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Abstract

The design of highly complex systems such as spacecraft entails large

amounts of documentation. Tracking relevant information, including hundreds

of requirements, throughout several design stages is a challenge. In this study,

we propose a novel strategy based on Topic Modeling to facilitate the man-

agement of spacecraft design requirements. We introduce spaceLDA, a novel

domain-specific semi-supervised Latent Dirichlet Allocation (LDA) model en-

riched with lexical priors and an optimised Weighted Sum (WS). We collect and

curate the first large collection of unstructured data related to space systems,

combining several sources: Wikipedia pages, books, and feasibility reports pro-

vided by the European Space Agency. We train the spaceLDA model on three

subsets of our heterogeneous training corpus. To combine the resulting per-

document topic distributions, we enrich our model with an aggregation method

based on an optimised WS. We evaluate our model through a case study, a cat-

egorisation of spacecraft design requirements. We finally compare our model’s

performance with an unsupervised LDA model and with a literature aggrega-

tion method. The results demonstrate that the spaceLDA model successfully

identifies the topics of requirements and that our proposed approach surpasses

the use of a classic LDA model and the state of the art aggregation method.
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1. Introduction

Experts involved in the early stages of space mission design can spend from

25 to 50% of their work time searching for information (Berquand et al., 2019).

Requirements Management, the process of documenting, analysing and track-

ing requirements, is an essential but time-consuming task. Although Machine5

Learning (ML) methods are today commonly used for downstream applications

of space-based measurements, they are still largely underused at the earlier

stages of the spacecraft life cycle. This study argues that Topic Modeling (TM),

an ML method used to identify, learn, and extract latent topics from a corpus of

documents, could enhance the management of requirements in the space field,10

notably supporting their categorisation. TM has been previously suggested as

a preferred method for building text representations by (Al-Salemi et al., 2017)

and (Yun and Geum, 2020). (Sriurai, 2011) also demonstrated that TM was

a more efficient method for building feature representations of texts than the

Bag of Words approach. TM differs from classic classification approaches such15

as Random Forest (Karasu and Altan, 2019), which is based on decision trees

as it relies on probabilistic distributions. Following a bottom-up approach, TM

enables the identification of terms representing, in practice, key spacecraft sub-

systems in a heterogeneous corpus related to space systems. In this context, this

study introduces spaceLDA, a novel domain-specific semi-supervised TM model20

enriched with an optimised Weighted Sum (WS), fine-tuned for the extraction

of topics related to space systems.

To train the spaceLDA model, a heterogeneous training corpus is collected.

With the lack of benchmark data set for space systems, we gathered our own

training corpora based on Wikipedia pages, feasibility reports provided by the25

European Space Agency (ESA), and books. The corpora were processed through

a Natural Language Processing (NLP) pipeline that we tailored to space systems
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by incorporating space terminology standards. As the training corpus is het-

erogeneous, the spaceLDA model is independently trained on the three corpus

subsets to avoid under-representing smaller corpora. To merge the topic dis-30

tributions obtained from each model, we propose a novel aggregation approach

based on an optimised WS. The training of the spaceLDA model was in ad-

dition enriched by human-validated lexical priors that we defined, encouraging

the discovery of topics related to key spacecraft subsystems.

The spaceLDA model is evaluated with a case study addressing the categori-35

sation of spacecraft design requirements. Requirements extracted from public

ESA reports are submitted as unseen data to the spaceLDA model. The result-

ing aggregated topic distribution enables the association of each requirement

with a spacecraft subsystem. The spaceLDA performances are compared to

an unsupervised LDA model trained on the same heterogeneous training cor-40

pus. The performance of the WS aggregation method is compared to a state of

the art aggregation method based on the Jensen-Shannon (JS) divergence. To

summarise, this research makes the following contributions:

1. We provide a first curated text collection related to space systems.

2. We train a domain-specific LDA model, named spaceLDA, enriched with45

lexical priors and an optimised WS.

3. We demonstrate that the spaceLDA approach outperforms the unsuper-

vised LDA model and a literature method for aggregating per-topic word

distributions.

4. We illustrate a practical application of TM for Requirements Management.50

The rest of the paper is structured as follows. Section 2 introduces the

background, Section 3 the spaceLDA approach and Section 4 the training and

case study corpora. Section 5 details the methodology, and Section 6 the re-

sults furthermore discussed in Section 7. The code and curated text collection,

excluding the ESA feasibility reports, are available at https://github.com/55

strath-ace/smart-nlp.
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2. Background

Today ML methods are commonly used for downstream applications of

space-based measurements. However, they are still largely underused at the

earlier stages of a spacecraft life cycle. In this section, a few examples of TM60

applications in the space field are explored. Several ML methods that could

enhance Requirements Management are discussed. Finally, the method to train

a semi-supervised LDA model with lexical priors is summarised.

2.1. Application of Topic Modeling to space systems

While TM has been commonly used for Text Mining tasks, such as collab-65

orative filtering (Moshfeghi et al., 2011) or trend forecasting (Shiryaev et al.,

2017, Park et al., 2018), applications in the space field are scarce. Based on

the literature, the majority of these applications focuses on the classification

of space-based measurement products. (Liénou et al., 2010) applies LDA to

automatically annotate large high-resolution satellite images based on visual70

words extracted from the images. (Văduva et al., 2018) implements an LDA

model for temporal analysis to trace the evolution of features from Synthetic

Aperture Radar imaging. Finally, (Bahmanyar et al., 2018) trains a joint mul-

timodal LDA (mmLDA) for the classification of multisensor satellite imaging, a

heterogeneous data set. (Layman et al., 2016) is the closest study to the work75

presented in this paper. (Layman et al., 2016) applied LDA to identify topics

and trends in NASA problem reports. These reports included textual descrip-

tions of anomalies detected during testing and operations, as well as details on

the resulting corrective actions. TM successfully enabled the authors to extract

trends of reported anomalies from thousands of documents. From these previ-80

ous studies found in the literature, the use of TM at the early design stages of

a space mission for requirements categorisation appears as a novel application.

2.2. Requirements Management and Machine Learning

Requirements Management is the process of documenting, analysing and

tracking requirements. It is, therefore, an essential process for large-scale and85
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complex projects. (Iqbal et al., 2018) recently surveyed the ML methods applied

to Requirement Engineering, noticing an increasing effort to merge both fields.

The classification methods mentioned by the authors mostly include classic ap-

proaches such as Support Vector Machines, Conditional Random Field Network

and Näıves Bayes. The authors only briefly mentioned Topic Modeling and the90

more recent method of word embedding, word2vec. The latter word embedding

method proposed by (Mikolov et al., 2013) enables the mapping of the context of

a term into a vector. Both TM and word embedding appear as novel methods for

Requirements Management, let alone Requirements Management in the space

field. However, without detailed preliminary knowledge of words most likely to95

describe each spacecraft subsystem, a word embedding approach could not be

directly applied. The TM approach was therefore preferred as it enabled the

definition of per-topic word distributions for each spacecraft subsystem. Based

on the analysis of the current state of the art, the training of a domain-specific

LDA tailored to space systems and its application to Requirements Management100

addresses a knowledge gap.

2.3. Semi-supervised Latent Dirichlet Allocation

LDA was first introduced in (Blei et al., 2003) as a generative probabilistic

model for discrete data collections. Within an LDA model, each document is a

probability distribution over topics, and each topic is a probability distribution

over words. The probability distribution of topics T among a corpus of docu-

ments can be defined as in (Moshfeghi et al., 2011):

p(M |α, β) =

∫
p(θ|α)

(
N∏
i=1

T∑
z=1

p(z|θ)p(wi|βz)

)
dθ (1)

where M is a document composed of N words wi, z is a topic from a set of

latent topics T , p(z|θ) is a multinomial distribution given by θ and followed by

topic z, p(wi|βz) is the probability that word wi belongs to topic z given by βz.105

β and α are the Dirichlet distribution parameters, respectively for the per-topic

word distribution and for the per-document topic distribution. θ follows the

hyperparameter α.
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The LDA model can be trained in a semi-supervised fashion to guide the

extraction of latent topics. The initial probability distribution of a word to110

belong to a topic, p(wi|βz), is randomly set at the start of the modelling process.

For a semi-supervised LDA, the probability of certain words belonging to a topic

can be increased at the start of the process to influence the composition of the

per-topic word distribution. The concept of inputting lexical priors, or seed

words, into a model is presented in (Jagarlamudi et al., 2012). With the Gensim115

Python library developed by (Řeh̊uřek and Sojka, 2014) and used to train the

spaceLDA model, η, a matrix representing for each topic, the probability of each

word to belong to it, can be provided to the model to impose the asymmetric

priors over the word distribution.

3. Approach120

The core approach of the spaceLDA model training is based on two key

components:

1. Lexical priors to steer the topics extraction.

2. An optimised WS to aggregate models trained on different corpus subsets.

Lexical priors reflecting key spacecraft subsystems can influence the extrac-125

tion of topics relevant to space systems. The priors’ probabilities are set to

0.95 while the probabilities of the remaining words are set to 0. This approach

entails a semi-supervised training of the spaceLDA model. The lexical priors

selection is furthermore detailed in 5.4.

The spaceLDA approach proposes a novel method to aggregate topic dis-130

tributions. The first method to aggregate results of models trained on hetero-

geneous data is usually to alter the basic architecture of the LDA model and

combine the data sets during the model training. In (Chen et al., 2018), the

authors combined the Author Topic Model, developed by (Rosen-Zvi et al.,

2004), with LDA to form a Heterogeneous Topic Model. However, a simpler135

and preferred approach would not alter the classic LDA architecture. Several

authors have investigated post-training aggregations, meaning a merging of the
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per-document topic distributions. To aggregate models, a common first step

is to identify similar topic distributions. (Blei and Lafferty, 2007) relies on a

graph-based method. (Blair et al., 2020) compared the cosine similarity and the140

JS divergence to identify similar topics, proving the higher performance of the

latter in creating more coherent topics. (Blair et al., 2020) furthermore imple-

mented the aggregation of models trained on an unchanging corpus but with

varying Dirichlet priors and topic numbers.

The scope of this study differs from previous work as we intend to combine145

models trained on a heterogeneous corpus to capitalise on the diversity of the

space mission design data we have collected. Combining independent models

has the main advantage that it requires no modification of the underlying ar-

chitecture of the basic LDA models. Thus allowing the use of standard libraries

such as the Gensim Python library. In (Schnober and Gurevych, 2015), the150

authors combine models pre-trained with various LDA parameters and subsets

of the same corpus preprocessed with disparate methods. However, the authors

do not aggregate similar topics together but rather consider that they form a

large list of distributions. In this paper, we introduce the concept of weighting

and optimising the topic distributions obtained from different models over the155

same unseen data with an optimised WS. Only in (Alsumait et al., 2008), the

concept of weight matrix is mentioned but is adopted to regulate the influence

of more recent inputs to update an online LDA model. We will compare our

aggregation of per-document topic distributions based on an optimised WS with

a state of the art method to aggregate per-topic word distributions based on160

the JS divergence.

Fig. 1 summarises the approach presented in this study to train the spaceLDA

model. From our curated text collection, a spaceLDA model is trained in a semi-

supervised fashion with lexical priors. To avoid eclipsing smaller data sets, the

model is trained separately on each training set based either on Wikipedia pages,165

feasibility reports or books. A requirement is extracted from the case study cor-

pus and submitted to the models. Each model yields a per-requirement topic

distribution, highlighting its most salient topics. To converge towards a single
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topic distribution, the distributions are aggregated based on an optimised WS.

Fig. 1. Graphic representation of the spaceLDA approach

4. Corpora170

4.1. Corpora introduction

The study relies on two types of corpora:

1. The training corpus: a collection of documents related to space systems,

acquired from heterogeneous sources.
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2. The case study corpus: a set of requirements extracted from public175

ESA documents.

The training corpus includes 273 Wikipedia web pages, 52 proprietary feasi-

bility studies reports kindly provided by ESA, and 26 publicly available books.

The size of the training data is 1.5 GB of raw textual data. However, since

the training subsets have different sizes, they are used separately to train the180

spaceLDA model and prevent biases. The training corpora was carefully se-

lected and filtered to target spacecraft subsystems and avoid introducing noisy

topics. The content of each data set is furthermore detailed in the following

paragraphs. Each corpus document was parsed with the Tika library developed

by (The Apache Software Foundation, 2018).185

4.2. Training corpora

To develop a domain-specific model, a domain-specific training set is an

essential foundation. In this study, we use a novel text collection of unstructured

data related to space mission design that we collected and curated.

4.2.1. Wikipedia corpus190

The first corpus used to train the models is based on Wikipedia’s freely avail-

able data. The Wikipedia page on spacecraft design (https://en.wikipedia.

org/wiki/Spacecraft_design) was set as a starting point to find additional

‘mission design’ content, exploring the hyperlinks interconnecting the web pages.

From the initial web page, six hyperlinks, judged as most relevant to a space195

mission corpus, were manually selected. These web pages were then automat-

ically scrapped using the Python Selenium library, leading to the discovery of

1,023 additional non-redundant hyperlinks. The distribution of hyperlinks per

web pages, including the main page on Spacecraft design, is shown in Fig. 2.

The list of pages to be included in the corpus was manually filtered for relevance200

to the project scope and eventually yielded a corpus of 273 pages.
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Fig. 2. Distribution of Wikipedia pages per spacecraft subsystems

4.2.2. Feasibility reports corpus

The second corpus is a collection of proprietary feasibility studies reports

provided by the ESA Concurrent Design Facility (CDF) team. This collection

is composed of 52 reports spanning from 2000 to 2018 and includes a wide range205

of missions, from Earth Observation to Lunar missions. The original reports

are not public and were made available for this study via a partnership. Only

the chapters concerning the design of the spacecraft subsystems were used.

4.2.3. Books corpus

The third corpus contains 26 books related to space mission design, manually210

selected, and available publicly. The selected books represent several fields and

sub-fields of space mission design, including classic textbooks such as (Larson

and Wertz, 2005) and (Kapurch, 2007), as well as more subsystems-specific

documents such as (Birur et al., 2003) and (Liu et al., 2019). The complete list

can be found at https://github.com/strath-ace/smart-nlp.215
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4.3. Case study corpus: design requirements

Design requirements are usually associated with one spacecraft subsystem.

The case study corpus includes 100 requirements extracted from two ESA doc-

uments, publicly available, the SMOS mission System Requirement Document

(ESA, 2005) and MarcoPolo-R’s Mission Requirement Document (ESA, 2012).220

The requirements within these documents are organised per subsystems. For

instance, all power-related requirements are found under the chapter ‘Power

requirements’. Therefore, for each requirement, a subsystem to which the re-

quirement belongs to can be extracted and used as ground truth in the case

study. The distribution of requirements per topic is displayed in Fig. 3. From225

this corpus, 68 requirements related to the 7 topics of Attitude and Orbit

Control Subsystem (AOCS), Communication, Environment, On − Board

Data Handling (OBDH), Power, Propulsion, and Thermal are used to eval-

uate the models. Table 1 provides samples of requirements extracted from (ESA,

2005).230

Fig. 3. Case study Corpus Distribution
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Table 1. Sample of Design Requirements extracted from (ESA, 2005)

Subsystem Requirement

Thermal
‘The thermal control shall be achieved by passive means

and by heaters. The use of heat pipes shall be avoided.’

Attitude and Orbit

Control Subsystem

‘In Yaw Steering Mode, the attitude control laws

shall be pre-defined law only dependant on

one variable: True Latitude’

Communication
‘The platform communications system shall provide

the capabilities to transmit the data stream in S-band.’

4.4. Corpora preprocessing

An NLP language pipeline based on the Python NLTK (Natural Language

Toolkit) library by (Bird et al., 2009) is used to process both the training and

case study corpora. Acronyms found in the corpora are expanded based on the

European Coordination for Space Standardization (ECSS) list of abbreviated235

terms (ECSS, 2017). Tokens corresponding to phrases or multi-words found in

the ECSS glossary of terms (ECSS, 2007) are replaced within the corpora as

single tokens. The ECSS glossary of terms and definitions is a human-validated

dictionary of terms related to space systems containing 2,106 unique words. The

integration of the ECSS glossary of terms and acronyms into the NLP pipeline240

tailors it to space systems. A term frequency-inverse document frequency (tf-

idf) analysis of each corpus is run to identify tokens with the lowest score. The

15% of tokens with the lowest tf-idf is added to the stop words list as tokens with

low tf-idf have low informativeness value. Since the LDA modelling is influenced

by the terms’ frequency, the top 50 most frequent words of each corpus are245

manually verified. Table 2 provides an overview of the top 20 most frequent

words for each training corpus. Despite the heterogeneity of their sources, the

most frequent words are similar across the different corpora. Table 3 summarises

the corpora’ statistics post-processing.
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Table 2. Top 20 most frequent words of each training corpus (organised by alphabetical order

to underline similarities, words in bold are found in two lists, words in bold and underlined

are found in all lists.)

Corpus
Corpus I

Wiki

Corpus II

Reports

Corpus III

Books

Top 20

most

frequent

words

antenna, battery,

cell, communication,

control, data,

electric, force,

launch, magnetic,

material, momentum,

navigation, orbit,

orbital, power,

propulsion, radiation,

radio, rocket

antenna, configuration,

control, data,

earth, instrument,

launch, manoeuvre,

mechanism, operation,

orbit, panel,

payload, power,

propellant, propulsion,

structure, tank,

thermal, thruster

angle, antenna,

attitude, control,

data, function,

ground, launch,

motion, orbit,

payload, performance,

phase, power,

sensor, temperature,

test, thermal,

vector, velocity

Table 3. Corpora’ statistics post-processing

Corpus
Corpus I

Wiki

Corpus II

Reports

Corpus III

Books

Case study

Corpus

Number of

documents
273 52 26 100

Number of

tokens
507,222 598,407 1,378,037 1,457

Corpus Size 9.6 MB 542 MB 986 MB 17 KB

Average number

of tokens

per document

2,300 11,507 57,418 15

Dictionary Size 30,556 15,935 56,589 577
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5. Methodology250

5.1. Hyperparameters study

Three main inputs are required to train a model with the Python Gensim

Library of (Řeh̊uřek and Sojka, 2014):

• the dictionary, which maps words, or tokens, to identification numbers

• the corpus, or document-term matrix, which provides per document, the255

words identification numbers and their frequency within the document

• the number of latent topics to be defined after optimisation

The Dirichlet prior alpha is set to 1/n where n is the number of topics.

The number of passes is set to 500. The first two inputs are derived from the

corpus. To determine the number of latent topics, several spaceLDA models260

with different numbers of topics are trained with the Gensim Python library and

compared. The evaluation metric of perplexity, presented in the next paragraph,

determines which model is best fitted to represent the corpus’ topic distribution.

The training corpus is split between a training and a testing set, following the

classic 80%/20% partition. 5-fold cross-validation is applied to find the number265

of optimal topics and retain the final model. The testing set is used for the final

evaluation of the retained model post-optimisation.

5.2. SpaceLDA model evaluation

Perplexity is an intrinsic evaluation metric used to evaluate LDA topics (Blei

et al., 2003, Shiryaev et al., 2017). Perplexity evaluates how well the probability

distribution generated represents the corpus and measures the likelihood that

the model will perform well with unseen, new, data. The value of perplexity

must be minimised. Based on (Blei et al., 2003), perplexity over a test corpus,

per(Dtest) is expressed as:

per(Dtest) = exp

(
−
∑M

d=1 log p(wd)∑M
d=1Nd

)
(2)
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with M , the number of documents in the test sample, wd the words in document

d, log p(wd) the log likelihood of document d, and Nd, the number of tokens in270

document d.

5.3. Topics labelling

The latent topics’ word distributions produced by the model are not labelled.

Therefore, we provide human-validated labels to ensure the reproducibility of

the results. Three human annotators were involved in assigning topic labels275

to the word distributions, working independently and manually. A final la-

bel was elected when at least two of the three annotators agreed. Without a

clear majority, the human annotators shortly debated to converge towards a

single label. The annotators were given the following labels to choose from:

AOCS, Communication, Environment, Ground Segment, Launch, Mission280

Analysis, OBDH, Payload, Power, Propulsion, and Thermal. The annota-

tors also had the option to propose a topic label outside of this selection. It

was made clear to the annotators that they could associate more than one label

to each word distribution and that one label could be associated with several

distributions.285

5.4. Lexical priors selection

Seven sets of lexical priors were defined in an attempt to steer the model to-

wards topics corresponding to key spacecraft subsystems: AOCS, Communication,

Environment, OBDH, Power, Propulsion, and Thermal. Each set is com-

posed of around 20 words. Each word can only belong to one set to avoid topic290

overlap. The priors selected, presented in Table 4, are based on a list of key-

words or relevant concepts associated with each topic. The list is validated by

the same human annotators who performed the manual labelling. A first priors

list is distributed to the human annotators who debated which concepts to keep

or discard.295
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Table 4. Set of lexical priors per topics (organised alphabetically)

Topic Label Lexical Priors

Attitude and Orbit

Control Subsystem

(AOCS)

angular, attitude, attitude control, body, freedom,

gravity gradient, guidance, gyroscope, magnetotorquers,

momentum, motion, navigation, reaction wheel, sensor,

spin stabilised, stabilisation, star tracker, torque, torquer, wheel

Communication

antenna, band, bandwidth, c-band, command, communication,

frequency, ka-band, l-band, receiver, reception, relay,

satellite communication, s-band, telecommand, telemetry,

tracking, transmitter, packet, x-band,

Environment

background, charging, cosmic, debris, dose, electron,

environment, gamma radiation, gamma ray, geomagnetic,

particle, protection, radiation, ray, shield, single event,

shielding, single event upset, space debris, van allen

On-Board

Data Handling

bit, bitrate, computer, cpu, data, data handling,

data rate, decoder, downlink, dram, encoder, execution,

gbit, instruction, measurement, memory, operation,

processor, ram, sram, storage, tag, uplink

Power

battery, battery powered, cell, charge, circuit, current,

cycle, depth of discharge, discharge, energy, lithium,

photovoltaic, power, power supply, primary, secondary,

solar cell, solar power, voltage, watt

Propulsion

delta v, electric, electric propulsion, engine, exhaust, fuel,

impulse, ion, isp, nuclear, plasma, propellant, propellant mass,

propulsion, propulsion system, sail, spacecraft propulsion,

thrust, thruster, total impulse

Thermal

coating, cooling, degree, heat, heat pipe, heater,

heating, insulation, louver, mirror, multi layer insulation,

radiator, reflective, reflector, temperature, thermal,

thermal control, thermal control system, thermodynamics, overheating
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5.5. Optimised weighted sum

The WS approach acts on the level of the per-document topic distribution.

θ̂i denotes the aggregated topic distribution for the unseen data, document i.

The WS combines the topic distributions θ(i,j) of each model Mj for the same

document i but balanced by a model weight wj as shown on equation 3 based300

on (Wilcox, 2013).

θ̂i =

M∑
j=1

wjθ(i,j)

M∑
j=1

wj

(3)

Since this method does not produce new word distributions, it does not

entail the tedious process of relabelling. The weights are optimised with a Tree

of Parzen Estimators (TPE) algorithm (Bergstra et al., 2011) available in the

hyperopt Python library (Bergstra et al., 2013). Fig. 4 summarises the WS305

aggregation approach.

Fig. 4. Schema of the proposed aggregation method

5.6. Topic identification of unseen data

The dictionary of the model is used to map words to their ids. A new

corpus document-term matrix is generated based on this dictionary. The topic

distribution defined by the spaceLDA model can then be applied to the input310
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requirement or query. The output is a list of latent topics along with their

probability to represent the document.

5.7. Case study evaluation

5.7.1. Accuracy score

The accuracy score only takes into consideration the primary topic of a per-315

document topic distribution. If this topic matches the requirement’s ground

truth, then the matching is considered a success. The accuracy score is di-

vided by the number of unseen data, or requirements, submitted to the model.

Therefore, the best performance corresponds to an accuracy score of 1.

5.7.2. Mean reciprocal ranking320

The MRR takes into consideration the top n topics of a per-document topic

distribution. The score is inversely proportional to the correct answer, topic

rank, as shown in Equation 4 based on the definition from (Craswell, 2009):

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(4)

with Q the number of queries, ranki, the rank of the ground truth. Only the

top two topics will be taken into consideration.

6. Results

In this section, we first present the results of the spaceLDA model’s hyperpa-

rameters optimisation resulting in the selection of topics numbers. We then com-325

pare the per-topic word distributions found by the non-aggregated spaceLDA

models with distributions generated by unsupervised LDA models trained on

the same domain-specific corpora. We finally assess the case study performances

of our model while comparing them with the performances achieved by several

other methods summarised in Table 5.330
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Table 5. Overview of compared methods in the case study

spaceLDA method a method b method c

Training with lexical priors X X

Unsupervised training X X

Optimised WS aggregation X X

JS divergence aggregation X X

6.1. Hyperparameters optimisation

For each training corpus, the optimisation process described in paragraph 5.1

is run to identify the optimum number of latent topics. The optimisation pro-

cess was run for a number of topics ranging from 4 to 100 and for each training

set. The resulting average perplexity measures are displayed on Fig. 5 up to 40335

topics.

Fig. 5. Perplexity evolution

Setting a perplexity threshold to 0.9E-4 and manually investigating the top-

ics content of models satisfying the perplexity threshold, a topic number of 22
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was chosen for the Wikipedia training set. Following the same process, a topic340

number of 30 latent topics was selected for the reports training set. A model was

trained with this set, obtaining a perplexity of 1.35e-06 in its final evaluation,

computed with the held-out part of the training corpus. The higher number of

latent topics was assumed to result from the variety of missions covered by the

reports, as well as the higher complexity of the experts’ lexicon writing these345

reports. For the books training set, a topic number of 24, corresponding to

the local minimum, was chosen. A final model obtained a perplexity score of

1.85e-05, similar scores to the above models, although the values of the mean

perplexity measures are generally higher for this training set.

6.2. SpaceLDA per-topic word distributions350

The LDA model training is a stochastic process; however, the results pre-

sented in this subsection represent trends observed with several trained models.

The spaceLDA models were trained using the 164 lexical priors presented in

Table 4. Not all lexical priors could be found in the corpora’ dictionaries.

Therefore nineteen words, including the terms ‘bit’, ‘cpu’, ‘magnetotorquers’,355

‘power supply’, ‘satellite communication’, ‘spacecraft propulsion’ and ‘spin sta-

bilised’, were not boosted. Unsupervised models were also trained on the same

corpus to compare the latent topics extracted with and without lexical priors.

Tables 6, 7 and 8 display the top 5 terms of per-topic word distributions

extracted from the training corpora by the spaceLDA and the unsupervised LDA360

models. In these tables, the lexical priors have been underlined in bold. Terms

found in unsupervised word distributions that happened to match a lexical prior

were also underlined for comparison purposes. The complete word distributions

of each model are available at https://github.com/strath-ace/smart-nlp.

The distributions obtained from the Wikipedia training corpus are simi-365

lar for both training approaches. With the reports training corpus, complex

phrases (more than 2-grams words) such as ‘ultra high frequency ’ are given

less attention in the semi-supervised distributions influenced by lexical priors.

The unsupervised distributions promote terms which are less domain-specific,
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such as ‘laser’ (found in Environment topic), ‘bipods’(found in Thermal topic)370

or ‘telescope’ (found in Thermal topic). Finally, the unsupervised distribu-

tions extracted from the books appear to mix different topics. For instance,

the Communication topic unsupervised word distribution includes the term

’low thrust’, a propulsion concept. The Propulsion topic distribution includes

the term thermal control. Overall the word distributions extracted by the375

spaceLDA model provided a more accurate representation of each spacecraft

subsystem. The lexical priors notably enabled to remove noisy terms from dis-

tributions based on the reports and books corpora.

Table 6. Comparison of per-topic word distributions obtained from spaceLDA and unsu-

pervised models trained with the Wikipedia corpus. Terms in bold corresponds to lexical

priors.

Topic Label Training
Topic Word Distribution

Top 5 elements

Attitude and

Orbit Control

System

spaceLDA
momentum, angular, velocity, motion,

particle

Unsupervised
attitude, sensor, wheel,

orientation, momentum

Communication
spaceLDA radio, frequency, signal, antenna, receiver

Unsupervised radio, antenna, receiver, signal, wave

Environment
spaceLDA cosmic, radiation, particle, belt, allen

Unsupervised radiation, gamma, cosmic, particle, decay

On-board Data

Handling

spaceLDA
memory, dynamic random access memory,

cable, data, cell

Unsupervised
memory, dynamic random z access memory,

cable, cell, computer

Power
spaceLDA

cell, power, photovoltaic,

pressurized pressure vessel, electricity

Unsupervised capacitor, voltage, circuit, capacitance, resistance

Thermal
spaceLDA heat, heating, temperature, material, thermal

Unsupervised heat, temperature, thermal, heat pipe, cooling
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Table 7. Comparison of per-topic word distributions obtained from spaceLDA and unsuper-

vised models trained with the reports corpus. Terms in bold corresponds to lexical priors.

Topic Label Training
Topic Word Distribution

Top 5 elements

Communication
spaceLDA

x-band, band, telemetry,

modulation, telecommand

Unsupervised
ultra high frequency, orbiter, localisation,

conjunction, arrival

Environment
spaceLDA

radiation, shielding, particle,

environment, electron

Unsupervised
bench, interferometer, decoherence,

nanoparticles, laser

Power
spaceLDA energy, capacity, panel, solar power, voltage

Unsupervised
laser interferometer space antenna,

electric propulsion, laser, constellation, telescope

Propulsion
spaceLDA

propellant, transfer, refuelling,

optical, geostationary orbit

Unsupervised
electric propulsion, asteroid, eprop,

boost, arrival

Thermal
spaceLDA

overheating, thermodynamics, reflective,

thermal control system, thermal control

Unsupervised
cooling, telescope, cryogenic,

spectro, bipods

22



Table 8. Comparison of per-topic word distributions obtained from spaceLDA and unsuper-

vised models trained with the books corpus. Terms in bold corresponds to lexical priors.

Topic Label Training
Topic Word Distribution

Top 5 elements

Attitude and

Orbit Control

Subsystem

spaceLDA
attitude, vector, matrix,

control, frame

Unsupervised
quaternion, covariance, kalman,

kinematics, architect

Communication
spaceLDA orbit, service, data, antenna, communication

Unsupervised
decentralized, nonlinear, synchronization,

topology, low thrust

On-Board

Data

Handling

spaceLDA
on board computer, data,

interface, frame, power, channel

Unsupervised

on board computer,

power control and distribution unit,

connector, register, spacewire

Propulsion
spaceLDA

propulsion, fuel, electric,

thruster, propulsion system

Unsupervised
nozzle, packet, combustion,

thermal control, qualification

Thermal
spaceLDA thermal, heat, temperature, control, orbit

Unsupervised
thermal control, insulation,

coating, pumped, vapour

Fig. 6 displays the labels of extracted distributions for each corpus. Within

the Wikipedia corpus, most of the topics of interest could be identified. The380

variation between the spaceLDA models and the unsupervised training is again

minimal for this corpus. The benefits of lexical priors become more apparent

for the remaining training sets. The diversity of topics extracted increased in

both cases with the introduction of lexical priors. The priors encourage the

extraction of topics that might be less prevalent and are then overlooked by385

the unsupervised model. In the case of the reports corpus, it is clear that the
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unsupervised model focused on two topics, Propulsion and Environment. The

priors balanced this attention, enabling the expression of other topics of interest.

Similarly, in the case of the books corpus, several noisy topics (tagged as Other

and not represented in the Figure) were extracted by the unsupervised model.390

In conclusion, the lexical priors contributed to the extraction of more relevant

topics.

Fig. 6. Evolution of topics labelling between unsupervised models (blue distribution) and

spaceLDA (semi-supervised) (orange distribution) for each training set.
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The averages of lexical priors found in the top 50 of word distributions are

displayed in Fig. 7. For the unsupervised models, the priors are not used as

lexical priors as they don’t interfere in the training process, however, they can395

still appear in the word distributions. For the model trained with the Wikipedia

set, the unsupervised topics, considering all categories, contain on average 18,1%

of lexical priors against 19,2% for the spaceLDA model. For the model trained

with the reports or books sets, the difference is far more prominent. For the

reports training set, over all categories, the average for the spaceLDA topics400

is 44%, compared to 4% for the unsupervised model. Similarly, for the books

corpus, the average number of lexical priors increased from 8% to 31% with the

spaceLDA approach.

Fig. 7. Average percentage of lexical priors found in each topic distribution and each training

set with the spaceLDA (semi-supervised) or unsupervised models.
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6.3. Case study results

In this case study, design requirements are submitted as unseen documents405

to the spaceLDA model and to three other models introduced in Table 5. The

requirement’s prevalent topic found by the TM models is then compared to

the requirement’s ground truth. To ensure robustness, the training process is

run ten times for both training methods and for each training set, yielding in

total 30 spaceLDA models and 30 unsupervised LDA models. Each aggregation410

method is applied to each set of 30 models.

6.3.1. Aggregation of per-document topic distribution with an optimised weighted

sum

With our aggregation method, the merging occurs after each model has

generated a topic distribution for the unseen document. The contribution of415

each model is balanced with weights to optimise the categorisation performance.

The hyperparameter optimisation ran with the hyperopt Python library yields

the following linearised weight combinations:

1. SpaceLDA models: 0.54 for Wikipedia-based models, 0.05 for feasibility

reports-based models, and 0.41 for book-based models.420

2. Unsupervised models: 0.62 for Wikipedia-based models, 0.19 for feasibility

reports-based models, and 0.19 for book-based models.

For this case study, the weights of Wikipedia-based models are significantly

higher than for other training corpora. Indeed, selected Wikipedia pages are

more likely to describe the architecture of space systems than the feasibility425

reports detailing applied examples of spacecraft design or books covering broader

topics. Therefore, the Wikipedia corpus is given more influence with a higher

weight. The weights would need to be fine-tuned again should the case study

change.
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6.3.2. Aggregation of per-topic word distribution with the Jensen-Shannon di-430

vergence

As presented in (Blair et al., 2020), the JS divergence enables the symmetric

measurement of similarity between two or more probability distributions. A

value of the JS divergence equal to 0 indicates a complete similarity and a

value of 1 a complete dissimilarity. Provided the divergence between n similar435

topics of M models with Ti topics is lower than the JS divergence threshold, γ,

an aggregated topic ϕ̂k can be generated following equation 5 based on (Blair

et al., 2020). ϕ(i,j) being the per-topic word distribution of topic Tj in model

Mi.

ϕ̂k =


M∑
i=1

Ti∑
j=1

ϕ(i,j)

n , if DJS(ϕ(i,j)||ϕx) ≤ γ

0, otherwise

(5)

The aggregation process is separately run on the 30 unsupervised models440

and on the 30 spaceLDA models. In each case, 30 models (10 per training

set) amount to 780-word distributions to be aggregated into one model. To

compare the distributions obtained from heterogeneous sources, a new dictio-

nary is generated based on the vocabulary gathered from all word distributions.

The probability distributions are reorganised according to this common dic-445

tionary. The JS divergence is computed for each per-topic word distribution

with regards to the 779 other distributions. The average JS divergence for the

semi-supervised models is 0.68, and for the unsupervised models, 0.80. The

semi-supervised models tend to focus on more similar topics due to the lexical

priors. A threshold of 0.3 is set to retain only the closest distributions. All450

topic distributions with a JS divergence lower than this threshold are aggre-

gated. Otherwise, topics are kept as such. Eventually, the unsupervised models

yield one aggregated model with 559 topics, while the semi-supervised models

yield one aggregated model with 505 topics. The topics are manually labelled

by human annotators. The unseen data will be converted into a bag of words455

based on the aggregated model dictionary.
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6.3.3. Categorisation results and comparison

The unseen data whose topics will be identified are 68 mission require-

ments, as presented in 4.3, related to the topics of AOCS, Communication,

Environment, OBDH, Power, Propulsion, and Thermal. The documents’460

chapters from which the requirements are extracted are used as ground truths.

Perplexity and Mean Reciprocal Ranking are used to evaluate the models’ per-

formances. The performances of the different models are compared in Tables 9-

10.

Table 9. Categorisation Accuracy - the highest score per category are underlined in bold

and the results of the proposed method are highlighted in the grey column.

Training Lexical Priors Unsupervised

Aggregation Method WS JS Divergence WS JS Divergence

L
a
b

e
ls

AOCS 0.64 0.54 0.64 0.36

Communication 0.7 0.3 0.6 0.2

Environment 0.2 0.2 0.2 0.1

OBDH 0.6 0.2 0.3 0.1

Power 0.64 0.2 0.73 0.36

Propulsion 0.8 0.4 0.8 0.2

Thermal 0.73 0.09 0.36 0.64

Accuracy of

aggregated models
0.61 0.28 0.52 0.28
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Table 10. Categorisation MRR - the highest score per category are underlined in bold and

the results of the proposed method are highlighted in the grey column.

Training Lexical Priors Unsupervised

Aggregation Method WS JS Divergence WS JS Divergence

L
a
b

e
ls

AOCS 0.73 0.59 0.73 0.5

Communication 0.75 0.4 0.65 0.2

Environment 0.2 0.3 0.25 0.15

OBDH 0.7 0.35 0.3 0.2

Power 0.68 0.3 0.77 0.55

Propulsion 0.8 0.5 0.8 0.4

Thermal 0.82 0.32 0.55 0.82

MRR of

aggregated models
0.67 0.39 0.58 0.40

In Tables 11-12 samples of per-requirement topic distributions obtained with465

both training and aggregation approaches are displayed. Each topic distribu-

tion is a probabilistic distribution of the topics most likely to be found in the

assessed requirement. In the case of the propulsion requirement, Table 11, all

methods successfully associate the requirement to its correct category either as a

first or second most prevalent topic. Although this requirement was assigned to470

the propulsion subsystem chapter in (ESA, 2005), the requirement clearly incor-

porates notions of thermal management. The unsupervised model aggregated

with the JS divergence is thus led to confusion by the terms ”thermal design”

and ”temperature”. This duality is also reflected by the distributions obtained

with the weighted sum, which indicate that Thermal is also a prevalent topic475

of the requirement.
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Table 11. Example of topic distributions obtained for a propulsion requirement. The ground

truth topic is underlined in bold in the distributions. The other label stands for a topic

unrelated to space subsystems.

Propulsion

Requirement

The propulsion sub-system thermal design shall

assure that the minimum predicted temperatures

of any wetted component or surface contacting

the propellant remain at least 10oC above

the maximum freezing point

of the onboard propellant.

Training Aggregation Topic Distribution

Lexical

Priors

WS
‘propulsion’: 0.35,

‘thermal’: 0.25

JS
‘propulsion’: 0.43,

‘other’: 0.30

Unsupervised
WS

‘propulsion’: 0.43,

‘thermal’: 0.22

JS
‘thermal’: 0.52,

‘propulsion’: 0.27

As seen in Tables 9-10, the categorisation of Power requirements were the

only classes for which the performances of the spaceLDA models were lower than

for the other approaches. However, even then, the WS approach, relying on

the unsupervised models’ aggregation, performed better than the JS divergence480

aggregation. Therefore, to improve the performance of the spaceLDA model, the

lexical priors used to identify and define the Power topics should be improved.

In Table 12 for instance, the WS method is the only one to properly associate

the first topic to the requirement to its ground truth.
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Table 12. Example of topic distributions obtained for a power requirement. The ground

truth topic is underlined in bold in the distributions. The other label stands for a topic

unrelated to spacecraft subsystems.

Power

Requirement

Cell performance and degradation factors shall

be justified according to in orbit experience

and supporting ground testing.

Training Aggregation Topic Distribution

Lexical

Priors

WS
‘other’: 0.24,

‘power’: 0.17

JS ‘other’: 0.92

Unsupervised
WS

‘power’: 0.27,

‘propulsion’: 0.16

JS
‘other’: 0.54,

‘power’: 0.26

7. Discussion485

The training of a domain-specific LDA model required a curated domain-

specific corpus. The documents integrated into the training data set were rep-

resentative of the texts engineers usually rely on to master space systems. The

heterogeneity of the training data set had the advantage of diversifying the top-

ics discovered. To ensure that the larger data set would not overshadow the490

smaller corpora, the models were trained independently on three training sub-

sets. As it could be expected, the semi-supervised training of the spaceLDA

model yielded better results than the classic LDA unsupervised training. The

outputs of the unsupervised models were, however, useful in supporting the

definition of the lexical priors which were used for the spaceLDA.495

The heterogeneity of the training data set also meant that for each unseen

document, corresponding to a design requirement, as many topic distributions

as models were found. Hence our proposition to merge distributions with an

optimised WS to converge towards a single per-requirement topic distribution,

enabling us to match each requirement with one key spacecraft subsystem even-500
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tually. Our aggregation method outperformed the JS divergence aggregation

method. The WS was a more flexible option allowing to balance the influ-

ence of the different corpora, enabling fine-tuning. In addition, this method

did not require relabeling the topics of the merged model, enabling quicker re-

use of pre-trained models. The WS optimisation assigned heavier weights to505

the Wikipedia corpus. This was expected as the per-topic word distributions

based on the Wikipedia corpus covered most of the topics of interest and were

of similar quality for the spaceLDA and unsupervised training. The selected

Wikipedia pages were more likely to efficiently and shortly describe the archi-

tecture of space systems, while the feasibility reports provided applied examples510

of spacecraft design and books covered broader topics.

8. Conclusion and future work

This study introduced a novel domain-specific TM model, spaceLDA, tai-

lored to space systems, enriched with lexical priors and an optimised WS.

The development of the spaceLDA model entailed the generation and cura-515

tion of a first text collection on space systems as well as the definition of

domain-specific lexical priors. The practical application of TM to support

space mission design was demonstrated through a case study on the cate-

gorisation of design requirements. The study proposed an optimised WS to

aggregate per-document topic distributions. This method outperformed the520

state of the art aggregation method based on the JS divergence. The mod-

els and corpora, with the exception of the feasibility reports, are available

at https://github.com/strath-ace/smart-nlp. Although applied to a cor-

pus related to space systems, the approach proposed here is extendable to any

domain-specific corpus. In future work, the application of TM could be extended525

to the classification of documents. The TM approach could be compared to a

word embedding approach. Labels could be automatically assigned to topics to

mitigate the subjectivity of the manual labelling.
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