylvania Electric Company (PN) and Commonwealth Edison
Company (CE). In this case we used data from 2014 to 2017. Again, we are
using hourly samples. Meteorological data was not available in this case.

For both data-sets we decided to focus on a daily structuring of the data
to find out if specific daily behaviour patterns can be automatically identified
and if these patterns can be exploited to improve the accuracy of our forecast.
To achieve this we rearranged the yearly time-series into successive 24 hour
time-series.

In the case of the ISO data, the ambient and dew-point temperature data
are appended as input variables. Therefore each input sample for the ISO
experiment is characterised by 72 variables: 24 successive power load values,
24 successive temperature values and 24 successive dew-point values.

In both experiments, the prediction targets for each daily sample are the
24 hours of the following day. We are therefore using the multi-target version
of the model as described in Section 2.4.

Note that, since the main goal of this study is to gain interpretability,
we have prioritised data that was relevant to this task. Specifically, we have
focused on years that were as close to the test set as possible and that had
the most complete daily samples, to ensure that seasonal and daily patterns
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were as best represented as possible. This results in smaller data-sets than
those used in other studies.

3.2. Baseline forecast models

In order to gauge the performance of the CWLM algorithm described in
Section 2, we have established two distinct baseline model families. The first
consists of standard models which do not feature any clustering components.
The second consists of models that do introduce a clustering stage similar to
that of the CWLM.

Beginning with the standard models, we first introduce the Ridge Regres-
sion (RR) algorithm [16]. This model was chosen in order to have a linear
regression baseline for reference. The second standard model is the Sup-
port Vector Machine adapted to regression (SVR) using the epsilon method
[12]. A Gaussian kernel was chosen to provide a non-linear baseline model.
Since SVR can’t perform multitarget regression, 24 SVR models were trained
simultaneously while sharing the same parameter values.

As for the clustering baseline models, the first is the K-Means + Ridge
Regression (KM-Reg) algorithm, a simple approach to clustered regression in
which K-Means is used to separate the training data into K different groups,
which are then fed to K independent ridge regression models. Note that this
approach allows us to use multiple input-space views in the same manner that
is described in 2.4 for CWLM. This model is also used in the synthetic example
from section 2. The second of the clustering baselines is the Gaussian mixture
model + Ridge Regression (GMM-Reg) algorithm. This is a more nuanced
approach to clustered regression in which clustering is achieved by applying a
Gaussian Mixture Model (GMM) to the input data and then training K ridge
regression models with the full data-set, but using the likelihoods from the
GMM model as sample weights. The final output is therefore the sum of the
K regression outputs weighted by the GMM likelihoods for each sample and
cluster. As is the case for the CWLM and KM-Reg approaches, this model
admits multiple input-space views.

3.3. Ezxperimental setup

The ISO data-set was split up into a training partition, containing all
data from January 2011 to December 2016; a validation partition, containing
all data from the year 2017, used to optimize all model hyperparameters; and
a test partition, containing all data from the year 2018, used to compute the
performance metrics.
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As for the partitioning of the PJM data-set, samples from 2014 to 2016
were used for both training and validation. In this case, the validation set
consists of randomly and uniformly selected samples, with a size equal to
20% of the total number of data-points from this time period. The rest of the
samples from the 2014-2016 range were used as the training partition. All
data from 2017 was used as the test partition.

The optimal values for all the relevant parameters were obtained after a
thorough exploration using the validation partition:

e The regularization parameter, A, for the Ridge Regression, KM-Reg
and GMM-Reg models, was explored in the range A € [1074, 10?].

e The regularization parameter, ), for the CWLM algorithm, was explored
in the range € [107%,107].

e The Gaussian kernel parameter, ~, for the SVR model was explored in
the range v € [1074,103].

e The number of clusters for the CWLM algorithm as well as the KM-Reg
and GMM-Reg models was explored in the range K € [2,40].

All data was normalized row-wise so that every time-series lay between
the values of 0 and 1. This row-wise normalization was applied in order to
retain the shape of the time-series while ensuring an adequate scaling of the
data.

For the ISO data-set, we applied both the standard and the multi-view
versions of the CWLM, KM-Reg and GMM-Reg algorithms. The standard
models received the full input data matrix, containing both the power load
and meteorological data. For the multi-view models, we fed the full input-data
matrix to the regression stage of the algorithms, whereas the input clustering
stage of the algorithms only received the power load portion of the input-data.

Since the PJM data-set isn’t augmented with meteorological data, only
the standard version of the clustering algorithms was used.

To evaluate the performance of the models described above, we have
chosen to use the following metrics, where y, is the true target value for
the n'" test sample, g, is the predicted target value for the n'” test sample,
y= Ntlest Zgilt Yn is the average of the true test target values and Ny is
the size of the test set:
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e Mean Absolute Percentage Error (M APFE), defined as:
Neest ~
1 n — Un
mapp = 2004 Y (29)
Ntest —1 Yn

A lower M APFE implies better performance.

Root Mean Squared Error (RMSE) defined as:

1 Ntest 1/2

n=1

Mean Absolute Error (M AFE), defined as:
Ntest

> lyn — il (31)

Coefficient of Determination (R?), defined as:
Ntest N
RQ —1— Zn:l (yn _ yn)2
Ntes —
Where the best possible score is 1.0 and negative scores are possible
(because the model can be arbitrarily worse).

(32)

3.4. Performance analysis

Tables 1 and 2 summarize the performance results for the ISO and PJM
data-sets for all methods under study, with their respective parameters
validated according to the procedure described in Section 3.3.

While the differences in performance aren’t large, the clustered regression
models do gain an edge over Ridge Regression. Overall, the CWLM algorithm
comes on top in all metrics for both data-sets, with the multi-view version
offering further performance gains in the case of the ISO data-set.

Of interest is the performance difference of the SVR model in both data-
sets: in the case of ISO, SVR achieves the worst scores while for PJM it comes
very closely tied to CWLM in MAPFE and M AFE, although CWLM achieves
slightly better results in R? and RMSE. This suggests that the forecast
problem for the ISO data is far more linear. In such a scenario, non linear
models like the SVR with a Gaussian kernel will tend to overfit. Meanwhile
CWLM is able to exploit the linearity of the ISO data to generalize better,
while offering the interpretability gains which will be described in Section 3.6.
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Model Clusters MAPE R? RMSE MAE
RR - 4.53 0.81 661.1 135.7

SVR 5.14  0.79 654.2  148.5
KM-Reg 436  0.83 626.8  129.8
GMM-Reg 437  0.83 621.3  129.5
CWLM 434 0.84 620.5 128.8

Multi-View KM-Reg
Multi-View GMM-Reg
Multi-View CWLM

436 0.83 626.8  129.7
4.43 0.82 634.8 131.7
4.26 0.85 619.6 127.7

=~ O O O =

Table 1: ISO data-set - Test performance for all models.

Models Clusters MAPE R? RMSE MAE
Ridge Regression - 597 0978  1477.5  236.9
SVR - 5.48 0987 13925 214.9
KM-Reg 10 597 0987  1467.0 233.2
GMM-Reg 7 5,70  0.989  1424.8 221.7
CWLM 13 549 0.990 1385.6 214.7

Table 2: PJM data-set - Test performance for all models.

3.5. Advantages of the predictive model

Figure 4 shows the real and forecast power load values for a randomly
selected week from the ISO test partition. At the same time, it maps the
probability density from the predictive distribution defined in equation (23).
Darker regions indicate high probability density, which translates into higher
predictive confidence. Lighter regions indicate a more diffuse probability
density, therefore suggesting a lower predictive confidence.

The figure shows consistently high predictive confidence during the night
and early mornings. This is backed by how closely the forecast curve follows
the real curve during these time periods. On the other hand, the probability
density disperses during the busier times of the day and the afternoon. Again,
this is reflected by a worsening of the quality of the forecast values.

As the predictive function allows us to visually establish an intuition of
the confidence in our predictions, our model can be used to determine times
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of the day during which a higher volatility in the demand is to be expected,
which in turn will influence the resource allocation strategies that need to be
put in place.

---- real High
| —— prediction density
Low
density
1-8 T T T T T T T T
0 20 40 60 80 100 120 140 160

Hours

Figure 4: Power Load prediction using the CWLM algorithm: forecast vs real values for a
randomly selected week in the ISO test partition. Also shown is the probability density
map for the forecast values.

3.6. Interpretability analysis: daily load profiling.

The main goal of this study is to evaluate the interpretability gains for
power load profiling provided by the CWLM algorithm. For this purpose, we
focus on the nature of the data assigned to each cluster.

Beginning with the ISO data-set, Figures 5 and 6 allow us to evaluate the
profiling capability of the CWLM algorithm in the multi-view configuration
and of the basic KM-Reg approach?. Each figure shows us three different
visualizations for each of the four clusters: the first graph represents the
cluster centroid together with all its member samples; the second one is a
histogram representing the frequency with which each day of the week is
represented in the cluster; finally we represent a second histogram showing
the frequency with which each month of the year is represented in the cluster.

2For simplicity’s sake and to save space, we can’t include figures for all the models under
evaluation. We have chosen to only represent the multi-view CWLM and the KM-Reg
algorithm, since they both selected the same number of clusters.
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Figure 5 clearly shows that there are strong patterns that have been
automatically identified by the multi-view CWLM algorithm. The first and
second clusters are dominated by days belonging to the colder months of
the year, whereas the third and fourth clusters mostly contain warmer days.
Furthermore, the first and third clusters are very highly populated by weekend
days, whereas cluster two and four are mostly composed of weekdays.

On the other hand, Figure 6 shows that the nature of the clusters selected
by KM-Reg is far less clear cut. Some seasonal and daily patterns can be
identified in these graphs, but we argue that the overall insight is not as
“sharp” as that of the multi-view CWLM, which has very explicitly exploited
seasonal and daily patterns, identifying interesting behavioural profiles in the
data.

An analysis of the results obtained by the CWLM for the PJM data-set
shows that most clusters are associated to specific utilities. For instance
clusters 3 and 4 concentrate data from EKPC, whereas clusters 2 and 7
are mostly comprised of data from CE. We have therefore split our analysis
between Figures 7, 8 and 9, each corresponding to a utility-specific set of
clusters. Each figure features three subfigures, (a) to (c): the first shows the
number of members for a given utility in each cluster, justifying the utility
profile for each cluster; the second reflects the proportion of weekdays and
weekends per cluster; the third subfigure shows how represented each month
of the year is in each cluster. From these figures we can see that:

e Clusters associated to EKPC (Figure 7) don’t seem to distinguish
between weekends and weekdays. They do however show a clear seasonal
dependence: cluster 3 is composed mostly of spring and autumn months,
Cluster 4 is dominated by summer months and clusters 12 and 13 show
a strong presence of winter months.

e In the case of clusters associated with CE (Figure 8), we do find a
strong distinction between weekdays and weekends as well as a seasonal
component. For instance, cluster 2 is dominated by the warmer months
and, as is to be expected due to the presence of summer vacations,
weekends and weekdays appear to be mixed. Clusters 7 and 8 clearly
show weekday behaviours for the rest of the year. Finally, cluster 9
models weekends throughout the year.

e Interestingly, Figure 9 shows that utilities PN and DAY tend to share
similar behaviours and therefore appear grouped in the same clusters.
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Figure 5: Multi-view CWLM profile visualization for the ISO New England data-set.
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Figure 6: K-Means + Ridge Regression profile visualization for the ISO New England
data-set.
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Figure 7: CWLM model visualization for the PJM data-set - EKPC.

Going into more detail, clusters 1 and 11 again show hot summer months
and spring-autumn months, respectively. Cluster 2 also models hotter
months and cluster 5 focuses on summer and autumn weekends. Finally,

clusters 6 and 10 are associated to cold months.

Visualizations for the PJM data-set results of the GMM-Reg and the KM-
Reg models can be seen in Figure 10 and Figure 11, respectively. These figures
represent the number of samples from each utility assigned to each cluster.
Here we can see that GMM-Reg tends to also discriminate utilities quite well,
particularly in the case of EKPC and PN. However, its lack of predictive
performance (Table 2) suggests that these clusters aren’t as relevant as those
obtained by CWLM. Finally, KM-Reg is incapable of even discriminating
utilities in a meaningful way, as well as having the worst performance out of

all the clustering models.
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Figure 8: CWLM model visualization for the PJM data-set - CE.
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Figure 9: CWLM model visualization for the PJM data-set - PN DAY.
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Figure 10: GMM-Reg model visualization for the PJM data-set.
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Figure 11: KM-Reg model visualization for the PJM data-set.

4. Conclusions

In this paper we propose a novel theoretical framework leading to a
probabilistic model that features simultaneous data clustering and regression.
The clustering of data samples is informed by the regression process, which
enables the model to achieve a better characterisation of the underlying
nature of the data. Therefore, we obtain better, more informative clusters
while maintaining or improving predictive performance. We propose that
this model can improve problem interpretability in the context of day-ahead
electric power-load forecasting, by generating useful and insightful daily load
profiles.

At the same time, the model presents a probabilistic predictive function
that is capable of providing an intuition for the forecasting confidence, which
in turn can be used to improve the interpretation of the predicted power-load
values. We suggest that this could be of great use in the context of power-grid
management and efficiency.

Experimental results in the context of power load forecasting applied
to data from two major Regional Transmission Organizations confirm the
usefulness of our model in terms of interpretability, as it is shown to generate
insightful load profiles, while obtaining competitive forecasting performance
when compared to other prediction models. In both data-bases, the automati-
cally generated profiles reflect the relevance of regional and seasonal patterns,
as well as the influence of weekdays and weekends: for the first data-set, very
clear seasonal and daily patterns were obtained, with four strong clusters that
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segregated data into weekday and weekends during warm months and cold
months; for the second data-set, strong regional separation was automatically
achieved, with dedicated clusters for specific utilities at different times of
the year. Meanwhile the predictive function points to very high confidence
during the early hours of the morning, with said confidence dropping during
the busiest hours of the day.

Two key improvements to CWLM can be introduced as future work. First,
a fully Bayesian approach can be formulated in which the regression weights
become a new latent variable with their own prior distribution. This can
be solved using the Variational Inference approach known as Mean Field
Approximation, which will result in a very similar formulation to the one
presented in this work. The main advantage is that the need to validate
the regularization term, 7, would disappear, as it would become a part of
the iterative model optimization algorithm. The second improvement we
propose is the implementation of a complete multi-target model in which the
possible correlations between the output variables are taken into account,
while maintaining the same integration with the clustering process as the
model presented in this paper.
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