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Abstract

This paper proposes a DNN-based system that detects multiple people from
a single depth image. Our neural network processes a depth image and outputs
a likelihood map in image coordinates, where each detection corresponds to a
Gaussian-shaped local distribution, centered at the person’s head. The likelihood
map encodes both the number of detected people and their 2D image positions,
and can be used to recover the 3D position of each person using the depth im-
age and the camera calibration parameters. Our architecture is compact, using
separated convolutions to increase performance, and runs in real-time with low
budget GPUs. We use simulated data for initially training the network, followed
by fine tuning with a relatively small amount of real data. We show this strategy
to be effective, producing networks that generalize to work with scenes different
from those used during training. We thoroughly compare our method against the
existing state-of-the-art, including both classical and DNN-based solutions. Our
method outperforms existing methods and can accurately detect people in scenes
with significant occlusions.

1 Introduction
People detection and localization from cameras has received a great deal of attention
from the scientific community recently, due to its multiple applications in different
areas, such as security, video surveillance [59, 41] or healthcare [36, 61, 21]. However,
it remains an open problem, and presents several challenging tasks [64, 65], especially
in crowded scenes.
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Early people detection methods used RGB images captured from a mainly frontal
viewpoint. Methods such as [44, 9, 30, 4, 1] use traditional computer vision algo-
rithms, such as appearance models in [44] or classic face detection in [9]. These ap-
proaches obtained good results in controlled spaces but struggle with the presence of
partial occlusions, motion blur and low resolution images.

Deep Neural Networks (DNN) have greatly improved the state-of-the-art in several
critical computer vision applications, such as object detection [45], semantic segmen-
tation [7], classification [49] or activity recognition [26, 63]. Similarly, DNN-based
people detection methods using RGB data [6, 15, 22] have considerably improved over
the classical algorithms. However, DNN-based methods also have significant draw-
backs, such as the large amount of labeled data needed for training and the requirement
of dedicated processing units to run and train the network. Besides, recent DNN-based
methods still present low accuracy in highly cluttered scenes (see Fig. 1).

People detection using depth images is a less popular topic in the literature, mainly
because depth cameras are not as widely available as RGB cameras. Nonetheless, us-
ing depth images has significant advantages: 1) Depth images naturally disambiguate
objects at different depths, which helps to process occlusions in crowded scenes. 2)
Depth information is less complex than RGB information as it is not affected by ap-
pearance or light changes. 3) Once detected in the image, positions of people in 3D
are directly available using depth information, which is a desirable feature in many
applications.

There exist several depth-based people detection methods in the literature, and
some of them also include RGB information. Recent DNN-based approaches obtain
the best detection results in this category. However, they bear important limitations.
Some methods are specific to zenithal viewpoints [12, 40, 19, 68], which reduces oc-
clusions and makes the problem less ambiguous, but limits the field-of-view. Others
use a conventional frontal viewpoint [23, 68], which covers a wider range of applica-
tions. [23, 68] use a region proposal method to detect candidates, and a classifier to
select the positive regions that correspond to a person. This strategy is not optimal, es-
pecially for densely populated scenes, and it is not efficient, as its complexity depends
on the number of possible candidates detected in the image.

This paper proposes a new DNN-based approach, that we call PD3net, for de-
tecting multiple people from a single depth image acquired using a camera in an ele-
vated frontal position, see Fig. 1. Our method has the following contributions: 1) Our
network architecture is fully convolutional and very efficient by using spatially sepa-
rable convolutions. It runs in real-time with low-cost GPU and CPU architectures. 2)
We train the neural network end-to-end with synthetically generated depth images and
then we fine-tune the network with a small number of annotated real images. The paper
shows that this strategy leads to accurate and generalistic detectors that work well in
general scenes. 3) Our method recovers a dense likelihood map that effectively detects
multiple people in crowded scenes (see Fig. 1). 4) We outperform the existing state-of-
the-art, including both classical and DNN-based approaches. 5) The proposed method
works with different cameras and depth sensing technologies. 6) Our method does not
have a maximum restriction of detections per image.

The rest of the paper is structured as follows: Section 2 reviews the latest state-
of-the-art methods focused on the people detection field. Section 3 explains in detail
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Figure 1: Performance of our PD3net vs the DNN-based method YOLO16. On the
left, a) shows the people detection results obtainted by YOLO16. On the right, b shows
the results achieved by our PD3net. Observe how YOLO16 presents false positives
and true negatives. On the contrary, our system is able to correctly detect all people in
that scene with strong oclussions.

our DNN-based proposal, describing its architecture and the training procedure. Sec-
tion 4 shows the experimental setup developed to evaluate our approach. This section
includes a thorough comparison with the main state-of-the-art methods over a wide
range of publicly available datasets. Finally, Section 5 describes the main conclusions
and propose some future lines.

2 Previous works
People detection methods are classified in this section according to three main criteria:
a) the type of information used, b) the type of algorithm used, distinguishing between
classical and DNN-based strategies, and finally c) the camera’s point of view. Table 1
shows the main state-of-the-art people detection methods and their corresponding clas-
sification.

Classical approaches for people detection [44, 9, 30, 4, 1] use conventional RGB
images as input with frontal camera poses. Within these approaches, [44] proposes a
method based on appearance models, whereas [30] suggests an approach for people de-
tection using interest point classification. Other alternatives for RGB people detection
are based in face detection [9], image descriptors based on Brownian motion statistics
[4] or HAAR-LBP and HOG cascade classifiers combined with Saliency Maps [1].

The recent technology improvements and the availability of large annotated image
datasets [35] have allowed Deep Neural Networks based techniques to be widely used
in computer vision task such as object detection [45], semantic segmentation [7] or
classification [49]. Regarding the people detection task, we can find several approaches
based on DNNs. Works like [60, 67] use DNNs as feature extractors, whereas [55]

1There exists privacy requirements during the people detection task. Identification of people in scene is
forbidden.
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Table 1: Classification of the main people detector methods in the state-of-the-art.

Reference Algorithm Input Inform. Camera viewpoint Description
[44] Classical RGB Frontal Tracking by model-building and detection
[8]1 Classical RGB Frontal Privacy-preserving system based on a mixture of dynamic textures motion model
[9] Classical RGB Frontal People counting system based on face detection

[11] Classical RGB-D Zenithal RGB and Depth fusion for people detection
[66]1 Classical Depth Zenithal Unsupervised people counting via vertical Kinect Sensor

[52, 53]1 Classical Depth Zenithal Differences from the ground plane are used to develop regions of interest
[30] Classical RGB Frontal People counting based in statical and moving detection points.
[70] Classical RGBD Zenithal Adaboost algorithm built from weak classifiers for detecting people
[20] Classical Depth Frontal Real-Time People Detector with minimum-weighted bipartite graph matching
[55] DNN RGB Zenithal Optimization of pedestrian detection with semantic tasks
[38] Classical RGB-D Zenithal People detection taking different poses in cluttered and dynamic environments
[12] Classical RGB-D Zenithal Depth-RGB and both people detector with crossing-path points
[57] DNN Audio - Cooperating network for people detection
[4] Classical RGB Frontal Brownian covariance descriptor
[1] Classical RGB Frontal Cascade classifier with salience map for pedestrian detection

[60] DNN RGB Zenithal Multi-layer regional-based convolutional for crowded scenes
[67] DNN RGB Frontal Real-time detection based on physical radius-depth detector
[40] Classical Depth Zenithal ToF people detector based on depth information
[47] Classical RGB-D Zenithal Parallel deep feature extraction from RGB and Depth simultaneously
[68] Classical RGB-D Zenithal Depth-encoding scheme which enhances the information for classification
[28] Classical RGB-D Zenithal Uses the 3D Mean-Shift with depth constraints to multi-person detection
[58] Classical RGB Zenithal Fuzzy-based detector based on CCA components
[19]1 DNN Depth Zenithal Encoder-decoder DNN blocks with refinement.

proposed a novel DNN model that jointly carry out people detection with semantic
tasks.

As previously mentioned, one of the classification criteria used is the location and
pose of the camera. The proposals that position the camera with a frontal viewpoint,
works fine but they have certain drawbacks. This location is highly sensitive to occlu-
sions, and consequently, the people detection performance degrades. In order to solve
this problem, some works proposed the use of certain alternatives and constraints. One
typical approach is changing the camera location to a top view configuration, also re-
ferred to as zenithal or overhead viewpoint in the literature. This is the case of [58]
which proposes a fuzzy-based people detector from RGB data and a zenithal location
of the camera. Other works proposed the use of depth cameras, that are considerably
more insensitive to oclusions that conventional RGB cameras. Some works such as
[40] exclusively uses depth information from an overhead camera, while others evalu-
ates both RGB and depth information from a top view camera [11, 12]. Finally, some
authors propose the fusion of RGB and depth data (RGB-D) to adress the oclussions
effect [38, 68, 47, 28].

The overhead viewpoint greatly solves the occlusions problem, but bring some
drawbacks, such as the reduction of the field of view, as the covered area is directly
related to the camera location height which is limited for indoor applications. In addi-
tion to this, the use of non-overhead perspectives is necessary in many real applications,
especially in video-surveillance. For all these reasons, out proposal in this paper adopts
a slightly elevated frontal camera pose, despite its sensitivity to occlusions. The entry
of DNN-based methods has mitigated the effects of occlusions in this type of systems,
mainly due to their high learning capacity and robustness to occlusions, improving the
detection results achieved by classical algorithms [60, 55, 67, 19].

Once the primary requirements of the people detection task were met, other prob-
lems began to be considered. One of the main ones is related to preserving privacy, es-
pecially in applications with restrictive privacy policies in public spaces. This problem
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is more accentuated if we deal with systems that use RGB information, so that some
works like [8] proposed the use of remote cameras or low camera resolutions. The
main consequence of these proposals is the accuracy reduction and the increased effect
of occlusions in performance. Due to the problems associated with RGB systems, al-
ternatives began to be studied in depth-only based methods, which do not easily allow
the recognition of people’s identity. As a result, approaches based on depth, mostly
with cameras in overhead position, appeared to work well. Among the depth-based
methods, the proposal by [66] is based on a maximum detector followed by a water-
filling algorithm, while [52, 53] filter depth images using the normalized Mexican Hat
Wavelet. Both proposals reduce their detection rate when people are very close to each
other, or cross their paths. Besides, false positives appear if there are body parts dif-
ferent from the head, such as hands, closer to the camera. To address these drawbacks,
several proposals include a classification stage to discriminate people from other ele-
ments in the scene [20, 57, 70, 40], thus reducing these false positives. Again, al these
proposals using a camera in a top-view configuration, significantly reduce the field of
view.

In our DNN-based people detection proposal, we work with depth maps taken from
a slightly elevated front view camera position, thus addressing the privacy preserva-
tion problem, while obtaining high accuracy and solving to some extent the occlusions
problem.

3 PD3net People Detector

3.1 Problem Formulation
This paper propose PD3net, a one shot CNN-based multiple people detector in depth
maps. This system inherits part of its structure from DPDnet [19], that solves people
detection in overhead images. The proposed system and [19] differ each other in both
technically and in functionallity terms.

In functionality terms, PD3net generalizes the previous network to non-overhead
camera poses. Non-overhead camera poses are frequent in practical scenarios, much
more than the restricted overhead view.

The non-overhead camera location is usually better than the overhead one in what
respect to the greater amount of information it provides about the environment. In
addition, it eliminates the need of using a specific camera pose, since many current
surveillance systems cannot assume that restriction. PD3net receives a depth input
map as input and produces two different outputs, see Figure 2. The CNN proposed
here provides an output represented by a likelihood map that has the same size as the
input image, i.e. it is spatially coincident. This output map shows the detections of
people made by the system in pixel coordinates as we can see in the Figure 2.

Technically, the PD3net network core inherits the Resnet50 [27] internal blocks
structure. This structure was also used by DPDnet but now it is meticulously revisited
to fulfill the demanding real time requirements. At the neuron level, PD3net adds
the Leaky ReLU activation function to the neuron, which clearly increment the speed
of the gradient computation during the backpropagation and solves the dying ReLU
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problem, still remaining its non-linearity. At the layer level, PD3net introduces the
spatially separable convolutions which considerably reduces the number of parameters
and, consequently, the number of computations.

Finally, at structural level, a thorougly study of the number of layers was developed
removing all layers whose detection improvements were negligible and slows down the
people detection. Identity, deconvolutional and convolutional blocks were refined to
minimize its number of parameters. Putting all these improvements together, PD3net
achieves the sought real time with the best people detection rates, the most important
contribution of the paper.

Convolutional Neural Network

Output

Likelihood Map 

Input

Depth map

Figure 2: Depth input image and likelihood output map.
.

PD3net use the output format proposed by [19], in which we used a likelihood
map with 2D Gaussian distributions in the center of the detected persons. This format
allows using the center of the distributions as the 2D positions of the persons. In
contrast to the overhead problem solved in [19], when moving to an elevated frontal
position, the occlusions are one of the main problems that we have to face. The solution
we propose to deal with them is the use of variable 2D Gaussian distributions which
adapt themselves to avoid their overlap, allowing the system to become more robust
against hard-occlusions.

The proposed method has certain pros and cons. In the case of the former, this
system allows the detection of multiple people without ambiguity and in addition, the
processing time is completely independent of the number of users detected. In the
meantime, by contrast, firstly this system depends quite a lot on the hardware used, es-
pecially in terms of the quality of the 3D information obtained and secondly in terms of
the positioning of the camera, since being a non-restrictive positioning requires the sys-
tem to be much more general in its operation and to have a high level of independence
from the camera pose.

3.2 Architecture of the PD3net Network
Here we proposed a new upgraded architecture, shown in Figure 3, for PD3net, where
its basis its inherited from its predecessor [19].

The base structure has similarities with the [19] architecture. It is composed of
two important blocks that are the main block (MB) and the the hypothesis reinforcement
block (HRB). These blocks are modeled by encoder-decoder architectures, which are
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UpSampling

Encoder Decoder

Encoder Decoder

Hypothesis Reinforcement Block(HRB)

Main Block(MB)

Batch Normalization

Spatially Separable Convolution

Sigmoidal Activation

Encoding Convolutional Block

Decoding Convolutional Block

Leaky Relu Activation

Max Pooling

Input

Depth map

Figure 3: System’s Architecture.

traditionally used in tasks such as semantic segmentation [2, 48], 3D reconstruction,
registration [16, 24], and deep fakes detection [25, 32].

The input depth image I with size 240× 320 is processed by the MB, which gener-
ates the first likelihood map C (also with size 240 × 320), which is then concatenated
with the input image I, so that the input tensor of the HRB I2 is composed by the con-
catenation of I and C, and has a size of 240 × 320 × 2. The HRB polishes the initial
likelihood map C and uses it as an output initialization, obtaining the final refined like-
lihood map Cpolished (240× 320), that validates, corrects and refines the predictions of
the first map C, thus improving its final results in Cpolished. The detailed structure of
the MB can be seen in Table 2.

(a) Example comparison. (b) General formulation

Figure 4: Differences between conventional and spatially separable convolutions.

The CNN proposed here introduces important modifications with respect to [19].
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Table 2: Detailed architecture of the main block.

Main Block (MB)
Layer Output size Parameters

Input 240× 320× 1 -
Convolution 120× 160× 64 kernel=(7, 7) / strides=(2, 2)
BN -
Activation Leaky ReLU
Max Pooling 40× 53× 64 size=(3, 3)

ECB 40× 53× 256
kernel=(3, 3) / strides=(1, 1)

(a=64, b=64, c=256)

ECB 20× 27× 512
kernel=(3, 3) / strides=(2, 2)

(a=128, b=128, c=512)

ECB 10× 14× 1024
kernel=(3, 3) / strides=(2, 2)

(a=256, b=256, c=1024)

DCB 10× 14× 256
kernel=(3, 3) / strides=(1, 1)

(a=1024, b=1024, c=256)

DCB 20× 28× 128
kernel=(3, 3) / strides=(2, 2)

(a=512, b=512, c=128)

DCB 40× 56× 64
kernel=(3, 3) / strides=(2, 2)

(a=256, b=256, c=64)
Cropping 40× 54× 64 cropping=[(0, 0) (1, 1)]
Up Sampling 120× 162× 64 size=(3, 3)
Convolution 240× 324× 64 kernel=(7, 7) / strides=(2, 2)
Cropping 240× 320× 64 cropping=[(0, 0) (2, 2)]
BN -
Activation Leaky ReLU
Convolution 240× 320× 1 kernel=(3, 3) / strides=(1, 1)
Activation Sigmoidal
Output 240× 320× 1 -

The most important change is the use of spatially separable convolutions instead of
separable convolutions (depthwise convolution + pointWise convolution) [10]. The
reason of this change lies in the fact that the separable convolutions isolate the depth
channels in the phase of the depthwise convolution, and use the pointwise convolution
to synthetically increase the depth of the output.

The operations performed by the separable convolutions can be harmful to the neu-
ral networks in some cases. The reason for this lies in the fact that especially the first
layers of the convolutional neural network, where the characteristics of medium and
low abstraction are found, in many cases complement each other. The break of these
relationships or making them more complex by means of separable convolutional lay-
ers can eliminate important relationships between the features that reduce the model
training capacity or efficiency. In order to solve this problem without the need to re-
sort to separable convolutional layers, we have used spatially separable convolutional
layers, such as those used by Inception V3 [54]. An example of Spatially Separable
convolutions can be seen in Figure 4a.

Spatially separable convolutions use two 1D filters to compose a 2D equivalent
convolution, so that it forces the filters to be decomposable in two 1D filters. This
allows reducing the number of operations and parameters under certain conditions,
which are shown in equations 1, 2 and 3, where the variables K, d, D, H and W
represent the kernel size, input depth of the tensor, final output depth of the tensor,
height of the input tensor and width of the input tensor, respectively (as can be seen in
Figure 4b).

The following equations shows the conditions necessary to accomplish to reduce
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the number of operations and parameters, additionally, these equations suppose a stride
of 1 and a constant size of the image compensated with the padding.

nparamconv = KKdD = K2dD

nopsconv = HWD(K2d+ (K2 − 1)d) = HWD((2K2 − 1)d)
(1)

nparamsep = KdD +KD2

nopssep = HWD(Kd+ (K − 1)d) +HWD(KD + (K − 1)D) =

HWD((2K − 1)(d+D)

(2)

nparamconv > nparamsep → K2dD > KdD +KD2 →

d >
1

(K − 1)
D

nopsconv > nopssep → HWD((2K2 − 1)d) > HWD((2K − 1)(d+D))

d >
(2K − 1)

2K(K − 1)
D

(3)

Once we have defined the conditions, we apply them to the three specific convo-
lution cases used in the proposed CNN, where K = 3, 5, 7. The obtained values are
shown in table 3 where its last row shows the more restrictive condition that allows
improving both the number of parameters and the number of operations.

Improvement in K = 3 K = 5 K = 7

Parameters d > 1
(K−1)D d > 0.5D d > 0.25D d > 0.16D

Operations d > (2K−1)
2K(K−1)D d > 0.416D d > 0.225D d > 0.154D

Both d > 0.5D d > 0.25D d > 0.16D

Table 3: Conditions that the use of factorized convolutions must meet to be faster and
more parameter efficient than conventional convolutions for the proposed CNN.

The main changes to the proposed architecture can be summarized as follows:

• Leaky Relu activation:We use Leaky Relu activations to improve the gener-
alization and convergence, as we proposed in [62]. Leaky Relu helps to solve
the ”dying relu” problem, where the zero activation zone of the Relu slows and
destabilizes the training process. Instead of the zero activation zone, the Leaky
Relu has a small negative slope that mitigates the problem.

• Spatially separable convolutions:In our proposal we use residual blocks with a
certain basis of the ones used in [27], in terms of structure. The main difference
is the inclusion of the spatially separable convolutions to speed up the network
and solve the conventional separable convolution problems.
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• Resized convolutions:In our proposal, we use the resized convolution as an ap-
proximation of the deconvolution process, with a nearest neighbor interpolation
type. This is done to avoid the possible checkerboard artifacts that could appear
in our output likelihood maps if we use the transposed convolution approxima-
tion, as discussed in [43]. Additionally, we prefer the nearest neighbor interpo-
lation instead of bilinear or bicubic interpolation, because they led to problems
in the interpolation of high-frequency image features, as explained in [43].

• Loss function: An important change with respect to [19] is that the loss function
used in the proposed system is adapted to the problem of detecting people with
the Gaussian modeling approach used, so that it seeks to give greater weight to
the learning of those Gaussians against the learning of the background of the
image, which favors the convergence of the system, which was strongly affected
by this factor.

3.2.1 Architecture of the Main Block (MB)

The architecture of the Main Block (MB) is shown in Table 2, describing all its layers
with its correspondent dimensions and parameters, where a, b and c are the numbers
of filters of the internal layers in the Encoding Convolutional Blocks (ECBs), Decoding
Convolutional Blocks (DCBs), and Identity Blocks (IBs).

The first layer of the MB uses the 240× 320 input depth image I, and, through the
residual blocks with spatially separable convolutions, it codifies and processes the input
to finally deliver the first likelihood map C. The encoder consists of IBs and ECBs,
where the first ones process the input tensors with the same output size as the input
block but with higher depth, while the second ones process the input and generates
an output with half the input size and higher depth. As opposed to the encoder, the
decoder consists of IBs and DCBs that increase the data size and decreases depth, to
obtain an output with the same size as the input depth image I.

Following the efficiency conditions previously defined for the spatially separable
convolutions, these convolutions will only be included in the network elements suitable
to be improved in complexity and speed.

Regarding the Main Block layers, we initially have an ordinary convolutional layer.
This first layer is not spatially separable because it would not benefit from reduced
complexity and increased speed, as introducing factorized convolution here would im-
ply a computation time 10.24 times slower than a conventional convolution. After the
first convolution, a Batch Normalization and a Leaky Relu activation will be applied, to
finally use a Max Pooling layer that will obtain the maximum energy of the filters.

After these initial filtering layers, we start to use the residual blocks, three ECBs
and IBs will be used sequentially for the encoding process. They will be followed by
another three DCBs and IBs that will be used sequentially for the decoding process.
The final layers of the decoder use Cropping, ZeroPadding and UpSampling to accom-
modate the image size, to finally apply the last convolutional layer followed by a batch
normalization and sigmoidal activation.
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3.2.2 Architecture of the Hypothesis Reinforcement Block (HRB)

The Hypothesis Reinforcement Block (HRB) preserve the basic structure of [19], and
it is a smaller version of the MB that uses residual blocks and spatially separable con-
volutions too. The HRB uses I2 as input, which is composed by I and C with a size of
240× 320× 2 as explained above. In contrast to the proposal in [19] we have included
an adder at the output that adds the output MB C to the HRB output and ensures that C is
used as an initialization to the polishing process, as the HRB is in charge of obtaining
the final polished likelihood map Cpolished. The HRB is composed firstly by the same
structure as the MB, it uses a first convolutional layer, batch normalization, Leaky Relu
activation, and max pooling. After that, the number of IBs, ECBs, and DCBs is reduced
to two for each type. Finally the output layers follow a similar setup than the ones in
the MB, with a final sigmoidal activation. Table 4 summarizes all the layers and blocks
used in the HRB.

Table 4: Detailed architecture of the hypothesis reinforcement block.

Hypothesis Reinforcement Block (HRB)
Layer Output size Parameters

Input 240× 320× 2 -
Convolution 120× 160× 64 kernel=(7, 7) / strides=(2, 2)
BN -
Activation Leaky ReLU
Max Pooling 40× 53× 64 size=(3, 3)

ECB 40× 53× 256
kernel=(3, 3) / strides=(1, 1)

(a=64, b=64, c=256)

ECB 20× 27× 512
kernel=(3, 3) / strides=(2, 2)

(a=128, b=128, c=512)

DCB 40× 54× 128
kernel=(3, 3) / strides=(2, 2)

(a=512, b=512, c=128)

DCB 80× 108× 64
kernel=(3, 3) / strides=(2, 2)

(a=256, b=256, c=64)
Up Sampling 240× 324× 64 size=(3, 3)
Cropping 240× 320× 64 cropping=[(0, 0) (2, 2)]
Convolution 240× 320× 64 kernel=(3, 3) / strides=(1, 1)
BN -
Activation Leaky ReLU
Convolution 240× 320× 1 kernel=(3, 3) / strides=(1, 1)
Activation Sigmoidal
Output 240× 320× 1 -

The ECBs and DCBs blocks are similar in structure. They are formed by two unbal-
anced links, where the first one has three convolutional layers, and the second has only
one. The output of the blocks is composed of the added normalized output of the links.
The main difference between the ECBs and DCBs lies in the convolutional process: the
ECB uses a factorized convolution and the DCB uses a resized convolution. In the case
of the IBs, they preserve the size of the input, so that one of the links only acts as a
shortcut for the input to be directly added to the output of the three convolutional links.
This preserves the input information and adds them to the output filtered information
without changing the size. The architecture of the ECBs, IBs and DCBs is shown in
Figure 5, where the parameters a, b and c are the layer depth or the number of filters
in the corresponding layer. The number of filters of the third convolution in the bottom
section must be equal to the number of filters in the top section (c parameter). The
parameters a, b y c in Tables 2 and 4 and in Figure 5 have the same meaning.
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Figure 5: Architecture of the ECBs, DCBs and IBs.

3.3 Training procedure
The network training process consists of two stages. In stage 1 we use a photorealistic
synthetic database (created using the graphics simulator [5]) to train our CNN end
to end. This allows the network to learn the most important features for the person
detection task, while using a dataset that is automatically generated and labeled. In
stage 2 we fine-tune the CNN to adjust its weights to the actual camera pose with a
small real database, composed of only 3500 frames that need to be manually labeled.

The use of the synthetic database allows us to avoid the need to use or create and
label a large people detection database with depth images. The synthetic database has
22 · 103 frames of depth images that simulate capturing from an elevated front position
around a synthetic room1.

In stage 1 we split the synthetic database in training and validation subsets com-
posed by the 67% and the 33% percent of the database, respectively. The context used
to create the synthetic database is a room similar to a laboratory with persons walking
in different directions as we can see in the first two rows of Figure 6 as generated by
Blender. In addition to this, we also changed the camera pose every frame, by rotating
and moving it around the room. Our objective is changing the background in all the
frames to prevent the CNN from learning a constant background. This approach allows
the network to more easily generalize to different environments, as the CNN interprets
the background as noise and focus in the people walking around, isolating the system
from a given fixed perspective and pose of the camera.

The images generated by the simulation software have a resolution of 240 × 320,
to be consistent with the images recorded with the camera in the real scenario. An
example of the synthetically generated depth images can be seen in the bottom row of
Figure 6.

In stage 2 we used a recorded and manually labeled real database composed by
3500 frames recorded using a realsense D435 camera [29]. It was used fine-tune and
adapt the network weights network to the real environment. This stage is necessary
because the synthetic data do not consider problems that appears in a real scenario,
such as motion blur, measurement noise or the influence of the ambient light in the

1These images constitute the GESDPD dataset, which has been made available to the scientific commu-
nity [18].
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Figure 6: Sample images of the Blender simulated room with different perspectives
(top two rows), and samples of synthetic depth images for training (belonging to the
GESDPD dataset, botom row).

depth measures.
Regarding the labeling process, and taking into account that the input image I, the

first likelihood map C and the polished likelihood map Cpolished are normalized be-
tween [0, 1], we placed 2D Gaussian-like distributions in the centroid of the labeled
people with a maximum value of 1 corresponding to the centroid. The standard de-
viation of the distributions is constant in all the cases because using variable gaussian
deviation proved to decrease the detection performance in preliminary experiments.
The gaussian deviation value has been calculated using the average estimate of a hu-
man head diameter, which is D = 15 pixels. Gaussian deviation is calculated as
σ = D/2.5 = 15/2.5 = 6.

One important modification on the labeling process as compared with the proposal
in [19] is that the gaussians are not constant in terms of overlapping. Their standard
deviations are constant, but when two gaussians overlap, we force a clear separation
between them, as shown in Figure 7. This helps to mitigate the occlusions problem be-
cause there always exists a separation between gaussians, which in the post-processing
will help to identify the people of the image. One example of how we handle the
labeling in case of gaussian overlap can be seen in Figure 7.

The optimization strategy we applied was Swats, proposed by [31]. It involves a
first training phase with Adam [34] corresponding to stage 1, and a second phase with
SGD+Momemtum that corresponds to stage 2. This strategy allows to improve the net-
work generalization capabilities, as demonstrated in [31]. The initial learning rate of
the first stage was 0.001, which was combined with the use of an early stopping call-
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Figure 7: Gaussians Overlap Example.

back to save the best possible model. The adaptive skills of Adam modifies this learn-
ing rate along the training process. In the second stage we use the SGD+Momemtum
learning rate equal to 1e− 5.

The loss function has also been strongly improved as compared with [19], in which
the simple mean square error was used. Our CNN uses a training set composed of input
depth images Ii and initial and polished likelihood maps [Ci, Cpolishedi ].

The proposed loss function tries to go beyond the conventional mean square error
function using a customized weighting in the detection and background points, so that
the system converges faster than in conventional function cases. The proposed loss
function consists of 4 elements, which are differentiated by location and type of points
to be evaluated. In the first case, we can separate in main’s block output location
that its composed by the two first elements and the refinement output location that it’s
composed of the third and fourth elements and have a superindex named as polished.
In the latter case, the loss includes a weighting factor between the zero-negative value
points marked by a 0 symbol and the positive-non zero points of the likelihood map
marked by a + symbol. The first case helps to refine the likelihood maps provided
by the main block while the second case improves the convergence to the gaussian
distributions of the target likelihood map. The loss function is described in equation 4.

L = λ1
1

N

N∑
i=1

‖ ˆCi+ − Ci+‖2 + λ2
1

N

N∑
i=1

‖Ĉi0 − Ci0‖2+

λ1
1

N

N∑
i=1

‖ ˆCpolishedi+
− Cpolishedi+

‖2 + λ2
1

N

N∑
i=1

‖ ˆCpolishedi0
− Cpolishedi0

‖2,

(4)

where λ2 = 1 and λ1 = 1.3 are the parameters that weight the importance of the
zero-negative value points and the non-zero-positive points in the loss function. An
example of the zero and non-zero points considered can be seen in Figure 8, where at
the left side we have the original likelihood map and at the right in red we distinguish
the non-zero points and in blue the zero points.

We trained the network for 30 epochs with the Adam Optimizer in the first stage,
and for 20 epochs with SGD+Momemtum in the second stage, choosing the best possi-
ble model obtained along the training process.
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Figure 8: Example image of zero and non-zero points. In the left image, we can see
an output likelihood map. Meanwhile in the right image we can observe the zero and
positive-non-zero points plotted in blue and red respectively.

4 Experimental Work
This section first describes the datasets (section 4.1) and the experimental setup (sec-
tion 4.2). Then, we present the evaluated algorithms (section 4.2.1), and the used
metrics (section 4.2.2). Finally, we provide details on the training and hyperparameter
selection strategies (section 4.2.4) and the way to generate part of the metrics for the
algorithm proposed here (section 4.2.3).

Once the experimental conditions and the data to be used are described, the results
are presented through the use of tables and figures, in which the main metrics are
detailed and a comparison between our proposal and other algorithms in the literature
is carried out. The results are first presented for the synthetic data case (section 4.3)
which allows us to introduce and explain in-depth the effectiveness of a synthetic pre-
training as the one performed here, and which are the limitations that can be found in
the real world. After explaining the synthetic training, the real results are presented in
each of the databases used (section 4.4). This explanation ends with a comparison of
the average results of all the databases (section 4.4.6) and a discussion about the use of
a global training approach to the system (section 4.4.7). After the presentation of the
results, the computational performance is then evaluated quantitatively (section 4.5).

4.1 Datasets & Data Partition
In order to provide a wide range of evaluation conditions, we have used five different
databases, that will be described next. Figures 9 and 10 provide some sample frames
to give an idea on the style and quality of the different datasets.

1. GESDPD [18]: GESDPD is a synthetic dataset which contains 22000 depth im-
ages, that simulate to have been taken with a sensor in an elevated front position,
in an indoor working environment. These images have been generated using
the simulation software Blender [5]. The simulated scene shows a room with
different people walking in different directions. The camera perspective is not
stationary, as it rotates and moves along the dataset, which avoids a constant
background that could be learned by CNN in the training, as can be seen in fig-
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ure 6, that shows different perspectives of the synthetic room in the simulation
software Blender [5]. Using different backgrounds around the synthetic room
allows CNN to see the background as noise and focus the training in the people
that come along the image, immunizing the network to the change of camera
perspective and assembly conditions.

The generated images have a resolution of 320 × 240 pixels codified as 16 bits
unsigned integers. Some examples of the synthetic images are shown in figure 6,
the images correspond to three different perspectives, and the depth values are
represented using a colormap.

2. GFPD [17]: The Geintra Frontal Person Detection dataset is a high-resolution
dataset recorded with a [29] realsense D435 camera. GFPD contains 5270 depth
frames with 13827 annotated people instances. The camera has an active stereo
depth sensor that provides depth maps with a resolution of 1280 × 720. The
records of this dataset consider a great variety of conditions including different
sensor heights (2200-2700 mm), different tilt angles (26-41 degrees), as well as
different backgrounds and lighting conditions.

3. EPFL [3], that includes two different datasets:

(a) EPFL-LAB: The first one (EPFL-LAB) contains around 1000 RGB-D
frames with around 3000 annotated people instances. There are at most 4
people who are mostly facing the camera, presumably a scenario for which
the Kinect software was fine-tuned.

(b) EPF-CORRIDOR: The second one (EPFL-CORRIDOR) was recorded in
a more realistic environment, a corridor in a university building. It contains
over 3000 frames with up to 8 individuals, and it is a challenging dataset
since there are important occlusions.

4. KTP [42]: The Kinect Tracking Precision dataset (KTP) presented in [42] con-
tains several sequences of at most 5 people walking in a small lab environment.
They were recorded by a depth camera mounted on a robot platform and we use
here the only one that was filmed while the camera was static. Authors provide
ground truth locations of the individuals both on the image plane, and on the
ground plane. Unfortunately, the quality of the ground truth for the ground plane
is limited, due to the poor quality registration of the depth sensor location to
the environment. In order to fix this, we made an effort and manually specified
points corresponding to individuals on the depth maps, then projected them on
the ground plane, and took an average to get a single point representing person
location. This introduces a small bias as we only observe the outer surface of the
person but any motion capture system would have similar issues.

5. UNIHALL [51]: In [51, 39], the authors report their results in a dataset contain-
ing about 4500 RGB-D images recorded in a university hall from three statically
mounted Kinect cameras. Unfortunately, there is no ground plane ground truth
available, thus we only report results for image plane. To compare to their re-
sults, we follow the evaluation procedure described in [51], that is, without pe-
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nalizing approaches for not detecting occluded or hidden people. We also report
our performance for the full dataset separately.

(a) Sample frames from the GESDPD dataset [18].

(b) Sample frames from the GFPD dataset [17].

(c) Sample frames from the KTP dataset [42].

Figure 9: Sample frames from the GESDPD, GFPD and KTP databases (gray coded
depth).

In what respect to the data partitioning we did to generate the training and testing
subsets, Table 5 shows the total number of frames (column #framesFull), the total num-
ber of people labeled in the ground truth in these frames (column #PeopleFull), and the
partition statistics for the training subsets (columns #framesTrain and #PeopleTrain),
and for the testing subsets (columns #PeopleTest and #framesTest). It also provides
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(a) Sample frames from the EPFL-LAB dataset [3].

(b) Sample frames from the EPFL-CORRIDOR dataset [3].

(c) Sample frames from the UNIHALL dataset [51].

Figure 10: Sample frames from the EPFL-LAB, EPFL-CORRIDOR and UNIHALL
databases (gray coded depth).
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details, wherever necessary, on the sequences used. Total numbers are shown right-
aligned, and when the partition involved several sequences, the corresponding data for
individual sequences is shown left-aligned. To give an idea on the relative size of the
training and testing material for each dataset, Table 5 also provides the percentages cor-
responding to these subsets in the rows with accumulated totals for the #PeopleTrain
and #PeopleTest columns.

Table 5: Data partition details.

Sequence #framesFull #PeopleFull #FramesTrain #PeopleTrain #FramesTest #PeopleTest
GESDPD 22000 54215 17600 36063 4400 18152(67%) (33%)

GFPD

1 1690 4462 1690 4462
2 900 3760 900 3760
3 1090 4337 1090 4337
4 500 1268 500 1268

Total GFPD 4180 13827 3090 9490 1090 4337(69%) (31%)
EPFL-LAB 1 920 2287 600 1385 320 902(61%) (39%)

EPFL-CORRIDOR

20141008 141829 00 390 899 390 899
20141008 1414 30 00 420 813 420 813
20141008 141913 00 396 1886 396 1886
20141008 141537 00 430 853 430 853
20141008 141537 00 1100 3581 1100 3581
Total EPFL-CORRIDOR 2736 8032 1206 3598 1530 4434(45%) (55%)

KTP
ROTATION 2200 3299 2200 3299
STILL 2100 3420 2100 3420

Total KTP 4300 6719 2200 3299 2100 3420(49%) (51%)
UNIHALL mensa seq0 1.1 2900 2979 1400 2054 1500 925(69%) (31%)

ALL Datasets Total ALL Datasets 37036 88059 26096 55889 10940 32170(63%) (37%)

4.2 Experimental setup
4.2.1 Evaluated algorithms

We compared the performance of our proposal PD3net with up to ten different strate-
gies described in the literature that use depth cameras with an elevated non-overhead
position in a people detection task.

Table 6 shows the main characteristics of all the evaluated methods, considering
both classical and DNN approaches. It is relevant to note that we are comparing our
depth-only proposal with others using different combinations of RGB and depth infor-
mation, which imposes strong differences in the quality of the exploited data. Below,
we explain in detail the evaluated state-of-the-art methods we use in the comparison:

• ACF [13]: That uses a RGB detector from [13], based on AdaBoost and aggre-
gate channel features [14] to give a sense of what a state-of-the-art detector that
does not use depth can do on these sequences.

• PCL-MUNARO [42]: That uses a RGB-D detector from [42], based on modified
HOG features on regions extracted by depth segmentation.

• KINECT2 [33]: Based on the results obtained from the human pose estimation
of the latest Kinect for Windows SDK [33]. It is not publicly known what spe-
cific algorithm is used. However in [50], the authors report that their algorithm is
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Table 6: Evaluated state-of-the-art methods for multiple people detection.

Solutions Methods
Input

information References

ACF RGB [13]
PCL-Munaro RGB-D [42]

Kinect2 RGB-D [33]Classic

Unihall RGB-D [51]
DPOM D [3]
RCNN RGB [23]

RGBCNN RGB [69]
RGBCECDCNN RGB-D [69]

DNN

YOLO V3 RGB [46]

at the core of the human pose estimation for the older version of the Kinect soft-
ware. For undisclosed reasons, the framework supports tracking up to 6 people,
with the working depth range limited to 4.5 meters. To ensure fairness, we kept
these restrictions in mind when using the EPFL-LAB and EPFL-CORRIDOR
datasets. We do not penalize algorithms for not detecting more than 6 people or
people who are further than 4.5 meters away.

• UNIHALL [51]: That uses a RGB-D detector from [51] based on HOG and HOD
features. The code is not available and we, therefore, report only a single point
on the precision-recall curve.

• DPOM [3]: This method checks for a human presence on the ground plane using
bayesian inference. Before that, the first step is to detect the ground plane and
remove it from the 3D processed point cloud. After the ground plane elimination,
all the points that remain will be clustered and segmented as possible person
detections. The algorithm stops when it finishes to group all the regions clustered
in the whole depth image.

• RCNN [23]: That uses a region proposal based CNN with the [23] architecture.
This architecture was originally used for region segmentation and classification.
In addition to this architecture, it uses the region of interest method from [69].

• RGBCNN [69]: That uses a RGB CNN-based object detector with region of in-
terest selection based on [69] and selective search from [56].

• RGBCECDCNN [69]: That uses a RGB and Depth combined CNN-based object
detector with CECD channel encoding based on [69] proposal.

In addition to these methods, and to allow for additional experimentation on our
GESDPD dataset, we have also used the YOLO (You Only Look Once) object detec-
tor [46] to be applied in the person detection task using depth and RGB data. Our use
of the YOLO strategy comprises two approaches, using the YOLO system as is, and
adapting it to more properly handle the depth information. These are the two developed
systems on this line:
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• YOLO-V3 [46]: RGB object detector [46] based on CNN and bounding box
based approximation. This implementation was based on the original Yolo V3
architecture and trained with the COCO 2017 dataset [37]. The parameters used
to configure the architecture were an input image size of 416 × 416, 9 anchors,
and all the COCO classes.

• YOLO-Depth: Depth object detector based on the [46] structure, but modified
and retrained to only use depth information. This implementation was based
on a modified Yolo V3 architecture to use depth images as input instead of RGB
images. This implementation is trained with the depth datasets used in this paper.
The parameters used to configure the architecture, were an input image size of
416x416, 9 anchors, and only with the person class. No structural changes have
been made to the architecture as compared to the original version.

4.2.2 Evaluation Metrics

To provide a detailed view of the performance on the evaluated algorithms, we have cal-
culated the main standard metrics in a detection problem, namely Precision, Recall,
and F1score. The results are shown both in tables (to provide the precise values), and
in bar graphs (to provide an easier visual comparison).

In the scoring process, the following convention has been adopted regarding oc-
clusions: In the case that an occluded person is not detected, it does not generate a
detection error if the heads of the users are occluded in a percentage higher than 50%.
Therefore the occlusion limitation does not practically affect occlusions between the
bodies of the users, but only considering the occlusion of the upper body part.

In the results tables, we also include confidence intervals for the F1score metric, for
a confidence value of 95%, to assess the statistical significance of the results when com-
paring different strategies. Additionally, the confidence intervals for the Precision,
Recall, and F1score metrics are also shown in the bar graphs.

In the evaluation with real data, Precision-Recall curves are also included. In
the case of the DPOM, ACF, KINECT2, UNIHALL, PCL-MUNARO, RGBCNN, and
RGBCECDCNN algorithms, we use those already provided in [69] and [3]. For the
YOLO-Depth and YOLO-V3 [46] algorithms, we generate the curves of Precision-
Recall through a sweep of the algorithm confidence threshold. However, building
these curves in our proposal is somehow artificial, leading to curves with strange ap-
pearances, as the threshold sweep is done on the Gaussian distribution threshold. In
Section 4.2.3 we describe the Precision-Recall curve generation procedure for our
proposal, and the considerations that should be taken into account when addressing the
interpretation of the Precision-Recall curves for our system.

In the case of the F1score, the obtained curves are scanned with each of the possible
thresholds, to obtain their corresponding F1score and to be able to create the F1score vs
threshold curve, which allows choosing the best point or range of points of the work
following the criterion of the best possible F1score.

An additional parameter of the evaluation metrics is the region on which they are
calculated, including restrictions on the image plane and the depth range. In some cases
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(that will be clearly stated when showing the results), the evaluation metrics have been
calculated considering:

• An image plane region which is smaller than the full-frame size. The objective is
to only focus on full detections of people, avoiding the cases of incomplete per-
sons in which they could otherwise be partially occluded by the image borders.

• A depth range that is smaller than the full depth range of the sensor. The ob-
jective is avoiding measurements greatly contaminated with noise that, for some
recording conditions, can be found near the image borders or at depths near the
sensor sensing limits.

4.2.3 Precision-Recall curves generation for the PD3net algorithm

In this section we provide details on how the threshold to be optimised in PD3net
works. The need for this explanation is given because it is not a conventional confi-
dence threshold like the one that can be found in algorithms such as YoloV3 (in which
the threshold sweep generates a smooth variation in the performance curves), so that
it can produce effects that are radically different from the usual ones, which can be
reflected in the Precision-Recall curves.

Figure 11 shows a schematic example of a gaussian-like confidence map, which
could be generated by our system. In the 2D representation of the figure (left image),
we can see two small gaussian-like regions with a small overlap between them. In the
three-dimensional representation (right image) the apparent overlap between the two
gaussian structures is greater than the one observed in 3D.

2D Confidence Map 3D Confidence Map

Figure 11: Schematic representation of the 2D confidence map in 3D.

The threshold defined in the PD3net algorithm would be shown geometrically as
a plane parallel to the XY plane that would cut the Gaussian distributions at a partic-
ular height, separating them both by their maximum height and by their overlap at the
threshold level. So unlike conventional thresholds, this threshold will model both the
intergaussian overlap and the maximum confidence peak.

Figure 12 shows the three-dimensional representation of the two detected gaussians
after the application of three thresholds values at 0.1, 0.4, and 0.8.

In the case of the 0.1 threshold, it can be seen that the two gaussians are overlapping
by their intersection at the threshold level, so that in terms of detections, it would
generate a single detected person. In the case of the 0.4 threshold, it can be observed
that the gaussians no longer have overlap considering the threshold level, so that the
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Figure 12: Representation of the effect of different threshold values.

two gaussian centroids are correctly detected. Finally, in the case of the 0.8 threshold,
only the gaussian with the highest height would found, since the other one is below the
detection threshold, and would be discarded.

To show a real example on how we build the Precision-Recall curves for the
PD3net system, Figure 13 includes data obtained for a sample frame of the GFPD
dataset. The upper part of the figure includes the ground truth confidence map (left
image), showing three users with gaussians normalized at their maximum peaks of
1.0, and the network prediction (right image), with four estimated gaussians whose
maximum peaks correspond to 1.0, 0.7 and 0.3 (not all the predictions will reach the
1.0 level).

In the lower part of Figure 13 we can see two graphs. The one to the left is the
Precision-Recall graph on the test set, and the one to the right is the F1score −
Threshold graph calculated on the training set. In these two graphs we find three well-
differentiated sections that will allow to get an idea of the distribution of Precision-
Recall curve values when varying the threshold value:

• The first region, indicated by a blue ellipse, covers a threshold range below 0.1.
In that range, due to the increased gaussian overlapping and the acceptance of
low confidence gaussians, the number of false positives and false negatives in-
crease.

• The second region, indicated by a black ellipse, covers a wide threshold range
below 0.1 and 0.4. In that range, as we increase the threshold value the gaussian
overlapping will decrease, and also the gaussians with low confidence values will
be discarded, thus decreasing the number of false positives and false negatives.

• The third region, indicated by a green ellipse, covers a wide threshold range
between 0.4 and 0.8, and is where the system performs the best, with well and
correctly separated gaussians, and good rejection of low confidence ones. This
behaviour leads to the optimum working point shown as a red star.
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Figure 13: Representation of the threshold variation effect on a GFPD example. From
this example, we can conclude that a threshold variation will have a simultaneous im-
pact on both the false positive rate (all the low confidence gaussians for low threshold
levels) and the false negatives (all the overlapping gaussians for low threshold levels).

4.2.4 Training and threshold selection strategy

As discussed above, one of the key issues in the PD3net proposal is the correct selec-
tion of the detection threshold used in the output map Cpolished. This selection is an
important point because this threshold is responsible for deciding which gaussians dis-
tributions will be considered as possible person detections. The network and threshold
training have been done using two different approaches:

• Tuned (Dataset specific) network training and threshold selection: In this sce-
nario, the network has been trained on the training subset for each specific dataset,
and the corresponding threshold is selected as that achieving the best F1score on
this training subset. This way we can evaluate the best possible result with the
threshold tuned to the conditions of each particular dataset.

• Global network training and threshold selection: In this secenario, the network
has been trained on all the available training subsets, and the threshold has been
selected as that achieving the best F1score on these training subsets. This way
we can evaluate a realistic performance using the same single threshold for all
the datasets.

4.3 Results training with Synthetic Data Only
Our first evaluation task was devoted to the evaluation of till what extent the training
with simulated data could cope with the variability found in real datasets. To do so, we
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Table 7: Results on the GESDPD and EPFL-LAB datasets, trained on the training
subset of the GESDPD.

#FramesTest #PeopleTest FN (FNR%) FP (FPR%) Error Precision Recall F1score

GESDPD 2200 3176 212 (6.68%) 3 (0.09%) 6.77% 99.89% 93.32% 96.50± 0.11%
EPFL-LAB 950 1959 474 (24.07%) 3 (0.15%) 24.35% 99.80% 75.80% 86.16± 1.53%

first run a set of preliminary experiments using the GESDPD as the training data, and
both, GESDPD and EPFL-Lab for testing.

The first row in Table 7 shows the results of our proposal trained with the GESDPD
when evaluated on an independent subset of the GESDPD dataset. The results indicate
that the simulated training data seems to be valid to achieve reasonably good results
when facing similar simulated conditions, with an overall error below 6.8% and an
F1score of 96.5%.

The second row of Table 7 shows the results of our proposal trained with the
GESDPD and evaluated on a testing subset of the EPFL-LAB dataset. In this case,
the search area in the image plane was restricted to 280×150 and the depth range con-
sidered up to 3.5m. Our objective was to produce an environment more controlled in
which unnecessary noise is removed from the image, present for example in the ceiling
which occupies 40%of the image or on the floor. These results indicate that the sim-
ulated training data is not capable of leading to reliable results when facing a realistic
dataset, with an overall error above 24% and an F1score of 86.16%.

These preliminary experiments clearly indicate that training with simulated data
only is still far from allowing us to get good results on realistic data. This conclusion
leads us to develop a training procedure in two stages: first a full training using the
simulated data, and then use a small subset of each of the evaluated datasets to fine-
tune the pre-trained model.

4.4 Results on real data
In this section, we present the results and discussion when evaluating our proposal on
the realistic datasets described in Section 4.1, and using all the available algorithms in
each case. Table 8 shows the results of all the evaluated algorithms in all the available
datasets. Empty cells in the table are due to the fact that the corresponding algorithms
were not available, so that we have replicated the results published by the respective
authors in the given datasets.

For the PD3net algorithm, two results are provided for the conditions discussed
in Section 4.2.4: one with the tuned version of the network model and threshold, and
the other with their globally trained versions. The results show, as expected, a slight
decrease in performance when using the global threshold as compared to the tuned
one, but these differences are not statistically significant. This support the conclusion
that the PD3net strategy is robust enough to face very different training and testing
conditions.

In the next subsections we discuss the results for each specific dataset, providing a
graphical comparison of the evaluated metrics, along with the Precision-Recall and
F1score− threshold curves for the tuned approach. The discussion of these curves for
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Table 8: Performance results on all the avaible datasets comparing the“tuned” and
“global” versions for the PD3net proposal (P = Precision,R = Recall (best result
are displayed with green background, and orange background indicates results within
the best one significant bands).

GFPD KTP UNIHALL EPFL-LAB EPFL-CORRIDOR
P R F1score P R F1score P R F1score P R F1score P R F1score

PD3net tuned 99.7 96.36 98.0± 0.20 96.2 96.3 96.3± 0.64 92.5 99.2 95.7± 1.30 98.8 94.5 96.6± 1.18 90.3 80.1 84.9± 1.05
PD3net global 100.0 95.9 97.9± 0.21 95.4 95.1 95.3± 0.71 91.2 97.3 94.2± 1.51 99.5 92.5 95.9± 1.30 90.9 76.1 82.8± 1.11
YOLO-V3 82.3 86.4 84.3± 0.53 99.1 98.2 98.7± 0.39 84.5 93.1 88.6± 2.05 93.3 93.0 93.2± 1.65 58.6 59.8 59.2± 1.45

YOLO-Depth 79.8 55.1 65.2± 0.69 91.1 72.3 80.6± 1.32 63.2 52.4 57.3± 3.19 90.2 89.2 89.7± 1.98 78.4 47.9 59.5± 1.45
PCL-MUNARO 98.7 76.4 86.1± 1.16 82.5 78.2 80.3± 2.56 96.9 86.5 91.4± 1.83 95.0 56.3 70.7± 1.34

DPOM 95.3 94.5 94.9± 0.74 90.2 98.1 94.0± 1.53 98.5 85.4 91.5± 1.82 96.3 70.9 81.7± 1.14
ACF 87.4 72.7 79.4± 1.36 90.2 85.4 87.7± 2.11 83.8 86.4 85.1± 2.33 66.3 40.3 50.1± 1.47
RCNN 50.1 51.4 50.7± 3.22
RGBCNN 49.7 51.2 50.4± 3.22

RGBCECDCNN 52.3 52.3 52.3± 3.22
UNIHALL 86.3 84.5 85.4± 2.28
KINECT2 99.8 38.2 55.3± 3.24 86.3 41.2 55.8± 1.46

the global approach is later addressed in Section 4.4.7.

4.4.1 Results for the GFPD database

The second column of Table 8 and Figure 14 show the results when evaluating on
the GFPD dataset, using our proposal PD3net and the YOLO-V3 and YOLO-Depth
algorithms. We could not apply any of the other proposals described in Section 4.2 as
they were not readily available.

Figure 14: Results on the GFPD dataset.

The results in the table show that both approaches of the PD3net algorithm clearly
outperform the YOLO-based strategies, being the best in the three metrics used and in
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a statistically significant way, placing a great distance between it and YOLO-V3 as the
second-best solution. The worse results of the YOLO-based algorithms probably rely
in the fact that they were not designed to deal with depth data, and to the great number
of occlusions and complex situations that GFPD contains.

Figure 15 shows the Precision-Recall curve corresponding to the behavior of the
three algorithms and the F1score − threshold curve corresponding to the PD3net
algorithm. As described in Section 4.2.3, the appearance of the curve for our proposal
is far from standard, and it is due to the effect of the threshold sweep procedure so that
the area under the curve should not be taken into account as the comparison metric, but
the actual working point of the algorithm (marked with a red start). The figure clearly
shows that our working point greatly outperforms the other proposals.

Figure 15: Precision-Recall curve comparison and F1score-Threshold results for the
experiments on the GFPD dataset.

With respect to this Precision-Recall curve, F1score metric is represented as a
function of the threshold sweep used to generate the Precision-Recall curve. This
curve shows how the working point is located in the middle of a reasonably wide and
flat area which outperforms the other two algorithms, indicating that its sensitivity to
the threshold value is reduced.

The capabilities of our proposal are further established in the next sections where
the availability of performance metrics on additional datasets and with a broad range
of different algorithms are exploited in the comparisons.

4.4.2 Results for the KTP database

The third column of Table 8 and Figure 16 show the results when evaluating on the KTP
dataset, using our proposal PD3net, the YOLO-V3 and YOLO-Depth algorithms,
and three other proposals from the literature (DPOM, ACF and PCL-MUNARO).

From the table, it is surprising the top performance of the YOLO-V3 algorithm in
terms of F1score, with statistically significant different as compared with the second-
best result (achieved by our PD3net). In this case, the YOLO-V3 system obtains better
results than all the other proposals as the KTP database does not contain a lot of hard
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occlusions and has been prepared from a low frontal perspective, which are the perfect
conditions for the operation of YOLO-V3, whose training images are also low frontal
and with almost no occlusions.

Figure 16: Results on the KTP dataset.
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Figure 17: Precision-Recall curve comparison and F1score-Threshold results for the
experiments on the KTP dataset.

Figure 17 shows the Precision-Recall curve corresponding to the behavior of
the five algorithms and the F1score − Threshold curve corresponding to the PD3net
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algorithm. Again, the later curve shows how the working point exhibits a wide flat
area, indicating that its sensitivity to the threshold value is small. In addition to this,
we can see that YOLO-V3 shows a Precision-Recall curve that is near the perfection
in KTP, compared to DPOM or PD3net.

4.4.3 Results for the UNIHALL database

The fourth column of Table 8 and Figure 18 show the results when evaluating on the
KTP dataset, using our proposal PD3net, the YOLO-V3 and YOLO-Depth algo-
rithms, and three other proposals from the literature (DPOM, ACF, PCL-MUNARO and
KINECT2).

In this case, the PD3net algorithm is the best one in terms of the three evaluated
metrics, but its improvement as compared with the second best (DPOM) is not statisti-
cally significant.

Figure 18: Results on the UNIHALL dataset.

Figure 19 shows the Precision-Recall curve and the F1score sweep curve corre-
sponding to PD3net algorithm. With respect to the F1score metric, the curve shows
a stable working point that falls sharply compared to other databases from a thresh-
old of 0.6, so we can see that the working point represented by a sharp peak in the
Precision-Recall curve is, in fact, a long-range of stable working points. In this case,
the Precision-Recall curve clearly shows that the proposed algorithm (PD3net) has
the best possible working point, very closely followed as the second-best solution by
DPOM and with a large distance in this case to the best third solution represented by
YOLO-V3, which is again affected by the presence of strong occlusions in this dataset.
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Figure 19: Precision-Recall curve comparison and F1score-Threshold results for the
experiments on the UNIHALL dataset.

4.4.4 Results for the EPFL-LAB database

The fifth column of Table 8 and Figure 20 show the results when evaluating on the
EPFL-LAB dataset, using our proposal PD3net, the YOLO-V3 and YOLO-Depth
algorithms, and seven other proposals from the literature (DPOM, ACF, PCL-MUNARO,
RCNN, RGBCNN, RGBCECDCNN, and UNIHALL).

In this case, the PD3net algorithm is the best in terms of the three evaluated met-
rics, and its improvements as compared with the second best (YOLO-V3) are again,
statistically significant.

Figure 21 shows the Precision-Recall curve and the F1score sweep curve corre-
sponding to PD3net algorithm. Again, the best algorithm in terms of working point
in the Precision-Recall curve is PD3net. This curve exhibits a very different be-
havior from the one seen in previous datasets, forming a very steep slope and peak.
To demonstrate that this peak represents a large number of good and stable working
points, the F1score graph clearly shows how there is a range of threshold values (from
0.6 to 0.8 that is practically stable in terms of F1score.

4.4.5 Results for the EPFL-CORRIDOR database

The sixth column of Table 8 and Figure 22 show the results when evaluating on the
EPFL-CORRIDOR dataset, using our proposal PD3net, the YOLO-V3 and YOLO-Depth
algorithms, and four other proposals from the literature (DPOM, ACF, PCL-MUNARO,
and KINECT2 [33]). In this case, the PD3net algorithm is again the best in terms of
recall and F1score metrics and the third in terms of precision (although the good results
in Precision by the DPOM algorithm are related to a poor behaviour in terms of Recall).
Its improvements in terms of Recall and F1score compared to the second best algorithm
(DPOM) are statistically significant.
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Figure 20: Results on the EPFL-LAB dataset.
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Figure 21: Precision-Recall curve comparison and F1score-Threshold results for the
experiments on the EPFL-LAB dataset.
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Figure 22: Results on the EPFL-CORRIDOR dataset.

Figure 23 shows the Precision-Recall curve and the F1score sweep curve cor-
responding to PD3net algorithm. EPFL-CORRIDOR is one of the most complex
databases, bringing together difficulties such as many occlusions and people very close
together, detection in small spaces with a lot of perspectives, great noise in the depth
data and many false detections due to people occluded by the image borders. All these
issues lead to algorithms like YOLO-V3 to drastically reduce their performance, while
PD3netmanages to keep a more robust performance, this time with a less stable work-
ing point in terms of F1score, as compared to the results obtained in other databases.
The second best system is again DPOM,in this case with significant differences in the
results in terms of working point. Finally, in third place we find PCL-MUNARO closely
following the DPOM but with remarkable differences in their Precision-Recall curves.

4.4.6 Average results for all the available datasets

Table 9 and Figure 24 show the weighted average results when evaluating all the avail-
able datasets using all the available algorithms. They have been calculated integrating
the results from the above sections, weighting each result according to the number of
ground truth elements of each testing subset.

In the average comparison over all the datasets, we can observe that the statis-
tical significance of the results is increased, provided the higher number of consid-
ered samples. In terms of Precision the best algorithm is PD3net, with DPOM and
PCL-MUNARO coming second and third. In terms of Recall the differences increase,
with a large distance among the first three best proposals. The top system is again
PD3net, followed by DPOM and YOLO-V3. Finally, considering the F1score that re-
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Figure 23: Precision-Recall curve comparison and F1score-Threshold results for the
experiments on the EPFL-CORRIDOR dataset.

Table 9: Average weighted results using all the available datasets.

Precision Recall F1score

PD3net tuned 97.51 93.80 95.62± 0.24
PD3net global 97.68 92.59 95.07± 0.25
YOLO-V3 81.02 84.05 82.51± 0.45

YOLO-Depth 80.75 57.08 66.88± 0.55
PCL-MUNARO 95.29 68.31 79.57± 0.80

DPOM 95.57 83.19 88.95± 0.62
ACF 77.67 60.35 67.92± 0.93
RCNN 50.10 51.40 50.74± 3.22
RGBCNN 49.70 51.20 50.44± 3.22
UNIHALL 86.30 84.50 85.39± 2.28

RGBCECDCNN 52.30 52.30 52.30± 3.22
KINECT2 88.58 40.69 55.77± 1.33
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Figure 24: Average weighted results using all the available datasets.

lates the two previous metrics offering a final joint one, PD3net comes first, clearly
surpassing DPOM, which is the second-best method with a wide statistical significance.

4.4.7 Discussion on the Precision − Recall curves for the Global training ap-
proach

In this section we provide details on the comparison of our proposal with the other
state of the art methods considering the Precision−Recall and F1score−Threshold
curves, when the network model and the threshold have been trained using all the
available training subsets (referred to as the Global approach in Section 4.2.4.

Figure 25 shows the Precision-Recall curves for all the datasets and different
algorithms.

The curves obtained in this case for each dataset are very similar to those found in
Figures 15, 17, 19, 21 and 23, which is consistent with the performance metric results
in Table 8, which showed non significant differences between the tuned and global
approaches.

Figure 26 shows the F1score-Threshold curve for the proposed PD3net algorithm
and the different datasets. We also include the average curve (labeled “Combined F1”),
from which a single threshold of 0.54 was selected, as the one with the maximum
average F1score. The fact that this best threshold is located around the middle of the
threshold span also supports the robustness of the proposed strategy.
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Figure 25: Precision-Recall curve comparison using a single global network model
and a single global threshold for all datasets.
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Figure 26: F1score-Threshold results in the experiments using a single global network
model and a single global threshold for all datasets.

4.5 Computational Performance Evaluation
The average frame rate of the system is 42 FPS (frames per second), benchmarked on
a conventional Linux desktop PC, with a Processor Intel®Core(TM) i7-6700K CPU @
4.00 GHz with 64 GB of RAM, and an NVIDIA GTX-1080 TI GPU.

5 Conclusions
This work proposes a new people detection method with depth maps, based in a non-
conventional convolutional neural network approximation. This approximation was
specifically designed to detect people only using the depth data captured by different
types of depth sensor technology(ToF, active stereo, or structured light).

This article includes a very thorough evaluation and comparison with different
methods of detection of people from the state of the art, both classical and based on
DNN. All this evaluation has been carried out on 5 different RGB-D image databases,
each one using a different depth sensor, all this together with a rigorous experimental
evaluation process. The scenes used for training and those used for evaluation are as
realistic as possible, including a wide variety of users, backgrounds, and elements in
them.

The method proposed has been evaluated with a detection threshold for each of the
databases and with a common threshold for all of them, making the analysis of the two
cases in depth. In addition, an evaluation has been carried out on all the databases and
on each one of them specifically highlighting the most important results and details.

In each of the databases used our method obtains if not the best, of the best metrics
of all the state of the art systems evaluated, using only depth maps as input. This
system beats in many occasions RGB methods that have revolutionized the state of
the art like YOLO-V3 or classic methods that use very outstanding depth maps like
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DPOM. The method used works well even in situations with a large number of users
and occlusions.

The proposed method has worked well on three different depth sensor technolo-
gies, is quite general in that sense. This method requires training with a synthetically
generated database and a small amount of data captured by the camera to allow it to
be coupled with reality, but does not require a camera calibration process to know the
intrinsic and extrinsic data of the sensor.
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