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Abstract

Vehicle localisation is an important and challenging task in achieving autonomous

driving. This work presents a box particle filter framework for vehicle self-

localisation in the presence of sensor and map uncertainties. The proposed

feature-refined box particle filter incorporates line features extracted from a

multi-layer Light Detection And Ranging (LiDAR) sensor and information from

OpenStreetMap to estimate the vehicle state. A particle weight balance strategy

is incorporated to account for the OpenStreetMap inaccuracy, which is assessed

by comparing it to a high definition road map. The performance of the proposed

framework is evaluated on a LiDAR dataset and compared with box particle fil-

ter variants. Experimental results show that the proposed framework achieves

respectively 10% and 53% localisation accuracy improvement with reduced box

volumes of 25% and 41%, when compared with the state-of-the-art interval

analysis based box regularisation particle filter and the box particle filter.
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1. Introduction1

The development of reliable autonomous driving solutions is an active re-2

search area (Pendleton et al., 2017, Reid et al., 2019). Localisation plays a key3

role of autonomous systems since it provides the vehicle with self-awareness of its4

state xk = (xk, yk, θk)
T , which encodes its position (xk, yk) and its orientation5

θk relative to a map (Kuutti et al., 2018) at time k.6

There are mainly two main types of maps used for localising a vehicle:7

(1) maps that are incrementally built and maintained along with localisation;8

(2) accurate commercial digital maps that are built and maintained by compa-9

nies. Feature maps (Holỳ, 2018) and point-cloud maps (Javanmardi et al., 2019,10

Tamas and Goron, 2014) belong to the first group. In general, feature maps11

represent the environment with geometrical features at various levels; whereas12

point-cloud maps are usually built by registering point clouds to a geographic13

information system (Zhang and Singh, 2014). The former is known for its se-14

mantic interpretability and low complexity, while the latter is computational15

resources dependant and holds the promise of high accuracy. These two types16

of maps are generally components of simultaneous localisation and mapping17

(SLAM) solutions (Gil et al., 2015, Li et al., 2019). Therefore, they inherit the18

challenges faced by SLAM approaches, such as localisation accuracy degrada-19

tion when the uncertainty of sensor measurements increases. In such cases, loop20

closure and subsequent optimisation techniques are widely adopted to respec-21

tively improve the mapping accuracy (Wang et al., 2016) and the localisation22

results. However, a unified SLAM framework for mapping and maintaining high23

accuracy is still difficult, causing the inaccuracy of the obtained maps.24

The second group of accurate digital maps comes with service charges and25

often limited access to metadata. The crowdsourced OpenStreetMap (OSM)26

could be a cheaper replacement for expensive digital maps and can provide flex-27

ible solutions since almost all the metadata can be accessed and customised28

by end-users. OSM has already been applied in urban navigation (Suger and29

Burgard, 2017). However, the accuracy of OSM remains a challenge (Vargas-30
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Munoz et al., 2021). It could vary from centimeters to meters from city to31

city, thus bringing in additional uncertainties apart from those caused by sen-32

sors (Brovelli et al., 2016, Senaratne et al., 2017). Hence, it is beneficial to33

develop robust localisation frameworks when using inaccurate SLAM maps or34

OSM for autonomous systems.35

In this paper, a feature-refined BPF (FRBPF) that stems from the box36

particle filtering (BPF) approach (Abdallah et al., 2008, Gning et al., 2013)37

is proposed to achieve accurate and robust localisation results based on an38

inaccurate yet free OSM. In our case, the OSM serves as a reference map for39

localising a vehicle. A real-time kinematic (RTK) sensor suite provides the40

ground truth information. The vehicle is equipped with an Inertial Measurement41

Unit (IMU) and a LiDAR sensor to fulfill localisation.42

In the proposed approach, line features are firstly extracted from raw LiDAR43

data obtained by the vehicle at time k. The distances and angles of the line fea-44

tures with respect to the vehicle are adopted as measurements and are denoted45

as [yk]. The line features are next associated with line features correspond-46

ing to building footprints on the OSM. The accuracy of the OSM is assessed47

with respect to a high-definition map (HDM) maintained by the Université de48

Technologie de Compiègne (UTC) so that map uncertainties are also considered49

during localisation. Measurements of the matched line features are fed to the50

proposed FRBPF for vehicle state updating. With N box particles representing51

the vehicle states [xik], i = 1, · · · , N and upon the arrival of measurements [yk],52

the filter propagates state estimates through the box contraction and update53

steps as time evolves. In contrast of performing contraction per measurement,54

a feature-refined contraction merges line features before the contraction step.55

This is also a way of coping with OSM and sensor data uncertainties, hence-56

forth reduces boxes. As interval analysis based methods do not provide point57

estimates by nature, this paper takes box centers to achieve point estimates by58

statistical metrics such as expectation and covariance to evaluate the proposed59

FRBPF and compares it with the BPF and the box regularised particle filter60

(BRPF) (Merlinge et al., 2019).61
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The main contributions of this paper can be summarised as follows: (1) A62

LiDAR features-refined box particle filter is proposed that is able to deal effec-63

tively with OSM and sensor data uncertainties; (2) A contraction algorithm is64

developed that incorporates the abundant line features from structured urban65

environments to reduce the volume of box particles; (3) Theoretical proofs about66

the features-refined contractions are derived; (4) A box particle weight balance67

strategy is designed to cope with OSM uncertainties and further improves the68

localisation performance.69

The rest of this paper is organised as follows. Section 2 presents an overview70

of related works. Section 3 gives the necessary theoretical background knowl-71

edge. Section 4 elaborates the proposed approach. Section 5 includes valida-72

tion and discussions of the proposed approach. Finally, conclusions and future73

works are given in Section 6. Appendix A and Appendix B prove that the74

feature-refined contraction reduces the particle box volume compared with the75

traditional contraction.76

2. Related Works77

2.1. OpenStreetMap based Localisation78

OSM is the most well-known crowdsourced map whose metadata is struc-79

tured by entities such as nodes, ways, and relations (Zheng and Izzat, 2018).80

Nodes represent points of interest. Ways are a collection of nodes that corre-81

spond to buildings and roads, and relations indicate the relationships between82

nodes and ways. Generally, the exterior surface of buildings can be projected83

into a two dimensional (2D) plane as line segments or can be approximated by84

line segments. Hence, the OSM is equivalent to a feature map represented by a85

set of linear equations.86

Compared with highly precise maps, maintained by local authorities, the87

OSM accuracy needs to be further improved. For instance, building footprints88

of Milan on OSM show a systematic translation of 0.4 m on the defined X89

and Y directions in (Brovelli et al., 2016). Furthermore, applications of OSM90
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still suffer from the incompleteness of buildings, roads and other environmental91

factors (Senaratne et al., 2017).92

Nevertheless, OSM has been widely used in vehicle/robot localisation. Suger93

and Burgard (Suger and Burgard, 2017) present a Markov Chain Monte Carlo94

approach for autonomous robot navigation, by associating track information95

from OSM with trails detected by the robot based on three dimensional (3D)96

LiDAR data. The robustness of the approach is demonstrated with experimental97

results, which shows the potential of using inaccurate OSM in urban environ-98

ments. Zheng and Izzat (Zheng and Izzat, 2018) show that by taking OSM as99

a prior map, one can benefit from road perception by first rendering a virtual100

street view, and further refining it to provide prior road masks. The road mask101

can be augmented into drivable space by integrating images or LiDAR point102

clouds. By taking the road mask as image inputs to a fully convolutional neural103

network, the authors also discuss the promise of deep learning methods com-104

bined with OSM for road perception. Joshi and James (Joshi and James, 2015)105

propose to combine coarse, inaccurate prior maps from OSM with local sensor106

information from 3D LiDAR to localise a vehicle. Lane locations are estimated107

by particle filter variants and then integrated within a map to further improve108

the localisation accuracy.109

2.2. Box Particle Filtering based Localisation110

Recently, interval analysis based localisation has shown its potential in deal-111

ing with non-Gaussian and biased noise perturbed measurements. The combina-112

tion of the set-membership framework with particle filtering techniques known113

as BPF is first introduced by Abdallah et al (Abdallah et al., 2008) to localise114

a ground vehicle. The application of the BPF to global localisation shows that115

with only 10 box particles, BPF reaches almost the same accuracy as particle116

filter with 3,000 particles.117

Ever since then, BPF has been applied to different scenarios. Gning et118

al. (Gning et al., 2012) introduced the Bernoulli BPF and applied it to tracking119

a single target. It shows that the Bernoulli BPF can track the target accurately120
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and is computationally more efficient compared with the Bernoulli particle filter.121

A multiple extended object tracking method based on BPF is further proposed122

by Freitas et al. (Freitas et al., 2018), which benefits from the fact that BPF123

can well tackle ambiguous observations, which often happens in LiDAR and124

GPS data. Merlinge et al. (Merlinge et al., 2019) propose the BRPF that125

outperforms the BPF in terms of Root Mean Square Errors (RMSEs). The126

BRPF achieves up to 42% improvement in geographical position estimation127

compared with BPF. The authors also demonstrate that both BRPF and BPF128

produce lower divergence rate (≤ 1%) than methods such as particle filters.129

Luo et al. (Luo and Qin, 2018) propose the ball particle filter to deal with130

issues caused by box subdivision and forward-backward contraction. In the131

ball particle filter, boxes in BPF are replaced by balls, and a ball contractor is132

proposed to contract the balls. Applications of the ball particle filter in SLAM133

show that with 20 particles, the ball particle filter achieves 34.5% and 34.6%134

position and orientation improvement, respectively. However, the results show135

that the ball particle filter is about 7% less efficient than the BPF. Nevertheless,136

all the methods perform contraction when a measurement is obtained, without137

further integration or refinement. Furthermore, the BPF has not been applied138

to OSM based localisation.139

3. Theoretical Background140

3.1. Boxes and Inclusion Functions141

In interval analysis, intervals or boxes are used as basic operands for mod-

eling and calculation, etc. An interval or box is defined as

[x] =
(

[x1], · · · , [xi], · · · , [xd]
)T

∈ IR
d,

where [xi] = [xi, xi] with xi, xi ∈ R, and ∀xi ∈ [xi], xi ≤ xi ≤ xi stands.142

IR
d and R are respectively the d ∈ N

+ dimensional real interval space and the143

real number space (Alefeld and Mayer, 2000). When [x] is one dimensional,144

it is usually called an interval, and it is called a box when the dimension is145

6



two or above. This paper adopts ‘box’ to refer to both intervals and boxes146

hereafter for brevity. The volume of a box is defined as |[x]| =
∏d

i=1 |[xi]|,147

where |[xi]| = xi − xi (Ilog, 1999). Note when d = 1, ‘volume’ refers to the size148

of the one dimensional interval, and when d = 2, it refers to the area of the two149

dimensional box. For brevity and generality, this paper uses ‘volume’ to refer150

to all the scenarios, unless otherwise specified.151

Given boxes [x], [y], and an operator ♦ ∈ {+,−, · · · , /}, [x]♦[y] is defined as152

the smallest box in terms of volume that contains all feasible values of x♦y. For153

a given box [x], its center is defined as cx =
(

(x1 + x1)/2, · · · , (xd + xd)/2
)T

(Drev-154

elle and Bonnifait, 2013).155

In general, when applying a function f : Rd1 → R
d2 (d1, d2 ∈ N

+) that is156

defined in the real number space directly to manipulate a box [x], one cannot157

guarantee that f([x]) is still a box. In interval analysis, the inclusion function158

[f ] is taken as a counterpart of f to ensure that [f ]([x]) is still a box. The159

inclusion function is normally defined as f([x]) ⊂ [f ]([x]), ∀[x] ⊂ IR
d (Jaulin160

and Desrochers, 2014, Jaulin et al., 2001).161

3.2. Constraint Satisfaction Problems162

When a box propagates through an inclusion function, its volume could163

increase dramatically. This reveals the ‘conservative’ nature of interval analy-164

sis based methods, i.e. expanding box volumes to guarantee that no feasible165

solutions are excluded. This, however, can cause overestimation problems as166

non-feasible solutions could be included as well when a box is expanded. The167

Constraint Satisfaction Problem (CSP) is exploited to help reducing box vol-168

umes. The CSP aims at finding a subset X of the feasible domain [x], which169

satisfies170

X = {x ∈ [x]|h(x) = 0}, (1)

where h(x) = 0 indicates the constraint. FindingX is computationally demand-171

ing. In interval analysis, instead of finding X, one can apply a contractor C to172

reduce the volume of [x] and get [xc] = C([x]), such that X ⊂ [xc] ⊆ [x] (Drev-173

elle and Bonnifait, 2013).174
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The forward-backward contractor is broadly accepted in literature due to its175

efficiency and effectiveness. Given a set of constraints in the form of h(x) =176

y, with x and y measurable quantities, the contraction is achieved (Jaulin,177

2009a) by propagating from x to y in the first step (forward propagation). The178

constraints are next propagated inversely from y to x (backward propagation).179

The process is repeated until no more significant box volume reduction can be180

observed. Jaulin gives some examples to make the process easy to understand181

in (Jaulin, 2009a).182

3.3. The q-satisfied Intersection183

For a given set of Q ∈ N
+ boxes {[x]i, i = 1, · · · , Q}, the computation of184

their intersection185

[x] =

Q
⋂

i=1

[x]i (2)

is frequently required. However, outliers cause empty intersections, which can186

lead to early termination or even divergence of algorithms.187

The q-satisfied intersection (Wang et al., 2015, 2018) along with the q-relaxed188

intersection proposed in (Jaulin, 2009b) are used to find a subset of {[x]i, i =189

1, · · · , Q}, such that their intersection is not empty. The difference between190

the two is that the q-satisfied method searches for the maximum number q of191

boxes with non-empty intersection, where q is not determined at the beginning.192

While in the q-relaxed intersection, q is normally determined according to the193

application. In the q-satisfied intersection, q is defined as194

q = max







card(A)

∣

∣

∣

∣

∣

∣

A ⊆ {1, . . . , Q} ,
⋂

j∈A

[x]j 6= ∅







, (3)

with card(A) indicates the cardinality of set A. Subsequently a q-satisfied in-195

tersection is defined as196

[Ai] =
⋂{q}

[x]1,...,Q =
⋂

j∈A

[xj ], card(A) = q. (4)
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Usually, one can get K ∈ N
+ q-satisfied intersections [A1], . . . , [AK ]. An197

approximation to (2) is then denoted as198

[x] =

Q
⋂

i=1

[xi] = B({[A1], . . . , [AK ]}), (5)

where B(·) indicates the minimum box that encloses {[A1], . . . , [AK ]}.199

In this paper, q is found by decreasing Q by 1 each step and check whether200

(3) is satisfied. In scenarios where real-time performance is critical, one can201

decreasing Q by a greater than 1 step to accelerate the process.202

4. Feature Refined Box Particle Filter for Localisation203

4.1. Problem Description204

The motion of a vehicle is usually described by an evolution model f and an205

observation model g. The former represents dynamics of the vehicle, and the206

latter reveals what measurements the vehicle can incorporate to locate itself.207

They are separately represented as208







xk = f(xk−1,uk) + µk,

yk = g(xk,m) + νk,
(6)

where xk−1 and xk are vehicle states at k−1 and k, yk denotes the measurement,209

m is the reference map, uk = [vk, ωk]
T is the input with vk the vehicle speed and210

ωk = θ̇k the yaw rate, and µk and νk are separately the system and observation211

noises.212

In the Bayesian framework, the objective of localising a vehicle is to estimate213

the posterior distribution over the current vehicle pose xk denoted as214

p(xk | y1:k,u1:k,m)

= 1
χk
p(yk | xk,m)p(xk | y1:k−1,u1:k,m),

(7)

where215

χk =
∫

p(yk | xk,m)p(xk | y1:k−1,u1:k,m)dxk216
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is the evidence distribution. Equation (7) can be decomposed into two compo-217

nents besides 1
χk

. The predictive distribution is defined as218

p(xk | y1:k−1,u1:k,m)

=
∫

p(xk | xk−1,uk)p(xk−1 | y1:k−1,u1:k−1,m)dxk−1,
(8)

where p(xk | xk−1,uk) indicates the state transitional density, and the prior219

distribution p(xk−1 | y1:k−1,u1:k−1,m) at time k− 1 is essentially the posterior220

distribution of xk−1. The second component p(yk | xk,m) is the measurement221

density given the state xk and the reference map m. It is also known as the222

likelihood of observing yk at state xk.223

The BPF falls into the same Bayesian localisation framework. One of the224

major differences is that variables become boxes. This paper uses [m] to indi-225

cate an inaccurate OSM. The evolution and observation models are, therefore,226

rewritten as227






[xk] = [f ]
(

[xk−1],uk
)

+ [µk],

[yk] = [g]
(

[xk], [m]
)

+ [νk],
(9)

where [f ] and [g] are the corresponding inclusion functions.228

This paper develops a BPF based localisation framework with evolution and229

observation models given in (9) within the Bayesian framework.230

4.2. Bayesian Paradigm of Box Particle Filter for Localisation231

The BPF employs a set of N weighted boxes
{

(wik, [x
i
k])

}N

i=1
to approximate232

the point-wise state estimation. For clarity, this paper decomposes the BPF233

based localisation into the following four steps.234

4.2.1. The Predictive Distribution235

The equivalent prior distribution at time k − 1 as in (8) is defined as236

p(xk−1 | y1:k−1,u1:k−1, [m]) ≈
N
∑

i=1

wik−1U[xi

k−1
](xk−1), (10)
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where U[x](·) denotes the multivariate uniform probability density function (pdf)237

with the interval [x] as support. The predictive distribution is now given as238

p(xk | y1:k−1,u1:k, [m])

≈
∫

p(xk | xk−1,uk)
∑N

i=1 w
i
k−1U[xi

k−1
](xk−1)dxk−1

=
∑N

i=1 w
i
k−1

∫

[xi

k−1
]
p(xk | xk−1,uk)U[xi

k−1
](xk−1)dxk−1,

(11)

The integral in (11) indicates the distribution of the predicted state after239

propagating the i-th box [xik−1] through [f ]. This leads to240

p(xk | xk−1,uk)U[xi

k−1
](xk−1) = 0, (12)

∀xk /∈ [f ]
(

[xik−1],uk
)

+ [µk]. This limits the distribution of the predicted state241

xk to242

∫

[xi

k−1
]
p(xk | xk−1,uk)U[xi

k−1
](xk−1)dxk−1

≈ U
[f ]
(

[xi

k−1
],uk

)

+[µk]
(xk) = U[xi

k|k−1
](xk).

(13)

By substituting (13) into (11), the predictive distribution becomes243

p(xk | y1:k−1,u1:k, [m]) ≈
N
∑

i=1

wik−1U[xi

k|k−1
](xk). (14)

4.2.2. The Posterior Distribution244

The likelihood component p(yk | xk, [m]) is critical in getting the posterior245

distribution p(xk | y1:k,u1:k, [m]). In BPF, the likelihood is defined as246

p(yk | xk, [m]) = U[yk]

(

g(xk, [m])
)

. (15)

The definition indicates how predicted measurement g(xk, [m]) is distributed247

within the support determined by [yk], where the observation noise [νk] is con-248

sidered.249

The posterior distribution is now given as250

p(xk | y1:k,u1:k, [m])

= 1
χk
p(yk | xk, [m])p(xk | y1:k−1,u1:k, [m])

= 1
χk

U[yk]

(

g(xk, [m])
)
∑N

i=1 w
i
k−1U[xi

k|k−1
](xk)

= 1
χk

∑N

i=1 w
i
k−1U[xi

k|k−1
](xk)U[yk]

(

g(xk, [m])
)

,

(16)

11



in which, the last two terms imply a CSP problem251

Xi
k ⊆ [xik] =

{

xik ∈ [xik|k−1] | g(x
i
k, [m]) ∈ [yk]

}

, (17)

i.e. Xi
k is a subset of the predicted state [xi

k|k−1] that satisfies the measurement252

constraint (also refer to (1) for understanding). When a contractor is applied,253

the updated state [xik] that satisfies Xi
k ⊆ [xik] can be obtained. Hence, the254

following relationship holds according to (Gning et al., 2013)255

U[xi

k
](xk) = U[xi

k|k−1
](xk)U[yk]

(

g(xk, [m])
)

= 1
|[xi

k|k−1
]|
|[xik]|U[xi

k
](xk)

1
|[yk]|

,
(18)

and the posterior distribution in (16) can be simplified as256

p(xk | y1:k,u1:k, [m])

= 1
χk

∑N

i=1 w
i
k−1

1
|[yk]|

1
|[xi

k|k−1
]|
|[xik]|U[xi

k
](xk)

∝
∑N

i=1 w
i
k−1

|[xi

k
]|

|[xi

k|k−1
]|
U[xi

k
](xk).

(19)

4.2.3. Weight Update and Re-sampling257

In BPF, particle weights are updated via258

wik ∝ wik−1 ∗ L
i
k, (20)

with Lik =
|[xi

k
]|

|[xi

k|k−1
]|
, and 0 ≤ Lik ≤ 1.259

When relation (17) is absolutely or strongly violated (measurements are not260

compatible with the prediction), |[xik]| becomes zero or negligible. This leads261

the updated weight wik to be zero or negligible as well. It will cause the particle262

degeneracy phenomenon where only a few particles are with prominent weights.263

The re-sampling procedure is then triggered when the following N effective264

criterion meets265

1
∑N

i w
i
k

2 < ηeffN. (21)

Re-sampling is done by subdividing boxes of high weights from randomly se-266

lected dimensions (Gning et al., 2013), or from the most pessimistic state di-267

mensions (the longest box edge corresponded dimension) (Merlinge et al., 2019).268
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4.2.4. Point State Estimate and Covariance269

By nature, interval analysis based methods do not provide point estimates.270

To provide statistical metrics such as expectation and covariance, in accordance271

with (Merlinge et al., 2019), this paper defines the point expectation as272

x̂k , E
[

xk ∼ p(xk | y1:k,u1:k, [m])
]

≈
N
∑

i

wikc
i
k, (22)

which is used as point state estimate at time instant k, with cik indicates the273

center of [xik], and E[·] is the statistical expectation.274

4.3. Features-refined Box Particle Filter275

4.3.1. Features-refined Contraction276

As shown in (1) and (17), contraction accounts for merging innovations into277

predicted states to make them accurate and reliable. For a given state [x]278

and measurements {[yi] ∈ IR
d, i = 1, · · · , n} of a feature, there are two ways279

to accomplish contraction. The first follows a step-wise paradigm, i.e. doing280

contraction upon the arrival of each measurement. The step-wise contraction281

is widely accepted and has been applied in (Abdallah et al., 2008) and (Gning282

et al., 2013). Alternatively, one can integrate if not all but several measurements283

before contraction. It is, therefore, named features-refined contraction in this284

paper. Note that this paper omits the time stamp k for the purpose of a general285

description. This paper also denotes {[yik], i = 1, · · · , n} as {[yi], i = 1, · · · , n}286

for brevity.287

Jaulin (Jaulin, 2009a) has proved that the order of variables being contracted288

does not affect the convergent boxes. However, there lacks research works in289

literature demonstrating that the features-refined contraction is equivalent to290

the step-wise counterpart. The problem will be formulated and their equivalence291

will be proved as follows.292

Step-wise contraction: Given a state [x] and measurements {[yi] ∈ IR
d, i =293

1, · · · , n} of a feature, the step-wise contraction result is obtained by solving a294
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CSP problem295

[sxi] =
{

sxi ∈ [xi] | h(sxi) = 0}, (23)

where296

h(sxi) = sxi − g−1([yi]), (24)

[sxi−1] = [xi] holds for i ∈ {2, · · · , n}, and [x1] = [x].297

For localisation, (23) reduces to298

[sxn] = [sxn−1]
⋂

g−1
(

[yn]
)

= [sxn−2]
⋂

g−1
(

[yn−1]
)

⋂

g−1
(

[yn]
)

...

= [sx1]
⋂n

i=2
g−1

(

[yi]
)

= [x]
⋂n

i=1
g−1

(

[yi]
)

,

(25)

where g−1 is an arbitrary function that is piece-wisely monotonic (Rohou et al.,299

2018). The final result [sxn] can be abbreviated as [sx] without causing confu-300

sions.301

Features-refined contraction: Given [x] and measurements {[yi] ∈ IR
d, i =302

1, · · · , n} of a feature, the features-refined contraction result [bx] can be obtained303

through304

[bx] =
{

bx ∈ [x] | h(bx) = 0}, (26)

where305

h(bx) = bx− g−1
(

⋂

[yi]
)

. (27)

Similarly, for localisation, (26) reduces to306

[bx] = [x]
⋂

g−1
(

⋂n

i=1
[yi]

)

. (28)

Corollary 1: Given a state [x] and measurements {[yi] ∈ IR
d, i = 1, · · · , n}307

of a feature, [sx] = [bx] stands, i.e.308

⋂n

i=1
g−1

(

[yi]
)

∩ [x] = g−1
(

⋂n

i=1
[yi]

)

∩ [x]. (29)
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The proof of the corollary is given in Appendix A. When g−1 is nonlinear,309

the inclusion function [g−1] is usually used instead to deal with the contraction310

problem. The disadvantage is that it degeneratesCorollary 1 because inclusion311

functions usually overly enlarge (or shrink) box volumes. This paper proposes312

Corollary 2 to show results when it comes to inclusion function cases.313

Corollary 2: Given a state [x] and measurements {[yi] ∈ IR
d, i = 1, · · · , n},314

and a piece-wisely monotonic function g−1 with the corresponding inclusion315

function [g−1], the following equation stands.316

[g−1]
(

⋂n

i=1
[yi]

)

∩ [x] ⊆
⋂n

i=1
[g−1]

(

[yi]
)

∩ [x]. (30)

This implies when inclusion functions are used, results from a features-refined317

contraction are finer than those from the step-wise contraction, which means318

more non-feasible solutions are excluded by the features-refined contraction.319

The proof of Corollary 2 is given in Appendix B. Combining Corollary320

1 and Corollary 2, one can conclude that the features-refined contraction pro-321

duces finer results than step-wise contraction despite incorporating the same322

measurements. This helps in mitigating the ‘conservative’ aspect of interval323

analysis based methods that involve contraction to refine results.324

Example 1: Fig. 1 gives an example where n = 3 to show the difference325

between the step-wise and features-refined contractions, in scenarios where g−1
326

and its inclusion function counterpart [g−1] are used, respectively. Each step in327

Fig. 1 is explained separately as follows.328

The first step: The upper sub-column shows that given three measure-329

ments [y1], [y2], and [y3], one can get their intersection [y] =
⋂3
i=1[yi] as shown330

in the lower sub-column.331

The second and third step: Given g−1 (rather than [g−1]) and [y1], [y2],332

[y3], it is intuitive to begin with calculating g−1([y1]), g
−1([y2]), and g−1([y3])333

for refining [x] to get X ∈ [x]. This is usually achieved by following either (25)334

or (28). Step 2 shows the step-wise contraction achieved by following (25).335

Note that the line width is varied to show that the contraction is done by using336

g−1([y1] to g−1([y3] step by step. Step 3, on the other hand, demonstrating337
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Figure 1: An example illustrating the difference between the step-wise and features-refined

contractions. Step 1 gives the intersection of three measurements [y] =
⋂

3

i=1
[yi]. Step 2 and

3 together demonstrate Corollary 1. Note that the line width varies in Step 2 to show the

contraction is done step-wisely. Step 4 demonstrates Corollary 2.

that g−1
(
⋂3
i=1[yi] is calculated first, which is next used to refine x to get X.338

Step 2 and 3 together constitute Corollary 1.339

Note that when g−1 is used, X is not necessarily a box. It can be of any shape340

as shown by the shaded area in the second and third step. The disadvantage is341

the computation of X is usually complex. Furthermore, if one gets another X̃342

through other measurements, the calculation of the intersection between X and343

X̃ is complex as well.344

The fourth step: To simplify the computation, the inclusion function [g−1]345

of g−1 is introduced. It converts g−1([y1]), g
−1([y2]), and g−1([y3]) into three346

boxes denoted by [g−1]([y1]), [g
−1]([y2]), and [g−1]([y3]). It is intuitive that347

the operation on the latter three boxes is simplified comparing to the operation348

on g−1([y1]), g
−1([y2]), and g−1([y3]).349

One can now either follow the step-wise contraction to refine [x] to get [sx],350

or use the features-refined contraction to refine [x], resulting in [bx]. They351
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are separately shown in Step 4 in Fig. 1, with [sx] depicted by the yellow352

rectangle and [bx] in cyan rectangle in the lower sub-column. One can see that353

[bx] ⊆ [sx] stands. This demonstrates the feature-refined contraction yields354

‘finer’ results compared with step-wise contraction, which would help to mitigate355

the ‘conservative’ aspect of interval analysis based methods.356

In real applications,
⋂n

i=1[yi] could result in an empty intersection despite357

a subset with non-empty intersection of the measurements {[yi] ∈ IR
d, i =358

1, · · · , n} can still help in contraction. Therefore, (5) is exploited to find a359

q-satisfied intersection to approximate
⋂n

i=1[yi]. As q 6 n holds, for a given360

predicted state [x], the following equation stands,361

[qx] =
{

qx ∈ [x] | h(qx) = 0}, (31)

where362

h(qx) = qx− [g−1]
(

⋂

j∈A

[yj ]
)

, (32)

and [qx] is the result obtained by applying contraction to [x] with measurement363

achieved through q-satisfied intersection. One can directly see the following364

condition stands.365

[g−1]
(

⋂n

i=1
[yi]

)

∩ [x] ⊆ [g−1]
(

⋂

j∈A

[yj ]
)

∩ [x], (33)

where
⋂

j∈A[yj ] =
⋂{q}

[y]1,...,n with A ⊆ {1, · · · , n} as defined in (5).366

4.3.2. Weight Balance367

In BPF, particle weights are updated through (20), which indicates that368

given wik−1, the weight wik at time k is proportional to the likelihood Lik. One369

can generalise (20) by writing370

wik = wik−1 ∗ exp(L
i
k − Lmax), (34)

where Lmax = max{Lik | i = 1, · · · , N}, and exp(Lik − Lmax) is a factor ac-371

counting for weight updating. This is because when 0 ≤ Lik ≤ 1 stands,372

exp(Lik − Lmax) can be approximated by (Lik − Lmax), which still matches the373

proportional relationship given by (20).374
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This paper proposes to balance the weight updating formula (34) by375

wik = wik−1 ∗
(

exp(Lik − Lmax) ∗ α+ exp(Lmed − Lik) ∗ (1− α)
)

, (35)

where Lmed is the median value of {Lik | i = 1, · · · , N}, α is the balance param-376

eter, and exp(Lik −Lmax) ∗α+ exp(Lmed −Lik) ∗ (1−α) is the weight updating377

factor (WUF).378

By comparing (34) with (35), one can see that the latter keeps exp(Lik −379

Lmax), meaning that a high likelihood box particle will maintain a high weight380

after it is updated through (35). Meanwhile, the term exp(Lmed −Lik) ∗ (1−α)381

is added to account for low likelihood box particles that are consistent with the382

real vehicle state but unlikely due to map errors. This helps also to mitigate the383

negative effects where the high likelihood is caused by inaccurate OSM features.384

Fig. 2 shows how WUF changes when α decreases from 1.0 to 0. When one385

investigates the curves along the left vertical axis, the blue curve is generated386

by setting α = 1.0. The subsequent nine light blue curves from bottom to top387

are separately generated by setting α = {0.9, 0.8, · · · , 0.2, 0.1}. The magenta388

curve is generated by setting α = 0. When α is set to 1.0, one can see that (35)389

becomes equivalent to (34). When it keeps decreasing, WUF tends to balance390

between high and low likelihood box particles. When α reaches 0, WUF is solely391

determined by exp(Lmed − Lik), which tends to put trust on low likelihood box392

particles. The values for generating Fig. 2 are Lmed = 0.3 and Lmax = 1.0.393

4.4. OpenStreetMap Accuracy Evaluation394

4.4.1. Definition of Coordinate Systems395

Entities on OSM are encoded by geodetic coordinates, i.e. latitude and396

longitude. This paper chooses the local East, North, and Up (ENU) coor-397

dinate system to achieve localisation, which makes transforming the geodetic398

coordinates into the local coordinate system necessary. Compared with other399

Cartesian coordinate systems such as the Earth-Centered, Earth-Fixed (ECEF)400

coordinate system, the ENU system provides simple 2D planar projections of401
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Figure 2: The relationship between likelihood and WUF, with α decreasing from 1.0 to 0.

When one focuses on the curves along the left vertical axis, the blue curve is generated by

setting α = 1.0. The nine light blue curves from bottom to top are separately generated by

setting α = {0.9, 0.8, · · · , 0.2, 0.1}. The curve with α = 0.7 is highlighted in bold, which is

used in this paper. The magenta curve is generated by setting α = 0.

geodetic coordinates of interest. Also, the transformation from 3D geodetic co-402

ordinates to the ENU coordinate system is invertible, which makes it easy for403

transforming localisation results to the geodetic coordinate system if needed.404

The transformation between different coordinate systems is shown in Fig. 3.405

In this paper, as the campus is roughly flat, the ‘Up’ dimension is omitted for406

brevity. Fig. 4 shows how one line feature extracted from LiDAR perception407

is represented in the OSM and vehicle coordinate systems. The OG xGyG indi-408

cates the OSM (and the HDM) coordinate system. The OR xRyR is the vehicle409

coordinate system. pj and αj are separately the distance and angle of the line410

feature with respect to OG xGyG. ri and ψi are the distance and angle of the411

line feature with respect to OR xRyR, respectively.412

4.4.2. Accuracy Evaluation of OpenStreetMap413

A customised HDM serves as the local ENU coordinate system in this paper414

and the OSM is aligned to it for OSM evaluation, as shown in Fig. 4. Aligning415
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Figure 3: The ENU coordinate system used and the transformation with other systems, λ

indicates the longitude, ϕ indicates the latitude, and h is the ellipsoidal height.
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 �
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Figure 4: Coordinate systems used for line feature representation.
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OSM to the HDM coordinate system can lead to negative coordinates of OSM416

data, which is caused by projecting geodetic coordinates of OSM into the local417

HDM coordinate system. The HDM provides accurate ENU coordinates of418

points along the road. There are points along centers of the roads, and points419

that mark the boundaries of the roads, as shown in Fig. 5(a). This paper420

considers only OSM features within the UTC campus are considered as shown421

in Fig. 5(b).422

This paper adopts the distance from HDM points to the corresponding OSM423

roads as a measure of the OSM accuracy. A whole accuracy evaluation of OSM424

is out the scope of this paper. Instead, three places that are roughly in the425

center of the UTC campus have been chosen for evaluation. These three places426

are marked as Road set 1, Road set 2, and Road set 3, which are shown in Fig.427

5(a).428

A total number of 153 samples from the three places shown in Fig. 5(a) are429

used for OSM accuracy evaluation, and the results are summarised in Table I.430

It shows that the average distances and the standard deviations from each Road431

set. Column Road set all shows results by aggregating distances from all three432

places. One can conclude that the OSM accuracy varies even within the UTC433

campus. For generality, the results from Road set all are taken as evaluation434

results. This provides an accuracy of around 0.726 m, with a standard deviation435

of 0.778 m.436

Table 1: The mean and standard deviation of OSM accuracy evaluation

Road set 1 Road set 2 Road set 3 Road set all

Mean (m) 1.866 0.536 0.556 0.726

Std (m) 1.0870 0.297 0.573 0.778

4.5. Measurement and Uncertainty Representation437

While a vehicle is navigating in an urban environment, various features can438

be captured by exteroceptive sensors. This paper only focuses on line features439
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Figure 5: The HDM and building footprints from OSM used for OSM accuracy evaluation.

The vehicle trajectory is also given: (a) The HDM and the three sets of data used for OSM

accuracy evaluation; (b) The building footprints from OSM of UTC with vehicle trajectory.
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extracted from LiDAR data, given the fact that they are not only abundant in440

structured urban environments but also the fundamental components of OSM.441

4.5.1. Measurement and Innovation442

The line feature in Fig. 4 in the OG xGyG is represented as443

xG cosβj + yG sinβj = pj , (36)

where j indicates the line feature is associated with the j-th OSM line feature,444

βj is the angle between the xG-axis and the line normal vector, and pj is the445

orthogonal distance between OG and the line.446

In the vehicle coordinate system OR xRyR, the line feature is represented as447

448

xR cosψi + yR sinψi = ri, (37)

with i marking the i-th line feature in the vehicle coordinate system, ψj is the449

angle between the OR-axis and the line normal vector, and ri is the orthogonal450

distance between OR and the line. Note that (36) and (37) represent the same451

line feature in the two different coordinate systems.452

Distances and angles are taken as feature measurements. By concatenat-453

ing the nR measurements in OR xRyR at time k, the measurement vector is454

formulated as455

yk =
(

r1, ψ1, r2, ψ2, · · · , rnR
, ψnR

)T
. (38)

The method proposed in (Teslić et al., 2011) is exploited to associate the

measurements with OSM features. Without loss of generality, one can assume

that a feature denoted by (ri, ψi) in OR xRyR is associated with a feature de-

noted by (pj , βj) in OG xGyG. Now, given the predicted vehicle state at time k

as

xk|k−1 = (xk|k−1, yk|k−1, θk|k−1)
T ,

the feature denoted by (pj , βj) in the OSM is transformed into OR xRyR by456





r̃i

ψ̃i



 =





|Cj |

βj − (θk|k−1 −
π
2 + (−0.5 · sign(Cj) + 0.5)π)



 , (39)
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with457

Cj = pj − xk|k−1 cosβj − yk|k−1 sinβj . (40)

By aggregating all the nR results in (39), the measurement prediction cor-458

responding to (38) is denoted as459

ỹk =
(

r̃1, ψ̃1, r̃2, ψ̃2, · · · , r̃nR
, ψ̃nR

)T
, (41)

and the measurement innovation, which is usually defined as the difference be-460

tween the measurement in (38) and the measurement prediction given in (41),461

is denoted as462

Ik =
(

∆r1,∆ψ1,∆r2,∆ψ2, · · · ,∆rnR
,∆ψnR

)T
, (42)

with ∆ri = ri − r̃i, and ∆ψi = ψi − ψ̃i. The innovation Ik is used to update463

the state estimate in filtering techniques such as Kalman filter and particle464

filter (Wang et al., 2018).465

4.6. Measurement and Innovation within Interval Analysis466

While uncertainties of the line parameters are often taken into account sta-467

tistically (Teslić et al., 2011), boxes are used here to represent uncertainties to468

the line feature parameters. According to Section 4.4.2, building footprints in469

OSMs are shifted (or biased). An interval is added to each endpoint of the line470

features in the map to account for the inaccuracy of the OSM. This leads to an471

intervalised OSM, which is denoted as [m].472

When the OSM is intervalised as [m], line features in both coordinate sys-473

tems are intervalised consequently as474

[xG] cos[βj ] + [yG] sin[βj ] = [pj ], (43)

and475

[xR] cos[ψi] + [yR] sin[ψi] = [ri]. (44)

This equals to adding an box to each measurement (ri, ψi), turning the mea-476

surement in (38) into477

[yk] =
(

[r1], [ψ1], [r2], [ψ2], · · · , [rnR
], [rnR

]
)T
, (45)
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and the measurement prediction into478

[ỹk] =
(

[r̃1], [ψ̃1], [r̃2], [ψ̃2], · · · , [r̃nR
], [ψ̃nR

]
)T
. (46)

The innovation then becomes479

[Ik] =
(

[∆r1], [∆ψ1], · · · , [∆rnR
], [∆ψnR

]
)T
, (47)

with [∆ri] = [ri]
⋂

[r̃i], and [∆ψi] = [ψi]
⋂

[ψ̃i]. [Ik] is used to perform the480

contraction. Please note that, as innovations and measurements are directly481

related, measurements (and not innovations) are used in formulating and solving482

CSPs, in accordance with the literature.483

4.7. The Features-refined Box Particle Filter based Localisation Algorithm484

The proposed FRBPF follows a Bayesian approach similar to the BPF de-485

scribed in Section 4.2, and the new contraction and weight balance method are486

incorporated in FRBPF as Algorithm 1. Fig. 6 gives a graphical representation487

of the FRBPF.488

u 
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line features
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Figure 6: Flowchart of the proposed approach, where k and k+1 are time stamps, [xi

k
] is the

state maintained by the i-th particle, ci
k
is the center of [xi

k
], wi

k
is the weight of [xi

k
], and N

is the number of particles.
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Algorithm 1 The Features-refined Box Particle Filter

Input: N box particles {[xi0]}i∈{1,··· ,N} of empty intersection, whose weights

are initiated as wi0 = 1/N , and an OSM [m].

Output: Point-wise state estimates and box volumes.

1: for each time-step k do

2: Propagate box particles using (9).

3: Calculate innovation using (46, 47).

4: Contract box particles using (31), when an innovation is available.

5: Calculate likelihood and update weights using (35).

6: Weight normalisation.

7: Estimate point state x̂k and box volumes.

8: if (21) is satisfied then

9: Re-sampling: choose a set of particles with the highest weights and

determine the new box number ni per existing box particle.

10: Subdivide each chosen box into ni new boxes along the most pes-

simistic dimension and do regularisation by randomly moving the box par-

ticles suggested in (Merlinge et al., 2019)

11: Reset all weights to wik = 1/N .

For a line feature from OSM, suppose a set of measurements denoted as489

{[yi] ∈ IR
d, i = 1, · · · , n} are obtained. The corresponding predicted measure-490

ments and innovations are next calculated following equations (46, 47). When491

the feature-refined contraction and q-satisfied intersection are adopted, (17)492

becomes (31) to represent the feature-refined contraction problem. As seen ear-493

lier, the weight updating strategy uses (35) instead of (20), to balance between494

low and high likelihood box particles to mitigate the localisation uncertainties495

caused by OSM and measurement uncertainties. Please note that for Step 10,496

one can either follow the approach in (Merlinge et al., 2019) to subdivide a497

box along the most pessimistic dimension for re-sampling, or follow the random498

subdivision approach used in (Abdallah et al., 2008, Gning et al., 2012). Both499

approaches are studied and their comparison is given in the next section.500
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5. Performance Evaluation501

5.1. Models and Experiment Settings502

The evolution model [f ] uses the measured speed vk and yaw rate ωk and is503

given as504























[xk+1] = [xk] + T · vk · cos([θk] + T ·
ωk
2
) + [µxk],

[yk+1] = [yk] + T · vk · sin([θk] + T ·
ωk
2
) + [µyk],

[θk+1] = [θk] + T · ωk + [µθk],

(48)

where ([xk], [yk], [θk])
T , [xk] is the interval vehicle state, and ([µxk], [µ

y
k], [µ

θ
k])

T ,505

[µk] is the interval evolution noise.506

The measurement model [g] is defined as507







[rk] =
√

([xk]− [xR])2 + ([yk]− [yR])2 + [νrk],

[ψk] = atan2([yk]− [yR], [xk]− [xR])− [θk] + [νψk ],
(49)

where [rk] and [ψk] are separately the interval distance and angle of a line feature508

indicated by ([xR], [yR]) with respect to the vehicle, ([νrk], [ν
ψ
k ])

T , [νk] is the509

interval measurement noise.510

LiDAR data collected by a Velodyner VLP-16 sensor mounted on the roof of511

a vehicle are processed. Sixteen layers of point clouds are obtained. This paper512

extracts line segments from these layers directly and they are next associated513

with OSM line features. Please note that it is possible that one can extract line514

features from point clouds reflected by trees, but they will be filtered out by515

data association (no line features corresponding to the tree exist on the OSM)516

and q-satisfied intersection (line features corresponding to the same footprint517

on the OSM tend to be ‘closer’ to each other than the features from the trees,518

hence features extracted from the trees will be filtered out).519

An abundant number of line segments can be extracted from LiDAR point-520

clouds that correspond to a single line feature in OSM. The abundance en-521

ables feature-refined contraction and makes the framework proposed meaning-522

ful. Ground truth locations are obtained through a RTK sensor suite. Building523

footprints of the UTC campus are extracted from OpenStreetMap as shown in524
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Fig. 5(b). The FRBPF, BRPF, and BPF are implemented in Matlabr 2018a525

programs. The PC configuration includes an Intelr Core(TM) i7-7800X CPU526

and 16.0GB RAM. The box particles do not mutually intersect, and are scat-527

tered around the initial state of the vehicle provided by the real-time kinematic528

sensor suite. ηeff is set to 0.7 for FRBPF, BRPF, and BPF, which is a common529

choice (Merlinge et al., 2019). The weight balance parameter α is set to 0.7530

here. The OSM inaccuracy is incorporated by adding a box [−0.73 m, 0.73 m]531

(the bounds correspond to the average evaluation error given in Section 4.4)532

to the distance measurement r, and a box [−0.5 rad, 0.5 rad] to the angle533

measurement ψ.534

5.2. Localisation Performance535

For general and reliable performance evaluation, NMC = 100 times Monte536

Carlo runs have been carried out for FRBPF, BRPF, and BPF. The point-537

wise estimation errors and average box volumes are both calculated for per-538

formance evaluation. The estimation errors are calculated by RMSEX (k) =539

√

1
NMC

∑NMC

run=1 ||X̂k,run −Xk,run||2, with X̂k,run stands for the estimate at time540

k and Xk,run is the ground truth. The terms ‘area’ and ‘size’ will be sepa-541

rately used for position and orientation estimation instead of ‘volume’ to avoid542

ambiguities. ‘Volume’ will be kept for generic descriptions.543

Fig. 7 and Fig. 8 show the position and orientation estimation results of544

FRBPF, BRPF, and BPF, respectively. Both the average box volumes and545

point-wise estimation errors are given. One can see that FRBPF and BRPF546

show prominent advantages in terms of both average box volumes and point-547

wise estimation errors. When compare FRBPF with BRPF, one can see that548

the former still shows better performance in general, i.e. smaller average box549

volumes and smaller point-wise estimation errors. It is worth mentioning that550

there are cases where BRPF slightly outperforms FRBPF. This is due to the551

reason that when q in q-satisfied intersection is small or around 1, FRBPF552

degenerates to BRPF, hence leading to similar performance to BRPF.553

554
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Table 2: Experimental results of FRBPF, BRPF, and BPF. The first two columns are sepa-

rately the position and orientation errors, and the last two columns are the position box area

and orientation box size, respectively.

Position (m) Orientation (rad) Position Area (m2) Orientation Size (rad)

FRBPF 0.368 0.010 1.050 0.387

BRPF 0.409 0.012 1.400 0.439

BPF 0.783 0.034 1.781 0.518
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Figure 7: Average position box areas and point-wise position estimation errors.
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The overall localisation trajectories of FRBPF, BRPF, and BPF are also555

compared with the ground truth, which is given in Fig. 9. One can see that556

FRBPF on average achieves the best point-wise localisation results. Fig. 10557

zooms in the three areas indicated by rectangles to make Fig. 9 easier to read.558

When compared with BRPF and BPF, FRBPF also performs the best in box559

volumes reduction. This can be further observed from Table II, which also shows560

the average point-wise estimation along the full trajectory.561

The efficiency of FRBPF, BRPF and BPF are at the same level. In par-562

ticular, FRBPF takes 673 ms in average per step, BRPF takes around 667 ms563

per step, and BPF takes 647 ms per step on average. FRBPF takes longer564

partially because of the q-satisfied intersection. This is intuitive as finding the565

q-satisfied intersection needs extra computational efforts. One can accelerate566

the q-satisfied intersection by decreasing the box number by a greater step than567

1. In addition, this paper uses Matlab for FRBPF implementation, which is568

generally slower than implementations by languages such as C++. It is also569

worth mentioning that compared with Merlinge et al. (2019), Abdallah et al.570

(2008), this paper counts time consumed by extracting line features from Li-571

DAR data and associating them with OSM, etc., which would also contribute572

to the total execution time.573

5.3. Discussions574

5.3.1. Box Area Reduction575

Figs. 7 and 8 show that the proposed FRBPF has a reduced average box576

volumes compared with BRPF and BPF. To make it easier to understand, the577

box hull is adopted as an additional indicator for visualisation and comparison.578

Fig. 11 shows boxes and the corresponding box hulls from one iteration of579

FRBPF, BRPF, and BPF, respectively. To be precise, the box-hull area of580

FRBPF as given in Fig. 11(a) is 43.75 m2, which implies an average box area581

of 0.68 m2. In contrast, the box-hull areas of BRPF and BPF are separately582

46.46 m2 and 56.94 m2, as shown in Fig. 11(b) and Fig. 11(c). The corresponding583

average box areas are 0.73 m2 and 0.89 m2, respectively. One can therefore584
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Figure 10: Zoomed figures indicated by rectangles in Fig. 9.
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rectangles represent box hulls, and rectangles within the box hulls are boxes from each algo-

rithm.

conclude that FRBPF helps in box areas reduction, which holds when q in the q-585

satisfied intersection equals or slightly smaller than the number of line features.586

In the worst case, i.e. q = 1 and one randomly selects one measurement for587

contraction, it could lead to the increase of the box-hull area. Alternatively, if all588

the measurements are used for contraction one by one, then FRBPR degenerates589

to BRPF, hence the box-hull area would be similar to BRPF. This can be590

observed from Figs. 7 and 8.591

5.3.2. The Impacts of Weight Balance592

Let consider the case shown in Fig. 12, where the footprint of a building593

on OSM does not align with the real surface due to the inaccuracy of the map-594
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ping. Let’s suppose there are only two predicted boxes denoted by [xi
k|k−1] and595

[xj
k|k−1], with areas |[xi

k|k−1]| and |[xj
k|k−1]|, respectively. Without loss of gener-596

ality, let’s also assume that |[xj
k|k−1]| = |[xi

k|k−1]| with the same weights. In this597

example, the vehicle is located within [xi
k|k−1]. When the vehicle gets a LiDAR598

point cloud reflected by the real surface, a set of measurements yk = ([r1], [ψ1])
T

599

is obtained from the extracted line feature. In the meantime, a corresponding600

set of predicted measurements can be calculated based on the state prediction601

and the OSM feature for each particle. The predicted measurements for the602

two particles in Fig. 12 are denoted as ỹik = ([r̃i1], [ψ̃
i
1])

T and ỹ
j
k = ([r̃j1], [ψ̃

j
1])

T .603

Innovations ([∆ri1], [∆ψ
i
1])

T and ([∆rj1], [∆ψ
j
1])

T are next calculated following604

(47) for contraction.605

Without loss of generality, let assume that [∆ψi1] = [∆ψj1], which makes the606

contraction solely depending on [∆ri1] and [∆rj1]. When |[∆rj1]| > |[∆ri1]|, it607

means that the measurement ([r1], [ψ1])
T is more compatible with ([r̃j1], [ψ̃

j
1])

T
608

than with ([r̃i1], [ψ̃
i
1])

T . This leads to higher likelihood for particle [xjk] than609

for [xik] according to (20). Given that both ([r1], [ψ1])
T and OSM are identical610

to each particle, the only reason lies in the difference of the predicted states.611

As |[xj
k|k−1]| is assumed to be equal to |[xi

k|k−1]|, one can image the center of612

[xj
k|k−1] is further away from the real surface than [xi

k|k−1], hence further away613

from the real location of the vehicle. This contradicts with the likelihood of [xjk]614

is higher than [xik]. Hence, the weight balance is incorporated in the FRBPF to615

mitigate such problems.616

The importance of weight balance when an OSM is studied further with four617

settings of α (0.0, 0.5, 0.7, and 1.0). The estimation errors are given in Fig. 13.618

One can see that when α is used to balance the weight, the point-wise estimation619

performance of FRBPF is improved as given in Fig. 13(a) and 13(b). It is worth620

mentioning that when using the weight balance, one should still emphasise on621

the high likelihood particles by setting α above 0.5. Indeed, when α is set to622

be small (such as 0 or 0.5), the estimation errors remain high. Based on these623

results, the value of α=0.7 in the best choice with the used OSM.624
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Figure 12: An example demonstrating the necessity of weight balance because of a map error.
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Figure 13: The effect of α on the performance of FRBPF: (a) Average position errors; (b)

Average orientation errors.
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6. Conclusions625

A features-refined box particle filter framework has been proposed. The the-626

oretical proofs are derived first - about the contraction step which is a key for the627

reduction of the size of the box particles. Next, the effectiveness of the features-628

refined box particle filter for vehicle localisation based on OpenStreetMap has629

been demonstrated. Line features extracted from LiDAR point-clouds are as-630

sociated with OSM line features to enable features-refined contraction and so631

improve localisation accuracy. A weight balance strategy has been proposed632

to improve the performance of the proposed features-refined box particle filter633

when dealing with the uncertainty present in the map.634

The proposed framework successfully localises a vehicle using LiDAR and635

OSM, with better point-wise state estimation accuracy and smaller box volumes636

compared with the generic box particle filter and the state-of-the-art interval637

analysis based box regularisation particle filter. The future work will continue638

in two directions: 1) Fusion of multiple types of sensor data within the box639

particle filtering approach; 2) Evaluation of the accuracy of OSM in large scale640

environments, hence focusing on expanding the scalability of the approach.641

Appendix A. Proof of Corollary 1642

Proof: Suppose there exists an x, such that643

x ∈
⋂n

i=1
g−1

(

[yi]
)

.

which is equivalent to644

g(x) ∈
⋂n

i=1
[yi].

It can be further rewritten as645

g(x) ∈ [yi], i = 1, · · · , n.

Hence, the following equation holds,646
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x ∈ g−1
(

[yi]
)

, i = 1, · · · , n,

which indicates647

x ∈ g−1
(

⋂n

i=1
[yi]

)

Therefore, Corollary 1 is proved.648

Appendix B. Proof of Corollary 2649

Proof : For brevity, let us denote650

[g−1]
(

⋂n

i=1
[yi]

)

,
[

z
]

, (B.1)

where z = ([z1, z1], [z2, z2], · · · , [zd, zd])T is a box.651

According to Corollary 1, the following equation holds,652

g−1
(

⋂n

i=1
[yi]

)

=
⋂n

i=1
g−1

(

[yi]
)

⊆ [g−1]
(

⋂n

i=1
[yi]

)

.
(B.2)

In addition, the following equation stands,653

⋂n

i=1
g−1

(

[yi]
)

⊆
⋂n

i=1
[g−1]

(

[yi]
)

, (B.3)

which is in accordance with inclusion function attributes.654

Now proving Corollary 2 equals to prove ∀z, if655

z ∈ [g−1]
(

⋂n

i=1
[yi]

)

\
⋂n

i=1
g−1

(

[yi]
)

(B.4)

holds, then the following equation stands,656

z ∈
⋂n

i=1
[g−1]

(

[yi]
)

. (B.5)

Suppose that ∃zi = ([z1i , x
1
i ], [x

2
i , x

2
i ], · · · , [x

d
i , x

d
i ])

T with i ∈ N
+, equa-657

tion (B.4) holds but (B.5) does not, which means that there exist at least one658

dimension j ∈ {1, · · · , d}, such that659

xji > xi or xji 6 xi. (B.6)
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Without loss of generality, let’s suppose that xji > xi stands. Then a new box660

o = ([o1, o1], [o2, o2], · · · , [oN , oN ])

= x \ xi

(B.7)

can be obtained, which satisfies661

o
⋂

g−1
(

⋂n

i=1
[yi]

)

6= ∅. (B.8)

This contradicts (B.3). Therefore, Corollary 2 stands.662
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