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Abstract

This paper copes with the COGERSA waste collection process. Up to now,
experts have been manually designed the process using a trial and error mech-
anism. This process is not globally optimized, since it has been progressively
and locally built as council demands appear. Planning optimization algo-
rithms usually solve it, but they need a fitness function to evaluate a route
planning quality. The drawback is that even experts are not able to propose
one in a straightforward way due to the complexity of the process. Hence, the
goal of this paper is to build a fitness function though a preference framework,
taking advantage of the available expert knowledge and expertise. Several
key performance indicators together with preference judgments are carefully
established according to the experts for learning a promising fitness function.
Particularly, the additivity property of them makes the task be much more
affordable, since it allows to work with routes rather than with route plan-
nings. Besides, a feature selection analysis is performed over such indicators,
since the experts suspect of a potential existing (but unknown) redundancy
among them. The experiment results confirm this hypothesis, since the best
C−index (98% against around 94%) is reached when 6 or 8 out of 21 in-
dicators are taken. Particularly, truck load seems to be a highly promising
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key performance indicator, together to the travelled distance along non-main
roads. A comparison with other existing approaches shows that the proposed
method clearly outperforms them, since the C−index goes from 72% or 90%
to 98%.

Keywords: Machine learning, KPI, classification, preferences, route

1. Introduction

Until now, each local council has been requested waste collection services
to the company Consorcio para la Gestión de los Residuos Sólidos de As-
turias (COGERSA). The different requests have been appearing at different
moments in time and every time a request has arisen, the experts of this com-
pany have just focused on a particular area to design specific routes, keeping
unaltered the already planned routes. Hence, the actual routes have been
locally optimized in each area object of request and one isolated from the
rest. But now, the company requires unifying the waste collection planning
in order to optimize their human and material resources, the collection time,
fuel consumption and so on. The task is not as easy as it could seem because
several issues must be taken into account. On one hand, there are several
planning constraints imposed by the governments of each council. For in-
stance, a container located at the entrance of the schools must not be picked
up at the same time that the classes start or end. Also, the waste collection
cannot be carried out when there is a street market planned. In addition,
governments impose the collection frequencies and the number of containers.
Also, the working time regulations must be considered, since, for instance, a
same worker or truck cannot exceed a certain number of work hours. On the
other hand, there are some other constraints about available resources. For
instance, in regard to the laterality1, the containers can be located to the
right or to the left of the road, then, in case of two way roads, trucks must
turn around in order to be able to pick up the container depending on the
direction of traffic. Another issue to take into account is the distance that a
truck travels with its cargo box loaded, since it might be better for the truck
to pick up the containers on the way back to travel less distance with the
cargo box full.

1Laterality is the property that has a container in order to indicate the side of the road
to pick it up.

2



This problem is typically solved using planning optimization algorithms. The
application of these techniques requires a fitness function able to evaluate the
quality of a route planning. The main drawback is there exists a lack of a
suitable function of this kind, and, even more, it is neither obvious nor easy
to obtain in the waste collection. Hence, and firstly we need to face to the
hurdle of designing a fitness function to evaluate a route planning, which
will be the main focus and the main contribution of this paper. The plan in
the future is to include this fitness function into an optimization algorithm
scheme, but now this task is out of the scope of this paper. Despite the
experts are not able to design a straightforward fitness function, they have
a lot of expertise knowledge susceptible of being mined. Within artificial
intelligence field, there exist two main ways of carrying out this practice.
On one hand, if the experts are able to describe their knowledge, then this
knowledge can be developed using rules leading to an expert system, for in-
stance, for refrigerant flow air conditioning systems [13]. On the other hand,
if only the actions of the experts are available but they are not able to ex-
plain them, then, it is possible to use machine learning techniques to extract
their knowledge from those actions, for instance, for automated cyber se-
curity data triage [34]. The latter is the case of the COGERSA Company,
since experts perform actions from their expertise, but they are not able to
display the reasons about their decisions. There exist several ways of taking
into account the expert knowledge to feed a machine learning approach. A
straightforward possibility could be to ask the experts for providing a score
for a route planning and then perform a learning process through a regression
system. However, this kind of approaches are not adequate in general, since
experts ratings cannot be interpreted as absolute assessments. The main
reason is that experts tend to rate in a relative way, hence, the same expert
might provide a different score to the same route planning depending on if
this route planning is evaluated in a context with much more better route
plannings or if it is evaluated in a context with much more worse route plan-
nings. Thus, the route planning presented in a batch surrounded by worse
route plannings will probably get a higher score than if this route planning
were showed together with better route plannings. This situation is known
as batch effect and it often biases the ratings. Hence, feeding a regression
method with this unstable data can mislead the learning process [9]. How-
ever, it is possible to state that the expert assessments are consistent in
regard to the order, that is, experts may provide the same order to the same
route plannings set despite the score granted may differ from one expert to
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another. This evidence justifies that feeding a machine learning system with
expert information in form of preference judgments is quite more promising
than doing so in form of ratings, since avoiding the assumption that cer-
tain rating means the same for every expert avoids to mislead the learning
process [5, 7]. This is the reason why the proposal of this paper advocates
to fit the problem of finding an adequate fitness function to assess a route
planning into a preference learning framework [3]. This environment not
only requires to capture expert knowledge and expertise in form of prefer-
ence judgements, otherwise the route plannings have to be described through
indicators experts must establish in order to machine learning takes place.
Those indicators will be the features of the machine learning process and
they must capture the key issues experts implicitly pay attention to when
they establish their preference judgements. The reality is that both kind of
information were not available, hence, experts were asked for both preference
judgments and key performance indicators. In fact, one of the contributions
of this paper is an exhaustive design of key performance indicators to estab-
lish the route planning descriptions. Another contribution is to design route
planning pairs from the actual route planning to make experts show their
preferences, for which a greedy algorithm will be designed. The third con-
tribution is the preference learning itself. Finally, experts reported a highly
existing redundancy among the key indicators. At this respect, they man-
ually proposed to take several sets to explore their impact. However, this
paper goes further and the fourth contribution consists of carrying out an
automatic feature selection procedure to establish the relevance of the key
performance indicators according to a machine learning procedure. There
are other approaches in the literature that provide a fitness function from
key indicators. For instance, different key performance indicators from mo-
bile networks [23] are combined using two approaches. The first one consists
of a regression procedure, for which absolute ratings are required, a task
almost unachievable by the experts. Besides, and, as commented before,
this approach suffers from batch effect that can mislead the learning pro-
cess. Even more, a regression procedure is not able to optimize the ranking
[23]. The second approach optimizes the Spearman’s rank correlation using
a particle swarm optimization, which is a population-based metaheuristic for
solving continuous and discrete optimization problems. Our approach will
be compared with this second approach in the experiments. Other works
[29, 35] respectively proposes and uses in transport field a method called
SWARA that combine key performance indicators. However, experts must
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sort them according to their significance. Also, relative significance must be
stated beforehand, that is, it must be determined how much an indicator
is more important than the next indicator in the sorting. At this respect,
experts in the waste collection are not able to sort them, and must less to
establish beforehand a relative significance, then, this method has been dis-
carded. Also, another work [8] optimizes urban traffic flow using a genetic
algorithm with Petri net analysis as fitness function. Their fitness function
consists just in one key performance indicator, namely, the time, for whose
estimation the Petri net is built. In our context, the time will also be a key
performance indicator that will require to be estimated, but our proposal will
involve performing a regression procedure. A Petri net cannot be applied in
our context, since experts are required to build a Petri net. This task would
involve establishing relationships among waste containers as the same way
this work does among the roads using transitions. At this respect, experts
do not report an existing relationship among containers. In fact, the original
goal is to provide an optimized route planning, which means to establish the
relationship among containers consisting in which container is collected next.
They compare their approach with the lower distance. Hence, our approach
will be compared with just consider the distance as fitness function. An-
other study [26] proposes a route planning and scheduling of waste collection
and transport. The main drawback of this work is that it only uses one
key performance indicator, namely, the time, which is estimated through a
regression procedure from traveling distance. Our work goes further in the
sense that experts reveal quite more issues involved in the route planning
that just the time. For instance, they reveal the high influence of truck load
and road kind as relevant aspects, so, this solution was discarded. All the
same, our approach will be compared with the case of using the time key
performance procedure as fitness function.

The rest of the paper is organized as follows. Section 2 describes some
related work to this proposal. Section 3 details the whole process of building a
promising fitness function for capturing the waste collection planning expert
knowledge, including the design. The description of the experiments and the
discussion of the results are exposed in Section 4. Finally, Section 5 draws
some conclusions and proposes some lines of research for future work.
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2. Related Work

There are a lot of works that take the expert and human information
to generate promising approaches that capture the expert knowledge. For
example, a work [22] develops a model for detecting oil spill from expert
information. Experts had to view images to detect suspicious regions and
to classify them as positive or negative examples. Also, the experts provide
the features, but the model obtained disregards many of them obtaining
a good performance. Also, experts assess beef cattle as meat producers
comparing animals with other partners [2]. Some body dimensions obtaining
by a 3D photo describe the beefs. The expert knowledge was captured in a
ranking function that unifies the preferences of different experts. Similarly,
activity rubric is adjusted from the ranking that lecturers made from student
answers [28]. The goal is to determine the weight of each activity item
using partial rankings made by lectures from several student answers to the
activity. Other study related to education [12] proposes a machine learning
approach to obtain the most relevant factors that affect the employability
and employment. To do that, some academics from different fields had to
define the competencies that could be important for the employment using
Spanish university data and student questionnaires. The aim of this study
was to predict if a person will get employed or not and to extract the most
relevant factors in order to know the best way for preparing the students
for the labour market. Another work [19] presents a strategy to optimize
the search engine retrieval quality. The user knowledge about the document
ranking related to a query is given to the search engine through the click
through data. The document the user clicks on is preferred with regard
to the rest of documents. Support vector machines for ranking is fed with
that information in order to generate a model able to rank the documents
according to user preferences.

3. A fitness function for capturing waste collection planning expert
knowledge

Before going in depth of obtaining a promising fitness function that cap-
tures the expert knowledge in waste collection planning, let us state some
issues in order to better understand the current waste collection process. Ac-
tually, as commented before, there exists a set of routes locally planned by
the experts from the successive council requests. The company has several
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garages in order to park the trucks. Each route begins in a garage and ends in
the same garage. The company also has transfer stations located in different
places of the region where the trucks can make one or more stopovers in order
to unload the waste if the cargo box is too full during a route. Also, each
route has a group of collection geographic points that can include more than
one container (of the same or of different capacity). If there is more than
one container at the same collection point, the capacity at that collection
point will be considered as the accumulated capacity of all the containers
at that point. A truck and a human team are assigned to each route. The
human teams are formed by collection workers and by drivers. The number
of workers of a team depends on the route and none worker can exceed 38
work hours per week. Also, workers must not work more than 8 hours per
day and the trucks almost have a limit time of being driven.
A map of the container location together with the local designed routes allows
concluding that the routes take the form of bouquets, since the majority have
a central area with a high collection frequency and some branches with a low
collection frequency. This is so because, the central area, which coincides
with the settled area, is collected daily, but only one or two branches are
included in the daily route. The experts have designed the routes per council
(some routes cover more than one council if the areas are small) just using
their experience and intuition causing the routes to have different duration.
This is one of the pitfalls of the current waste collection planning, since there
are some trucks and staff that overwork against others that underwork.
Some other issues include limitations in the container dimension in villages,
the existence of vehicles that exceed the village weight and height limits or
the allowed collection hour range at rush hours. Also, the possible delays
in taking out the waste of some private companies because they have their
container in a private enclosure or the adverse weather effects are other fac-
tors that make difficult the waste collection process. Besides, drivers might
prefer to climb a road in worse conditions and to get down another road
in better conditions than the opposite. Furthermore, the collection workers
might prefer to collect the containers downhill than uphill. Another issue to
keep in mind is the unloading time spent in transfer stations, which takes
approximately two minutes. In addition to this, depending on the kind of
truck, the running board, that is, the time to collect the waste can change.
Moreover, the local governments determinate the amount of containers per
surface and per population and decide the collection frequency of the con-
tainer areas in terms of number of days. Owing to that, each container could
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have different frequency depending on the area. Furthermore, the collection
frequencies of the containers may vary depending on the season of the year
(Christmas time, summer, weekends...). It also happens that, for instance,
in rural areas there are not time constraints to collect the waste and in some
places container laterality is not an essential feature since sometimes the con-
tainers can be moved from one side of the road to the other. Other factor
to take into account is the time that the driver takes from the garage to the
first container on the route and from the last container to the garage.

Given the complexity and casuistry of the waste collection process tak-
ing into account all the above-mentioned issues, defining a fitness function
for evaluating a whole waste collection planning in order to be used in the
future in a planning optimization algorithm to produce a global waste col-
lection planning is clearly a non trivial task. Our proposal is to capture the
expertise and knowledge of the experts fitting the problem in a preference
learning framework. In this context, one expects to have the disposal of
waste collection planning pairs for which the experts must express their pref-
erences. This means that a preference learning algorithm is fed by what is
called preference judgments. A preference judgement is a pair (x, y) of route
plannings such that the route planning x is preferred to the route planning
y because the quality of x, f(x), is higher than the quality of y, f(y), that
is, f(x) ≥ f(y), but the values of f(x) and f(y) are unknown. Therefore, a
preference learning algorithm is fed by the set

S = {(x, y) : f(x) ≥ f(y)} (1)

Then, the preference learning statement consists in obtaining a preference or
ranking function f defined in the route planning space such that f(x) ≥ f(y)
whenever x is preferred to y, that is, when (x, y) ∈ S. This means that
f establishes an order or rank for the route plannings involved in S, that
is, applying this function to the route plannings in S one can order them.
However, this learning goes further, since f is a promising discovery because
it is able to yield a rating for whatever route planning x out of S.

Now, it is necessary to describe a route planning x through features and
show to the experts pairs of route plannings from which they decide which
member of the pair is preferable taking into account their expertise and
knowledge. The idea is to obtain expertise and knowledge from the experts
from two different points of view. The first one is to discover the key indica-
tors experts consider relevant in order to obtain a route planning description
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in form of features. The second one is to find out the preference judgment of
the experts looking at the route plannings themselves, without taking into
account explicitly the key indicators. Then, the ranking or preference func-
tion f is induced from these information sources in a attempt to reproduce
the expert decision knowledge.

One of the difficulties that have arisen at this point is that the experts do
not have the intellectual capacity of working in their minds with complete
route plannings. They report serious difficulties in defining indicators for
describing a whole route planning and also in deciding within a pair of route
plannings which member of the pair is a better route planning. Hence, our
proposal also includes making affordable the work of the experts in this
sense. The idea at this respect consists of reducing the initial problem from
the route planning space to the route space. In fact, up to now experts
get use of designing routes in local areas, one isolated from the rest, so
this simplification clearly makes the task more affordable for them. Then,
pairs of routes rather than pairs of route plannings are presented to the
experts, so they must decide which route is better in each pair of routes
rather than decide which planning is better in each pair of route plannings.
Also, our proposal establishes several key performance indicators to describe
a route rather than a route planning taking into account the above-mentioned
issues and factors about the waste collection process and the information
coming from the experts. The indicators will be strategically designed in
order to satisfy the additivity property. This feature makes them be suitable
to further extend the solution from the route space to the route planning
space.

The discussion of the key performance indicators established is detailed
in Section 3.1. One drawback arisen in designing these indicators is that
travel time is not an available data, despite the experts state that it is a
key issue to take into account. This is one of the obstacles that have been
arisen in the design of key performance indicators. This work overcomes this
drawback proposing a regression procedure in order to estimate the travel
time distance from other available information. Up to now, only current
local routes designed by the experts are available, but including the problem
in a preference learning environment requires to have the disposal of other
routes to built pairs from which experts must decide the member of each
pair they prefer. In this sense, it arises the necessity of creating alternative
routes able to design adequate route pairs to successfully allow acquiring
the expert knowledge. This is another obstacle that has been arisen in the
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research of this paper. Our proposal copes with this drawback designing a
greedy algorithm to create alternative routes for this purpose. The details are
explained in Section 3.2. Finally, building a fitness function for evaluating a
route through a preference learning process is exposed in Section 3.3.

3.1. Designing key performance indicators (KPIs) for a route

The KPIs for building a fitness function to assess the quality of a route
are designed and exposed in this section. In some way, they are established in
an attempt of gathering the most relevant factors that the collection experts
consider as relevant when they need to design a waste collection route.
In the following, the KPIs are discussed and designed according to the re-
quirements of the experts. Let us notice that most of the factors the experts
consider are related to geographic properties, then, a geographic information
system will be required to compute the values of most of the KPIs.

3.1.1. Travel distance

The travel distance is one of the basic and straightforward KPI chosen
by the experts. This measure is directly related to the fuel consumption
and truck wear. In order to get its value, let consider a route whose initial
and final garage is g (let us remind that a requirement of the company is
that each truck starts and ends in the same garage) and let be C a set
of waste collection points {p1, p2, ..., pn} predefined by councils. Then, the
travel distance (D) is obtained from several other smaller travel distances in
the map, namely:

i) Distance from the garage g of the current route to the first waste collec-
tion point p1 on the route, D(g, p1), and from the last waste collection
point pn to the garage g, D(g, pn).

ii) Distance between waste collection points that is computed as the sum
of each distance between the current waste collection point pi and the
next waste collection point pi+1.

D(p1, pn) =
n−1∑
i=1

D(pi, pi+1) (2)

Hence, the travel distance of a route is the sum of all these distances.

D(g, g) = D(g, p1) +D(p1, pn) +D(pn, g) (3)
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3.1.2. Travel time

The travel time is one of the crucial measure to take into account accord-
ing to the experts and to other works [8, 26]. Besides, experts justify it due
to the existing timetable collection constraints and the maximum collection
worker and driver shift duration. However, this measure is not easy to com-
pute, as it seems. Even more, it is impossible to compute from the actual
available information. In fact, only the time employed for the routes locally
designed by the experts is at our disposal, so a mechanism to compute the
travel time for a generic route must be established. The proposal to over-
come this hurdle is to induce a regression function from the local information
available through a learning process, for instance, as in case of [26]. Regres-
sion has been widely used in real applications as in case of prediction solar
radiation over a meteorological station [21]. In this process and given that a
route is split into three stretches (see the discussion of travel distance), the
route time computation is also split into the same parts in order to facilitate
the learning process:

i) Two time periods concern to the time spent in driving from the garage
to the first waste collection point and from the last waste collection
point to the garage. Each travel of both kinds is taken as a point for
the regression process and both the travel distance and the travel time
of the existing local routes are annotated. Then, a regression function
Tg is deduced for estimating the time spent in the two route stretches
in which the garage is involved.

ii) The third time period regards to the time spent between collection
points one each other. In this case, the distance between the first and
the last collection point, the number of collection points and the travel
time of the existing local routes are annotated to feed the regression
system. Hence, another regression function Tp is induced for predicting
the travel time spent between collection points.

Once both regression functions Tg and Tp are available, the prediction
time spent in a certain route will be the sum of three parts: i) the one from
the garage g to the first collection point p1, for which Tg is applied, ii) the
one from the first collection point p1 to the last collection point pn for which
Tp is applied and finally iii) the one from the last collection point pn to the
garage g, for which Tg is applied again. Therefore, the total travel time of a
route is the sum of all these time periods:
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T (g, g) = Tg(g, p1) + Tp(p1, pn) + Tg(pn, g) (4)

Notice that it is possible that some of the predicted time periods may be
greater than the actual ones. Hence, a correction factor will be applied for
any route for which the regression functions are applied. This correction
factor can only be computed from the available routes designed locally by
the expert. For this purpose, the differences between real and predicted
values are evaluated and the resulting sample is supposed to follow a normal
distribution. The correction value will be the value for which the difference
is positive at a certain significant level.

3.1.3. Accumulated altitude

Another relevant issue is the orography since a steep terrain complicates
the access of the trucks to the collection points. Besides, it also affects the
collection order, because it is obviously more costly for the trucks going uphill
with a fuller load than going downhill with the same load, not only due to
keeping the good condition of the trucks, otherwise also due to not rocket
fuel consumption. One straightforward KPI in order to take into account this
issue may be the accumulated altitude. One can also think of considering
the slope percentage, but the experts reject this option, since it does not
distinguish the best option between going uphill a long stretch with lower
slope and going uphill a short stretch with higher slope. Then, and from a set
of points of the route, q1, ..., qm

2, their respective altitudes A(q1), ..., A(qm)
are obtained and the accumulative altitude KPI for a route that begins at a
garage g and ends at the same garage is evaluated as follows

A(g, g) =
m−1∑
i=1

max(0;A(qi+1)− A(qi)) (5)

3.1.4. Road type

The type of road is also a quite relevant factor, since driving along a
motorway highly differs from driving along local roads. This fact is not
only because of fuel consumption, otherwise it is also because of taking into

2These points can be collection points or not. In fact, they include the collection points
and in addition quite more tracking points in order to get a better altitude estimation.
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account the driver comfort and the travel time spent. According to the ap-
proval of the experts, the road types are classified according to their relevance
(from major to minor) as motorway, dual carriageway, regional roads, local
roads and others (square, street, path, avenue....). Then, and in order to
consider the road type factor, three different KPIs are considered, namely,
i) secondary road distance (Ds), which is the percentage of kilometres the
truck travels along secondary roads (square, street, path, avenue and local
roads) and ii) secondary and regional road distance (Dr), which is the per-
centage of kilometres the truck travels along secondary and regional roads.
Hence, Ds(g, g) and Dr(g, g) are computed for a route (notice that the travel
distance along main roads is the difference between the whole travel distance
D(g, g) and the sum of Ds(g, g) and Dr(g, g) and is not considered as a KPI,
since it is a linear combination of the other KPIs, and hence it is redundant).

3.1.5. Truck load

Another aspect that experts reveal great interest on is the truck load.
They statistically prove that driving excessive kilometres with a heavy load
highly affects the fuel consumption and truck wear. In this direction, it is
preferable to firstly drive to the farthest collection point of the route with
the truck unload and to secondly return collecting the waste than taking the
waste on the outbound journey, which means to carry with the whole waste
loaded in the truck during all the return journey at least.
Both fuel consumption and truck wear are almost impossible to estimate,
then the truck load effect is not easy to summarize in a straightforward
KPI. In fact, the KPI taken and able to compute that can represent the
load truck will be a measure just related to fuel consumption (not even the
fuel consumption itself) rather than the truck load itself. The proposal to
establish a KPI for estimating this issue E consists in measuring, in one
sense, the effort of the truck to get the garage carrying the waste collected.
For this purpose, let consider the distance from the current collection point
pi to the garage g, that is, D(pi, g), and let be L(pi) the amount of waste the
truck collects at the current point. Then, the product of them

E(pi) = L(pi) ·D(pi, g) (6)

can be an estimation of the effort of the truck to get the garage from the cur-
rent waste collection point carrying the waste collected at this point. Hence,
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computing the sum of all E(pi) for all the collection points leads to a measure
proportionally related to the fuel consumption and will define the KPI

E(g, g) =
n∑

i=1

E(pi) =
n∑

i=1

L(pi) ·D(pi, g) (7)

A setting in order to effectively compare routes is to compute the average
rather than just the sum, since the routes have, in general, different number
of collection points. Hence, the KPI will be

E(g, g) =

∑n
i=1 E(pi)

n
=

∑n
i=1 L(pi) ·D(pi, g)

n
(8)

Furthermore, and unfortunately, neither the collected waste volume nor
the collected waste weight is available data. Hence, one can think of esti-
mating it, but the experts discarded this option, since they argued that it is
highly probable that the noise that may be added in the estimation may not
compensate the possible improvement obtained in exchange of taking a more
accurate KPI. Consequently, the expert recommendation was to establish
L(pi) = 1 for all the collection points and then to simplify the computation
of the KPI for the current collection point as the remaining distance from
the current point to the garage, that is,

E(g, g) =

∑n
i=1E(pi)

n
=

∑n
i=1D(pi, g)

n
(9)

As a final remark, we mention that the computation of this KPI assumes that
the truck carries the waste until the garage, but this actually does not hap-
pen because the truck really empties the waste collected in a transfer station
before getting the garage. Including this issue in the KPI highly compli-
cates its computation, since, depending on the real last collection point, the
transfer station may differ.

3.1.6. Final considerations

As mentioned before, each route was split into three parts in order to
compare the route pairs:

• First stretch: from the garage to the first collection point

• Second stretch: between collection points
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Table 1: The 21 KPIs computed for a route
Travel Travel Accumulated Secondary Secondary and Truck

Stretch\KPI distance time altitude road distance regional road distance load
1st stretch D1 T1 A1 Ds,1 Dr,1 -
2nd stretch D2 T2 A2 Ds,2 Dr,2 -
3rd stretch D3 T3 A3 Ds,3 Dr,3 -

Complete route D T A Ds Dr E

• Third stretch: from the last collection point to the garage

Travel distance (D), travel time (T ), accumulated altitude (A) and road
type (Ds and Dr) are computed not only for the whole route, otherwise, also
for these three route stretches. However, only the KPI of the truck load E
is computed for the whole route. This means that a total of 21 KPIs are
computed for each route. Table 1 summarizes all the KPIs computed.

3.2. Providing alternative routes

This section deals with the building of alternative routes for obtaining
route pairs needed for being used in a preference learning framework that
will provide a route fitness function. Our proposal consists of designing a
greedy algorithm that builds adequate alternative routes. For each of the 64
existing routes, the coordinates of the garage and containers and the time
limit for the route due to the workers and truck limit time is the information
needed to feed the algorithm. According to the experts, the map distance
D is one of the key factors that makes great influence on the waste collec-
tion process cost and it is clue for the planning optimization. Since it is not
available another fitness function that joins and combines the main factors
exposed before (in fact, it is the goal of the paper), the map distance D will
be chosen as fitness measure to drive the greedy algorithm.
For each existing route, the pseudocode of this process is shown in Algo-
rithm 1. This algorithm starts with the truck assigned to this route leaving
the garage to the nearest container of this route that has not been picked up.
If adding this new container to the alternative route involves that the time
of this alternative route is smaller than the workers and truck limit time,
then, this container is added to that alternative route. In contrast, if it is
higher, the algorithm finished and it is supposed that the truck goes back to
its garage and the alternative route ends.

Let us now detail the way the closest container is taken each time. In
order to find the truck with the smallest map distance to some container that
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Algorithm 1 Algorithm for alternative waste collection routes

Input: garage, P : garage is the garage where the route starts and ends.
P is the set of all waste collection points.

Output: Route R with all points
1: list points← P ▷ Init list with all the points of the route.
2: R.add(garage) ▷ Add initial garage
3: p0 ← select next point(garage, P ) ▷ Search next point from garage
4: R.add(p0)
5: list points.pop(p0) ▷ Point p0 is already selected
6: i = 0
7: while len(list points) > 0 do
8: pi+1 ← select next point(pi, list points)
9: R.add(pi+1) ▷ Add current point to R

10: list points.pop(pi+1)
11: i = i+ 1

12: R.add(garage) ▷ Add final garage
13: return R

has not been picked up yet, it is required to iterate for each pair of truck
and container, and in addition, the external map service must be called
at each iteration. This task is quite costly since calling the external map
service would mean waiting a long time to get the answer. In addition, a
very high number of requests would have to be made, which could cause the
server to saturate. So it is quite interesting to find out a way of optimizing
it. The proposal for performing an optimization for this process consists of
considering the euclidean distance together with the map distance. Hence,
the pseudocode of this optimization is shown in Algorithm 2.

This way of obtaining the closest collection point allows searching among
a limited number of neighbour points instead of performing a costly exhaus-
tive search over the whole number of points that have not been collected yet.
Besides, this process also guarantees to obtain the closest collection point
because the Euclidean distance is always lower than or equal to the map
distance. In this way, the optimum point is always obtained which leads to a
notably reduction in the number of requests to be made to the external map
service.
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Algorithm 2 Algorithm for obtaining the nearest map distance waste col-
lection point

Input: pi, P : pi is the current waste collection point. P is the set of all
waste collection points.

Output: Next point pi+1 from pi
1: list closest points← [] ▷ Init empty list to add next possible points.
2: pednearest ← min euclidean distance(pi, P ) ▷ Nearest point of Pi using

euclidean distance (pednearest)
3: mapdistance← map distance(pi, pednearest) ▷ Get maximum limit of

map distance
4: for each point in P do
5: if euclidean distance(pi, point) <= mapdistance then
6: list closest points.add(point) ▷ Add it to closest points.

7: return pi+1 ← min map distance(list closest points)

3.3. Obtaining a model for ranking routes

This section deals with the process of building a fitness function to assess
the quality of a route through a preference learning framework.

Once alternative routes are built, the KPIs exposed in Section 3.1 are
computed for both the existing routes locally optimized by the expert and
the alternative routes built from them in Section 3.2. The KPI values will
conform the route description x = (D,T,A,Ds, Dr, E). Let us notice that
all those KPIs are better as lower, since it is preferable a route x with lower
travel distance D, lower travel time T , lower accumulated altitude A, lower
travel distance through secondary roads Ds, lower travel distance through
secondary and regional roads Dr and lower truck load E than another route
y with higher KPI values. Then, the existing 64 routes can be split into three
groups:

i) The routes of the expert x whose KPI values are all better or equal than
the counterpart alternative route y.

ii) The alternative routes y whose KPI values are all better or equal than
the counterpart of the expert x.

iii) The routes x with some KPI values better for the expert and the rest
KPI values better for the alternative routes y.
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Among those 64 routes, just one route falls into the one that satisfies i)
and just another one satisfies ii), whereas the rest of the routes belong to
the iii) group. The pairs satisfying i) and ii) are directly considered to feed
the preference learning algorithm, since the preference of the route is clear
(the expert route in case of i) (x ≻ y) and the alternative route in case of
ii) (y ≻ x). However, the preference for the routes of iii) is undefined and it
is neither trivial nor easy to automatically provide a good decision. This is
the reason why the experts were asked for deciding the best route in the case
of this kind of pairs. The information provided to the experts to establish
the preference judgments were just the routes placed on a map and not the
KPIs that conform the route description. They analysed the routes on the
map and using their knowledge and expertise they revealed the preference
judgment between the routes of each pair.

Once the pairs of routes are available with both the route description using
the KPIs and the preference member established, the learning process takes
place. As stated in Section 3, the preference learning consists in obtaining
a preference or ranking function f defined in the route planning space such
that f(x) is greater than f(y) whenever x is preferred to y. Let remember
that S = {(x, y) : f(x) ≥ f(y)} is the set of preference judgments, hence,

x ≻ y ⇒ f(x) > f(y)⇒ f(x)− f(y) > 0 (10)

and if f is linear, then:

f(x)− f(y) = f(x− y) (11)

and therefore
x ≻ y ⇒ f(x− y) > 0 (12)

Hence, the ranking function f can be learned using a binary classification
algorithm able to separate the class according to the sign returned. Conse-
quently, once the KPIs are calculated, each pair of routes is transformed into
a pair of examples, where the classes are +1 and -1. If x ≻ y, the pair of
examples are

T = {(x− y; +1), (y − x;−1) : (x, y) ∈ S} (13)

The linear function induced by the learning process f passes through the
origin of coordinates and is thus defined by

f(z) =< w, z >=
21∑
i=1

wizj (14)

18



where w is the weight vector and < w, z > is the scalar product of w and
z. The score f(z) will be the assessment of z in the sense that f(z) will be
taken to predict preferences between the route z and other routes. Also, w
will be the director vector of the assessment hyperplane.

Let us notice that it is a good choice to assume that f is linear, since, as
commented before, the values of the KPIs are better (preferable) as lower,
that is, they are monotone. Under this paradigm, the problem can be solved
using a binary classification algorithm [16]. However, not all binary classi-
fication algorithms are suitable in this context. Firstly, the algorithm must
obtain a linear model. Secondly, the algorithm must be one among those
that produces a numerical value. This numerical value is commonly taken
afterwards for performing the classification into +1 or −1 classes. In fact,
this value is typically higher as the algorithm is more reliable of an instance
to belong to class +1 and it is this property what makes this value be suit-
able for providing a ranking. Hence, the afterwards classification will be
ignored in this preference learning framework. Two promising options have
been found that fit these criteria, namely, Support Vector Machines (SVM)
[27, 32] with linear kernel and Logistic Regression (LR) [10, 17, 24]. Both
algorithms have been widely and recently used in real applications, for in-
stance, for financial time series forecasting [1] or for predicting proportions
of complex blends in food products [6] in case of SVM and for aircraft engine
degradation prognostics [25] or for outdoor thermal sensation comfort range
[33] in case of LR. Although there exist much more algorithms for binary
classification, as k-nearest neighbour, neural networks or decision trees, they
do not provide a linear model or they do not produce a numerical value
related to the classification.

3.4. Assessing KPIs through feature selection

This section performs a study about the quality of the KPIs in the per-
formance of route ranking. Although the KPIs have been carefully and ex-
haustively designed under the criteria of the experts, let us go in depth
and analyse if effectively all of them are necessary and suitable to obtain
a promising route ranking. In fact, the experts have serious doubts about
their influence. For this purpose, we have checked several ways of selecting
KPIs. The experts proposed the first one. They were unsure about if the
KPIs must be taking globally for the whole route or by stretches depending
if the stretch involves collection points or not. Also, they had special interest
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in checking the load truck influence. In this sense, they have proffered the
following groups of KPI features to analyse:

i) Whole route KPIs: D, T , A, Ds and Dr.

ii) Whole route KPIs and truck load: D, T , A, Ds, Dr and E.

iii) KPIs by stretches: Di, Ti, Ai, Ds,i and Dr,i for i = 1, 2, 3.

iv) KPIs by stretches and truck load: Di, Ti, Ai, Ds,i, Dr,i for i = 1, 2, 3
and E.

v) KPIs by stretches and whole route KPIs: D, T , A, Ds, Dr and Di, Ti,
Ai, Ds,i and Dr,i for i = 1, 2, 3.

vi) KPIs by stretches, whole route KPIs and truck load: D, T , A, Ds, Dr

and Di, Ti, Ai, Ds,i, Dr,i for i = 1, 2, 3 and E.

Automatic feature selection was also adopted in order to compare with the
groups of features taken by the experts. Feature selection is a widely practice
[20] to improve the performance of the machine learning techniques, since it
removes redundancy and noise included in the data. The idea here is to
take an adequate feature selection technique suitable for algorithms that
produce linear models and that get good performance in case of few features.
A promising technique for this purpose is Recursive Feature Elimination
(RFE) [14]. This method is a greedy algorithm that repeatedly builds a
model removing the worst feature according to assign weights to features,
commonly the coefficients of a linear model. It is considered a wrapper,
since a machine learning algorithm is used in the core of the method to build
the model. Then, it successively repeats the process with the remaining
features until the desired number of features to select is eventually reached,
although the algorithm is typically tuned for wording until no more features
are available. Finally, the features are ranked in the same order they have
been removed. The pseudocode of the method is shown in Algorithm 3.

The strategy that follows this algorithm makes it be of linear order with
regard to the number of features, in contrast to other algorithms, as Back-
wards Elimination (BE) or Forward Selection (FS), which are of quadratic
order with regard to the number of features. The RFE method requires to
be used together with algorithms that produce linear models, which is a con-
dition above-established in the preference learning framework and the main
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Algorithm 3 Recursive Feature Elimination (RFE) algorithm

Input: Data: Dataset T (see Equation (13)) with preference judgments that
contains v∗

Output: Ranked list of indicators (z1, ..., zv∗) order by their relevance.
1: tuning parameters(model)
2: train(model)
3: v ← v∗

4: while v ≥ 2 do
5: modelv ← model with the optimized tuning parameters for v and

Data
6: wv ← calculate weight vector(modelv) ▷ (wv1, ..., wvv)
7: rank criteria← (w2

v1, ..., w
2
vv)

8: min rank criteria← min(rank criteria) ▷ Lowest value
9: Remove(min rank criteria,Data) ▷ Remove from Data

10: zv ← min rank criteria
11: v ← v − 1

12: z1 ← variable in Data /∈ (z2, ..., zv∗)
13: return (z1, ..., zv∗)

reason why SVM and LR are chosen. Besides, RFE has been successfully and
recently applied to other real applications, as for instance, for Alzheimer’s
disease diagnosis [30], for credit card fraud detection [31] or for heat-resistant
steel running state evaluation [18].

4. Experiments

This section deals with the experiments carried out in this work, but be-
fore establishing the parameter settings and displaying and discussing the
experiment results, let us state the geographic information systems for ob-
taining the KPIs (see Section 4.1). Concerning the experiments, two different
types are exposed, namely, i) experiments to estimate the travel time KPI
through a regression process (see Section 4.2) and ii) experiments through
a preference learning process to provide the fitness function to evaluate the
quality of a waste collection route that, as it was previously mentioned, it
will be also taken to evaluate the quality of a waste collection planning (see
Section 4.3); this last kind of experiments also includes the feature selection
process.
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4.1. Geographic information systems for obtaining the KPIs

The KPIs are computed using a geographic information system called
Open Source Routing Machine (OSRM)3, which is based on OpenStreetMap
(OSM)4. There are a variety of applications or projects that have been de-
veloped using OSM5 and OSRM6.
OSMR does not include altitude data and the information may be quite in-
complete in low population density areas, since it depends on the response
of users. Despite that, there are several advantages of OSRM that makes
it be a good choice, namely, it is free, it is possible to find very extensive
documentation, it is optimized for the transport mode used to move between
locations and it allows to choose the type of truck to carry out the routes.
Other alternatives to OSMR are Google Maps7 that incorporates elevation
data and very complete information, GraphHopper8 that has a route opti-
mization API and elevation data or Mapbox9 that is equipped with a traffic-
oriented routing module or Mapzen Valhalla10 that admits trips by car, on
foot, by bicycle and by public transport, calculates the most efficient way
to visit multiple destinations and has elevation data even for bicycle routes.
However, all of them present the disadvantage of being not free for huge
amount of request to their servers, something that is crucial for us.
The alternative to provide altitude data needed to compute the accumulative
altitude A that we propose to use in this paper is the global elevation model
called GMTED201011, since the number of requests is not limited and it is
able to cope with waste collection vehicles. This software was developed by
the U.S. Geological Survey (USGS) and the National Geospatial-Intelligence
Agency (NGA). In this sense, OSRM provides a set of points of a stretch
and, then, the GMTED returns the altitude of these points.

3https://map.project-osrm.org/
4http://www.openstreetmap.org
5Thunderforest project (http://www.thunderforest.com/), the Open Topo Map

(https://opentopomap.org/), the MTBmap (https://openmtbmap.org/es/) or the
Waymarked Trails project (http://www.waymarkedtrails.org/)

6Cycle.Travel (http://cycle.travel/), I Bike Cph (https://www.ibikecph.dk/en)
and MAPS.ME (https://maps.me/)

7(https://www.google.com/maps)
8(https://www.graphhopper.com/)
9(https://www.mapbox.com/)

10(https://mapzen.com/)
11https://lta.cr.usgs.gov/GMTED2010
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Table 2: RMSE and RMSE SD for Tg and Tp regression models
Tg model Tp model

Algorithm RMSE RMSE SD RMSE RMSE SD
LiR 489.65 82.18 525.72 163.41
BC 530.91 83.69 693.10 285.93
BT 498.67 75.34 665.98 273.68
RF 542.87 78.55 521.35 156.71
BRR 489.50 83.00 520.70 167.14

4.2. Travel time estimation

Two models have been created to estimate the time spent by a truck
during the route. The first model will estimate the time employed by the
truck in driving from a garage to the first waste collection point that will be
the same that will estimate the time employed from the last waste collection
point to the garage. The second model will estimate the time employed be-
tween containers.
Both models were created using the library Caret4 (short for classification
and regression training) in R. This library includes several algorithms for
the regression and classification tasks. The use of one algorithm or another
might influence the purpose of this project, changing the routes and their
times. Consequently, we perform an exhaustive study in order to the get
good travel time estimation. Particularly, we carried out experiments using
linear regression (LR), bagged CART (BC), Boosted Tree (BT), Random
Forest (RF) and Bayesian Ridge Regression (BRR) methods.
For all these methods, a cross validation was performed with 3, 5 or 10 folds
with 3 repetitions. Only BT and RF require parameters that were tuned and
decided to be maxdepth = 2 and mstop = 50 for BT and mtry = 1 for RF.
Table 2 displays the root mean square error (RMSE) and its standard devia-
tion (RMSE SD) for the above-mentioned methods for estimating the travel
time Tg (from garage to waste collection point and vice versa) and Tp (be-
tween waste collection points). The method that offers the best performance
for both Tg and Tp is BRR, and it will be the method we will choose to
estimate the travel time. However, LiR might be also a good alternative for
estimating both Tg and Tp taking into account that i) the RMSE of LiR is
slightly lower than for BRR, ii) the RMSE SD values of LiR are quite simi-
lar to that of BRR and iii) the magnitude of RMSE SD with regard to the
RMSE values. The same happens for BT, but only in case of estimating Tg,
and for RF, but only in case of estimating Tp. It is quite remarkable that the
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Figure 1: C−index for expert feature selection, parametric RFE and automatic RFE when
SVM is taken as an algorithm that produces linear models

RMSE SD values in case of estimating Tg are quite lower than those values in
case of estimating Tp, maybe because the casuistry is clearly more complex
in case of the travels between collection points than in case of the garage to
the first collection point and of the last collection point to the garage.

4.3. Fitness function for ranking routes

Before presenting and discussing the results of the fitness function design,
let us discuss the experimental settings, the methods for both providing a
ranking and feature selection and the performance measure employed.

4.3.1. Experimental settings

SVM [27, 32] with linear kernel and and LR [10, 17, 24] were chosen to
provide a fitness function for ranking routes, since, as mentioned in Section
3.3, they are promising algorithms that produce linear models and that pro-
vide a numerical value to make a decision about the class value that are
suitable in the preference learning context.

A comparison with other approaches discussed in Section 1 was per-
formed. On one hand, experiments were carried out just considering a unique
KPI [8, 26]. But, our study goes further and not only travel time (T ) and
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Figure 2: C−index for expert feature selection, parametric RFE and automatic RFE when
LR is taken as an algorithm that produces linear models

travel distance (D) are considered isolated from the rest, otherwise experi-
ments were also performed for the accumulated altitude (A), road type (Ds

and Dr) and truck load (E). On the other hand, and following the work [23]
that combines key performance indicators from mobile networks, experiments
with the optimization algorithm called particle swarm optimization [4] were
also carried out. Each particle is represented by 21 values, which correspond
to the weights of the 21 KPIs. The fitness function considered was the mean
C−index of the ranks of each preference judgment. The parameter values
were set according to [23]. Particularly, the number of iterations was fixed
to 1000 and the number of particles 10, 50, 100 and 1000.

Concerning feature selection, in addition to the manual feature selec-
tion provided by the experts, the proposal was to use RFE [14] (see Section
3.4). This method has been checked using two different manners. The first
modality (that we will call parametric RFE) consists of setting beforehand
the desired number of features to select, which ranges from 1 to 21 whereas
the second modality (that we will call automatic RFE) involves letting the
method to provide the best set of features.

The C−index is the evaluation measure taken. It is an estimator of the
concordance probability [15] typically used in statistics and equivalent to the
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Table 3: C−index when just a unique KPI is taken for fitness function

D T A Ds Dr E
57.81 60.94 50.00 53.13 54.69 71.88

Table 4: C−index for particle swarm optimization for different number of particles

Particles 10 50 100 1000
C−index 81.51 86.57 87.11 89.65

pairwise ranking error for ordinal regression [16] that has been commonly
used in multipartite ranking as an estimation of the probability that a ran-
domly chosen pair of instances from different classes is ranked correctly [11]
as a straight-forward generalization of AUC measure. The C−index was
estimated though a cross-validation of 10 folds and 10 repetitions.

4.3.2. Experimental results

This section deals with the results reached in the experiments. Firstly,
the results from the existing approaches are discussed. Then, the results
provided by the proposed approach are exhaustively analysed from different
points of view.

Tables 3 and 4 display the results of the existing approaches. Particu-
larly, Table 3 shows the C−index when just a unique KPI is taken as fitness
function, whereas Table 4 displays the C−index for the particle swarm op-
timization algorithm with different number of particles. The conclusions are
the following:

i) Between distance D and time T , one can observe that the fitness func-
tion consisting just of the time indicator produces the best performance.
This results agrees with the conclusions reached in other approaches
[8, 26]. However, the truck load E yields the best performance. So far,
and to best of our knowledge, none work has considered the truck load
as an indicator, in spite of experts in the field highly expected to make
great influence on the route planning assessment.

ii) The particle swarm optimization provides quite best performance with
regard to the method that just takes a unique KPI. This fact confirms
the hypothesis that combining several issues for providing a fitness
function improve the performance of the route planning assessment.
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Table 5: Features selected by the parametric and automatic RFE when SVM and LR is
taken as an algorithm that produces linear models

Parametric RFE
SVM (6 features) LR (7 features)
truck load (E) truck load (E)
altitude (A) 1st stretch distance (D1)
1st stretch distance (D1) 2nd stretch distance (D2)
2nd stretch distance (D2) 3rd stretch distance (D3)
2nd stretch secondary and regional road distance (Dr,2) 3rd stretch time (T3)
3rd stretch altitude (A3) 3rd stretch altitude (A3)

3rd stretch secondary and regional road distance (Dr,3)
Automatic RFE

SVM (6 features) LR (8 features)
truck load (E) truck load(E)
1st stretch distance (D1) 2nd stretch secondary and regional road distance (Dr,2)
1st stretch secondary and regional road distance (Dr,1) altitude (A)
1st stretch time (T1) secondary and regional road distance (Dr)
2nd stretch secondary and regional road distance (Dr,2) 3rd stretch time (T3)
3rd stretch secondary road distance (Ds,3) 3rd stretch secondary road distance (Ds,3)

2nd stretch distance (D2)
1st stretch distance (D1)

The performances improve as the number of particles increases, but in
any case it does not reach the 90% of C−index.

Figures 1 and 2 respectively display the C−index when SVM and LR
is taken for providing a linear model together with expert feature selection,
parametric RFE and automatic RFE. Clearly, fitting the problem into a pref-
erence framework overtakes the other existing approaches in the literature.

Focusing now exclusively on the method proposed in this paper, one can
extract the following conclusions from those figures:

i) The load truck is a crucial KPI to rank the routes (see the diamonds
when 6 versus 5 features are selected and the same when 15 versus
16 features are selected). This is so, since the performance clearly
improves both in the case of taking the whole route KPIs and in case
of taking the KPIs split in stretches, especially in the former case.

ii) It seems that there are hardly differences between taking the KPIs
for the whole route and taking the KPIs by stretches (compare the
diamonds at 6 features versus 16 features).

iii) Automatic RFE gives the overall best performance (see the cross in
both figures), whose performance is around 98%.

iv) There clearly exists a high redundancy among the KPIs, as experts ex-
pected. This is so because both parametric and automatic RFE reaches
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the best performance when few features are selected. Particularly, the
parametric RFE offers the best results when it takes 6 (for SMV) or 7
(for LR) out of 21 features and automatic RFE does it taking around
(an average along folds and repetitions) 4 of the 21 features.

Let now analyse the more promising KPIs, that is, the KPIs that yield
the best performance. Table 5 shows the features selected by the parametric
RFE when they reach the best performance and also by the automatic RFE.
The main conclusions of this analysis are:

i) In regard to parametric RFE, the selected features differ if one uses
SVM or LR. They select 4 common features (bolded in Table 5) out of
6 for SVM and out of 7 for LR, which is respectively about the 66%
and 57% of the features selected. These common features are truck
load (E), the first and second stretch distances (D1 and D2) and the
third stretch altitude (A3).

ii) Concerning automatic RFE, which reaches the overall best perfor-
mance, it selects 6 out of 21 features using SVM to get the linear
model, whereas it selects 8 out of 21 when it uses LR. They select 4
features in common (bolded in Table 5), namely truck load (E), the
first stretch distance (D1), the second stretch secondary and regional
road distance (Dr,2) and the third stretch secondary distance (Ds,3).
These common features respectively are about the 66% for SVM and
50% for LR of the features selected.

iii) As seen, the truck load (E) is a clue feature in this process, as it was
expected. Also, the distance in the three stretches are highly relevant,
although depending on the stretch, this distance is taken for the whole
stretch (in case of the first stretch), only for secondary and regional
part of the stretch (in case of the second stretch) and for the secondary
road stretch (in case of the third stretch).

iv) Another conclusion is that splitting the route in stretches seems to be
a good choice, since the method does not tend to select features of the
whole route. In fact, none whole route feature is taken in case of SVM.

Figures 3 and 4 respectively display a heat map that represents the fre-
quency whit which each feature is selected by parametric (in the middle) and
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automatic (at the bottom) RFE in the cross-validation folds (taking also into
account the repetitions) of the cross validation. They also include the man-
ual selection proposed by the experts as a baseline reference. The following
issues summarizes the conclusions:

i) At sight, the most frequently feature is clearly the truck load (E).
Other features of the whole router that use to appear are distance (D),
altitude (A) and secondary and regional road distance (Dr).

ii) Focusing on stretches, distance (D1), time (T1) and secondary and re-
gional road distance (Ds,1) predominate in the first stretch, distance
(D2) and secondary and regional road distance (Dr,2) do so in the sec-
ond stretch and time (T3) and secondary road distance (Ds,3) do so in
the third stretch.

iii) Viewing the map horizontally, one can find out redundancy in the fea-
tures. Let see, for instance, two cases as an illustration:

(a) Case of parametric RFE when it selects 2 features. In this case,
second stretch distance (D2) and second stretch secondary and
regional road distance (Dr,2) seems to appear as alternative one
from another together with the truck load. This fact is often
repeated when more than 2 features are selected.

(b) Case of 7 features. In this case, about 11 features used to be
selected. Truck load (E), second stretch distance (D2) and second
stretch secondary and regional road distance (Dr,2) seem to be
almost always selected, whereas the 4 remaining alternate one
from each other. Besides, this behaviour is common both for SVM
and LR.

Although this redundancy seemed to be latent and now it is visually
displayed, it does not have caused surprise among the experts. They
always were aware of existing relationships among the entire feature
they proposed, although they recognize they are unknown.

5. Conclusions and future work

This paper takes the first step in establishing an automatic and global
optimization on the waste collection process of the company called Consorcio
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para la Gestión de los Residuos Sólidos de Asturias (COGERSA). This step
consists of designing a fitness function to assess a candidate route planning
in order to use it in planning optimization algorithm for providing a global
optimal route planning. So far, the experts manually designed the route
planning focusing on particular local areas with a relative reduced number of
waste containers whenever and under council demand. The route planning
complexity due to the existing resources and constraints even makes the task
of defining a fitness function not be affordable by the experts. This paper
provides a fitness function from the expert knowledge and stating its design
in a preference learning framework. The process is simplified to design a
fitness function that assesses a route rather than a route planning again due
to complexity. Fortunately, this simplification was easy to carry out, since
expert did not mention specific indicators of a planning route, maybe because
so far they planned routes one isolated from the rest. The idea under prefer-
ence learning is to obtain expertise and knowledge from the experts from two
different points of view. The first one is to discover the key indicators experts
consider relevant in order to obtain a route description in form of features.
The second one is to find out the preference judgment of the experts look-
ing at the routes themselves, without taking into account explicitly the key
indicators. Then, a ranking or preference function is induced from these in-
formation sources in an attempt to reproduce the expert decision knowledge,
which will be the fitness function. For this purpose, this paper has exhaus-
tively and carefully designed several key performance indicators according
to the experts. These indicators were established for describing a route, but
all of them have the additivity property, hence, they are straightforward ex-
tended to a route planning. Also, experts expect redundancy among such
indicators, and for this reason, a feature selection analysis was included in
this paper in order to check in what extent this hypothesis holds. The con-
clusion of the study confirms the existence of high redundancy among the
indicators, since the best performance is reached when 6 or 8 out of 21 in-
dicators are taken. Truck load seems to be a clue indicator together with
the distance travelled, especially if such distance belongs to no main roads.
The proposed approach has been compared to other existing methods in the
literature, that just consider a unique indicator as fitness function or com-
bine them through a particle swarm optimization. The conclusion is that the
method proposed in this paper clearly outperforms the existing approaches,
since the performance goes from 72% for a unique indicator fitness function
or 90% for particle swarm optimization to 98% of the proposed preference
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learning approach.
As future work, the planning consists of including the fitness function in plan-
ning optimization algorithms. Besides, and given the existing redundancy
among the key performance indicators, we plan to study more in depth those
that have been shown to be clue in this study. For instance, truck load is
one of the most relevant indicators. However, the way experts have found
for computing it is quite gross. Hence, obtaining an alternative way of es-
timating it in a more accurate way may lead to an improvement. Also, the
distance travelled along different kinds of roads seems to determine the qual-
ity of the route. In this sense, it may be promising to polish the split of
the roads in different kinds, taking into account not only the official type of
the route, otherwise the state, traffic and other environment issues. Finally,
and since the original goal was to optimize a route planning it would be the
great interest to consider key performance indicators of route planning, for
instance, the number of routes, highly related with the human and material
resources.
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Figure 3: C−index for expert feature selection, parametric RFE and automatic RFE when
SVM is taken as an algorithm that produces linear models
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Figure 4: C−index for expert feature selection, parametric RFE and automatic RFE when
LR is taken as an algorithm that produces linear models
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